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Abstract: 19 

Despite their importance in understanding glaciological processes and constraining large-20 

scale flow patterns in palaeo-glaciology, there is little consensus as to how drumlins are 21 

formed. Attempts to solve the ‘drumlin problem’ often fail to address how they are created 22 

from an initially flat surface in the absence of obvious cores or obstacles. This is a key 23 
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strength of the instability theory, which has been described in a suite of physically-based 24 

mathematical models and proposes that the coupled flow of ice and till causes spontaneous 25 

formation of relief in the till surface. Encouragingly, model predictions of bedform height 26 

and length are consistent with observations and, furthermore, the theory has been applied to a 27 

range of subglacial bedforms and not just drumlins. However, it has yet to confront the 28 

myriad observations relating to the composition and internal structure of drumlins and this 29 

could be seen as a major deficiency. This paper is a first attempt to assess whether the 30 

instability theory is compatible with the incredible diversity of sediments and structures 31 

found within drumlins. We summarise the underlying principles of the theory and then 32 

describe and attempt to explain the main types of drumlin composition (e.g. bedrock, till, 33 

glacio-fluvial sediments, and combinations thereof). Contrary to a view which suggests that 34 

the presence of some sedimentary sequences (e.g. horizontally stratified cores) is inconsistent 35 

with the theory, we suggest that one would actually expect a diverse range of constituents 36 

depending on the inheritance of sediments that pre-date drumlin formation, the duration and 37 

variability of ice flow, and the balance between erosion and deposition (till continuity) at the 38 

ice-bed interface. We conclude that the instability theory is compatible with (and potentially 39 

strengthened by) what is known about drumlin composition and, as such, offers the most 40 

complete and promising solution to the drumlin problem to date. 41 

 42 

 43 

1. Introduction 44 

Drumlins are one of the most widely studied landforms on Earth, with >1300 contributions 45 

(papers, abstracts and theses) in the literature and >400 scientific papers since 1980 (Clark et 46 

al., 2009). Their importance stems from their relevance to both glaciology and palaeo-47 
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glaciology. In glaciology, they are important because they are formed at the ice-bed interface 48 

and may exert a modulating effect on ice flow (Schoof, 2002a). However, our understanding 49 

of the subglacial processes that occur at this interface is incomplete, largely because of the 50 

inaccessibility of this environment under extant glaciers and ice sheets, which limits our 51 

observations to geophysical surveys or borehole sampling that cover relatively small areas 52 

(e.g. King et al., 2007; 2009; Tulaczyk et al. 2000). Thus, investigation of drumlins on 53 

former ice sheet beds has the potential to uncover important new insights regarding the 54 

mechanisms and feedbacks that act to sustain and/or inhibit ice flow and, importantly, 55 

formulate and test models of subglacial processes at the ice-bed interface (e.g. Schoof, 2007a, 56 

b; Fowler, 2000; 2009a; Hindmarsh, 1998a; 1998b; 1999). Ultimately, the success of such 57 

models to account for drumlin formation will improve our ability to predict the rate at which 58 

ice and sediment is transported from continents to the oceans, with important implications for 59 

future ice sheet stability (e.g. Schoof, 2002; 2004). 60 

In palaeo-glaciology, drumlins also record key information relating to ice sheet flow history, 61 

e.g. ice flow direction and changes through time (cf. Boulton & Clark, 1990; Clark, 1993; 62 

Kleman and Borgström., 1996; Kleman et al., 1997, 2006), and even ice velocity (cf. Hart, 63 

1999; Stokes and Clark, 2002). Thus, they are a vital ingredient for glacial inversion 64 

techniques that use the geological record of former ice sheet beds to reconstruct their time-65 

dependent behaviour (see Kleman and Borgström, 1996; Kleman et al., 2006). It could be 66 

argued, however, that their use is yet to fulfil its true potential. If, for example, we knew the 67 

specific conditions under which drumlins of different shapes and sizes developed (e.g. 68 

specific ranges of ice thickness, velocity, effective pressures, etc.), then their importance to 69 

palaeoglaciology would be considerably magnified. 70 

With the above considerations in mind, the quest for a physically-based model of drumlin 71 

formation takes on huge importance and yet, despite this, their origin remains enigmatic and 72 
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controversial. Numerous hypotheses of drumlin formation have been espoused and include 73 

accretion around obstacles (e.g. Fairchild, 1929), dilatant till behaviour (e.g. Smalley and 74 

Unwin, 1968), catastrophic meltwater floods (e.g. Shaw, 1983), deformation of till around 75 

more competent cores (e.g. Boulton, 1987), lee-side cavity infillings (e.g. Dardis, 1985) and 76 

an instability at the ice-till interface (e.g. Hindmarsh, 1998a). As noted by Clark (2010), 77 

however, most ideas/hypotheses of drumlin formation fail to address how bumps (drumlins) 78 

are created from a flat surface in the absence of obvious obstacles or cores. This appears to be 79 

a critical aspect of the ‘drumlin problem’ because although some drumlins possess an 80 

obvious core (e.g. of bedrock or ‘stiffer’ material), there are numerous reports in the literature 81 

of those that do not (see reviews in Patterson and Hooke, 1995; Stokes et al., 2011). 82 

Furthermore, most of ideas regarding drumlin genesis are restricted to qualitative 83 

descriptions/explanations and very few have progressed to physically-based mathematical 84 

models that are capable of making predictions that can be tested against observations. 85 

One theory of drumlin formation that does address relief amplification from an initially 86 

featureless surface is the instability theory and, significantly, the last decade or so has seen it 87 

described in numerical models of ice flowing over a layer of deforming sediment (e.g. 88 

Hindmarsh, 1998a, b; 1999; Schoof, 2007a, b; Fowler, 2000; 2009a; 2010a). It proposes that 89 

the coupled flow of ice and till causes the spontaneous formation of relief in the till surface, 90 

whereby local highs at the bed will accumulate till by deposition, and lows will be 91 

preferentially eroded. This leads to the creation of pattern and structure in the bed that is 92 

manifest in a wide range of features termed subglacial bedforms. Indeed, a further appeal of 93 

this theory is that it has the potential to provide a unifying explanation for the production of a 94 

continuum of subglacial bedforms (cf. Aario, 1977; Rose, 1987) and not only drumlins, 95 

having been applied to ribbed moraine (Dunlop et al., 2008; Chapwanya et al., 2011) and 96 

recently adapted to address the formation of mega-scale glacial lineations (Fowler, 2010b).  97 
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Although models of the instability theory are yet to generate fully three-dimensional drumlins 98 

(see section 2.2), predictions of bedform height and length in two-dimensional treatments are 99 

consistent with observations (e.g. Fowler, 2000; 2009), which is encouraging (see discussion 100 

in Clark, 2010). Perhaps more serious, however, is that the theory has yet to confront the 101 

multitude of observations relating to the composition and internal structure of drumlins. This 102 

was recently highlighted by Hiemstra et al. (2011) who noted that “theoretical studies of flow 103 

instability have yet to provide a solution for the sedimentological and structural-architectural 104 

variability in drumlins as recorded in the field”. For some, this might be viewed as a 105 

deficiency: Hart (2005: p. 194), for example, notes that “any model of drumlin formation 106 

needs to be related to the sedimentology and structural geology of the drumlins themselves” 107 

and Schoof (2007a) questions whether the instability theory can be reconciled with 108 

observations of drumlins with stratified cores of glaciofluvial material (e.g. Easterbook, 1986; 109 

Sharpe, 1987). Indeed, the oft-cited complexity of drumlin composition (e.g. Menzies, 1979; 110 

Patterson and Hooke, 1995) has frequently been seen as a major obstacle for a unifying 111 

theory of their formation, although this pessimism may be misplaced (see Stokes et al., 2011).  112 

Whilst the instability theory is principally concerned with the evolution of the ice-till 113 

interface, it is important that it can explain observed sedimentary sequences within drumlins 114 

(at least qualitatively, but with further progress one anticipates quantitatively). If it is unable 115 

to accommodate common sedimentary architectures that are produced or, more commonly, 116 

inherited and preserved in a drumlin, then its credibility is damaged. With this in mind, this 117 

paper is the first attempt to assess the compatibility of the instability theory of drumlin 118 

formation with observations of their composition and internal structure. The underlying 119 

principles of the theory are introduced and we then outline a new framework for considering 120 

the composition of drumlins, before summarising the main types of drumlin composition 121 

reported in the literature (cf. Menzies, 1979; Patterson and Hooke, 1995; Stokes et al., 2011). 122 
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Given the conceptual basis of the instability theory, we then consider what kinds of sediments 123 

and structures might be expected to occur based on firm physical principles, i.e. we consider 124 

the formation of drumlins in its physical context and use what we know or can reasonably 125 

infer about this context to provide an explanation of what has been observed in the field.  126 

 127 

 128 

2. The Instability Theory for Drumlin Formation 129 

2.1. Underlying Principles 130 

A system can be described as ‘unstable’ when positive feedbacks act to amplify small 131 

disturbances, such that small ‘natural’ variations (perturbations) become larger. A simple 132 

illustration of this process can be seen on a flat sand surface (e.g. beach) where a small 133 

perturbation (e.g. subtle change in sand thickness) encourages local sediment accretion and 134 

the growth of a sand ripple. Such instabilities generally grow at different wavelengths and 135 

exponentially, at least initially, and tend to grow fastest at a preferred wavelength. This 136 

wavelength of maximum growth rate is determined by the physical operation of the system 137 

and, significantly, because one wavelength tends to emerge as dominant, the result is often a 138 

pattern of similarly sized and spaced ripples (bedforms) in a field. Such relief amplification 139 

from an unstable interface is considered a fundamental mechanism for creating 140 

bedforms/waveforms into recognisable patterns, e.g. dunes and ripples in aeolian and fluvial 141 

landscapes (e.g. Prigozhin, 1999; Fowler, 2011), which resemble subglacial bedforms, see 142 

