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Abstract

Singlet and triplet vertical excitation energies from time-dependent density func-

tional theory (TDDFT) can be affected in different ways by the inclusion of exact

exchange in hybrid or Coulomb-attenuated/ range-separated exchange–correlation

functionals; in particular, triplet excitation energies can become significantly too

low. To investigate these issues, the explicit dependence of excitation energies on

exact exchange is quantified for four representative molecules, paying attention

to the effect of constant, short-range, and long-range contributions. A stability

analysis is used to verify that the problematic TDDFT triplet excitations can

be understood in terms of the ground state triplet instability problem and it is

proposed that a Hartree–Fock stability analysis should be used to identify triplet

excitations for which the presence of exact exchange in the TDDFT functional

is undesirable. The use of the Tamm–Dancoff approximation (TDA) significantly

improves the problematic triplet excitation energies, recovering the correct state

ordering in benzoquinone; it also affects the corresponding singlet states, recover-

ing the correct state ordering in naphthalene. The impressive performance of the

TDA is maintained for a wide range of molecules across representative functionals.

1 Introduction

Time-dependent1–4 density functional theory5–8 (TDDFT) in the adiabatic approxima-

tion is a widely-used method for studying molecular electronic excited states. The accu-

racy of a TDDFT calculation is largely governed by the choice of exchange–correlation

functional. Generalised gradient approximations (GGAs) have been largely superseded

by hybrid functionals that incorporate a fixed amount of exact orbital exchange (here-

after denoted exact exchange), independent of the inter-electron distance r12. [Exact

exchange in the DFT context is defined as the standard Hartree–Fock (HF) exchange

energy expression, evaluated using the Kohn–Sham orbitals.] More recently, there has

been enormous growth in the use of so-called Coulomb-attenuated or range-separated

functionals9–18 where the amount of exact exchange depends on r12. The primary reason

for this growth is that functionals where the amount of exact exchange increases with

r12 have been shown to yield notably improved long-range, Rydberg and charge-transfer

excitation energies, whilst maintaining good quality local excitations.12,14,16,17,19–26 The

majority of these studies have considered excitations to singlet excited states. The

quality of excitations to triplet states with Coulomb-attenuated/ range-separated func-

tionals, of technological importance in phosphorescence in OLEDs, bioimaging, etc., is

less well documented.27–29
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Recent work by Thiel and co-workers30–32 has provided a set of correlated wavefunc-

tion [complete active space self-consistent field with second order perturbation theory

(CASPT2) and linear response coupled cluster with approximate perturbative triple ex-

citations33 (CC3)] benchmark results on small, closed-shell organic molecules, allowing

comparison of low-lying local singlet and triplet vertical excitation energies within the

same molecule. Amongst others, Silva-Junior34 et al., Jacquemin23,27 et al., Della Sala

and Fabiano,35 and Huix-Rotllant36 et al. have assessed the performance of various DFT-

based methods for this set. We have repeated the conventional TDDFT calculations of

Refs. 23,27 and 34, using the aug-cc-pVTZ basis set (which, unless otherwise stated, is

used throughout this study), with the PBE37 (GGA, no exact exchange), B3LYP38–43

(hybrid, fixed 20% exact exchange), and CAM-B3LYP12 (Coulomb-attenuated, with

19% exact exchange increasing with r12 to 65%) functionals at the same MP2/ 6-31G*

geometries. We consider 63 vertical triplet excitations and the 57 equivalent vertical sin-

glet excitations for which reference CASPT2/ CC3 reference values are available, using

the Dalton44 and Gaussian 0945 programs. Mean and mean absolute errors, relative to

the reference values, are presented as blue bars in Figure 1.

The results for the singlet states illustrate the well-known trend: The PBE GGA

functional underestimates the excitation energies, whilst increasing the amount of ex-

act exchange (PBE → B3LYP → CAM-B3LYP) beneficially increases the excitation

energies, reducing mean and mean absolute errors. For triplet states, PBE again under-

estimates the excitation energies, but the improvement upon increasing the amount of

exact exchange is much less pronounced than for the singlet states. The reason for this

different behaviour is evident from an analysis of individual excitations—whilst in many

cases the triplet excitation energy does (beneficially) increase with increasing exact ex-

change, in many other cases it drops significantly, leading to a degradation in accuracy.

