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Abstract 

Strontium isotopes are a powerful tool which provide information about provenance 

directly from the tissues of humans rather than the grave context and burial goods. 

Geographical variation in strontium isotopes is primarily controlled by the underlying 

geology but there are many other factors that need to be considered before migratory 

individuals can be identified. Consequently, despite many studies which have shown 

that the method works well, it is clear that much remains to be clarified and it will not 

work for every question or in every place. It rests on the assumption that people were 

sourcing their food locally and that there is a measurable strontium isotope difference 

between the place the person migrated from and the place they migrated to. As 

migrants may deliberately seek out familiar soil types and terrains in their new 

homeland, some questions surrounding major migration events may prove intractable 

for this technique. Other factors that can create heterogeneity or homogeneity leading 

to false positives or false negatives, such as human choices or coastal subsistence, are 

explored and the metabolism of strontium into human tooth enamel is discussed. 

Several models of land use choices by humans are presented to highlight the subtleties 

inherent in the isotope data and these are used to interpret archaeological human 

isotope ratios from three studies.  
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Introduction 

In 1985, Jonathon Ericson (1985) floated the idea that measuring the strontium 

isotope ratios of human skeletal tissue could allow archaeologists to unravel 

information about the geographic mobility and origins of individuals. Previously, 

prehistoric and proto-historic human dispersals had been identified by indirect 

inference from sudden changes in material culture or burial practices, or directly from 

skeletal traits such as cranial shape, stature and build.  None are straightforward to 

read: skeletal traits are difficult to interpret and can vary more within than between 

populations; and how the burial was arranged may say more about the beliefs and 

needs of the survivors, who, for a variety of reasons, may make choices that do not 

relate in any direct way to the geographic origins of the deceased. Even in the case of 

historically documented migrations, such as the Anglo-Saxon settlement of England, 

the scale and nature is often difficult to grasp from written records which often have 

an agenda or were written many years after the event (Hamerow 1997).  For the 

adventus Saxonum, scholars have long argued over how many people came, whether 

it was an elite migration of male warriors or if women and children were involved 

(Adams et al. 1978, Arnold 1984, Härke 1998, Hawkes and Dunning 1961, Higham 

1992, Hills 1999, Hines 1984, Lucy 2000, Welch 1992).   

 

Extracting information from elements such as strontium that have been locked away 

since childhood in the tooth enamel of ancient people provides another strand of 

evidence archaeologists can use to compare and characterise a cemetery population 

and identify people who did not originate from the local region. Enamel is an acellular, 

avascular tissue which can neither regenerate nor remodel and thus represents an 

archive of childhood diet and geographic origins, an ancient passport that people carry 
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with them wherever they travel.  Permanent teeth commence mineralization in a well 

established sequence starting with the first mandibular and maxillary molars 

approximately ten weeks before birth and permanent crowns (with the exception of 

the highly variable third molar) are normally completed before the age of nine 

(Hillson 1996, Gustafson and Koch 1974). There is variation in timing between 

individuals but dental traits, genesis and eruption are considered to be unaffected by 

function and relatively immune to non-genetic developmental factors both in utero 

and in vivo (Scott and Turner 1997, Tyrrell 2000). By targeting specific teeth with 

shorter periods of mineralization, or less variability in the age at which mineralization 

occurs, archaeologists can focus on a specific periods of lif or construct longer 

sequences from sequentially mineralizing teeth. Unlike DNA, which would struggle 

to distinguish the migrant from their descendants, strontium isotope analysis will 

identify only first generation settlers and thus permits an assessment of their age and 

sex profile. 

 

Following Ericson‟s landmark paper, two main research groups at the University of 

Cape Town under Professor N. van der Merwe and the University of Wisconsin 

Madison led by Professor T.D. Price started to investigate the possibilities of using 

strontium isotopes to address archaeological questions of mobility, transhumance and 

migration in Africa, North America and Europe (Ezzo et al. 1997, Grupe et al. 1997, 

Price et al. 1994b, Sealy 1989, Sealy et al. 1995, Sealy et al. 1991, Sillen et al. 1995).  

More recently, two substantial review papers specifically pertaining to the use of 

strontium isotopes in studies of archaeological residential mobility have been 

published by Price et al. (2002) and latterly by Bentley (2006) and the reader is 

referred to these for further detail on the underlying geochemical principles. The aim 
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of this paper is to unpick some of the sources and mechanisms that cause variation in 

humans and illustrate how these impact on the identification of prehistoric migration 

and mobility.  

