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Abstract. In this note we show that the entropy of a skew product action of a

countable amenable group satisfies the classical formula of Abramov and Rokhlin.

1. Introduction

Let G be a countable amenable group. We wish to express the entropy of a

skew product action of G on a Borel space (defined below) as the sum of a base

entropy and a conditional fibre entropy. For G singly–generated, this result was

obtained by Abramov and Rokhlin in 1962. Their proof uses two attributes of the

acting group: averaging sets (to give convergence in the limit defining conditional

fibre entropy) and tiling sets. When the group is singly generated one can choose a

sequence of averaging sets that also tile. We describe briefly here what occurs if G

is an amenable group. Averaging sets are guaranteed to exist, and the analogous

convergence of conditional entropy is obtained by the method that Keiffer used to

prove the Shannon–MacMillan theorem for amenable groups in [3]. One cannot

(presumably – see [2] and [4] for a description of what is known in this direction)

assume the existence of averaging sets that also tile, but the machinery of quasi–

tilings developed by Ornstein and Weiss in [4] provides an adequate replacement.

The proof below is therefore identical in principle to that of [1], but the arguments

to support each step are a little more involved. One specific point should be

clarified: we use the deep generalization of Krieger’s theorem, due to Rosenthal,

which guarantees the existence of a finite generator for a finite entropy free ergodic

action of an amenable group. This is not necessary but allows a considerable

simplification in the argument. We then show how this implies the general case.
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2. Quasi–tilings for amenable groups

We now describe the replacement for tiling sets that are needed. The following

terminology and results are due to Ornstein and Weiss, [4].

Subsets A1, A2, . . . , Ak of G are ε–disjoint if there are subsets B1, B2, . . . , Bk such

that

(1) Bi ⊂ Ai for i = 1, 2, . . . , k,

(2) |Bi|
|Ai| > 1− ε, and

(3) Bi ∩Bj = ∅ for i 6= j.

A collection {A1, A2, . . . , Ak} of subsets of G α–covers the set A if

|A ∩ (
⋃k
i=1Ai)|
|A|

≥ α.

A collection {A1, A2, . . . , Ak} of subsets of G is a δ–even cover of the set A if

(1) Ai ⊂ A for i = 1, 2, . . . , k,

(2) there is a number M with
∑k
i=1 χAi

(x) ≤ M for almost every x, and∑k
i=1 |Ai| ≥ (1− δ)M.

Let K ⊂ G and δ > 0. A subset A ⊂ G is (K, δ)–invariant if

|{g ∈ G : Kg ∩A 6= ∅ and Kg ∩ (G\A) 6= ∅}|
|A|

< δ.

Define the K–boundary of A to be

B(A,K) = {g ∈ G : Kg ∩A 6= ∅ and Kg ∩ (G\A) 6= ∅}.

Lemma 2.1. If A is (K, δ)–invariant, then for any c ∈ G, the translate Ac is

(K, δ)–invariant.

Proof. It is clear from the definition that B(A,K)c = B(Ac,K), so |B(A,K)| =
|B(Ac,K)|. �

The property of (K, δ)–invariance is almost preserved under almost disjoint

unions in the following sense:

Lemma 2.2. If the sets Ai, i = 1, . . . , k are (K, δ)–invariant and ε–disjoint, then

their union
⋃k
i=1Ai is (K, (1+ε)δ))–invariant. In particular, if the Ai are disjoint,

then
⋃k
i=1Ai is (K, δ)–invariant.

Proof. It is clear that B(
⋃k
i=1Ai,K) ⊂

⋃k
i=1B(Ai,K), so

|B(
k⋃
i=1

Ai,K)| ≤
k∑
i=1

|B(Ai,K)| ≤ δ
k∑
i=1

|Ai| ≤ δ(1 + ε)|
k⋃
i=1

Ai|.