The latter behaviour is not a consequence of low-overlap charge-transfer20 failure.

It has long been known46–53 that time-dependent Hartree–Fock theory (TDHF, 100%

exact exchange) significantly underestimates triplet excitation energies when there is a

triplet instability problem in the ground state wavefunction and that this underesti-

mation can be largely overcome using configuration interaction singles (CIS). Given

the similarity between the TDDFT and TDHF formalisms, we should anticipate similar

problems in TDDFT, particularly as the amount of exact exchange increases, which could

explain the observed underestimation of certain states. Bauernschmitt and Ahlrichs49

and Hirata and Head-Gordon54 presented early examples where hybrid functionals un-

derestimate triplet excitation energies in systems known to have triplet instability prob-

lems. The latter authors also demonstrated that these errors are largely eliminated upon

application of the Tamm–Dancoff approximation,55,56 which is the TDDFT analogue of

CIS.
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In the present study, we explicitly quantify the influence of exact exchange on repre-

sentative TDDFT singlet and triplet excitation energies and verify that the problematic

triplet states can be understood in terms of the triplet instability problem. Despite

being highlighted in several studies,49,54,57–59 this consequence of triplet instabilities is

not widely appreciated in the TDDFT user community; it is, however, of increasing

relevance due to the growth in the use of functionals containing large amounts of ex-

act exchange. We propose that a stability analysis of the Hartree–Fock wavefunction

should be used to identify triplet excitations for which the presence of exact exchange

in the TDDFT functional is undesirable. By analogy with the TDHF/ CIS case, and

following Ref. 54, we then quantify the extent to which the TDDFT triplet problems

can be overcome using the Tamm–Dancoff approximation. We also consider the effect of

this approximation on singlet states, including state ordering in naphthalene, which is a

challenging problem for approximate TDDFT. Finally, the full error analysis in Figure 1

is repeated using the Tamm–Dancoff approximation.

We commence in Section 2 by quantifying the influence of exact exchange on singlet

and triplet excitation energies for a representative set of molecules. Section 3 relates

the observations to the triplet instability and Section 4 considers the Tamm–Dancoff

approximation. Conclusions are presented in Section 5.

2 Exchange dependence of excitation energies

To illustrate and quantify the influence of exact exchange in a systematic manner, we

first consider the evolution of vertical excitation energies as a function of the fraction of

exact exchange in a conventional global hybrid functional. Following Becke,60 we define

Exc = αEHF
x [ϕ] + (1− α)EB

x [ρ,∇ρ] + ELYP
c [ρ,∇ρ] , (1)

where the notation [ϕ], [ρ], and [∇ρ] indicates explicit orbital, density, and density gra-

dient dependence, respectively; B represents Becke’s 198839 gradient corrected exchange

functional combined in equal proportions with Dirac/ Slater61,62 LDA exchange, and

LYP represents the Lee–Yang–Parr40 GGA correlation functional. From the bench-

mark set of Thiel and co-workers,32 we consider four representative molecules: ethene,

E -butadiene, p-benzoquinone and naphthalene, using the same geometries as before.

Additional results for formaldehyde and formamide are presented in the supplemen-

tary material. To facilitate comparison with previous studies, we adopt the molecular

orientation (and hence symmetry labels) of the earlier works.

In each of Figures 2–5, the left panel shows singlet excitation energies, whilst the

right panel shows the equivalent triplet excitation energies (i.e., those that involve pre-
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dominantly the same orbital transitions), as a function of the fraction of exact exchange

α in Eq. (1). The lighter solid line of each colour represents conventionally evaluated

TDDFT excitation energies, to be compared with the horizontal dashed lines that repre-

sent accurate reference values, taken from Ref. 32. For ethene, values were not available

for all of the states we consider; comparison is instead made with the experimentally

derived reference values used in Ref. 63, and the d-aug-cc-pVTZ basis set is used for

the calculations. In all cases, the GGA (α = 0) singlet and triplet excitation energies

underestimate the respective reference values.

First consider ethene in Figure 2. As α increases, both of the singlet excitation

energies increase and each becomes more accurate (albeit at the expense of a less accurate

relative energy). For the 3B3u state, the variation with α is nearly identical to the singlet

transition; a significant amount of exact exchange is again optimal. By contrast, the
3B1u state demonstrates markedly different behaviour; the excitation energy becomes

significantly less accurate with increasing α, as it drops by nearly 2 eV between α = 0

and α = 1.