 

Background 

The possibilities for exploiting strontium isotopes to investigate environmental 

processes in ecosystems were first proposed by Graustein and Armstrong (1983) and 

the large number of subsequent studies enabled two major review papers to be 

published within fifteen years (Åberg 1995, Capo et al. 1998). The technique rests on 

the principal that rocks of different types and ages have characteristic strontium 

isotope ratios (conventionally 
87

Sr/
86

Sr) and these ratios do not alter (fractionate) in 

any measurable way as the element is transferred from the source rocks through the 

biosphere (Graustein 1989). This lack of mass-dependent fractionation in low-

temperature biogeochemical processes results from the comparatively small 

differences between the isotope masses of heavy elements and contrasts with the 

ready fractionation that occurs in lighter elements such as oxygen, carbon and 

nitrogen. Increasing numbers of neutrons can depress chemical reaction rates (Hoefs 

1997) and there is, for example, a much greater relative difference between 
16

O and 

18
O than between 

87
Sr and 

86
Sr. Consequently, an overlying soil, or water flowing 

over or through the rock, will contain strontium from that rock as will any plants 

growing in the soil or water. Animals eating those plants will thus be linked through 

the strontium isotope ratio of their tissues to the source rock type. As the underlying 

geological terrain changes, so will the isotope ratio of the strontium released from the 

rocks into the biosphere above. 
90

Sr is an artificial radionuclide (half-life: 28 years) 

produced by nuclear reactions. It has little relevance to archaeological studies but 



Accepted for publication in the Annals of Human Biology 2010 

concern since the 1950s over 
90

Sr fallout and exposure, coupled with its long 

residence time in bone  (Comar et al. 1957, Eckelmann et al. 1957, Hodges et al.1950, 

Kulp et al. 1957, MacDonald et al. 1951, Turekian and Kulp 1956) initiated a large 

corpus of work on strontium movement through the biosphere and incorporation into 

skeletal tissues (e.g. Blanchard 1966, Leggett et al. 1982, Mangano et al. 2003, Odum 

1957, Papworth and Vennart 1984, Rickard 1964, Tolstykh et al. 2003, Vose and 

Koontz 1959, Yamaguchi et al. 2007). These studies provide much of the fundamental 

knowledge necessary for archaeological investigations of human mobility using 

strontium isotopes. 

 

Strontium metabolism into bone  

Strontium is classified as a lithophile (silicate “loving”) element along with calcium 

which it often replaces in many minerals such as apatite: the predominant mineral 

from which the mammalian skeleton is composed is a carbonated hydroxyapatite or 

dahllite (McConnell 1973). Archaeologists wishing to use this technique to 

provenance humans are fortunate therefore that, as a result of the very similar 

chemical and physical properties of strontium and calcium, most of the body‟s 

strontium burden is, like calcium, found in the skeleton and this is the part of the body 

that most frequently survives burial. Strontium is a non-nutrient trace element that is 

ingested and metabolised into mammalian tissues principally from food and drink.  

The mechanism of incorporation is a passive and apparently benign substitution 

between two alkali earth divalent cations, i.e. Sr
2+

 for Ca
2+

, during nutrient uptake, 

internal distribution and excretion. During active ion movement across cell 

membranes in both plants and animals Sr
2+

 is actively transported in place of Ca
2+

 

(Bowen 1979, Storey and Leigh 2004) enabling strontium to be successfully used as a 
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tracer in calcium-related clinical studies (e.g. Rokita et al. 1996). It is incorporated 

into the carbonate hydroxyapatite lattice at four-fold Ca
2+

 sites (Rokita et al. 1993, 

Vukovic et al. 1998) and also by adsorption onto the crystal surface (Dahl et al. 2001, 

Parker and Toots 1980). In laboratory studies, the amount of strontium incorporated 

into the skeleton of animals is believed to directly reflect the amount available from 

the diet and environment, i.e. it is dose-dependent (Boivin et al. 1996, Dahl et al. 

2001, Pan et al. 2009, Price et al. 1986), as there are no known homeostatic 

mechanisms that specifically regulate levels of such non-nutrients (Parker and Toots 

1980).  

 

Strontium is distributed relatively homogeneously in the skeleton and concentrations 

of strontium in skeletal tissues from a single individual are very similar, with bone 

and dentine containing slightly more than enamel (Aufderheide 1989, Montgomery 

2002, Parker and Toots 1980, Turekian and Kulp 1956, Underwood 1977).  In vivo 

strontium concentrations in bone and teeth appear, like isotope ratios, to vary 

geographically (Brudevold and Söremark 1967, Turekian and Kulp 1956, Underwood 

1977). This could be due to regional variations in bedrock geology, water and food, or 

cultural differences in subsistence strategies and the types of diet, but the sources of 

variation have not been extensively researched or fully characterised. Reported values 

for modern human skeletal and dental tissues are typically 50-300ppm (Brudevold 

and Söremark 1967, Elliott and Grime 1993, Hancock et al. 1989, Underwood 1977). 

Animal tissues exhibit a similar range, although herbivores tend to have higher 

concentrations than carnivores in the same locality and foodchain because plants are 

strontium-rich and meat strontium-poor, with most of the body‟s strontium residing in 

the bones which are rarely eaten (Bocherens et al. 1994, Tuross et al. 1989). 
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Nevertheless, it is extremely rare for any mammalian tissues to exceed 1000 ppm 

(Radosevich 1993) and a concentration plateau effect in bone has been observed in 

clinical studies where high levels of strontium are administered (Dahl et al. 2001).  