�

The group G is amenable and therefore admits a Følner sequence, which has

the following asymptotic invariance property.
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Lemma 2.3. Let {Fn} be a Følner sequence in G. Then, for any finite subset

A ⊂ G, and any δ > 0, there is an integer N > 0 such that the set Fn is (A, δ)–

invariant for all n ≥ N .

Proposition 2.4. [4, §1.2] If S ⊂ G is a finite set with e ∈ S, and A ⊂ G is an

(SS−1, δ)–invariant set, then the right translates of S that lie in A form a δ–even

cover of A.

Proposition 2.5. [4, §1.2] If {Aλ : λ ∈ Λ} forms a δ–even cover of A, then there

is some ε > 0 for which there is an ε–disjoint sub–collection of {Aλ : λ ∈ Λ} which

ε(1− δ)–covers A.

For completeness we prove the following theorem (this is proved in [4]).

Theorem 2.6. Let e ⊂ F1 ⊂ F2 ⊂ · · · be a Følner sequence in G. Then, for

any ε ∈ (0, 1
4 ) and any integer N > 0, there exist integers n1, n2, . . . , nk with

N ≤ n1 < n2 < · · · < nk such that for any FM (M sufficiently large), one can

find finite subsets C1, . . . , Ck of G with the following properties

(1) Fni
Ci ⊂ FM for i = 1, 2, . . . , k,

(2) FniCi ∩ FnjCj = ∅ for i 6= j,

(3) {Fni
c : c ∈ Ci} is an ε–disjoint family, and

(4) {Fni
Ci : i = 1, 2, . . . , k} forms a (1− ε)–cover of FM .

Proof. Fix 1
4 > ε > 0 and N > 0. Choose k > 0 and δ such that (1− ε

2 )k < ε and

6kδ < ε
2 . By Lemma 2.3, we can choose n1, n2, . . . , nk with N ≤ n1 < n2 < · · · <

nk such that Fni+1 is (FniF
−1
ni
, δ)–invariant and |Fni |/|Fni+1 | < δ. Now for any

(Fnk
F−1
nk
, δ)–invariant Fm with |Fnk

/|Fm| < δ, the right translates of Fnk
that lie

in Fm form a δ–even cover of Fm. By Proposition 2.5, there exists a finite set Ck
such that

(1) {Fnk
c : c ∈ Ck} is ε–disjoint,

(2) Fnk
Ck is an ε(1− δ)–cover of Fm, and

(3) (ε− δ)|Fm| ≤ |Fnk
Ck| ≤ (ε+ δ)|Fm|.

To see (3), notice that |Fnk
Ck||Fm|−1 > ε(1− δ) ≥ ε− δ. On the other hand,

|Fnk
Ck\Fn−kc||Fm|−1 ≥ |Fnk

Ck||Fm|−1 − δ,

and |Fnk
Ck\Fn−kc||Fm|−1 ≤ ε(1− δ), so |Fnk

Ck||Fm|−1 ≤ ε(1− δ) + δ ≤ ε+ δ.

Let D1 = Fm\Fnk
Ck. we claim that D1 is (Fnk−1

F−1
nk−1

, 6δ)–invariant. Indeed,

using Lemma 2.1 and 2.2, we have:

|B(D1, Fnk−1
F−1
nk−1

)| ≤ |B(Fm, Fnk−1
F−1
nk−1

)|+ |B(Fnk
Ck, Fnk−1

F−1
nk−1

)|
≤ |B(Fm, Fnk

F−1
nk

)|+ |Ck||B(Fnk
, Fnk−1

F−1
nk−1

)|

≤ δ(|Fm|+ |Ck||Fnk
|) ≤ δ(|Fm|+

1

1− ε
|CkFnk

|)

≤ 3δ|Fm| ≤
3δ

1− ε− δ
|D1| ≤ 6δ|D1|
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since 1− ε− δ > 1
2 . It follows that D1 is (Fnk−1

F−1
nk−1

, 6δ)–invariant.