For butadiene in Figure 3, both of the singlet excitation energies again increase with

α, with notably different optimal values. However, both of the triplet excitation energies

drop in energy, with each becoming significantly less accurate as α increases. The 3Ag

energy drops by over 1 eV whilst the 3Bu energy drops considerably more, eventually

yielding an imaginary excitation energy (we only plot the real excitation energies).

Next, consider benzoquinone in Figure 4, where three states of each spin are consid-

ered. All three singlet excitation energies increase at a similar rate with α, with modest

amounts of exact exchange providing optimal results. By contrast, the three triplet

states each exhibit a different dependence on α. The 3B1g energy behaves essentially

identically to the singlet counterpart; the 3B3g energy decreases, becoming less accurate;

whilst the 3B1u energy drops rapidly, becoming imaginary for large α. This differential

dependence means that the triplet state ordering is sensitive to the value of α. The GGA

calculation correctly places the 3B1g state lowest in energy, but the ordering becomes

incorrect as α increases, with first the 3B1u state and then the 3B3g state dropping below

the 3B1g.

Finally, consider naphthalene in Figure 5, where the B2u and B3u states correspond to

the La and Lb states in the usual Platt notation. Both of the singlet excitation energies

increase in energy with α, although no value of α yields the correct ordering of the

two states. This is a well-known problem in approximate TDDFT.20,64–68 For the triplet

states, the 3B3u excitation energy increases gradually with α and is accurately described,

whereas the 3B2u excitation energy decreases dramatically and becomes imaginary for

large α.

The results in Figures 2–5 were obtained using a global hybrid functional, where
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the amount of exact exchange is independent of r12. In order to ascertain the rela-

tive importance of the long- and short-range components of the exact exchange on the

six identified ‘dropping’ triplet states, we have performed additional calculations using

Coulomb-attenuated/ range-separated analogues of Eq. (1). For the long-range calcu-

lations, we considered a series of functionals with zero exact exchange at short r12,

increasing to α exact exchange at large r12. For the short-range calculations, we con-

sidered a series with α exact exchange at short r12, decreasing to zero exact exchange

at large r12. Both functionals used a standard error function partitioning with attenu-

ation parameter µ = 0.33 bohr−1. In all cases, the variation in excitation energy as a

function of α is smooth and monotonic. For the long-range functionals, the changes in

excitation energies between α = 0 and α = 1 are −0.23, −0.22, −0.23, −0.17, +0.15

and −0.20 eV, for ethene (3B1u), butadiene (3Bu and 3Ag), benzoquinone (3B1u and
3B3g), and naphthalene (3B2u) respectively. For the short-range functionals, the changes

are more pronounced, at −1.48, −1.59, −0.93, −2.49 (imaginary beyond that point),

−0.68 and −1.50 eV. We conclude that long-range and short-range exact exchange each

tend to cause these triplet excitation energies to decrease, with the effect of the latter

(unsurprisingly) being more pronounced.

From this analysis, we would predict that both B3LYP (fixed exact exchange) and

CAM-B3LYP (fixed- and long-range exact exchange) should both underestimate the

same six triplet excitation energies and we have verified that this is indeed the case;

mean errors are −0.51 eV and −0.64 eV, respectively (compared to −0.38 eV with

PBE). The same would be true for any other molecule in the benchmark set where exact

exchange causes the triplet excitation energy to drop. To understand why some, but not

all, triplet excitation energies drop with exact exchange, we must consider the influence

of the triplet instability on TDDFT results.

3 The triplet instability problem

The triplet instability in Hartree–Fock theory is well-known.46,69 Figure 6(a) presents po-

tential energy curves for the prototypical molecule, H2. The 1Σ+
g spin-restricted Hartree–

Fock (RHF) ground state energy becomes too high as the internuclear distance R in-

creases, due to unphysical ionic components in the wavefunction. The repulsive 3Σ+
u

unrestricted Hartree–Fock (UHF) state does not contain any unphysical ionic compo-

nents and so dissociates correctly. Consequently, instead of the 3Σ+
u and 1Σ+

g states

becoming degenerate at large R, the energy of the 3Σ+
u state drops below that of the

1Σ+
g for R larger than ∼3 bohr. Also shown is the UHF ground state solution, which

allows mixing of triplet state character into the singlet wavefunction. The UHF energy

drops below the RHF energy beyond the Coulson–Fischer (CF)70 point (∼2.3 bohr in
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H2) and correct dissociation is obtained. The RHF solution is therefore unstable with

respect to spin-symmetry breaking.