 

The ratio of Sr/Ca is widely used in archaeological and modern food chain studies to 

identify the trophic level, and hence types of food, that an individual exploited (Blum 

et al. 2000, Burton and Price 1999, Burton et al. 1999, Burton and Wright 1995, Elias 

et al. 1982, Sealy and Sillen 1988, Sillen et al. 1995). There is a progressive 

biopurification, i.e. discrimination against Sr
2+

 in favour of Ca
2+

, at each successive 

trophic level in both marine and terrestrial environments (Burton and Price 1999, 

Comar et al. 1957, Elias et al. 1982, 2561). This works well with single-component 

diets but, in practice, has proved difficult with multi-component diets (Burton and 

Wright 1995). Mineral metabolism is an extremely complex interaction between 

many variables that affect trace element bioavailability. Some are physiological and 

intrinsic to the individual such as health status and age and some are intrinsic to the 

particular composition of ingested foods. Individual strontium metabolism is, 

therefore, dependent upon many factors and synergisms/antagonisms, only one of 

which is the amount of calcium in the diet. For example, strontium-uptake is 

suppressed in high-calcium or protein-rich diets (Aufderheide 1989, Burton and 

Wright 1995, Lambert and Weydert-Homeyer 1993, Underwood 1977), and due to the 

low levels in milk, by consumption of dairy produce (Ezzo 1994). Strontium-uptake is 

increased in high phytate and fibre diets which actively reduce calcium absorption 

(Lambert and Weydert-Homeyer 1993) and accordingly, herbivorous diets (Alexander 

and Nusbaum 1959, Underwood 1977). Consequently, the strontium concentration 
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measured not only reflects the amount of strontium that is ingested but, if calcium 

levels are not constant, it is sensitive to the amount of calcium.  

 

These factors may result in dietary components contributing disproportionate amounts 

of strontium that are unrelated to how much of the food is consumed. On balance, it 

would appear that, in omnivores such as humans, the plant part of the diet is likely to 

be the dominant contributor to skeletal strontium signatures with a comparatively 

negligible input being derived from animal sources (Burton and Price 2000, Elias 

1980).  This is perhaps fortunate given the ease with which wild and live domestic 

animals can move around the landscape (Bentley and Knipper 2005, Pellegrini et al. 

2008, Towers et al. 2010).  

 

 

 

Assessing the biogenic integrity of excavated skeletal tissue  

Clearly, there is an a priori assumption in archaeological trace element and isotope 

studies that in vivo signatures can be retrieved and any exchange, substitution or 

equilibration between the biogenic tissue and the burial medium has been negligible. 

For the vast majority of archaeological remains the burial medium is soil and 

preservation (or survival) is a result of the physical, chemical and biological 

interaction between soil and skeleton. As many researchers have pointed out this can 

vary on both large and small scales, from cemetery to cemetery and between two teeth 

from the same jaw (Henderson 1987, Radosevich 1993, Sponheimer and Lee-Thorp 

1999). Preservation does not appear to be directly related to the length of time that 

skeletal remains have been buried: “diagenesis is only incidentally a time-dependent 
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process.” (Parker and Toots 1980). However, several studies have concluded that 

chemical alteration can occur remarkably quickly and then remain relatively stable 

thereafter (Koch et al. 1997, Sponheimer and Lee-Thorp 1999, Trueman et al. 2004).  

 

Mature enamel has considerably higher density and much lower porosity than any 

other skeletal tissue and is kinetically more stable. At the point of burial it is virtually 

entirely mineral, in effect already “a living fossil” (Robinson et al. 1986). During 

burial, it retains the micro-morphology created during matrix formation over millions 

of years and is normally indistinguishable microscopically from modern tissue (Boyde 

et al. 1988, Kolodny et al. 1996).  

 

In a large number of biochemical and isotope studies, enamel is considered to be 

stable and resistant to structural and chemical change over geological (Bocherens et 

al. 1994, Glimcher et al. 1990, Horn et al. 1994, Kolodny et al. 1996, Michel et al. 

1995, Michel et al. 1996, Rink and Schwarcz 1995, Wang and Cerling 1994) as well 

as archaeological time scales (Budd et al. 2000, Elias et al. 1982, Ericson 1993, Koch 

et al. 1997, Lee-Thorp and van der Merwe 1991, Montgomery et al. 2000, Nielsen-

Marsh and Hedges 2000, Price et al. 2002, Price et al. 1994a, Robinson et al. 1986, 

Trickett et al. 2003, Vernois et al. 1987). Enamel and dentine contain the same 

carbonate hydroxyapatite mineral phase but their structure, formation process, crystal 

size and organic content are very different. These differences reflect the specific 

functions for which each tissue is created and as a consequence dentine bears far more 

similarities to cortical bone than to enamel. It should, therefore, be expected that 

enamel would also react in dissimilar ways to dentine and bone when subjected to 

post-mortem taphonomic and diagenetic processes. Consequently, although it would 
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be very useful to use bone and dentine to extend the period of life for which strontium 

isotope data can be obtained, and methods have been suggested for the removal of 

diagenetic strontium from bone and dentine (e.g. Sillen and Legeros 1991, Sillen and 

Sealy 1995), there are still major concerns over such data unless it is used simply to 

provide information about the burial soil or local biosphere strontium ratios (Evans et 

al. 2010, Montgomery 2002, Montgomery et al. 2007b). 

