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Abstract. We study the Doppler-broadened absorption of a weak monochromatic
probe beam in a thermal rubidium vapour cell on the D lines. A detailed model of the
susceptibility is developed which takes into account the absolute linestrengths of the
allowed electric dipole transitions and the motion of the atoms parallel to the probe
beam. All transitions from both hyperfine levels of the ground term of both isotopes
are incorporated. The absorption and refractive index as a function of frequency are
expressed in terms of the complementary error function. The absolute absorption
profiles are compared with experiment, and are found to be in excellent agreement
provided a sufficiently weak probe beam with an intensity under one thousandth of the
saturation intensity is used. The importance of hyperfine pumping for open transitions
is discussed in the context of achieving the weak-probe limit. Theory and experiment
show excellent agreement, with an rms error better than 0.2% for the D2 line at 16.5◦C.
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1. Introduction

In this paper we develop a model that allows us to predict quantitatively the absorptive

and dispersive properties of rubidium vapour probed in the vicinity of the D lines ‡,
and compare the predictions with an experimental study of the absolute Doppler-

broadened absorption spectrum. In alkali-metal atoms the D lines have a high oscillator

strength, and from an experimental perspective rubidium and cesium are ideal species

as they have sufficient room temperature vapour pressure to yield large absorption

(10-50%) in cells of modest length (5-7 cm). In addition, for these atoms the D

lines occur at wavelengths where inexpensive and reliable diode laser sources exist.

These transitions are frequently studied in atomic physics; the D2 transition is used

extensively in laser-cooling experiments [1, 2], whereas non-linear optical processes such

as electromagnetically induced transparency [3] and chip-scale atomic magnetometers [4]

are realized with the D1 transition.

Controlling the propagation of light through a medium by modifying its absorptive

and dispersive properties is a flourishing area of research [5, 6, 7]. Having a model which

calculates the absorption and refractive index of a Doppler-broadened medium is useful

for predicting the magnitude of relevant pulse propagation properties, a topical example

being the group delay which enables construction of an all-optical delay line [8, 9] or

a slow-light Fourier transform interferometer [10]. A model which predicts absolute

absorption has a number of applications e.g. in analysing EIT spectra [11, 12]. Absolute

absorption spectroscopy can yield the number density of the sample being studied and

has many applications in physics, chemistry, metallurgy and industry [13, 14]; when

applied to the measurement of different spectral lines the populations of occupied levels

are revealed, from which a temperature can be deduced [15]. In addition, Rb and

Cs spectroscopy is frequently used for generating a signal used for frequency reference

(“locking”) of a laser. Understanding the evolution of the absorption profile aids in the

decision of, e.g. which temperature to use to maximise the signal [16]. The importance of

using a weak probe in order to maximise the absorption will be highlighted below. Many

laser-lock schemes have signals which have a non-trivial dependence of signal amplitude

on absorption, e.g., polarization spectroscopy [17] or the dichroic atomic vapour laser

lock (DAVLL) [18]. The choice of which probe power to use is a trade-off between two

competing effects: a weak probe beam ensures that the largest absorption is obtained,

whereas higher probe power gives a better signal-to-noise ratio.

The aim of this work is to provide a detailed model of the absorption and refractive

index for the Doppler-broadened Rb 5S → 5P transition, and to compare the expected

spectral dependence of the absorption with experimental data. The structure of the

remainder of the paper is as follows: Section 2 explains how to calculate the expected

Doppler-broadened spectra for Rb atoms on the D lines; Section 3 describes the

experimental apparatus and details of the methodology used to measure the absorption

‡ For an alkali metal atom the D2 transition is n 2S1/2 → n 2P3/2, where n is the principal quantum
number of the valence electron, and the D1 transition is n 2S1/2 → n 2P1/2.
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profile; Section 4 presents and discusses the results, and finally, in Section 5, we draw

our conclusions.

2. Calculating the absorption coefficient of a Doppler-broadened medium

2.1. The atomic absorption cross-section

The absorption of monochromatic light as it propagates along the z−direction through

a uniform density atomic vapour is given by the Beer-Lambert law:

I(z) = I0 exp[−α(ν, T )z], (1)

where I(z) is the intensity of light at position z inside the medium with an absorption

coefficient α(ν, T ), and I0 is the beam intensity at the entrance of the medium. The

absorption coefficient is dependent on the frequency, ν, of incident light and the

temperature, T , of the medium. We assume that the probe beam is sufficiently weak

that the absorption coefficient is independent of intensity. A full discussion of how weak

the light has to be for this simplification to be valid is given in section 4.1.