Computationally, this triplet instability manifests as a negative eigenvalue in the

electronic Hessian, indicating that specific orbital rotations of an identified space–spin

symmetry will lower the energy. Henceforth we refer to the eigenvalues of this matrix as

‘stability measures’. Figure 6(b) presents the lowest 3Σ+
u -symmetry stability measure of

the Hartree–Fock wavefunction for H2, as a function of R. It reduces to zero at the CF

point and becomes negative beyond. [The stability measures associated with a single

determinant are simple to compute and can for instance be calculated in Gaussian45

using the stable keyword, where IOp(9/41) controls the number computed.]

There are intrinsic similarities49,52 between the equations used to determine the sta-

bility and the TDHF/TDDFT equations and so triplet instabilities have significant im-

plications for excited states determined using these methods. The eigenvectors of the

electronic Hessian have identifiable analogues amongst the orbital rotations associated

with electronic excitations and so it is generally possible to associate a stability mea-

sure with each excitation; the stability measure in Figure 6(b) corresponds to the lowest
1Σ+

g → 3Σ+
u excitation. Figure 6(c) presents this excitation energy as a function of R.

The exact excitation energy approaches zero as R → ∞. The ‘∆SCF’ curve, obtained

from the energy difference between the potential energy curves in Figure 6(a), becomes

increasingly negative at large R, reflecting the significant overestimation of the 1Σ+
u en-

ergy. The influence of the triplet instability on the TDHF excitation energies is striking.

The values are reasonable for small R but as the CF point is approached, the values

become increasingly underestimated, reaching zero at the CF point and becoming imag-

inary beyond. Analogous results (in the DFT context) have been presented by Casida

et al.57

The unphysical TDHF excitation energies obtained for large R are exacerbated by

the fact that whilst ground state HF theory is variational, TDHF is not; for an arbitrary

state the TDHF total electronic energy is no longer a rigorous upper bound on the exact

energy. A simple way to restore the variational nature of the excited state energies is to

use configuration-interaction singles (CIS) instead of TDHF theory. Figure 6(c) shows

that the CIS excitation energies are close to those from ∆SCF. The excitation energies

become negative at large R, rather than imaginary, due to the Hermitian nature of the

CIS matrix equations (see Section 4).

The key result of this analysis is that as the triplet stability measure decreases

towards zero, so the corresponding time-dependent triplet excitation energy also ap-

proaches zero, thereby increasingly underestimating the exact value; when the stability

measure becomes negative (i.e., when there is a triplet instability), the excitation en-

ergy becomes imaginary. By contrast, CIS is much less problematic. Returning to the
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TDDFT results in Figures 2–5, we have determined DFT stability measures for the

α = 0 and α = 1 functionals for each of the triplet excitations; results are presented

in Table 1. For the two states that (beneficially) increase significantly in energy with

α, the stability is large and increases between α = 0 and α = 1. For the one state

whose energy is approximately independent of the amount of exact exchange, the sta-

bility varies only slightly. For the three states that drop in energy, but do not become

imaginary, the stability reduces significantly. For the three states whose energy drops

and becomes imaginary, the stability again reduces significantly, and becomes negative

by α = 1. The fact that the dropping triplets are associated with a significant reduction

in the stability indicates that the drop—and the resultant underestimation from func-

tionals such as B3LYP and CAM-B3LYP—can be understood in terms of the ground

state triplet instability problem, consistent with Refs. 49 and 54. Analogous results for

formaldehyde and formamide are presented in the Supplementary Material. We note

that an alternative explanation for the underestimated triplet state energies in ethene

was recently proposed by Cui and Yang28.