Figure 1. As noted, the regularity of relief amplification (i.e. the spacing of bedforms at a 143 

dominant wavelength) arises because an instability in the system determines that one 144 

wavelength will usually grow more quickly than others and that patterning will further 145 

develop from bedform interactions, e.g. migration, merging, lateral linking, and 146 
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cannibalisation might push the system towards fewer larger more widely spaced bedforms 147 

(Kocurek et al., 2010).  148 

Clark (2010) provides a detailed review of the development of ideas relating to the instability 149 

theory for drumlin formation, which can be traced back to the seminal work of Smalley and 150 

Unwin (1968), who argued that drumlins might be the product of the flow of sediments 151 

beneath ice sheets. However, the notion that subglacial bedforms or, more specifically, wave-152 

forms (instabilities), might arise spontaneously from fluid dynamics at the ice-bed interface 153 

was first explored by Hindmarsh (1996; 1998a, b), following the ‘paradigm shift’ in 154 

glaciology in the 1980s (Boulton, 1986), which recognised the importance of the coupled 155 

flow of ice and till and its potential to create bedforms (e.g. Boulton, 1987; Boulton and 156 

Hindmarsh, 1987). Further analytical developments were made by Fowler (2000, 2009, 157 

2010a) and Schoof (2002a, b; 2007a, b) who confirmed the likelihood of instabilities and, 158 

crucially, found that they were largely independent of whether a plastic or viscous till 159 

rheology is used, including the highly nonlinear shear-thinning ones typically thought most 160 

appropriate for the description of 'nearly plastic' sediment (e.g. Schoof, 2007a).  161 

The basic ingredients and underlying principles of the instability mechanism are shown in 162 

Figure 2. The base of the ice is assumed to be at the melting point, and producing sufficient 163 

water through basal melting that the till is unfrozen and water saturated. It is then assumed 164 

that the till will deform if subjected to a sufficiently high shear stress. The model then 165 

considers the flow of ice to be Newtonian viscous, that there is a sliding law relating basal 166 

shear stress (τ) to basal velocity (u) and basal effective pressure (N: overburden pressure 167 

minus till pore water pressure); and similarly that sediment flux (q) is a function of shear 168 

stress and till effective pressure. It is worth noting that the work of Dunlop et al. (2008) used 169 

a non-linearly viscous model of ice flow, with little qualitative effect on the results.  170 
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It is also assumed that, as a granular material, till will only deform if τ > μN, where μ is a 171 

coefficient of friction; and it is assumed that τ increases with u and N, while q increases with 172 

τ but decreases as N increases. In particular, because the effective pressure in the till increases 173 

with depth below the ice-till interface, deformation of the till will be limited to a thin mobile 174 

layer whose thickness is expected to lie in the range of tens of centimetres to metres. It is then 175 

found that the flow of ice over a level substrate is unstable and, for most reasonable choices 176 

of sliding law, bedforms grow and equilibrate at finite amplitude (e.g. Hindmarsh, 1999; 177 

Fowler, 2009), the height and length of which are consistent with observations, i.e. 10s of 178 

metres (cf. Fowler, 2009). The instability occurs because when ice moves over a shallow 179 

bump in the interface, it generates a higher compressive stress on the bump's upstream side 180 

than in its lee. If, in addition, the effective sediment viscosity is low compared with that of ice, 181 

interfacial velocity remains approximately constant, and this then implies that more sediment 182 

flows into the bump than out of it, causing it to grow (Schoof, 2007a). The preceding 183 

discussion represents the physical context to the theory and previous work provides further 184 

details and justification for these underlying assumptions (e.g. Hindmarsh 1998a; Fowler, 185 

2000).  186 

 187 

 188 

2.2. Recent developments and current limitations 189 

The theory put forward initially by Hindmarsh (1998a) and Fowler (2000) provides an 190 

explicit theoretical mechanism for an instability in the flow of ice over deformable sediments, 191 

which can generate a pattern of bedforms from an initially planar surface. It is important, 192 

however, to outline the current limitations of the theory, which arise partly from the difficulty 193 

of the problem (a physically-based model of drumlin formation is clearly not trivial), but 194 
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perhaps also from the view that makes genetic distinctions between different ‘types’ of 195 

bedforms (e.g. ribbed moraine, drumlins, mega-scale glacial lineations). An alternative view, 196 

implicit within the instability theory, is that they sit along a ‘bedform continuum’ (cf. Aario, 197 

1977; Rose, 1987), such that in two dimensions there may be little physical distinction 198 

between ribbed moraines with a short wavelength in the along flow direction and drumlins 199 

with a longer wave-length. 200 

In relation to this, the original theory (Hindmarsh, 1998) was a two-dimensional one, and was 201 

then used by Dunlop et al. (2008) to explain ribbed moraine, but a distinction has often been 202 

made between drumlins and ribbed moraine, with the implication being that they are different 203 

bedforms, and hence may have different origins. Furthermore, it has been noted that the 204 

instability theory has, thus far, failed to generate fully three dimensional drumlins (see 205 

discussions in Schoof, 2007a; Pelletier, 2008; Clark, 2010).  206 

Clearly, the fact that three-dimensional bedforms have not yet been predicted by the theory 207 

represents a significant challenge to it, but recent developments look promising in this regard. 208 

Finite amplitude calculations have been undertaken (Fowler 2009) and three-dimensional 209 

modelling of evolving ribbed moraine (Chapwanya et al. 2011) have generated ‘drumlin-like’ 210 

culminations (see ‘terrain’ shaded red in Fig. 1f), although the model failed to produce the 211 

expected evolution from drumlinised ribbed moraine to just drumlins (Clark, 2010). The 212 

differences between these two implementations lies in the assumption by Fowler (2009) that 213 

the water pressure in the deforming till layer is at hydrostatic equilibrium with the subglacial 214 

stream system, while Chapwanya et al. (2011) assumed a slowly relaxing hydrostatic 215 

disequilibrium. In particular, the slow relaxation was due to an assumed till permeability of 216 

10
-15

 m
2
, comparable with silt. For a sandy till, or if water flows off drumlins by interfacial 217 

rivulets, the present low value may be unwarranted. A working hypothesis relevant in the 218 

context of this paper would be that drumlins may be stationary if the till is well-drained, but 219 
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that they move if the till is poorly drained (we shall discuss both possibilities below). Thus, it 220 

would seem that the treatment of subglacial water is vital, which is reminiscent of the views 221 

of Shaw and co-workers (e.g. Shaw, 1983; Shaw and Kvill, 1984), although for very different 222 

reasons.  Indeed, the theory has been modified to allow an active subglacial hydraulic system 223 

(Fowler 2010), and this development led to the discovery of a rilling instability, which 224 

generated features whose lateral spacing is consistent with observations of mega-scale glacial 225 

lineations.  226 

In summary, it is important to stress that none of the recent implementations of the theory are 227 

the last word on the subject, since none of them properly solve the coupled ice-till-water flow 228 

problem posed by Fowler (2010b). Thus, we would argue that whilst the theory has yet to 229 

produce fully three-dimensional drumlins (they emerge as bumps of finite amplitude in 2D 230 

models), it is not yet developed to a state where it could be rejected on this basis. 231 

 232 

2.3. A new framework for explaining drumlin composition and internal structure 233 

In relation to drumlin composition and internal structure, it is important to stress that the 234 

instability theory, thus far, has purposely ignored realistic complications which are 235 

nonetheless immaterial to the development of a wavy interface. For example, till is modelled 236 

as a homogeneous material and not at the grain-to-grain scale. As such, the model is 237 

incapable (in its present form) of making predictions of the kinds of detailed micro-scale 238 

sedimentary features that might be generated and observed. This is not necessarily a problem 239 

because, as noted by Menzies (1979, p. 350), “it is critical that if any unifying drumlin theory 240 

is to be developed it must not be created around unique or special conditions either within the 241 

ice mass or drumlin material”. It is important, however, that the theory is not intrinsically 242 

contradicted by observations of the commonly observed contents found inside drumlins (e.g. 243 
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till, stratified glaciofluvial material, etc.) and nor by the structure or architecture of these 244 

contents (e.g. conformable/unconformable with the drumlin surface). However, before 245 

confronting the theory with observations, we must first consider a new framework which 246 

allows for the vertical movement of the unstable (wavy) interface.  247 

To date, the instability theory provides a framework in which the bed elevation (s ) is 248 

described by a partial differential equation, known as the Exner equation, which takes the 249 

form (in two dimensions), 250 

 251 

s + !" =  0       (1) 252 

 253 

In which (t) represents time, ($) represents downstream distance, (!) represents the till flux, 254 

and the subscripts denote partial derivatives. Additional assumptions are that ice flow is 255 

continuous and constant, the sediment is constantly saturated, the subglacial hydraulic regime 256 

is uniform and constant in time, and the sediment supply upstream is constant, and equal to 257 

that downstream. These assumptions are made not because we believe them to be true, but 258 

because a theory, any theory, has to make some assumptions, and these are the simplest that 259 

we can make in the context of drumlin formation. However, in our present intention of 260 

addressing how the theory might explain observations of drumlin composition, we have to 261 

allow for relaxation of these assumptions, and we now discuss these in turn. 262 

In consideration of any specific segment of an ice flow line, it is unlikely that sediment influx 263 

and efflux will be in balance. The generalisation of equation (1) to describe such situations is 264 

the modified equation: 265 

 266 
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s + !" =  −&        (2) 267 