 

What time of life does enamel represent? 

Strontium is incorporated into enamel and primary dentine during mineralisation of 

the two tissues and neither tissue reforms nor remodels (Brudevold et al. 1977, Veis 

1989, 189). Thus, the strontium isotope ratio and concentration will derive from those 

circulating in the plasma during the period of mineralisation, irrespective of the age of 

death of the human under investigation (Koch et al. 1997, Underwood 1977, Wieser et 

al. 1996). The period of life represented by individual teeth will vary with tooth type 

but for the permanent dentition it ranges from the peri-natal period (first molar crown 

initiation) to about eight years of age when all but the third molar crowns should be 

complete (Gustafson and Koch 1974, Hillson 1996). Third molar crown 

mineralization is highly variable but the period represented is predominantly the 

adolescent years up to approximately 16 years of age (Hillson 1996). The enamel of a 

human tooth may take months to years to mature (Boyde 1989) and may thus be 

incorporating strontium throughout this period. There is an incremental structure to 

the initial organic matrix, e.g. the brown lines of Retzius which is subsequently 

“fossilized” during maturation when the majority of mineral ions are deposited in the 

tissue. However, maturation does not appear to necessarily proceed along the same 
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trajectory as matrix deposition, on one front only, or at a regular pace (Boyde 1989, 

Suga 1982, Suga 1989). 

 

Although there are concerns over the biogenic integrity of any strontium measured in 

excavated archaeological bone and dentine, the role of bone in mineral homeostasis 

during the individual‟s lifetime may impact on the resolution of any dietary signal that 

can be retrieved from enamel. Bone is a living tissue and subject to modelling 

(formation) and remodelling (turnover) processes throughout its lifetime. Both 

processes are functionally different and proceed at different rates and at different 

times in the skeleton (Priest and Van de Vyver 1990). Remodelling processes result in 

the release of previously incorporated strontium and the incorporation of new, or 

reincorporation of old strontium (Priest and Van de Vyver 1990). As a result, bone 

isotope ratios may change gradually throughout life and so offer the prospect of 

comparing enamel formed during childhood with bone formed mainly in later life. 

Although this may suggest that enamel represents a discrete time-slice of diet at the 

time the tissue was mineralizing and bone a long-term average over many years, it 

rests on the assumption that only recently ingested strontium is circulating in plasma 

and available for incorporation in the tissue. This may not be the case: enamel will not 

represent short-term diet, even if a very small sample is used, if the strontium is 

already an average of several months or even years of strontium ingestion before it is 

incorporated into the enamel. Such a reservoir effect has been postulated to explain 

intra-enamel gradients in hypsodont bovine molars even when the sample size is 

reduced to a shallow 100 μm laser ablation craters (Balasse 2002, Montgomery et al. 

2009). Data from studies of human exposure to heavy metals demonstrates long-term 

residence of heavy “bone-seeking” elements, possibly as a result of storage and 
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recycling by the skeleton through such processes as calcium homeostasis. Residence 

times of different elements in the body can vary considerably and will be dependent 

on bone turnover rates, calcium intake, age and health status (Papworth and Vennart 

1984, Rabinowitz 1991, Rabinowitz et al. 1973). For example, Gulson et al. (1999) 

showed that 50% of the lead circulating in the blood of pregnant women resident in 

Australia had been remobilised from old skeletal stores deposited prior to their 

migration to Australia. Strontium, like calcium, has a long residence time in the body 

of 800 to 1600 days and studies suggest retention after 400 days, most likely as a 

result of buffering from skeletal stores, can still exceed 10% of the original dose 

(Barenholdt et al. 2009, Bowen 1979, Dahl et al. 2001). Elimination rates from bone 

can be age and sex dependent but studies of Sr
90

 in humans suggest they rarely exceed 

6% per year (Degteva and Kozheurov, 1994; Tolstykh et al., 1997). Moreover, 

strontium incorporated by heteroionic substitution into deep cortical bone during 

modelling will have a longer residency time than strontium in exchangeable pools of 

bone that participate in calcium homeostasis, e.g. bone surfaces, and will take longer 

to remobilise than that incorporated by a fully grown adult subject only to the 

processes of remodelling and surface exchange. Data obtained from tooth enamel that 

formed in infancy may thus represent a shorter period of time as the skeleton itself is 

very young and the residence time of strontium in the skeleton of growing children 

may be shorter due to a highly vascular and chemically active skeleton (Leggett et al., 

1982; Dahl et al., 2001). 

 

These factors highlight the complexity of heavy metal uptake and residence in the 

skeleton and its dependence on multiple physiological and environmental factors, 
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most of which will not be known with certainty for the majority of archaeological 

skeletons. 

 

How do we establish the local signature? 