Given that it is the inclusion of exact exchange that exacerbates the triplet instability

problem, it is also pertinent to calculate the stabilities of these states for the Hartree–

Fock wavefunction. Results are presented in Table 1 and the trend closely follows that

of the α = 1 DFT results. [We have confirmed that in cases where the Hartree–Fock

stability is large (> 2 eV), TDHF and CIS yield similar triplet excitation energies; when

the stability is small but positive, TDHF excitation energies are notably smaller than

CIS; when the stability is negative, TDHF excitation energies are imaginary, whilst the

CIS values remain real.] This leads us to recommend that a Hartree–Fock stability

analysis be undertaken when computing triplet excitations, to identify states for which

the presence of exact exchange in the TDDFT functional is undesirable: The analysis

in Table 1 and the supplementary material (albeit on a limited number of molecules)

suggests that in cases where the Hartree–Fock stability is less than ∼2 eV, the inclusion

of exact exchange in the functional will lead to a decrease in excitation energy. If GGAs

underestimate the triplet excitation energy (as they often do), then such a decrease will

be detrimental. Of course, one could alternatively determine the stability of the DFT

calculation directly, but test calculations suggest that the molecule-dependent amount of

exact exchange introduced by Coulomb-attenuated/ range-separated functionals yields

a less-well defined threshold.
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4 The Tamm–Dancoff approximation in TDDFT

The CIS approximation corresponds to setting B = 0 in the TDHF generalized eigen-

value equations (
A B

B A

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
(2)

which is known as the Tamm–Dancoff55,56 approximation (TDA) to TDHF. The TDDFT

equations take exactly the same form (with different matrices A and B52) and so the

TDA can equivalently be applied54 to TDDFT by setting B = 0; see Ref. 71 for an

earlier, related concept. Physically, the TDA corresponds to allowing only excitation

between occupied–virtual orbital pairs (given by the eigenvector X) as opposed to con-

ventional TDHF/ TDDFT, where virtual–occupied de-excitation contributions (Y) are

also allowed. The form of the TDA eigenvalue equation precludes the occurrence of

imaginary excitation energies since A is Hermitian. We note that there is sometimes

concern52 regarding the validity of transition intensities (oscillator strengths) computed

from calculations involving the TDA as they do not satisfy the Thomas–Reiche–Kuhn

sum-rule.72–74 However, this is of no relevance to the calculation of non spin-orbit cou-

pled triplet transitions and we therefore do not consider its implications in this study.

The TDA is often used as an approximation to full TDDFT due to its relative com-

putational simplicity. Results are often in excellent agreement with full TDDFT (the

discrepancy is usually considerably smaller than between CIS and TDHF), but there are

instances where TDA yields a better model of reality53,54,58,66,75

Given that CIS is a significant improvement over TDHF when there is a failure

associated with triplet instability problems, we now quantify the extent to which the

TDA fixes the problematic TDDFT excitations of Section 2. We return to Figures 2–4,

and now consider the dark solid lines which present results for TDA excitation energies,

as a function of the amount of exact exchange α. We use the NWChem 6.0 program76

for the calculation of TDA excitation energies.

First consider ethene in Figure 2. The use of the TDA leads to a significant increase

and improvement in the problematic 3B1u excitation energies. By contrast, the 3B3u

excitation energies barely change. Notably, the TDA also leads to a shift by about

+0.5 eV in the 1B1u state energy—the singlet analogue of the problematic triplet state—

resulting in a significant improvement. The 1B3u state is barely affected.

For butadiene in Figure 3, the TDA leads to a significant increase in both of the prob-

lematic triplet states, greatly improving accuracy. The improvement is most pronounced

for the 3Bu state, which was the most problematic. As with ethene, the corresponding

singlet state energy is notably shifted and improved, whilst the 1Ag state is less affected.
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For benzoquinone in Figure 4, the effect of the TDA again increases as the triplet

instability problem becomes more severe from 3B1g to 3B2g to 3B1u, leading to the correct

state ordering for small values of α; the singlet states are again shifted to higher energy

by proportionate amounts.

Finally, analogous observations are also made for naphthalene in Figure 5. The

TDA leads to a dramatic improvement in the problematic triplet state. Significantly,

the associated shift in the corresponding singlet state fixes the state ordering for most

values of α (although the energy difference remains poor), consistent with Ref. 66. This

suggests that the origin of the incorrect state ordering is related to the triplet instability

problem associated with the 3B2u state (see Ref. 68 for an alternative discussion). We

note that calculations with the CAM-B3LYP functional, which correctly predicts the

state ordering with conventional TDDFT (by only 0.02 eV), is able to correctly increase

the energy difference between the two states once the TDA is invoked (the difference

becomes 0.18 eV).