 268 

where E represents the net rate of erosion of sediments. We conceive of the actively 269 

deforming till layer as having a (fixed) thickness controlled by the depth at which the yield 270 

stress is reached as effective pressure increases. Net removal of the sediment above will thus 271 

cause entrainment of the sediment below, and thus an effective erosion of the till bed. We 272 

thus distinguish two cases: E > 0, an erosional environment, and E < 0, a depositional 273 

environment. Both will play a part in our interpretations of observed drumlin stratigraphy. 274 

The theory considers the smooth, continual evolution of the bed under constant external 275 

conditions. In reality, since nothing happens during dormant periods, the model can also 276 

describe the more likely scenarios where evolution occurs in discrete periods, due to distinct 277 

drumlin-forming events. One reason for supposing this is that, as a granular material, till will 278 

not deform at all unless the effective pressure (overburden minus hydraulic pressure) N is less 279 

than τ /μ, where τ is shear stress and μ is a coefficient of friction. In practice, this means N < 280 

1 bar. Such low effective pressures are known to occur under ice streams (cf. Kamb, 1991), 281 

but may not be common where channelized drainage occurs (as recorded by eskers formed in 282 

Röthlisberger channels), which typically have much higher effective pressures. Moreover, till 283 

deformation implies water saturated sediments, which requires not only that the basal 284 

temperature be at the melting point, but also that there is net production of water. So it seems 285 

natural to suppose that as an ice sheet evolves, basal conditions change so that drumlins are 286 

not built continuously, but episodically, and probably quite rapidly (i.e. few decades: cf. 287 

Smith et al, 2007), which is a further prediction of the instability theory (see Fowler, 2009).  288 

As stated above, the instability theory is still in a state of development and this section 289 

indicates our best present understanding. We introduce the minimum ingredients and find 290 
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what they explain: principally the size and wavelength of subglacial bedforms. To explain 291 

further features (their composition and internal structure), we introduce further plausible 292 

ingredients. In this preliminary discussion of drumlin composition, we are simply exploring 293 

the most likely possibilities that we construe will emerge as the theory is developed.   294 

 295 

 296 

3. Observations of Drumlin Composition and Internal Structure 297 

Within the vast drumlin literature, numerous papers (>200) report on their composition and 298 

internal structure and it is true to say that they are composed of a range of different sediments, 299 

exhibit a variety of different structures (e.g. horizontally stratified versus conformable with 300 

landform surface), and show evidence of a variety of styles and extent of deformation (see 301 

reviews in Menzies, 1979; Patterson and Hooke, 1995; Hart, 1997; Stokes et al., 2011). 302 

Perhaps unfortunately, this diversity has led to a large range of explanations/hypotheses of 303 

drumlin formation and it has famously been noted that “there are almost as many theories of 304 

drumlin formation as there are drumlins” (Sugden and John, 1976, p. 239). Indeed, although 305 

drumlin morphology is also variable (though recently shown to have unimodal distributions 306 

of length, width, height and shape: Clark et al., 2009; Spagnolo et al., 2010; 2011; 2012), it is 307 

likely that had drumlins only ever been observed to contain the same contents, the “drumlin 308 

problem” (Menzies and Rose, 1987; p. 7) would not be so much of a problem.  309 

Based on a systematic review of the literature and in an attempt to reduce the oft-cited 310 

complexity of drumlin composition, Stokes et al. (2011) have recently suggested that there 311 

are, essentially, just five basic types, albeit with subtle variants, shown in Figure 3. These are: 312 

i. Mainly bedrock 313 

ii. Part bedrock/part till 314 
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iii. Mainly till 315 

iv. Part till/part sorted sediments 316 

v. Mainly sorted sediments 317 

Whilst acknowledging the inherent limitations of such a classification, Stokes et al. (2011) 318 

argue that explaining these basic types provides a more realistic goal for theories or 319 

numerical models of drumlin formation to address. They go on to suggest (as others have 320 

done, e.g. Dionne, 1987) that the first type (type 1, Fig. 3), purely bedrock forms, could be 321 

viewed as genetically different from drumlins formed of unconsolidated sediment (whaleback 322 

may be a more appropriate term, cf. Evans, 1996).  323 

Stokes et al. (2011) also postulate that because of the unimodal distribution of drumlin 324 

dimensions (which suggests a single population of landforms, rather than different types: 325 

Clark et al., 2009) and because the other four types of drumlin content can often occur within 326 

the same drumlin field (e.g. Hill, 1971), and sometimes in a continuum (e.g. Boyce and Eyles, 327 

1991), they are probably genetically related, i.e. their differing contents should not be seen as 328 

an obstacle to a unifying theory of drumlin formation. The challenge for the instability theory 329 

therefore, is whether it can explain all of the remaining four types of drumlin (listed above). 330 

The next section addresses this issue and takes each type of drumlin in turn (excluding purely 331 

bedrock forms) and assesses whether the physical principles and mechanisms that underlie 332 

the instability theory can explain/predict such observations. 333 

 334 

 335 

4. Qualitative and Quantitative Explanations of Drumlin Composition and Architecture 336 

Predicted by the Instability Theory 337 

4.1. Drumlins composed of part bedrock/part till 338 
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4.1.1. Observations 339 

Drumlins composed of part bedrock/part till (often called ‘rock-cored drumlins: type 2, Fig. 3) 340 

are commonly reported in the literature (e.g. Crosby, 1934; Dionne, 1987; Möller, 1987; 341 

Boyce and Eyles, 1991). In their inventory, Stokes et al. (2011) list 28 papers that describe 342 

this type of drumlin but point out that they are probably far more common than is reported, 343 

compared to other types, because of the bias towards sampling drumlins away from regions 344 

underlain by crystalline bedrock (see their Table 1 and Figure 17) and partly because they are 345 

sometimes called crag-and-tails. The bedrock ‘core’ can be located at the stoss (e.g. Glückert 346 

1973), middle (Tavast, 2001), or lee side of the drumlin (Tavast, 2001), although it is most 347 

common to be positioned at the stoss side (Stokes et al., 2011). To distinguish these features 348 

from ‘crag and tails’, Dionne (1987) suggested that till should account for at least 25% of the 349 

entire drumlin volume and cover at least portion of the stoss end.  350 

 351 

4.1.2. Model Explanation/Prediction 352 

From the point of view of the instability theory, part bedrock/part till drumlins are relatively 353 

easy to explain because an instability will form a drumlin due to any small perturbation in the 354 

till thickness or bed topography. The instability theory predicts the formation of drumlins as 355 

waves which grow from a pre-existing (level) interface. Instabilities grow in nature because 356 

there are always perturbations present. Thus, a bedrock protuberance is just an obvious 357 

perturbation, and since the theory in one version of its current form (Fowler, 2009) predicts 358 

growth of a finite amplitude stationary state, it is a consequence that such perturbations will 359 

give rise to drumlins. In short, the theory predicts that bedrock bumps are sufficient but not 360 

necessary to seed drumlins. Dynamical analogies abound: the formation of standing waves in 361 

rivers at bedrock steps, atmospheric lee waves behind mountains, sand dunes formed behind 362 

or in front of obstacles. 363 
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More specifically, the theory assumes that till flux (q) increases with basal shear stress (τ) but 364 

decreases as effective pressure (N) increases (section 2). Thus, depending on the shear stress 365 

(which is, in turn, related to ice velocity and effective pressure), it is obvious that till flux 366 

varies both spatially and temporally under different conditions. In some circumstances, 367 

therefore, till fluxes will be relatively high through the system and in others, they might be 368 

relatively low. Given a system of high till fluxes over an underlying surface of bedrock 369 

undulations and where till flux from up-ice is insufficient to maintain continuity (or local 370 

erosion is too low), it is natural to expect that the till thickness will decrease and bedrock will 371 

become exposed at the surface of the till. Depending on the nature of the bedrock surface and 372 

the pre-existing sediment thickness, drumlin forms will thus emerge with varying degrees of 373 

bedrock ‘control’ through time, see Figure 4. The situation of bedrock bumps perhaps 374 

seeding some drumlins still holds (Fig. 4b), but as till is preferentially removed from the 375 

system (erosion dominates over deposition), bedrock bumps are likely to emerge (Fig. 4c and 376 

d) and the ultimate progression sees the system evolve to an entirely bedrock surface (Fig. 4e). 377 

Similar erosional processes within a deforming bed were envisaged by Boyce and Eyles 378 

(1991) in the Peterborough drumlin field, Ontario. They noted drumlins with bedrock cores in 379 

areas where the length of time available for erosion was greatest and sediments were thinnest.  380 

The observation that bedrock cores might be found in various positions within drumlins (cf. 381 