Now consider the size of D1. It is clear that

(1− ε+ δ)|Fm| ≥ |D1| ≥ (1− ε− δ)|Fm|.

Since 1 − ε > δ, |D1| > |Fnk
| > 1

δ |Fnk−1
|, so |Fnk−1

||D1|−1 < δ. Then there is a

finite set Ck−1 such that

(1) {Fnk−1
c : c ∈ Ck−1} is ε–disjoint.

(2) Fnk−1
Ck−1 is an ε(1− 6δ)–cover of D1.

(3) (ε− 6δ)|D1| ≤ |Fnk−1
Ck−1| ≤ (ε+ 6δ)|D1|.

Then let D2 = D1\Fnk−1
Ck−1 with

|D2| < (1− ε+ δ)(1− ε+ 6δ)|Fm| < (1− ε
2 )2|Fm|.

Inductively, we get Dk with |Dk| < (1− ε/2)k|Fm| and this implies the theorem.�

¿From now on, we say that sets A1, . . . , Ak ε–quasi–tile a set A if there are finite

sets C1, . . . , Ck such that

(1) AiCi ⊂ A for i = 1, 2, . . . , k,

(2) AiCi ∩AjCj = ∅ for i 6= j,

(3) {Aic : c ∈ Ci} forms a ε-disjoint family, and

(4) {AiCi : i = 1, 2, . . . , k} forms a (1− ε)–cover of A.

The sets C1, . . . , Ck are called the tiling centres.

3. Conditional entropy and entropy

In order to define the entropy of an action of a countable amenable group, an

analogue of the total order on the integers adapted to the action is needed; this

is furnished by the following Lemma due to Kieffer. The proof is contained in the

proof of Lemma 2 in [3]. Notice that the entropy is being implicitly defined as

an integral of the information function, and is therefore well–defined without the

assumption of ergodicity.

Lemma 3.1. [3] There is a probability space (S, S, λ), a G–action {Ug : g ∈ G}
on S and a total order ≺ of S such that

(1) For each s ∈ S, if g1 6= g2 ∈ G, then Ug1(s) 6= Ug2 , and

(2) for each g ∈ G, {s ∈ S : Ug(s) ≺ s} ∈ S.

We sketch the proof here for completeness (see [3], page 1033). If G is finite

let S = G with uniform measure, and for ≺ take any total order on S. Let G

act on S by group multiplication. If G is countably infinite, consider the product

σ–algebra on {0, 1}G, and the Bernoulli ( 1
2 ,

1
2 )–measure. Then G acts on {0, 1}G



THE ABRAMOV–ROKHLIN ENTROPY ADDITION FORMULA 5

by left translation, and we may choose a G–invariant subset S ⊂ {0, 1}G with (1).

Restrict the G action to S and order S lexicographically to obtain (2).

For any s ∈ S, one can define a total order ≺s of G as follows: g1 ≺s g2 if and

only if Ug1(s) ≺ Ug2(s). For any s ∈ S and g ∈ G, let Vg(s) = {g′ ∈ G : g′ ≺s g}.
Let (Ω,B, µ, {Sg | g ∈ G}) be a measure preserving system, so (Ω,B, µ) is

a probability space, and S : g 7→ Sg is an action of G by measure–preserving

transformations of (Ω,B, µ).

For any finite measurable partition P of Ω and any subset A ⊂ G, let P (A)

denote the smallest σ–algebra containing S−1
g P for all g ∈ A. In particular,

P ({g}) = S−1
g P for any g ∈ G. For any finite partition P and ω ∈ Ω, let P (ω)

denote the unique atom of P containing ω. Now for any sub–σ–algebra A of B,

and any finite partition P , the conditional information function I(P |A) and the

conditional entropy H(P |A) can be respectively defined by

I(P |A)(ω) = − log(µ)({P}(ω)|A).

and

H(P |A) =

∫
I(P |A)(ω)dµ.