Despite the myriad opportunities for geologically and physiologically induced 

variation, many of which have not yet been fully characterised or explored, it is 

usually possible to establish whether the strontium isotope ratio obtained from a 

skeleton can be obtained from the locality in which it was buried or not. Strontium 

isotope ratios can only vary between the available strontium end-members: in the 

improbable scenario that there is only one source of strontium available locally and it 

provided a ratio of 0.7075, everybody would have a ratio of 0.7075, there would be no 

normally distributed range of ratios amongst the population because the strontium 

isotope ratio cannot be altered measurably in low temperature biological processes. If 

two sources were available, for example 0.7075 and 0.7092, everyone‟s strontium 

isotope ratio would fall between these two values (Figure 1). Consequently, an 

individual with a ratio of 0.7097 could not have eaten locally sourced food as child.  

 

However, isotopes cannot reveal whether the food was brought to the person, or the 

person went to the food. This is a major problem if the study involves modern people. 

In the West, a meal can involve food from not only different countries but different 

continents: sugar snap peas from Zimbabwe; sweetcorn from the United States; beef 

from Argentina; butter from New Zealand; wine from Italy; and mineral water from 

Fiji. Even within a single country, food may be mass produced and distributed widely 

leading to homogenisation of the regional isotope signatures as was found in a study 

of modern inhabitants of Norway who bore no relation to the ancient, granitic rocks 
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from which the country is predominantly composed (Åberg et al. 1998). Mass 

produced feed for cattle in a society eating a large amount of meat and diary products 

was proposed as the reason. In developing countries, where the link between people 

and the land may be assumed intact, food aid produced many thousands of miles away 

from where it is consumed, may swamp any locally derived strontium isotope ratio 

and sever the link between the person and the place of origin. Transport of food over 

long distances may also be a problem for archaeological studies in certain periods or 

places. During the Viking settlement of Iceland for example, grain production on 

Orkney increased dramatically (Bond et al. 2004). If this grain was shipped to Iceland, 

its inhabitants would have isotope signatures that would identify them as Orcadians 

rather than Icelanders. Nonetheless, for most archaeological studies, sustained and 

successful transportation of food or water was probably unlikely and the assumption 

is thus made when a ratio is inconsistent with local strontium values that the 

individual was living elsewhere during the time the tooth in question mineralized. For 

sedentary farming communities, this may indeed be a valid assumption, but there are 

food procurement strategies that may have involved a wholly mobile subsistence 

regime or seasonal mobility such as transhumance. Equally, the exploitation of 

different local environmental niches, for example, if they grazed animals on the hills 

and grew crops in the valleys, may be reflected in the strontium isotope ratios of a 

mixed farming community if they contributed different strontium ratios. In some 

places, there may be several sources of strontium from which foods can be obtained 

(Figure 2). However, this may not be the hopelessly complex situation it first appears: 

given the observations that meat and milk do not contribute strongly to metabolised 

strontium if plants are also eaten, would the exploitation of the hill-land for grazing 

leave any trace in the human strontium isotope ratios? Furthermore, if the community 
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under investigation lived near the sea they may have exploited coastal resources but 

again, eating fish and marine mammals may not be visible in their strontium isotope 

ratios whilst eating seaweed or foods preserved with sea-salt might (Burton and Price 

1999, Montgomery et al. 2007b).  

 

How different strontium sources contribute to human isotope ratios 

The strontium isotope ratio of a piece of tooth enamel is a single figure: a weighted 

average derived from all the food and drink ingested, absorbed through the gut, 

released from the skeleton and finally deposited in the mineral lattice structure of the 

enamel over the period of mineralization. In itself and out of context, the resulting 

number may not signify a specific geographic location. For example, imagine a small 

community living on the Isle of Skye who sourced their food from two places: the 

Red Cuillins (granite) and the adjacent Black Cuillins (basalt). The granite will supply 

a strontium isotope ratio of approximately 0.720, the basalt a ratio of 0.705 (Evans et 

al. 2009). If the individuals in the community had differential access to food produced 

from these two end-members whilst their enamel was mineralizing, for example, 

some individuals ate little or no grain due to a preference for meat or as a result of 

harvest failure at the time of enamel mineralization, their strontium isotope ratios 

would fall on a mixing line somewhere between the two sources (Figure 3). However, 

if the contribution to plasma strontium from these two sources was very similar and 

everyone ate more or less the same diet, the weighted averaged ratios in the tooth 

enamel of the community exploiting them may be very similar, for example, 0.712 

(Figure 4). On its own, 0.712 would be indicative of people originating from a region 

of Old Red Sandstone (Evans et al. 2010); but they are not. They do not live on any 

terrain that would provide such a value but have obtained it simply because it is the 
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result of mixing of strontium from two food types sourced from very different rocks. 

If they grew their crops (strontium-rich) on the basalt and grazed the animals 

(strontium-poor) on the granite, it is likely their strontium isotope ratios would be 

nearer the basalt than the granite, say for example 0.708 (Figure 5). Co-incidentally, 

this is also a value that would indicate food sourced on marine carbonates such as 

chalks and limestone (Evans et al. 2010, Montgomery et al. 2000, Montgomery et al. 

2007a). If such a value were obtained from the inhabitants of Skye, it could be 

attributed to the Durness limestone valley to the south of the Cuillins which is 

sheltered and fertile (Evans et al. 2009). Should choice be the only factor controlling 

land-use in prehistory, this valley would be the most productive place to cultivate 

crops, on what is otherwise a marginal island for agriculture. Thus, a variety of 

geological terrains may be available and may be occasionally exploited for food, but 

in sedentary farming communities, people are far more likely to have strontium 

isotope ratios that reflect the rocks underlying the good arable land.  