Stokes et al., 2011) is also fairly readily understood. Rapid ice flow over a bedrock bump will 382 

cause a large cavity to form in its lee, and in the presence of an adequate till supply, the 383 

cavity will be infilled by sediments (Fig. 4d). On the other hand, if the ice flow is relatively 384 

slow, then we would expect little cavitation, but till dragged towards the obstacle will pile up, 385 

causing a stoss-side cavity infill (which some workers have reported and termed ‘pre-crags’, 386 

e.g. Haavisto-Hyvärinen, 1997). In the absence of plentiful till cover, we may expect bedrock 387 

bumps to emerge above the till veneer (and the extreme case of this is the whaleback). 388 
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Additionally, because effective pressure increases with bed elevation, and thus till mobility 389 

decreases, till may simply not be able to reach the summits. 390 

 391 

4.2. Drumlins composed of mainly till 392 

4.2.1. Observations 393 

It is no surprise that there are numerous reports of drumlins composed mainly of till (type 3, 394 

Fig. 3) (e.g. Wright, 1962; Nenonen, 1994; Menzies et al., 1997; Rattas and Piotrowski, 395 

2003). Indeed, Stokes et al. (2011) noted that this is by far the most common constituent of 396 

drumlins reported in the literature and previous studies draw the same conclusion (e.g. 397 

Menzies, 1979; Patterson and Hooke, 1995). The emphasis is on ‘reported’ because we do 398 

not have a large enough sample size to judge whether observations to date are a 399 

representative sample of drumlin composition (see discussion in Stokes et al., 2011). In some 400 

cases, the entire drumlin appears to consist of an essentially structureless/homogeneous unit 401 

of till (Habbe, 1992), whereas others exhibit several units; sometimes horizontally bedded 402 

(e.g. Stea and Brown, 1989) and sometimes conformable with the drumlin relief (e.g. 403 

Nenonen, 1994). The degree to which till units (or any sedimentary units for that matter) are 404 

conformable with the drumlin surface is often viewed as a key issue in drumlinology and is 405 

discussed in section 5.1. Drumlins composed mainly of till also show a variety of 406 

features/structures related to both ductile and brittle deformation (e.g. Menzies et al., 1997), 407 

although others do not and, again, this issue is true for other types of drumlin. 408 

 409 

4.2.2. Model Explanation/Prediction 410 

In many ways, this type of drumlin is the least problematic for the instability theory. In effect, 411 

the instability theory models the surface of the till as a sinusoidal wave of varying thickness 412 
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(Fig. 2c), but geomorphologists have tended to only map the landform above the mean till 413 

surface (e.g. Spagnolo et al., 2012) at some (possibly arbitrary: see Smith et al., 2006), level; 414 

and it is these landforms that sedimentologists have tended to focus on in terms of sampling 415 

the sub-surface. Because of the dependence of the theory on a mobile till unit that grows in 416 

thickness to form the body of the drumlin that scientists map and sample, an obvious 417 

prediction of the instability is, therefore, that the high-points of the sinusoidal wave (which 418 

we map as drumlins) should be composed of this mobile till unit.  419 

That the most commonly reported drumlins are those composed of till would seem to serve 420 

the theory well, especially where ice flows over a metres thick sequence of tills. However, it 421 

is less obvious how such drumlins can be formed in the absence of a pre-existing deep 422 

(several metres) till layer, though whether this is a significant problem needs exploration 423 

through mathematical modelling. Two mechanisms emerge from our previous discussion of 424 

the instability model. When hydraulic connectivity is poor, we may expect bedforms to grow 425 

as travelling waves, and these waves will sweep the underlying sediments together as they 426 

move. Alternatively, or as well, in net depositional environments, till is gradually deposited 427 

as a thickening layer on top of any pre-existing sediments. 428 

 429 

4.3. Drumlins composed of part till/part sorted sediments 430 

4.3.1. Key observations 431 

The second most commonly reported type of drumlin (cf. Stokes et al., 2011), after those 432 

composed mainly of till, are those composed of large amounts of both till and sorted (often 433 

glaciofluvial) sediments (type 4, Fig. 3). The location of the sorted sediments can vary. In 434 

some cases they form a centrally-positioned core or ‘pod’ (e.g. Rattas and Piotrowski, 2003), 435 

whilst in others they form a horizontal unit that separates two till units (e.g. Kerr and Eyles, 436 
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2007) or interbedded with till or vice versa (e.g. Whittecar and Mickleson, 1979). Arguably, 437 

the most commonly reported architecture, however, is where the sorted sediments simply 438 

underlie the till unit (e.g. Clapperton, 1989; Boyce and Eyles, 1991; Habbe, 1992; Jorgenson 439 

and Piotrowski, 2003). In this situation, there are reports of the sorted sediments showing 440 

evidence of glaciotectonic deformation and being incorporated into the overlying till unit, e.g. 441 

drag folds and rafts/lenses of underlying sediments (Boyce and Eyles, 1991) from either 442 

ductile or brittle deformation. In other cases, the erosional contact with the sorted sediments 443 

may show minimal evidence of deformation (e.g. Habbe, 1992; Hart, 1995a).  444 

A commonly reported sub-type of part till/part sorted drumlins are those where the sorted 445 

sediments are preferentially found on the lee side of the drumlin. These observations are 446 

dominated from locations in Ireland (e.g. Dardis, 1985; Dardis and McCabe, 1983; Dardis et 447 

al., 1984; Hanvey, 1987, 1989) but not exclusively (see Fisher and Spooner, 1984).  448 

 449 

4.3.2. Model explanation/prediction 450 

Whilst drumlins with components of bedrock and till are relatively easy to explain, the 451 

presence of stratified sediments is seen by some (e.g. Schoof, 2007a) as introducing 452 

additional complexity that is, perhaps, incompatible with the instability theory. As discussed 453 

in section 2.2, in the simplest scenario (E = 0) the mean interface level remains constant, but 454 

this is not an essential ingredient of the model. If there is limited sediment flux from 455 

upstream, perhaps because there is exposed bedrock there, or the effective pressure is too 456 

high (or shear stress too low) to promote till deformation, then the erosion rate E > 0 and the 457 

mean level of the interface will lower, even as the wavy interface (i.e. drumlinised surface) 458 

evolves.  459 
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The hydraulic potential of the water at the bed is lowest at the lowest parts of the ice-till 460 

interface (i.e. around the base of drumlins and in inter-drumlin areas), and so we expect 461 

meltwater to be concentrated there (e.g. Fowler, 2010b), see Figure 5. Moreover, because the 462 

low levels of effective pressure associated with sediment deformation are consistent with a 463 

description of stream flow as a distributed system (Walder and Fowler, 1994), the most likely 464 

form of the basal water flow is a slow trickle through a swamp-like basal platform. 465 

Conversely, the effective pressure at the tops of drumlins should be higher, so that the till 466 

there is stiffer. The higher/thicker drumlin material will be eroded around the base where the 467 

till is softer, and the excavated material can then be removed through the meltwater system. 468 

In this way, the transport (erosion) of till is enhanced by both the ice motion-induced 469 

sediment flux and through meltwater erosion, with the overall effect of a wavy interface 470 

cutting vertically into underlying units. It follows therefore, that a way in which to build part-471 

stratified drumlins as shown in Figure 5d is to first build till-filled drumlins in a depositional 472 

environment (E < 0), and then later have these drumlins subjected to a net erosional 473 

environment (E > 0), assuming they overlie pre-existing sorted sediments. 474 

Thus, in certain circumstances, the instability theory would predict a wavy interface cutting 475 

down into any pre-existing sediments (Fig. 5). The opposite case is where upstream sediment 476 

flux is larger than can be excavated out of the drumlin field and, in this way, pre-existing 477 

units of sorted sediments may be buried by till units and, in some cases, show evidence of 478 

being deformed upwards into the till (e.g. Boyce and Eyles, 1991). In this manner, pods or 479 

cores of glaciofluvial material may be incorporated into the till layer and, because they are 480 

generally coarser-grained (e.g. sands and gravels) compared to till, such sediments are likely 481 

to be better drained and more likely to act as competent material within a deforming layer of 482 

till. In this way, they act as boudins around which the deforming till will flow. This idea is 483 

not new in the drumlin literature (e.g. Smalley and Unwin, 1968) and was encapsulated most 484 



21 

 

notably in Boulton’s (1987) ‘theory of drumlin formation by subglacial sediment 485 

deformation’, see Figure 6. The appeal of the instability theory therefore, is that it may be 486 

able to explain drumlins with or without such cores, with the major accomplishment being 487 

that such cores (which are not always present: Stokes et al., 2011) are not a necessary pre-488 

requisite. 489 

The presence of deformation features at the contact with underlying or en-drumlin units is 490 

also to be expected in that any bump created at the ice-bed interface is likely to induce large 491 

stress gradients (cf. Morland and Boulton, 1975). More specifically, units with differing 492 

rheologies (e.g. till overlying glaciofluvial sediments) are especially conducive to the 493 

production of both ductile folds, and faults caused by fracturing of non-yielding material. 494 

Thus, whilst deformation fields are likely to be complex and vary from drumlin to drumlin 495 

(depending on their constituents), the observed manifestations of deformation are entirely 496 

consistent with the instability theory. 497 

The mechanical properties of the till itself also creates horizontal variations in its properties. 498 