The transmission, T , of a beam through a medium of length L is defined as

T =
I(z = L)

I0

= exp(−αL). (2)

In general, a medium consists of multiple species, each with multiple transitions. A

beam of light will interact with all species according to

T = exp[−(Σαi)L], (3)

where the total absorption coefficient, Σαi, is the sum over αi, the absorption coefficient

for each transition for each species.

The macroscopic absorption coefficient of the medium can be written [19] in terms

of σ, the microscopic atomic absorption cross-section and N , the number density of the

atomic gas, α = Nσ. There are two reasons why the medium’s absorption coefficient is

temperature dependent: (i) the atomic cross-section is influenced by the Doppler width,

proportional to the square root of the temperature; and (ii) the number density is a

strong function of temperature. Doppler broadening of the spectral lines is dealt with

in section 2.5, and the temperature dependence of the atomic density in Appendix A.

We label each hyperfine state of the atom with the usual angular momentum

quantum numbers |Fg, mFg〉 for the 2S1/2 term, and |Fe, mFe〉 for the 2P3/2 or 2P1/2

term, where the subscript g(e) denotes the ground (excited) state. For a multi-level

atom, such as rubidium, the calculation of the atomic cross-section is in two parts:

first, the relative linestrengths among the different |Fg, mFg〉 → |Fe, mFe〉 transitions

are calculated, then the absolute value is deduced. These calculations are facilitated

by initially assuming the atoms are at rest, with the manifestation of atomic motion

(Doppler broadening) incorporated later. We neglect pressure broadening in these

calculations. Gorris-Neveux et al. measured the Rb-Rb collisional self-broadening
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to be of the order of 10−7 Hz cm3 [20]; for the temperature range spanned in this

work the pressure broadening is at least four orders of magnitude less than the natural

broadening. For temperatures greater than approximately 120◦C the self-broadening

becomes comparable to the natural width.

2.2. Transition frequencies

In order to predict the absorption spectrum the relative spacing of the hyperfine-resolved

energy levels for both Rb isotopes (illustrated in Figure 1) are needed. Zero detuning

frequency for D2 (D1) is set to be the centre of mass frequency of the 5s 2S1/2 → 5p 2P3/2

(5s 2S1/2 → 5p 2P1/2) transition in the absence of hyperfine splitting, taking into account

the natural abundance of each isotope. The atomic energy level intervals were obtained

for D2 from [21, 22, 23] and for D1 from [24]. The positions of the atomic transitions

relative to the centre of mass for D2 (384,230,426.6 MHz) and D1 (377,107,407.299 MHz)

are listed in tables 1(a) and 1(b) respectively.

Table 1. Transition frequencies for the (a) D2 line, and (b) D1.

(a)

Line Detuning / MHz Fe

87Rb −2735.05 1
Fg = 2 → Fe = 1, 2, 3 −2578.11 2

−2311.26 3

85Rb −1371.29 2
Fg = 3 → Fe = 2, 3, 4 −1307.87 3

−1186.91 4

85Rb 1635.454 1
Fg = 2 → Fe = 1, 2, 3 1664.714 2

1728.134 3

87Rb 4027.403 0
Fg = 1 → Fe = 0, 1, 2 4099.625 1

4256.57 2

(b)

Line Detuning / MHz Fe

87Rb −3014.644 1
Fg = 2 → Fe = 1, 2 −2202.381 2

85Rb −1497.657 2
Fg = 3 → Fe = 2, 3 −1135.721 3

85Rb 1538.063 2
Fg = 2 → Fe = 2, 3 1900.087 3

87Rb 3820.046 1
Fg = 1 → Fe = 1, 2 4632.339 2

2.3. Relative linestrength factors

The strength of the interaction between an atom and near-resonant electromagnetic

radiation is characterized by the dipole matrix elements. The dipole matrix element of

the transition between states |Fg, mFg〉 and |Fe, mFe〉 is 〈Fg, mFg|erq|Fe, mFe〉. In order

to calculate this matrix element, it is possible to factor out the angular dependence and

write the matrix element as a product of Wigner 3− j and 6− j symbols and a reduced

matrix element [25, 26]. Thus,

〈Fg, mFg|erq|Fe, mFe〉 = (−1)2Fe+I+Jg+Je+Lg+S+mF g+1〈Lg||er||Le〉
×
√

(2Fg + 1)(2Fe + 1)(2Jg + 1)(2Je + 1)(2Lg + 1)
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×
(