Notice that H(P |A) ≤ H(P ) ≤ log |P |.

Theorem 3.2. Let {Fn} be a Følner sequence in G with e ∈ F1 ⊂ F2 ⊂ · · ·
and Fn ↗ G. Then, for any finite partition P and sub–σ–algebra A, the sequence

an = 1
|Fn|I(P (Fn)|A) converges in L1(Ω). The limit does not depend on the choice

of Følner sequence.

Proof. From the basic properties of information functions (see [5]), we have

I(P (Fn)|A)(ω) =
∑
g∈Fn

I(P ({g})|P (Fn ∩ Vg(s)) ∨A)(ω)

=
∑
g∈Fn

I(P |P (Fng
−1 ∩ Vg(s)g−1) ∨A)(Sgω).

Now fix the partition P . For any E ⊂ G, define

fE(ω, s) = I(P |P (E ∩ Ve(s)) ∨A)(ω).

One can check that fE is a measurable function on Ω× S. Then

I(P (Fn)|A)(ω) =
∑
g∈Fn

I(P |P (Fng
−1∩Ve(Ugs))∨A)(Sgω) =

∑
g∈G

fFng−1(Sgω,Ugs),

where U is the G–action given by Lemma 3.1. It is clear that for any sequence

E1 ⊂ E2 ⊂ · · · , En ↗ G the limit limn→∞ fEn
= fG exists in L1(Ω× S). For any
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ε > 0, there is a finite set B such that if E ⊃ B, ‖fE − fG‖1 < ε. Since B is a

finite set, when n is sufficiently large we have

|Fn ∩
(⋂

b∈B b
−1Fn

)
|

|Fn|
≥ (1− ε).

It is clear that for any g ∈ Fn ∩
(⋂

b∈B b
−1Fn

)
, we have Fng

−1 ⊃ B. Therefore,

when n is sufficiently large we have

‖ 1

|Fn|
I(P (Fn)|A)− fG‖L1(Ω×S) ≤

1

|Fn|
∑
g∈Fn

‖fFng−1(Sg × Ug)− fG‖

≤ 1

|Fn|
∑

g∈Fn∩(∩b∈Bb−1Fn)

‖fFng−1(Sg × Ug)− fG‖

+
|Fn\Fn ∩

(⋂
b∈B b

−1Fn
)
|

|Fn|
log |P |

≤ ε(1 + log |P |).

This implies that

lim
n→∞

‖ 1

|Fn|
I(P (Fn)|A)− fG‖L1(Ω×S) = 0.

Therefore

lim
n→∞

‖ 1

|Fn|
I(P (Fn)|A)−

∫
fGdλ‖L1(Ω) = 0,

and the theorem follows. �

Corollary 3.3. For any Følner sequence {Fn} satisfying F1 ⊂ F2 ⊂ · · · , Fn ↗ G,

the limit

lim
n→∞

1

|Fn|
H(

∨
g∈Fn

SgP |A)

exists and is independent of the choice of {Fn}.

We will use h(S, P |A) to denote the limit limn→∞
1
|Fn|H(

∨
g∈Fn

SgP |A) and

define the conditional entropy of S with respect to A by h(S|A) = supP h(S, P |A).

The entropy of the G–action S is defined to be the conditional entropy of S with

respect to the trivial sub–σ–algebra N = {∅,Ω}: h(S) = h(S|N). Similarly, we

define h(S, P ) to be h(S, P |N).

If A is a finite σ–algebra, let P (A) be the finite partition that generates A.

Lemma 3.4. If {An} is a sequence of finite σ–algebras with An ↗ B, then h(S) =

limn→∞ h(S, P (An)).