The effective pressure in the till at the ice-till interface increases with elevation of this 499 

interface, having a vertical gradient Δρ,-., where Δρ,-  is the density difference between 500 

water and ice (. is the acceleration due to gravity); while the effective pressure N increases 501 

with depth below the ice-till interface at a rate Δρ/,(1 − 2). , where 2  is the sediment 502 

porosity and Δρ/, is the density difference between sediment and water. Consequently, N 503 

will increase along a horizontal level as we move from the stoss face to a position 504 

immediately under the crest, and then will decline thereafter to the lee face. The higher value 505 

of N must cause lower values of μ; tensional stresses will be generated towards the lee of 506 

drumlins, while compressive stresses are likely to be generated towards the stoss face of the 507 

drumlin (cf. Morland and Boulton, 1975), and failure of the till may also lead to thrust faults, 508 
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which again have also been observed in numerous drumlins (e.g. Hart, 1995a; Hart 1997; 509 

McCabe and Dardis, 1994).  510 

In terms of stratified sediments found only on the lee-side of drumlins, their presence is 511 

usually ascribed to deposition by meltwater that is preferentially routed towards cavities 512 

behind the developing drumlin (e.g. Dardis et al., 1984). As noted above, most proponents 513 

suggest that such deposition requires a pre-existing drumlin in place and is, therefore, 514 

unlikely to explain the drumlin-forming mechanism. In this sense, it is not a drumlin-forming 515 

mechanism (although see related arguments in Shaw, 1983; Fisher and Spooner, 1994, etc.). 516 

Thus, we simply note that the presence of stratified glaciofluvial sediments on the lee-side of 517 

drumlins is to be expected as a result of cavitation, which (although initially regarded as an 518 

undesirable feature), the instability model always predicts to occur (see Schoof, 2007a; b; 519 

Fowler, 2009), and meltwater routing towards these low pressure cavities.  520 

 521 

 522 

4.4. Drumlins composed of mainly sorted sediments 523 

4.4.1. Key observations 524 

Although they are the least commonly reported drumlins in the literature (cf. Stokes et al., 525 

2011), it has been known for a long time that some drumlins are simply composed of sorted 526 

(typically glaciofluvial) sediments or have only a thin veneer of till, and they often lack any 527 

evidence of widespread deformation (Alden, 1905, Gravenor, 1953; Shaw, 1983; Shaw and 528 

Kvill, 1984; Sharpe, 1987; Menzies and Brand, 2007). In many cases, the sorted sediments 529 

are horizontally bedded but sorted sediments show a range of architectures and their presence 530 

has been attributed to a range of factors. Menzies and Brand (2007), for example, observed 531 

pre-existing proglacial and deltaic sediments which acted as an obstacle around which a thin 532 
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veneer of till was emplaced and which showed evidence of thin-skinned deformation within 533 

the till but minimal disturbance of the underlying sediments, see Figure 7. In other cases, 534 

evidence of undisturbed sorted sediments has been interpreted as being intimately linked to 535 

drumlin formation by subglacial mega-floods, e.g. drumlins represent the glaciofluvial 536 

infillings of subglacial cavities (e.g. Shaw, 1983). Such an interpretation assumes that the 537 

sediments inside a drumlin are unquestionably linked to the drumlin forming mechanism, 538 

which is not always obvious, e.g. Fig. 7 (Menzies and Brand, 2007; Knight and McCabe, 539 

1997a; Stokes et al., 2011). 540 

 541 

4.4.2. Model explanation/prediction 542 

As explained in section 4.3.2, the most obvious way in which the instability theory can 543 

explain the presence of sorted sediments (irrespective of whether they form a part of or a 544 

whole drumlin) is through the vertical erosion of a deforming till layer into pre-existing 545 

sedimentary units. In such cases, the instability theory would have it that the sorted sediments 546 

are often unrelated to drumlin formation, other than their potential to act as a stiffer core (see 547 

section 4.3.2 and Fig. 6). Whilst it may be easier to conceptualise this down-cutting as 548 

producing part till/part sorted drumlins (Fig. 5), it is perhaps more difficult to envisage how 549 

the instability theory might explain drumlins composed of mainly sorted sediments and with 550 

only a minimal veneer of till and with minimal disturbance of underlying units (e.g. Fig. 7). 551 

We conceive of these drumlins forming in the following way.  552 

Given an ice sheet building up over a layer of stratified sediments with a largely flat surface, 553 

the ice will thicken and it may reach the melting point and begin to produce basal water and 554 

slide. The water saturates the underlying sediments, which then begin to deform in a thin (e.g. 555 

cm to metre) layer. The thickness of the dilating active layer is not simply a property of the 556 

sediments, but is also a consequence of the effective pressure and applied shear stress 557 
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(Boulton and Hindmarsh, 1987, eqn. (25); Hart et al., 1990, eqn (1)). Thin layers are 558 

associated with high effective pressures, which themselves are suggestive of very well 559 

drained sediments. As noted in section 2.1, subglacial instabilities are largely independent of 560 

whether a plastic or viscous till rheology is used (Schoof, 2007a). Thin dilatant layers are 561 

consistent with the instability theory and exhibit instabilities (Dunlop et al., 2008).  562 

The instability theory predicts that bedforms grow, and we can expect that as they do so, they 563 

begin to obliterate the structure of the underlying sediments. If the underlying sediments are 564 

sufficiently porous (e.g. sands or gravels) and the overlying active till layer is sufficiently thin, 565 

or non-cohesive, we may expect not only that the effective pressures are relatively high, but 566 

also that the water in the till layer to be hydrostatic, and it is in this situation that the evolving 567 

drumlins may be expected to be stationary (Fowler 2009). As discussed earlier, this leads to a 568 

situation in which the internal sediment architecture is maintained. We thus envisage a suite 569 

of bedforms consisting of hard resistant material residing in a basal platform of soft swampy 570 

sediments, where the basal water flow is situated. The soft material should be erodible, and as 571 

it erodes, we may imagine the drumlins collapsing as their foundations are removed (Fig. 5b).  572 

Figure 8 shows the result of a numerical simulation in which this evolution is demonstrated, 573 

the details of which are given in the appendix. The initially stratified sediments are indicated 574 

by the horizontal coloured bands and, as the bedform descends (its initial range is from -5 to 575 

0 m on the vertical axis), the near surface sediments are distorted and move in a thin veneer 576 

along the ice/till interface. The figure shows the resulting stratification after a period of ten 577 

years, when the wave form has eroded five metres of sediments (horizontal axis also in 578 

metres). Such high erosion rates are compatible with recent observations from under an active 579 

ice stream in W. Antarctica (Smith et al., 2012). A brief movie of the evolution is included in 580 

the supplementary online material. 581 
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We have included these calculations because, although internal stratification is a simple and 582 

inexorable consequence of stationary drumlin formation in an erosive environment, it has 583 

caused perceived difficulties with regard to acceptance of the theory (Schoof 2007a; Pelletier 584 

2008). 585 

 586 

5. Discussion 587 

5.1. Erosional versus depositional drumlins: a false dichotomy? 588 

It is clear from the preceding sections that both the composition and structure of drumlins are 589 

important aspects for the instability theory to explain. In particular, the extent to which 590 

drumlin composition conforms to the drumlin surface is an issue which has attracted much 591 

attention and one which has often led to them being classified as ‘erosional’ or ‘depositional’ 592 

(cf. Patterson and Hooke, 1995); or ‘destructional’ versus ‘constructional’ (Hart, 1995b; 593 

1997). 594 

Structures (e.g. layered units of till) that are conformable with the surface of the drumlin form 595 

have been noted in a number of studies (e.g. Hill, 1972; Nenonen, 1994; Hanvey, 1992) and 596 

are usually interpreted as reflecting a mechanism of formation that involves accretion of 597 

material around a core that builds up incrementally, layer by layer (e.g. Fairchild, 1929). 598 

Such interpretations are usually supported by reports of clast macro-fabrics that show 599 

expected patterns of divergence and convergence around the drumlin as till was deposited 600 

and emplaced around a growing obstacle (e.g. Savage, 1968; Goldstein, 1989). As such, 601 

drumlins with these surface conformable structures are often referred to as ‘depositional’ 602 

drumlins. In contrast, those with structures that are unconformable with the surface (e.g. beds 603 

of sorted glaciofluvial or till units, e.g. Fig. 7) are, in most cases, assumed to reflect pre-604 

existing material that has been left behind by some form of erosional process – hence the 605 
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term ‘erosional’ drumlins. This dichotomy between erosional and depositional drumlins 606 

pervades the early drumlin literature and, as Patterson and Hooke (1995) note, “any general 607 

theory of drumlin formation must accommodate both possibilities” (p. 33). The alternative 608 

requires two theories: one to explain depositional drumlins and one to explain erosional 609 

drumlins.  610 

We note that although serious questions have been raised over the plausibility of the 611 

meltwater flood theory for drumlin formation (see Shaw, 1983; Shaw and Kvill, 1984; and 612 

Benn and Evans, 2006 versus Shaw and Munro-Stasiuk, 2006), a notable strength of this 613 

theory is its ability to explain both erosional and depositional drumlins. Shaw and co-workers 614 

were some of the first to recognise the inherent patterning in glacial landscapes and develop a 615 

unifying mechanism to create a surface of bedforms. In this sense, it is similar to the 616 

instability theory, with the major difference being in terms of the ‘fluid’ media through which 617 

bedforms are created. 618 

Crucially, and like the meltwater flood theory, a strength of the instability theory is that it 619 

predicts both depositional and erosional drumlins, depending on whether deposition or 620 

erosion dominates in particular settings (e.g. section 4.3: Figure 4 and 5).  Where till build-up 621 