 

Transported atmospheric dust and aerosols may be a major consideration when 

working in arid or continental regions (Andersson et al. 1990, Benson et al. 2008, 

Negrel and Roy 1998), but is less of a problem in temperate, maritime islands such as 

the British Isles where rainfall is the major source of atmospheric deposition. The Isle 

of Skye, like much of the western Atlantic seaboard of Britain, has high rainfall 

throughout the year and increasing rainfall has been shown to gradually shift the 

ratios of strontium available to plants away from the rock toward that of rainwater 

(Figure 6) (Capo et al. 1998, Raiber et al. 2009), which in coastal regions is close to 

seawater, i.e. ~0.7092 (McArthur et al. 2001, Veizer 1989). The logical extension of 

this, is that two communities occupying the same type of geology but one subject to 
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high and one to low rainfall, may be characterised by quite different strontium isotope 

values. Similarly, the ratios that characterise a particular locality may change over 

time during periods of increased wetness or aridity. More research is needed to clarify 

these issues. 

 

In addition to the marine-derived strontium deposited in rain, the crops grown by 

communities living in coastal regions will be subject to marine sea-splash and sea-

spray (Figure 7) which is a significant source of both nutrients and labile soil 

strontium (Whipkey et al. 2000). Seawater and brines have considerably higher 

strontium concentrations than freshwaters (Odum 1957) and increased salt intake either 

by deliberate direct ingestion or indirectly through aerial deposition into the local 

environment has been suggested as the reason that geologically-derived strontium is 

swamped in coastal dwellers who have marine-dominated strontium isotope ratios 

coupled with the high strontium concentrations modelled in Figure 7 (Montgomery et 

al. 2007b).  

 

High enamel strontium concentrations have also been found in other island 

populations and prehistoric salt miners inland (Brudevold and Söremark 1967, Jay et 

al. 2007). Nonetheless, it should be stressed that although increased dietary sodium can 

result in a decrease in metabolised calcium, changes in absorbed strontium with increased 

salt intake have not been found in clinical studies of pre- and post-menopausal women 

(Evans et al. 1997, McParland et al. 1989). However, enamel is mineralized in early 

childhood when metabolism, efficiency of the gut, growth, bone formation and bone 

turnover rates may be very different: for example, children absorb lead much more 

efficiently across the gut wall than do adults and as a result are far more susceptible to 

lead poisoning (Bowen 1979). This question needs further investigation. 
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The Isle of Skye is an unusual case because this small island is a microcosm 

containing rocks dating from almost every geological period from the PreCambrian 

through to the Tertiary (British Geological Survey 2001). Hence, its inhabitants could 

be exposed to as wide a range of strontium isotope ratios as are present in the whole 

of the British Isles (Evans et al. 2009). The opposite is true of many regions of the 

world where the geology can be extremely homogeneous over vast regions and the 

isotope signatures of people from a wide geographic area may be very similar; in such 

regions long-distance immigrants are liable to be rare but remarkably easy to identify. 

However, in a region of considerable variability such as Skye, whatever the ratio 

obtained from an archaeological burial, it would be difficult to say, using strontium 

isotopes alone, that an individual did not originate from the Isle of Skye. If every 

skeleton excavated from the island had a strontium isotope ratio indicative of 

limestone, it might be reasonable to assume that it would be difficult to survive there 

in the past without cultivating the limestone valley and an individual who had not 

done this was unlikely to originate from Skye. Unfortunately, there are only handful 

of extant archaeological burials because basalts and granites host acidic soils and peat, 

which in temperate, high rainfall regions are not conducive to bone survival. 

Consequently, there is a bias in the comparative data available because the vast 

majority comes from archaeological humans excavated from regions of alkaline rocks 

such as chalks and limestones; granite-dwellers are only likely to be found if they 

have left their homeland and been buried in a place where bone survival is good.  

 

If not local - then where? 
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Establishing whether a skeleton is of local origin is rarely the ultimate goal of 

strontium isotope analysis. The vast majority of research questions focus on the 

identification of immigrants amongst cemetery populations as these may illuminate 

major changes in material culture (Price et al. 2004), the primary colonisation of 

islands (Bentley et al. 2007a, Price and Gestsdottir 2006), invasions, slavery and 

warfare (Bentley et al. 2007b, Cox and Sealy 1997, Evans et al. 2006, Price et al. 

2006, Schroeder et al. 2009).  Once immigrants are identified, the next question is 

inevitably, if they are not from here, where did they come from? This is rarely simple 

because isotope analysis is an exclusive technique: it can only rule out places of origin 

and a strontium isotope ratio is rarely unique. In addition, as previously explained, 

some rock types simply do not preserve archaeological remains. Occam‟s Razor may 

dictate the nearest overland route may be the most likely place of origin but given the 

archaeological period under investigation, migration theory about how and to where 

people migrate, this may not be a valid assumption. Recently, papers that specifically 

address the need for large scale maps of the geographic variation of biosphere 

strontium isotope ratios and including regions where bone does not survive have been 

published for use in archaeological or forensic provenancing studies, by measuring 

geographic variation in waters and plants (Evans et al. 2009, Evans et al. 2010, Hodell 

et al. 2004, Montgomery et al. 2006) but these are still few and coverage remains thin 

and uneven in many regions. 