THE ABRAMOV–ROKHLIN ENTROPY ADDITION FORMULA 7

Proof. For finite partitions P and Q,

H

 ∨
g∈Fn

SgP

 ≤ H
 ∨
g∈Fn

SgP ∨
∨
g∈Fn

SgQ


≤ H

 ∨
g∈Fn

SgQ

+H

 ∨
g∈Fn

SgP |
∨
g∈Fn

SgQ


≤ H

 ∨
g∈Fn

SgQ

+
∑
g∈Fn

H

SgP | ∨
g∈Fn

SgQ


≤ H

 ∨
g∈Fn

SgQ

+ |Fn|H(P |Q),

so h(S, P ) ≤ h(S,Q) +H(P |Q).

An easy consequence of the Increasing Martingale theorem shows that if P

is a finite partition, then H(P |An) ↘ H(P |B) = 0 (see [6], page 38). Hence

h(S, P ) ≤ h(S, P (An) + H(P |P (An)) and H(P |P (An)) → 0 as n → ∞. It fol-

lows that h(S, P ) ≤ limn→∞ h(S, P (An)) for any finite partition P , so h(S) ≤
limn→∞ h(S, P (An)); the reverse inequality is clear. �

4. Entropy addition formula

Let (X,B, µ, {Tg : g ∈ G}) be a measure preserving system and let (Y,C, ν)

be a probability space. Let MPT (Y ) denote the group of all invertible measure

preserving transformations of Y and let α : X × G → MPT (Y ) be a cocycle

with the property that for any fixed g ∈ G, α(x, g)(y) is a measurable Y –valued

function of x and y with respect to the product σ–algebra B⊗C. Let Ω = X ×Y .

Define a measure preserving G–action {Sg : g ∈ G} on Ω by:

Sg(x, y) = (Tgx, α(x, g)y).

The action S is then a skew–product extension of T by α. For a set B ∈ B (C ∈ C),

we also use B (resp. C) to denote the set B × Y (resp. X × C) in B ⊗ C. This

notational device amounts to a canonical embedding, B ↪→ B⊗C (resp. C ↪→ B⊗C)

In order to prove the entropy addition formula without the assumption of free-

ness (see Theorem 4.4 below) we will need an independent proof of the formula

for the entropy of a direct product. This may be obtained for group actions ex-

actly as for single transformations (see [6], page 61); we include a short proof for

completeness.

If the cocycle α(x, g) is independent of x ∈ X then α(x, g) = Vg for some G–

action V on (Y,C, ν), and the skew product S above is then the direct product

Sg = Tg × Vg.
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Lemma 4.1. The entropy of a direct product is the sum of the entropies:

h(T × V ) = h(T ) + h(V ).

Proof. Let {Bn} and {Cn} be sequences of finite σ–algebras with Bn ↗ B (that

is, Bn ⊂ Bn+1 for all n, and
⋃
nBn generates B) and Cn ↗ C. Then, by indepen-

dence,

h(S, P (Bn × Cn)) = h(T, P (Bn)) + h(V, P (Cn)).

Applying Lemma 3.4 gives the result. �

Theorem 4.2. [7] If T is an ergodic free G–action with h(T ) <∞, then there is

a finite partition ξ such that B =
∨
g∈G Tgξ.

Such a partition ξ will be called a generator of (X,B, µ, {Tg : g ∈ G}). In fact

Rosenthal proves a much stronger result, exhibiting a finite uniform generator of

optimal (least) cardinality.

Proposition 4.3. Let S and T be the measure preserving G–actions defined above,

and assume that the base action T is ergodic and free. Then h(S) = h(T )+h(S|B).

Proof. We first show that h(S) ≥ h(T ) + h(S|B). It is enough to show that

the supremum of h(T, P ) over all partitions P of X × Y which are of the form

P = ξ×η, where ξ and η are finite partitions of X and of Y respectively, is greater

than or equal to h(T ) + h(S|B). Let {Fn} be a Følner sequence in G such that

e ∈ F1 ⊂ F2 ⊂ · · · and Fn ↗ G. For a partition P = ξ × η,

H(P (Fn)) = H(ξ(Fn) ∨ η(Fn)) = H(ξ(Fn)) +H(η(Fn)|ξ(Fn))

and so

H(P (Fn)) ≥ H(ξ(Fn)) +H(η(Fn)|B).