Fe 1 Fg

mFe −q −mFg

){
Jg Je 1

Fe Fg I

}{
Lg Le 1

Je Jg S

}
. (4)

Here F, I, J, L, S, and mF are the angular momentum quantum numbers, and q is the

integer change in mF during the transition. I, the nuclear spin, has the value 5
2

and 3
2

for 85Rb and 87Rb respectively. S, the electron spin, has the value 1
2
. The 3− j symbol

is the term contained in the large round brackets, and the 6− j in curly brackets. Note

that the 3 − j symbol is non-zero for mFe = mFg + q, according to the usual definition

of q. 〈Lg||er||Le〉 is the reduced matrix element, and can be expressed in terms of the

wavelength of the transition, λ, and the decay rate of the excited state, Γ. By calculating

the Wigner coefficients and prefactors, equation (4) reduces to

〈Fg, mFg|erq|Fe, mFe〉 = cmF
〈Lg||er||Le〉 ≡ cmF

d, (5)

where cmF
is a coefficient that determines the transition strength of a particular

transition, and is dependent on the initial and final states of the transition.

The strength of a transition is proportional to the square of the transition matrix

element, thus the transition strength is c2
mF

d2. Each hyperfine transition is degenerate

in F (since we are assuming zero magnetic field). The total transition strength of

the hyperfine transition Fg → Fe is denoted by C2
F = Σc2

mF
, where C2

F is the sum of

transition strengths c2
mF

of each Zeeman transition in the hyperfine manifold. These C2
F

coefficients have been calculated for linearly polarised light (q = 0), and are tabulated

in Appendix B.
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Figure 1. A schematic showing the hyperfine structure and intervals of Rb for the
D spectroscopic lines. Due to the isotope shift, the P1/2 and P3/2 states are offset by
77.701 MHz [24] and 80.1 MHz [22], respectively, and has been taken into account for
the calculated transition frequencies. Not to scale.
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2.4. Absolute absorption coefficient

The reduced matrix element, d, can be calculated using the expression for the decay

rate [19]

Γ =
ω3

0

3πε0h̄c3

2Jg + 1

2Je + 1
|〈Jg||er||Je〉|2. (6)

〈Jg||er||Je〉 can be written in terms of 〈Lg||er||Le〉 via the relation

〈Jg||er||Je〉 = (−1)Je+Lg+S+1〈Lg||er||Le〉 (7)

×
√

(2Je + 1)(2Lg + 1)

{
Lg Le 1

Je Jg S

}
.

The Wigner 6− j coefficient and prefactor, both of which are independent of the F and

mF quantum numbers, can be calculated for the D2 line. Thus

〈Jg = 1/2||er||Je = 3/2〉 =

√
2

3
〈Lg = 0||er||Le = 1〉. (8)

Substituting (8) into (6) and rearranging,

d = 〈Lg = 0||er||Le = 1〉 =
√

3

√
3ε0h̄Γλ3

8π2
. (9)

For the D1 line a similar analysis leads to the same result as equation (9). The reduced

dipole matrix element for the fine structure splitting should be identical for the D lines.

However, we have used experimentally measured values for the wavelength and decay

rates: λ = 780.241 nm [27] and Γ = 2π×6.065 MHz [28] for D2, and λ = 794.979 nm [29]

and Γ = 2π×5.746 MHz [28] for D1. This yields d = 5.177 ea0 for D2, and d = 5.182 ea0

for D1, where a0 is the Bohr radius.

2.5. Including atomic velocity

The thermal velocity of atoms along the axis of the probe beam is given by the well-

known Maxwell-Boltzmann distribution. It is Gaussian in nature, with a 1/e width of

u =
√

2kBT/M , where T is the temperature, and kB is the Boltzmann constant and M

is the atomic mass. It is this longitudinal motion that leads to Doppler broadening of

the absorption spectra; at room temperature this broadening is ∼ 500 MHz, which is

in general larger than the excited state hyperfine splitting. Let the angular frequency

of the laser be ωL, and that of an atomic resonance be ω0. The angular detuning, ∆,

is defined as ∆ = ωL − ω0. For an atom moving along the direction of propagation of

the probe beam we incorporate the Doppler effect by simply replacing the detuning by

∆ − kv, where k is the magnitude of the wavevector of the light, and v is the atomic

velocity. We assume that the experiment is conducted in the weak-probe limit, i.e.

the laser intensity is sufficiently low that optical pumping processes which redistribute

population amongst the hyperfine levels of the ground term do not occur during the

transit of an atom across the finite beam width. The transverse motion of atoms can

therefore be neglected.
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2.6. Electric Susceptibility

The susceptibility, χ(∆), encapsulates both the absorptive and dispersive properties of

a medium. For a medium composed of atoms at rest, the susceptibility for the transition

Fg → Fe is given by

χFgFe(∆) = C2
F d2N 1

h̄ε0
fΓ(∆), (10)

where C2
Fd2 is the transition strength of the hyperfine transition, N is the number

density, and fΓ(∆) is a lineshape factor derived from the steady state solution to the

optical Bloch equations of a two-level atom, in the absence of Doppler-broadening.