  

Studies of archaeological humans 

Many of the dietary regime models presented in Figures 1 and 3 to 7 are visible in 

Figure 8, which shows archaeological human enamel data from Hebridean islands off 

the northwestern seaboard of Scotland (Montgomery et al. 2007b). Although 
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complex, the plot can be teased apart into groups of individuals occupying different 

places in isotope space and, hence, different subsistence strategies. Non-local origins 

can be proposed for several individuals on various counts and supports the frequent 

use of sea travel in this region in the past. In situations such as this, strontium isotope 

data may not be suitable for statistical analysis to identify the population range 

because the data is unlikely to be normally distributed and would for example result 

for the coastal dwellers in a standard deviation that fell below the marine end-member 

which is clearly wrong. 

 

Figure 9 is a group of prehistoric burials from the Yorkshire Wolds, a region of 

intense ritual activity with henges, cursus and hundreds of burial barrows, but little 

evidence for settlement in the Neolithic and Bronze Age (Manby et al. 2003). The 

mobile, eclectic subsistence strategy of the Neolithic population is evidenced from the 

diffuse cloud of enamel compositions. In contrast, the Bronze Age individuals show a 

much reduced variability and separate into two groups, one apparently living locally 

on the Chalk, and the other utilising foods sourced elsewhere but all were ultimately 

brought to the Wolds for burial. 

 

Finally, Figure 10, illustrates a study of early Neolithic people buried at the site of 

Niedermörlen in Germany. The aim of this study was to use isotopes to investigate the 

initial expansion of farming across Europe and address the question of whether it 

spread as a result of farmers moving into new territories or local hunter-gatherers 

adopting a new, settled lifestyle (Nehlich et al. 2009). A group of individuals were 

present at the site who had high strontium ratios indicative, not of the easy to cultivate, 

loess filled valleys targeted by the early Neolithic famers, but of the granitic uplands. 
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These people had clearly come some distance to the site but perhaps the most 

poignant observation is that they were all children. No adults with such origins were 

found. One possible explanation may be because the community was transhumant, 

sending the children with the animals to upland summer pastures. If so, none survived 

to adulthood and all of the teeth that were measured in the study must have co-

incidentally mineralized during those summer months, which is somewhat 

implausible. Why these children were buried at Niedermörlen, why an upland origin 

resulted in early death, and where the adults that might have brought them to the site 

had gone may never be ascertained but this study may constitute evidence for the 

exploitation of child labour amongst early farmers (Taylor 2005). 

 

 

 

Conclusions 

 

Geographical variation in strontium isotopes is controlled by the underlying geology. 

However, there are many other factors that need to be considered before migratory 

individuals can be identified. The swamping of labile soil strontium by marine 

strontium in people living on or near the coast means that, although their coastal 

origins will be clear, precisely which coast they hail from may be impossible to 

determine using strontium alone. False positive differences in populations inhabiting 

the same type of rock may be found if the level of rainfall varies considerably either 

through time or space and it is vital to consider these issues when making 

interpretations. Although it is unlikely that the entire diets of archaeological people 

will ever be known for sure, the averaging processes that occur both in the body pool 

and in strontium deposition in tooth enamel should remove short-term seasonal 

dietary anomalies. The strontium ratios of omnivores such as humans should be 
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dominated by the plant component of the diet; whilst it was possible in prehistory to 

move animals long-distances, it is unlikely that sustained large-scale transport of 

grains and vegetables occurred in most periods. 

 

Communities can define a cluster of strontium isotope ratios or a line, depending on 

their access to and exploitation of different strontium sources. This can make 

statistical analysis difficult but can provide information not only on their origins but 

on their food procurement strategies and indeed, changes through time through choice 

or necessity.  

 

Strontium isotope analysis is a powerful technique that supplies information about 

provenance directly from the human skeleton rather than how, and with what 

accompanying artefacts, the individual was buried. Despite many studies which have 

shown that the method works well, it is clear that much remains to be clarified and it 

will not work for every question or in every place. To work at all, it requires that there 

is a measurable strontium isotope difference between the place the person migrated 

from and the place they migrated to. Given the predilection for people to seek out 

similar soil types and terrains in their new homeland, there may be some questions 

that will remain forever unanswered by strontium isotope analysis, such as the Anglo-

Saxon settlement of England and the spread of early Neolithic farmers across the 

loess of Europe. 
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Figure 1 

A plot of model enamel strontium compositions for humans who sourced their food 

from an homogenous rock type (chalk) and who drank and watered their crops with 

rainwater (black symbols). This provides two sources (end-members) of strontium 

and local inhabitants will fall on a mixing line between the two ratios if 1/Sr ppm is 

plotted (this transforms a mixing curve into a straight line with high concentrations 

are on the left, low concentrations on the right).  Individuals who have ratios below 