By Corollary 3.3, we have

h(S, P ) = lim
n→∞

1

|Fn|
H(P (Fn))

≥ lim
n→∞

1

|Fn|
H(ξ(Fn)) + lim

n→∞

1

|Fn|
H(η(Fn)|B)

= h(T, ξ) + h(S, η|B)

Now we show that h(S) ≤ h(T ) + h(S|B). We need only consider the case

h(T ) <∞. By Theorem 4.2, there is a finite generator ξ for (X,B, µ, {Tg : g ∈ G}).
Let P be any finite partition of Ω = X×Y . For any ε > 0,there is an N such that

when n > N ,

| 1

|Fn|
H(P (Fn))− h(S, P )| < ε,
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| 1

|Fn|
H(ξ(Fn))− h(T, ξ)| < ε,

and

| 1

|Fn|
H(P (Fn)|B)− h(S, P |B)| < ε.

By Theorem 1.6, for ε > 0 and an integer N > 0, there exist n1, . . . , nk with

N < n1 < · · · < nk for which the sets Fn1 , . . . , Fnk
ε–quasi–tile any Fm with m

sufficiently large.

Since ξ is a generator, the Increasing Martingale theorem (see [6], page 38)

shows that for any finite partition Q, H(Q|ξ(Fk)) ↘ H(Q|B) as k → ∞. It

follows that there is a finite set B such that for any set A ⊃ B,

H(P (Fni
)|ξ(A)) ≤ H(P (Fni

)|B) + ε

for i = 1, . . . , k.

Now for m sufficiently large, Fm is (B, ε)–invariant and can be ε–quasi–tiled by

Fn1 , . . . , Fnk
.

Now

1

|Fm|
H(P (Fm)) ≤ 1

|Fm|
H(ξ(Fm)) +

1

|Fm|
H(P (Fm)|ξ(Fm)).

Therefore

h(S, P ) ≤ h(T ) +
1

|Fm|
H(P (Fm)|ξ(Fm)) + 2ε.

Let C1, . . . , Ck be tiling centres for Fm. Then

|Fm| ≥ |
k⋃
i=1

Fni
Ci| ≥ (1− ε)|Fm| and |

k⋃
i=1

Fni
Ci| ≥ (1− ε)

k∑
i=1

|Ci||Fni
|.

Now we have

1

|Fm|
H(P (Fm)|ξ(Fm)) ≤ 1

|Fm|
H(P (

k⋃
i=1

Fni
Ci)|ξ(Fm)) + ε log |P |

≤ 1

|
⋃k
i=1 Fni

Ci|
H(P (

k⋃
i=1

Fni
Ci)|ξ(Fm)) + ε log |P |

≤ (1− ε)−1∑k
j=1 |Cj ||Fnj

|

k∑
i=1

H(P (Fni
Ci)|ξ(Fm)) + ε log |P |.

Let ti = |Ci||Fni |/(
∑k
i=1 |Ci||Fni |) for i = 1, 2, . . . , k. Then 1 ≥ ti > 0,

∑
ti = 1,

and so

1∑k
j=1 |Cj ||Fnj |

k∑
i=1

H(P (FniCi)|ξ(Fm)) =

k∑
i=1

ti
|Ci||Fni

|
H(P (FniCi)|ξ(Fm)).
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Since e ∈ Fni
, Ci ⊂ Fm and Ci ∩ Cj = ∅ for i 6= j. Let A = {g ∈ Fm : Bg ⊂ Fm}.