(deposition) is greater than till transport out of the system then drumlins will build-up, accrete, 622 

migrate and deform; and this is likely to result in both homogenous and surface conformable 623 

(accretionary) structures depending on the duration of ice and sediment flow and the effective 624 

pressures on both developing drumlins and inter-drumlin areas. Generally speaking, these 625 

depositional environments might be expected in slower flowing areas and/or towards the 626 

margins of an ice sheet, where large sediment depocentres are inherited from previous 627 

glaciations. In contrast, where sediment supply is limited from upstream, then the mean level 628 

of the ice-bed interface will lower as the higher/thicker drumlin material is eroded around the 629 

base. These environments might be more common down-ice from the core areas of an ice 630 
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sheet where previous glaciations may have stripped away the sediments and/or beneath fast-631 

flowing ice streams, where subglacial erosion is often focussed (cf. Smith et al., 2012). 632 

Similar processes of net sediment removal or deposition were described by Schoof and 633 

Clarke (2008) in a numerical model of flute formation, which also allowed for observations 634 

of both erosional and depositional bedforms. As described above (section 4.3, 4.4 and 635 

appendix), net sediment removal will produce drumlins that largely reflect the pre-existing 636 

sedimentary units that pre-date drumlin formation (cf. Knight and McCabe, 1997a; Menzies 637 

and Brand, 2007) and such units are unlikely to mimic the surface form of the down-cutting 638 

drumlinised surface (e.g. Fig. 7). Using these sediments and structures to deduce the 639 

fundamental mechanism of drumlin formation is, therefore, largely flawed (Stokes et al., 640 

2011).  641 

The issue of a depositional versus erosional origin is also linked to the observation that 642 

drumlins show varying degrees of deformation structures within them. It is very clear from 643 

the preceding discussion that sediments inside drumlins show a range of features that attest to 644 

both brittle and ductile deformation and which might occur extensively and throughout the 645 

entire drumlin thickness (e.g. Menzies et al., 1997) or in discrete locations or very thin layers 646 

(e.g. Menzies and Brand, 2007). Such features might occur in till (e.g. Hart, 1995a; Hart 1997) 647 

or initially sorted sediments (e.g. Ellwanger, 1992), or at the interface between the two (e.g. 648 

Boyce and Eyles, 1992); or even between till and bedrock (e.g. McCabe and Dardis, 1994).   649 

A further strength of the instability theory is that it predicts this range of deformation 650 

histories.  Where till flux into the system is greater than till flux out of the system, it is likely 651 

that bumps (drumlins) will grow through accretionary mechanisms and compressive stresses 652 

will develop on their stoss faces, whilst tensional forces develop towards their lee side, and 653 

these simple concepts (see also Morland and Boulton, 1975, for a fuller treatment) can 654 

explain a range of observed deformation structures that might result during drumlin formation 655 
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(e.g. boudins, drag folds, thrust faults, etc.). As noted above, however, if the till flux out of 656 

the system is greater than that moving into the system then the wavy interface is likely to cut-657 

down through pre-existing sediments to create drumlins as erosional remnants that might 658 

show minimal evidence of deformation and/or deformation structures that pre-date drumlin 659 

formation. As noted earlier, these ideas are not new in the drumlin literature, with Hart 660 

(1995b; 1997) invoking similar scenarios to account for both ‘constructional’ and 661 

‘destructional’ deformation to describe drumlins formed by the build-up or removal of 662 

material within a deforming layer. 663 

In summary, whilst the concept of erosional and depositional drumlins is useful, it does not 664 

justify a view that suggests they have a different mechanism of formation. In this sense, it is a 665 

false dichotomy (cf. Schoof and Clarke, 2008) and it is, perhaps, more helpful to view them 666 

as end members of a continuum. The appeal of the instability theory is that it accounts for 667 

both end members and various intermediate forms along this continuum (Fig. 4 and 5). 668 

 669 

5.2. Timescales of drumlin formation: inheritance, preservation and prediction 670 

It is clear from numerous studies described above that the material found within drumlins can 671 

be related to processes representing several ice flow phases, as well as being inherited from 672 

previous sedimentary environments that were not associated with ice flow in any sense. An 673 

excellent example of this can be found in Stea and Pe-Piper (1999) who used whole rock 674 

geochemistry to locate the source of igneous erratic material inside drumlins in Nova Scotia. 675 

This provenance analysis revealed that the material inside the drumlins was delivered by at 676 

least two ice flow phases with different source areas. Furthermore, Stea and Brown (1989) 677 

noted that till units in some drumlins represented erosional remnants from older drumlins, 678 

around which material was emplaced, see Figure 9. These processes are also expressed in the 679 
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surface morphology of drumlin fields, many of which are known to reflect a palimpsest 680 

landscape of ‘cross-cutting’ ice flow landforms (cf. Clark, 1993). Furthermore, there are 681 

several reports of different types of bedforms being superimposed on each other, e.g. ribbed 682 

moraine superimposed on top of drumlins (Dunlop and Clark, 2006) or mega-scale glacial 683 

lineations (Stokes et al., 2008); or drumlins superimposed on top of ribbed moraine (e.g. 684 

Dunlop and Clark, 2006; Knight and McCabe, 1997b; Hättestrand and Kleman, 1999) or 685 

mega-scale glacial lineations (Clark, 1993). Thus, whilst it is clear that some material inside 686 

drumlins might be unrelated to the drumlin forming mechanism (the ‘erosional’ drumlins 687 

described above in section 5.1) it is also important to appreciate that material may also reflect 688 

a time-integrated record of several ice flow phases and bedforming events, which 689 

observations clearly support (e.g. Stea and Brown, 1989). 690 

A key prediction of the instability theory (see Fowler, 2009) that is entirely consistent with 691 

these observations is that the time-scale for growth of drumlins is of the order of years (see 692 

also Smith et al., 2007), whereas the time-scale of ice sheet occupation and associated 693 

changes in ice dynamical behaviour is of the order of hundreds to thousands of years. An 694 

obvious consequence is that drumlins are likely to be remoulded by episodic changes in ice 695 

flow direction and, in some cases, completely erased. The instability theory would thus 696 

predict that, under most circumstances, pre-existing drumlin sediments will form the cores of 697 

drumlins from a younger ice flow, if the vertical erosion of the wavy interface or the till flux 698 

into the system is not great enough to remove them altogether. In other cases, all evidence of 699 

pre-existing drumlins might be removed and yet in other cases, the time window for drumlin 700 

formation might be so small as to conduct minimal landform/bedform creation, leaving a pre-701 

existing drumlin field barely modified at all.  702 

These simple concepts suggest that the most important factors controlling drumlin 703 

composition and internal structure are: (i) the pre-existing sediments; (ii) the balance between 704 
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till deposition and erosion; and (iii) the timing and duration of ice flow, which includes 705 

episodic changes in flow direction, basal thermal regime, and subglacial water conditions. 706 

These controls are encapsulated in Figure 10. If we take a common situation often found 707 

towards the margins of an ice sheet with thick layers of till overlying pre-existing 708 

glaciofluvial sediments (bottom left in Fig. 10a), the system could evolve to produce 709 

drumlins with quite different contents based on the duration and variability of ice flow (Fig. 710 

10a). A similar situation might occur with till overlying bedrock (Fig. 10b). Indeed, these 711 

ideas are applicable to a range of settings and, furthermore, provide a useful framework for 712 

interpreting drumlin composition (e.g. Boyce and Eyles, 1991). 713 

With the above in mind, it is possible to make some general predictions about where, under a 714 

continental ice sheet, drumlins with different compositions are more likely to occur based on 715 

the pre-existing substrate (largely influenced by previous cycles of ice sheet 716 

erosion/deposition). Figure 11 shows a simplified terrain from a previous glaciation with a 717 

core of pre-existing crystalline bedrock (zone 1) surrounded by a transitional zone of bedrock 718 

and thin till (< few metres: zone 2) that progressively thickens towards the ice sheet margins 719 

(zones 3 and 4). Such a terrain is not dissimilar to an idealised Laurentide Ice Sheet bed 720 

during the Late Pleistocene, which is thought to have changed from an all soft-bedded to a 721 

mixed hard-soft bedded ice sheet during the Middle Pleistocene through glacial erosion of a 722 

thick regolith and resulting exposure of unweathered crystalline bedrock (Clark and Pollard, 723 

1998). Given the waxing and waning of ice sheets during both glacial-interglacial and stadial-724 

interstadial time-scales, it would also be expected that the periphery of the previous ice sheet 725 

extent would be characterised by thicker sequences of proglacial/deglacial sediments for 726 

subsequent overriding (zone 5).  727 

Given the pre-existing terrain in Figure 11, it is not hard to predict (at a general level) which 728 

of the main types of drumlins might be expected to occur in each zone as a result of the last 729 
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glaciation. Zone 1 would be characterised by purely bedrock forms (type 1; Fig. 3); zone 2 by 730 

part bedrock/part till (type 2); zone 3 by mainly till (type 3); zone 4 by part till/part sorted 731 

sediments (type 4); and zone 5 by mainly sorted sediments (type 5). This is, of course, a 732 

generalisation and localised variations are bound to exist but it emphasises the importance of 733 

the pre-existing substrate conditions in influencing drumlin composition.  734 

Unfortunately, it is not yet possible to ascertain whether the spatial patterns in drumlin types 735 

shown on Fig. 11 actually exist (e.g. on the Laurentide Ice Sheet bed). This is because 736 

observations of drumlin composition are typically restricted to just a small sample of 737 

drumlins within a particular drumlin field, and because most observations are tightly 738 

clustered towards the southern marginal areas of the last mid-latitude ice sheets (see Fig. 17 739 

in Stokes et al., 2011). However, observations from these regions suggest that ‘mainly till’ 740 