0.7075 or above 0.7092 are inconsistent with this subsistence regime and must be 

accessing alternative sources elsewhere (white symbols). 
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Figure 2 

Schematic model illustrating the sources of strontium that, if exploited for food and 

drink, could contribute to the weighted average ratio of enamel from humans 

inhabitants. Whether a food source is visible will depend on if it is exploited, how 

much is eaten and how much strontium is metabolised from it. Drinking from rivers 

may result in the ingestion of strontium from distant rock sources. Atmospheric 

sources such as dust may provide an additional input in arid regions. 
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Figure 3 

A plot to illustrate how the enamel strontium compositions of a human community on 

the Isle of Skye exploiting two food sources: one from the basalt of the Black 

Cuillins; and one from the granite of the Red Cuillins, might reflect differential access 

to foods. Where the individuals fell on the mixing line would be dependant on which 

rock type dominated their dietary intake at the time of enamel mineralization. 
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Figure 4 

A plot to illustrate how the enamel strontium compositions would cluster if all 

members of the community had eaten very similar diets sourced from both types of 

rock. In this scenario, a strontium ratio of 0.712 is not attributable to a specific rock 

type but is simply a result of mixing between two very different rock types. 
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Figure 5 

A plot to illustrate how the strontium derived from arable crops might dominate the 

enamel strontium compositions of humans. A strontium ratio of 0.708 is also 

indicative of limestone terrains and if such a ratio was obtained it would be difficult to 

tell from the isotope data alone whether such ratios derived from a mixing scenario or 

if humans were cultivating only the fertile limestone valleys rather than the 

inhospitable granite hills. 
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Figure 6 

A plot to illustrate how the addition of a third end-member may affect the enamel 

strontium compositions. In regions of very high rainfall, such as the Hebrides, 

rainwater can dilute the soil pore fluids and dampen the plant strontium ratios towards 

those of rain whose source is seawater (~ 0.7092).  
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Figure 7 

A plot to illustrate the effect of marine-derived strontium on a coastal dwelling 

population. The concentration of strontium in seawater, brines and salt is high (Odum 

1957) and coastal communities cultivating crops subject to salt deposition through 

sea-splash and spray have increased enamel strontium concentrations. In addition, 

some use strontium-rich seaweed as fodder, fertilizer and food. Eating meat from 

marine fish and mammals is unlikely to cause this effect as even meat from marine 

sources is a poor source of strontium (Burton and Price 1999); however, the addition 

of salt as a preservative may greatly enhance the strontium content of the flesh. 
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Figure 8 

A plot of multi-period human enamel data from the Hebrides, NW Scotland. 

Individuals fall into four possible groups: 1. on the lower left, a coastal community 

from South Uist (black symbols) and Lewis (white symbols) with high strontium 

concentrations and marine-dominated strontium ratios with very little contribution 

from the gneiss (as per the model in Figure 7); 2. An immigrant group (white 

symbols) who do not originate from Lewis, have not exploited coastal resources, but 

fall on a mixing line between basalt and granite (as per the model in Figure 3); 3. Four 

teeth from a single individual from the Isle of Skye (grey symbols) who exhibits a 

strontium composition consistent with limestone (as per the model in Figure 5); 4. On 

the lower right, a lone individual exhibiting the low strontium concentrations and 

ratios consistent with inland populations living on Chalk (see Figure 9).  Data source: 

Montgomery et al. 2003, Montgomery et al. 2007, Evans et al. 2009. 2σ errors are 

within the symbols. 
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Figure 9 

A plot of Neolithic and Early Bronze Age human enamel compositions from the 

Yorkshire Wolds, England. All individuals were excavated from barrows on the 

Cretaceous Chalk of the Wolds. The Neolithic humans (white symbols) form a diffuse 

cluster of data suggesting they are exploiting a variety of sources. The Early Bronze 

Age individuals (black symbols) fall on two mixing lines: the lower line is indicative 

of origins on the Chalk and four of these individuals were excavated from the same 

barrow (Aldro 116) suggesting a family group: the upper mixing line indicates a 

group who did not originate solely on the Wolds but exploited a terrain with higher 

strontium ratios elsewhere. Data source: Montgomery et al. 2007. 2σ errors are within 

the symbols. 

 

 

  



0.707

0.708

0.709

0.710

0.711

0.712

0.713

0 5 10 15 20 25 30 35

1/Sr ppm x 103

87
Sr

/86
Sr

Neolithic

Bronze Age

Rainwater

Chalk



Accepted for publication in the Annals of Human Biology 2010 

Figure 10 

A plot of Early Neolithic (Linearbandkeramic and Flomborn) human enamel 

compositions from the site of Niedermörlen, Germany. The group of juveniles have 

high strontium concentrations and ratios that are not consistent with the loess-filled 

valley where they were buried. Such ratios suggest origins on the granite uplands. No 

adults at the site had such values. The two symbols joined by the arrow are deciduous 

and permanent teeth from the same individual: the arrow points from the deciduous to 

the permanent tooth. Data source: Nehlich et al. 2009. 2σ errors are within the 

symbols. 
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