Since Fm is (B, ε)–invariant, |A|/|Fm| ≥ (1− ε). Therefore, for any 1 ≤ i ≤ k,

1

|Ci||Fni |
H(P (FniCi)|ξ(Fm)) ≤ 1

|Ci|
(∑
c∈Ci

1

|Fni |
H(P (Fnic|ξ(Fm))

)
≤ 1

|Ci|
( ∑
c∈Ci∩A

1

|Fni
|
H(P (Fni

)|ξ(Fmc−1))

+
∑

c∈Fm\A

1

|Fni
|
H(P (Fni

)|ξ(Fmc−1))
)

≤ 1

|Ci|
( ∑
c∈Ci∩A

1

|Fni |
H(P (Fni)|ξ(Fmc−1))

)
+
|Fm\A|
|Ci||Fni |

log |P |

≤ 1

|Fni |
H(P (Fni)|ξ(B)) +

|Fm\A|
|Ci||Fni)|

log |P |

≤ 1

|Fni
|
H(P (Fni

)|B) +
|Fm\A|
|Ci||Fni

|
log |P |+ ε.

This implies that

1

|Fm|
H(P (Fm)|ξ(Fm)) ≤ 1

1− ε
( k∑
i=1

ti
1

|Fni
|
H(P (Fni

)|B)

+
k∑
i=1

ti
|Fm\A|
|Ci||Fni

|
log |P |

)
+ ε(1 + log |P |)

≤ 1

1− ε

k∑
i=1

ti
1

|Fni
|
H(P (Fni

)|B)

+
1

(1− ε)2

|Fm\A|
|Fm|

log |P |+ ε(1 + log |P |)

Since ni > N , we have

1

|Fm|
H(P (Fm)|ξ(Fm)) ≤ 1

1− ε
h(S, P |B) + ε

(
(

1

(1− ε)2
+

1

1− ε
+ 1) log |P |+ 1

)
.

If 0 < ε < 1
2 and |P | ≥ 2, then

1

|Fm|
H(P (Fm)|ξ(Fm)) ≤ 1

1− ε
h(S, P |B) + 8ε log |P |.

Therefore

h(S, P ) ≤ h(T ) + h(S, P |B) + 10ε log |P |.

Since ε was arbitary, we have h(S, P ) ≤ h(T ) + h(S, P |B). The theorem follows.�
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Theorem 4.4. Let S and T be the measure preserving G–actions defined above.

Then h(S) = h(T ) + h(S|B).

Proof. There are two reductions to be carried out. First, let T =
∫ 1

0
T (s)ds

be the ergodic decomposition for T (this is constructed for any countable group

action in [8, §4]). We then have h(T ) =
∫ 1

0
h(T (s))ds (this follows easily from the

definition of entropy for G–actions given in Section 3 above). Writing S(s)(x, y) =

(T
(s)
g (x), α(x, g)(y)), we obtain

h(S) =

∫ 1

0

(h(T (s)) + h(S(s)|B))ds = h(T ) + h(S|B)

by Proposition 4.3.

We may therefore assume that T is an ergodic action. Define an action U

of G as follows. Let Z = {0, 1}G with the Bernoulli (1
2 ,

1
2 )–measure η defined

on the σ–algebra of Borel sets D obtained from the discrete topology on {0, 1}.
The group G acts via the shift, Ug(z)h = zgh where z = (zg)g∈G ∈ Z. An easy

calculation shows that h(U) = log 2; moreover U acts freely. To see this, notice

that {z | Ugz = z} has zero measure if either {gn} or G/{gn} is infinite, and one

of these must occur unless G is finite – in which case all the entropies are zero.

Let G act on X × Z × Y via SUg (x, z, y) = ((Tg × Ug)(x, z), α(x, g)(y)). Then it

is clear that h(SU |B) = h(S|B) since α is independent of the Z coordinate. Also,

the base action T × U is free, so we may apply Proposition 4.3 and Lemma 3.4

to obtain h(S) + h(U) = h(SU ) = h(T × U) + h(SU |B) = h(T ) + h(U) + h(S|B),

which gives the result since h(U) is finite. �
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