(type 3) and ‘part till/part sorted’ (type 2) are by far the most commonly reported (Stokes et 741 

al., 2011), which may lend support to the ideas encapsulated in Figure 11. Furthermore, 742 

whilst there are very few observations of drumlin composition from interior regions of former 743 

ice sheets, reports from Fennoscandia suggest that drumlins dominated by bedrock 744 

components (zone 2, type 2 on our Fig. 11) are commonly found towards interior zones (e.g. 745 

Glückert, 1973; Minell, 1979; Möller 1987; Haavisto-Hyvärinen, 1997). 746 

 747 

 748 

6. Summary and Conclusions 749 

The instability theory proposes that a range of subglacial bedforms (including drumlins) arise 750 

from an instability that occurs at the ice-bed interface as the result of the coupled flow of ice 751 

and till and is one of the few explanations to be described in physically-based 752 

numerical/analytical models (cf. Fowler, 2000; 2010a; Hindmarsh, 1998a; b; Schoof, 2002b; 753 
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Chapwanya et al., 2011). Predictions from these models have been shown to match 754 

observations of bedform dimensions (e.g. Dunlop et al., 2008; Fowler, 2000; 2009; 2010b; 755 

Chapwanya et al., 2011). A key strength of the instability theory, therefore, is that it offers a 756 

promising unifying explanation for a range (continuum?) of subglacial bedforms (cf. Aario, 757 

1977; Rose, 1987) of which drumlins are the most ubiquitous. Observations of drumlin 758 

composition and internal structure, however, are incredibly diverse and this is often seen as a 759 

major obstacle to a unifying theory. In this paper, we have compared the key observations of 760 

drumlin composition and internal structures in the literature and considered, theoretically, 761 

how they might arise based on firm physical principles that form the basic ingredients of the 762 

instability theory. Contrary to a view which suggests that certain observations (e.g. the 763 

presence of undeformed stratified sediments) are inconsistent with the instability theory, we 764 

suggest that one would actually expect a range of drumlin constituents, including at least 765 

some occurrences of drumlins with stratified cores of glaciofluvial material. 766 

In terms of the five main types of drumlin composition (Figure 3) identified in the literature 767 

(Stokes et al., 2011) and excluding mainly bedrock forms (type 1) the instability theory 768 

suggests: 769 

· Drumlins composed of part-bedrock/part till (type 2) occur because bedrock bumps 770 

act as perturbations that give rise to drumlins 771 

· Drumlins composed of mainly till (type 3) occur because of the dependence on a 772 

mobile till unit that grows in thickness in a depositional environment to form the body 773 

of the drumlin 774 

· Drumlins composed of part till/part sorted sediments (type 4) occur through the 775 

advection of till across and erosion into pre-existing sorted sediments and around 776 

cores of sorted sediments 777 
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· Drumlins composed of mainly sorted sediments (type 4) through the vertical erosion 778 

of both till and meltwater into pre-existing sorted sediments at the wavy ice-bed 779 

interface  780 

Related to the above, and with specific reference to the structure of the sedimentary units, the 781 

instability theory predicts: 782 

· Drumlins which are built by successive episodes of till influx and deposition will 783 

naturally build a structure in which the separate till units are conformable with the 784 

drumlin surface, i.e. accretionary or depositional drumlins where more sediment flows 785 

into bumps than out of them  786 

· Drumlins with internal structures that are unconformable with the drumlin surface in 787 

conditions where till flux out of the system is greater than till supply into the system, 788 

i.e. erosional cores may be preserved as the wavy interface cuts vertically downwards 789 

· Drumlin formation and shaping can occur rapidly (few decades), such that changes in 790 

ice flow direction will lead to inherited cores from previous flow directions. 791 

Within the framework of the instability theory, the varied content of drumlins can be 792 

explained by three key factors: (i) the pre-existing sediments; (ii) the balance between till 793 

erosion and deposition; and (iii) the variability and duration of ice flow. These simple 794 

concepts offer an interpretative and predictive framework for where specific types of drumlin 795 

composition might be found on an ice sheet bed and how they might be interpreted in terms 796 

of ice dynamics and sediment flux. We conclude that the instability theory represents the 797 

most promising solution to the ‘drumlin problem’ thus far and offers a unifying explanation 798 

for the creation of a range of subglacial bedforms. 799 
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Figure 1: Instabilities create familiar patterned surfaces of bedforms in a range of 1075 

environments not only restricted to Earth: (A) HiRISE image of the Herschel Crater, Mars, 1076 

showing a field of barchan dunes (from Kocurek et al., 2010); (B) hillshade image from 1077 

LiDAR-derived DEM of laterally linked barchans dunes to form crescentric dunes in the 1078 

White Sands Dune Field, New Mexico (from Kocurek et al., 2010); (C) multi-beam 1079 

bathymetric images of Mississippi River bed at Audubon Park, Louisiana, during high 1080 

discharge of 34,300 m
3
 s

−1
 (left) and low discharge of 8,900 m

3
 s

−1 
(right) (from Kocurek et 1081 

al., 2010); (d) DEM of down-ice transition from barchan-like ribbed moraine (left) to 1082 

drumlins (right) in north central Ireland (from Clark, 2010); (E) aerial photograph of 1083 

classical-type ribbed moraine located at Lake Rogen, Härjedalen, central Sweden; (F) 1084 

modelled subglacial bedforms using the Hindmarsh-Fowler instability theory as formulated in 1085 

Chapanwanya et al. (2011), taken from Clark (2010). Note that these modelled features are 1086 

almost identical to the ‘real’ ribbed moraine in (E), in terms of their dimensions and 1087 

wavelengths, with ‘drumlin-like’ culminations appearing in red shading (~ 1 m high) after 50 1088 

years). 1089 

 1090 

Figure 2: Schematic diagram showing the basic ingredients and underlying principles of the 1091 

instability theory. When ice and sediment are allowed to deform and sliding can occur at the 1092 

ice-till interface (a), the system is prone to the development of an along-flow instability 1093 

which creates waveforms (bedforms) at the ice-till surface (b) that emerge as drumlins of 1094 

dominant wavelength (c). See section 2 for detail. 1095 

 1096 

Figure 3: Schematic illustration of the five main types of drumlin (and sub-types) identified 1097 

in a systematic review of the literature reported in Stokes et al. (2011), who further suggest 1098 
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that purely bedrock forms (type 1) should be referred to as symmetrical or asymmetrical 1099 

whalebacks, rather than drumlins (cf. Dionne, 1987; Evans, 1996).  1100 

 1101 

Figure 4: Schematic illustration of how drumlins can emerge with varying degrees of 1102 

bedrock ‘control’ through time in a system where till continuity is inhibited, e.g. where till 1103 

transport > till supply. The instability theory predicts that the ice-till interface, under certain 1104 

circumstances, is unstable and becomes wavy (Fig. 2). Depending on till continuity (i.e. the 1105 

balance between till transport within the deforming layer and till supply from erosion and or 1106 

advection from up-ice) the wavy interface can cut downwards. Given a setting with a metres-1107 

thick layer of pre-existing till overlying bedrock, drumlins will emerge from the instability 1108 

with minimal bedrock control (A). As till is removed from the system (because till transport > 1109 

till supply), the till thickness will be reduced and some drumlins will be anchored by pre-1110 

existing perturbations that might act as cores in a variety of locations (B). Further till 1111 

exhaustion might lead to more obvious drumlin cores, as in (C), crag-and-tail features (D), 1112 

and an entirely bedrock surface (E). 1113 

 1114 

Figure 5: Schematic illustration of how drumlins can emerge with stratified cores of 1115 

glaciofluvial material (or similar units) through time in a system where till continuity is 1116 

inhibited, e.g. where till transport > till supply. Given a wavy interface, the effective pressure 1117 

(N) is predicted be highest at the tops of the drumlins and lowest around the base of the 1118 

drumlin and in inter-drumlin areas, where the hydraulic potential of the water is also likely to 1119 

be lowest and where meltwater is likely to be concentrated (A). We envisage a slow trickle 1120 

through a swamp-like basal platform that erodes around the stiffer drumlins (B). As in Figure 1121 

4, if the wavy interface cuts vertically into pre-existing sediments, it is likely that pre-existing 1122 

sediments will be incorporated into the drumlins and one might envisage a situation evolving 1123 
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through time from drumlins composed of mainly till (C); part till/part sorted sediments (D), 1124 

to mainly sorted sediments (E). This schematic illustrates pre-existing glaciofluvial sediments 1125 

but applies to any pre-existing sedimentary units (e.g. till units, deltaic deposits, etc.). 1126 

 1127 

Figure 6: Schematic illustration of how pre-existing sediments may influence drumlin 1128 

formation (from Boulton, 1987). In this case, areas of ‘stiffer’ well-drained glaciofluvial 1129 

material act as cores around which till deforms. Clark (2010) refers to these as drumlin clones 1130 