Consistent with the findings of Ref. 54, the results of Figures 2–5 illustrate the

benefit of using the TDA for calculating triplet excitation energies when there is a triplet

instability problem. Perhaps less expected is the associated effect/ improvement of the

corresponding singlet states. We end this study by returning to the full assessment in

Figure 1; we have repeated all calculations using the TDA and the results are presented

as green bars. The performance of the TDA is impressive, particularly for the triplet

states. Indeed, the only error measure that discernibly degrades is the singlet CAM-

B3LYP mean error.

5 Conclusions

In this study, we highlighted the fact that singlet and triplet vertical excitation energies

in TDDFT can be affected in different ways by the inclusion of exact exchange in hybrid

or Coulomb-attenuated/ range-separated functionals. The improvement upon addition

of exact exchange is less pronounced for triplet states, which can be traced to the fact that

some triplet excitation energies become significantly too low. We studied the explicit

dependence of excitation energies on exact exchange for four representative molecules,

illustrating the various behaviours and quantifying the effect of constant, short- and

long-range contributions.

We then used the H2 molecule to illustrate the effect of triplet instabilities on time-

dependent excitation energies. As the triplet stability measure associated with an ex-

citation decreases, so the corresponding triplet excitation energy increasingly underes-

timates the exact value, possibly becoming imaginary. By determining DFT stability

measures for the states of interest in the four representative molecules, we verified that
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the problematic TDDFT triplets can be understood in terms of the ground state triplet

instability problem. We proposed that a Hartree–Fock stability analysis should be car-

ried out to identify triplet excitations for which the presence of exact exchange in the

TDDFT functional is undesirable.

We then considered the effect of the Tamm–Dancoff approximation in TDDFT. The

use of the TDA significantly improves the problematic triplet states, recovering the cor-

rect state ordering in benzoquinone. It also affects the corresponding singlet states,

recovering the correct state ordering in naphthalene, which is known to be a significant

challenge for approximate TDDFT. The impressive performance of the TDA is main-

tained for the full assessment set, across representative functionals. We are presently

expanding the current work to consider the effect of triplet instabilities and the TDA

on singlet and triplet states for the more diverse set of molecules/ excitations of Ref. 20

and for a more diverse set of functionals.
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Table 1: Stability measures for the DFT functionals in Eq. (1) with α = 0, α = 1 and
for Hartree–Fock.

Molecule State α = 0 α = 1 HF

Ethene
3B1u 3.22 0.81 0.05
3B3u 6.04 7.30 6.61

Butadiene
3Bu 2.21 −0.16 −0.84
3Ag 4.06 1.88 1.16

Benzoquinone
3B1u 1.89 −0.84 −1.41
3B3g 2.21 0.33 −0.30
3B1g 1.25 2.57 2.40

Naphthalene
3B2u 2.24 −0.59 −1.25
3B3u 3.47 2.99 2.66
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Figure 1: Mean errors (ME) and mean absolute errors (MAE), relative to the reference
values of Ref. 32, for 57 singlet and 63 triplet vertical excitation energies. Blue bars
represent conventional TDDFT errors; green bars represent TDA errors. CAM denotes
CAM-B3LYP.
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Figure 2: The variation of singlet (left panel) and triplet (right panel) excitation energies
in ethene, as a function of the amount of exact exchange α. The lighter version of the
colour represents the TDDFT results, the darker version the TDA results. Dashed lines
represent reference values.
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Figure 3: Excitation energies of butadiene; see caption to Figure 2. The TDDFT 3Bu

excitation energy becomes imaginary at large α.
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Benzoquinone
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Figure 4: Excitation energies of benzoquinone; see caption to Figure 2. The TDDFT
3B1u excitation energy becomes imaginary at large α
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Naphthalene
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Figure 5: Excitation energies of naphthalene; see caption to Figure 2. The TDDFT
3B2u excitation energy become imaginary at large α. Note that the scale of this figure
is different to that of Figures 2–4.
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(22) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem.

Theory Comput. 2008, 4, 123–135.
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