(or obstacle drumlins where an obvious bedrock protuberance occurs) to distinguish them 1131 

from drumlins formed purely from the instability (emergent drumlins). The formation of 1132 

drumlin clones is consistent with the instability theory but a further appeal of the instability 1133 

mechanism is that it can also account for drumlins without obvious cores based on purely 1134 

fluid dynamical principles.  1135 

 1136 

Figure 7: Cross section of the Port Byron drumlin, New York State, USA (redrawn from 1137 

Menzies and Brand, 2007) that clearly illustrates the presence of mainly stratified sediment 1138 

overlain with only a thin veneer of till. These observations clearly show minimal disturbance 1139 

of pre-existing sediments that are unrelated to drumlin sediments but probably acted as a 1140 

stiffer core (see Fig’s 5 and 6). 1141 

 1142 

Figure 8: Evolution of an initially stratified layer of sediments in an erosive environment, as 1143 

described in the appendix and shown schematically in Figure 5. Horizontal and vertical axes 1144 

are in metres and parameters used are for a 5 m high drumlin eroding down at E = 0.5 m y
-1

 1145 

for 10 years. Deformable till depth (34 ) = 0.5 m and ice velocity (56 ) = 18 m y
-1

. The 1146 

drumlin profile is S =  
7

8
96  cos :$ where 96 is the drumlin height, $  is the distance along 1147 

flow in metres, and :  is the wave-number (= 2pi/l, where l is the length (period) of the 1148 
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drumlin in metres). A brief movie of the evolution is available online as supplementary 1149 

information. 1150 

 1151 

Figure 9: Changes in ice flow direction over time are likely to result in complex 1152 

stratigraphies within drumlins, where pre-existing material from older bedforms may be 1153 

wholly or partially removed. This is detailed in Stea and Brown (1989) who interpreted 1154 

material from some drumlins in central Nova Scotia as relicts from older bedforms, shown in 1155 

(A). Shaded areas under stratigraphy and form are thought to represent till units formed at the 1156 

same time as the drumlin shaping process whereas unshaded areas under stratigraphy 1157 

represent erosional remnants of earlier units (redrawn from Stea and Brown, 1989). A 1158 

satellite image of cross-cutting bedforms from Wollaston Peninsula, Victoria Island, 1159 

Canadian Arctic Archipelago, is shown in (B), depicting three populations of drumlins 1160 

(selected bedforms highlighted with red (inferred oldest), green and yellow (youngest) lines: 1161 

from Stokes et al. (2006).  1162 

 1163 

Figure 10: The instability theory suggests that the most important determinants of drumlin 1164 

composition are: (i) the pre-existing sediments (shown bottom left in each panel); (ii) the 1165 

balance between till erosion and deposition (y-axis on each panel); and (iii), the duration of 1166 

flow (x-axis on each panel). Variations in the above are predicted to produce a variety of 1167 

drumlin types from initial substrate conditions, depicted here as till overlying sorted 1168 

sediments (A) and till overlying bedrock (B), although the concepts apply to any pre-existing 1169 

terrain. The drumlin types refer to those described in section 4 and Figure 3. 1170 

 1171 

Figure 11: Schematic illustration of the predicted occurrence of drumlins with different 1172 

composition under an idealised ice sheet, which bears some similarity to the Laurentide Ice 1173 



50 

 

Sheet bed, but is used to make the general point that drumlin composition is likely to largely 1174 

reflect pre-existing sediments and their position in relation to the ice sheet margin. The 1175 

drumlin types refer to those described in section 4 and Figure 3. 1176 



Appendix

In order to simulate the evolution of subsurface stratified sediments under the evo-
lution of the instability which causes drumlins to grow, it is necessary to specify a
subsurface transport field. In the development of the theory (Fowler 2009), no ref-
erence was made to any specific rheology, other than that the sediment flux q was
assumed to increase with increasing basal stress τ and decrease with increasing ef-
fective pressure N . In a two-dimensional region (coordinates x and z) of sediment
bounded above by the ice-till interface at z = s, we may write

q =

∫

s

−∞

u dz, (A.1)

where the till velocity has horizontal and vertical components u and w.
In a complete theory such as that of Fowler (2009), we derive an evolution equation

for s based only on a prescription for q. In order to facilitate our present objective, we
will prescribe s(x, t), and use its form to infer subglacial sediment transport patterns,
based on a realistic assumption about the till velocity. Specifically, we make the
assumption that

u = u0 exp[−b(s− z)], (A.2)

where u0 is the sliding velocity at the ice-till interface, and may be taken to be
constant.1 The exponent b measures the depth (∼ b−1) of the deforming till layer,
and we expect values b ∼ 1 m−1, although necessarily, b cannot be constant. In fact,
the assumption (A.2) implies that

b =
u0

q
. (A.3)

Notice in particular that q must remain positive (as we expect).
In the present situation, we are interested in the case where net erosion of the

sediment causes downcutting of the ice into the sediment, and in this case we pose a
modified form of the Exner equation as

st + qx = −E, (A.4)

where E represents a net erosion rate with units of metres per year. We do not
conceive of this erosion as being the plucking and grinding of bedrock (which would
not present such a term in the Exner equation), but rather a superfluous removal
term by subglacial stream flow.

Given the horizontal velocity u in (A.2), we can solve for w to find (bearing in
mind that the kinematic condition at z = s is w = st + usx + E)

w = usx + (st + E)[1 + b(s− z)] exp[−b(s− z)], (A.5)

1Equation (A.2) is of course inconsistent with a finite thickness of deforming till, but the distinc-
tion is only cosmetic, and the present assumption is made purely for algebraic convenience.
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and individual particles can be tracked by solving the ordinary differential equations

ẋ = u, ż = w. (A.6)

In particular, we can track the evolution of different layers of sediment by assigning
a variable c which is an indicator for material content. For example, we might take
c = −1 for clay, c = 0 for sand, and c = 1 for till. If (ξ, ζ) marks the initial location
of a particle, then the sediment type is given by a function

c = c(ξ, ζ), (A.7)

and ξ and ζ are the initial values at t = 0 for x and z, i. e.,

x = ξ, z = ζ at t = 0. (A.8)

In practice we sequentially plot the surface (x, z, c) parametrically at successive times
in terms of the parameters ξ and ζ, using Matlab’s scatter command.

Choice of parameters

To be specific, we choose the interface position s to be given by the function

s = −Et + a cos k(x− vt), (A.9)

where a is the interfacial amplitude, and v is the interfacial wave speed. Generally, a

is a function of time, and a representative choice is the function

a = 1

2
a0(1− e−rt), (A.10)

where a0 is the final drumlin elevation, and r is a measure of the growth rate.2 The
wavenumber k is defined in terms of the wavelength l by

k =
2π

l
, (A.11)

and the inlet sediment flux is chosen as

q0 = 1

2
u0dT , (A.12)

where dT is an estimate of deformable till thickness. From (A.4) and (A.9), we have
the expression for q,

q = q0 −

ȧ

k
[sin(k(x− vt) + sin kvt] + av[cos k(x− vt)− cos kvt], (A.13)

where we apply the condition q = q0 at x = 0.

2More realistic choices might be made to reflect initial exponential growth, but there is little
purpose to this.
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Symbol Meaning Typical value
a0 elevation 10 m
b−1 till shear exponent ∼ dT ∼ 1 m
dT till deformation thickness 1 m
E erosion rate 0.1 m y−1

l wavelength 300 m
q0 upstream sediment flux 50 m2 y−1

r−1 growth time scale 10 y
u0 sliding velocity 100 m y−1

v wave speed 0, 50 m y−1

Table 1: Typical values of the parameters in the model.

Table 1 gives our estimate of typical values of the parameters. An awkwardness
occurs in making the simulations. Because q must remain positive, we see from (A.13)

that we must have q0 >
2ȧ

k
, and thus the growth time

r−1 >
a0

πdT

l

u0

, (A.14)

which is roughly the time tD =
l

u0

for a sediment particle at the ice-till interface to

move one drumlin length. Equally, it is necessary that q0 > a0v, and thus

a0 <
u0dT

2v
. (A.15)

A more thorough analysis of (A.13) shows that the precise condition is that both
(A.14) and (A.15) must be satisfied, or simply

a0 < dT min
(u0

2v
,
πu0

rl

)

. (A.16)

The awkwardness lies in the fact that since we typically expect the growth time

r−1
∼

l

u0

, and for wave instabilities, v ∼ u0, the constraint on amplitude is that

ao
<
∼

dT , yielding unnecessarily small amplitude drumlins. This point was one of
Schoof’s (2007a) objections to the instability theory of drumlin formation, and can
be seen to be a purely kinematic consequence of the Exner equation. In reality,
cavities form for a0 > dT , and the Exner equation cannot be applied in the same way
(Fowler 2009).

We have sidestepped this issue here by considering only the case where the waves
are stationary (v = 0) as found by Fowler (2009). It is essentially obvious that a
downcutting drumlin with only a thin veneer of mobile till will maintain subsurface

3



stratification; but an illustration nevertheless illuminates the point. It is also obvious
that a travelling drumlin will churn up the subsurface sediments, and in fact we
consider this to be a mechanism to provide till-formed drumlins, despite only having
near-surface mobility. As explained in the text, we may associate travelling drumlins
with non-hydrostatic water pressure, i. e., less well-drained material (Chapwanya et

al. 2011). Figure 8 in the main text shows the results of a computation as described
above.
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