As the atomic dipoles are not in phase with the driving light field χ(∆) is, in

general, a complex function; the real part characterises dispersion, and the imaginary

the absorption. The susceptibility for atoms with velocity v along the beam propagation

direction is given by [19]

fΓ(∆ − kv) =
i
Γ
2

[
1 − i

(∆ − kv
Γ
2

)]−1

(11)

=
−1

(Γ
2
)2

(∆ − kv)
[
1 +

(∆ − kv
Γ
2

)2
]−1

+
i
Γ
2

[
1 +

(∆ − kv
Γ
2

)2
]−1

≡ fR
Γ + if I

Γ.

fR
Γ and f I

Γ denote the real and imaginary parts of fΓ respectively, with fR
Γ having a

characteristic dispersion profile, and f I
Γ being the Lorentzian absorption profile expected

for an homogeneously (natural) broadened system.

The magnitude of the susceptibility depends on the strength of the transition in

question, which is simply a prefactor. Hence we define for convenience s(∆), which is

directly proportional to χ(∆), but is independent of the specific atomic transition. By

integrating over the atomic velocity distribution, one obtains the Doppler-broadened

lineshape

s(∆) =
∫ +∞

−∞
fΓ(∆ − kv) × gu(v)dv, (12)

where

gu(v) =
1√
πu2

exp
[
−
(v

u

)2]
, (13)

is the normalised Gaussian, with 1/e width u.

Making the substitutions y = ∆/ku, x = v/u and a = Γ/ku, equation (12) becomes

s(y) =
∫ +∞

−∞
fa(y − x) × g(x)dx, (14)

where s(y) is in units of (ku)−1, and g(x) has been normalised, with a dimensionless

width of 1. This is in the form of a convolution integral, and can be re-written as

s(y) = fa(x) ⊗ g(x). Separating the real and imaginary parts of fa,

s(y) = fR
a (x) ⊗ g(x) + if I

a (x) ⊗ g(x), (15)
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and hence

sR(y) = Re[fR
a (x) ⊗ g(x) + if I

a (x) ⊗ g(x)] (16)

= fR
a (x) ⊗ g(x)

sI(y) = Im[fR
a (x) ⊗ g(x) + if I

a (x) ⊗ g(x)] (17)

= f I
a (x) ⊗ g(x),

where the fact that the convolution of two real functions is real has been used. The

imaginary part sI is related to the absorption coefficient, and is the well-known Voigt

function, being the convolution of a Lorentzian and a Gaussian function.

Using the convolution theorem of Fourier transforms, the convolution of two

functions can be re-written as

S(ỹ) = Fa(x̃) × G(x̃), (18)

where capitals denote the Fourier transform of a function, and the tilde denotes the

reciprocal variable. The advantage of using this method is that the Fourier transform

S(ỹ) is simply the product of two functions which can be calculated analytically. s(y)

can then be produced from S(ỹ) by taking its inverse Fourier transform.

For the case of the Voigt profile, the Fourier transforms of f I
a (x) and g(x) are

F I
a (x̃) = π exp

[
−a

2
|x̃|
]
, (19)

G(x̃) = exp
[
−
( x̃

2

)2]
. (20)

Taking the inverse Fourier transform of their product results in a Voigt profile of

sI(y) =

√
π

2
e

1
4
(a−i2y)2

(
Erfc

[a
2
− iy

]
+ ei2ayErfc

[a
2

+ iy
])

, (21)

where sI(y) is in units of (ku)−1, and Erfc[z] denotes the complementary error function

of z.

The real part of the susceptibility is related to the refractive index, and can also

be expressed in terms of the complementary error function:

sR(y) = i

√
π

2

(
e

1
4
(a−i2y)2Erfc

[a
2
− iy

]
− e

1
4
(a+i2y)2Erfc

[a
2

+ iy
])

. (22)

sR(y) is in units of (ku)−1 and, despite the prefactor of i, is entirely real. sR(y) can be

differentiated with respect to y to arbitrary powers to evaluate, e.g., the group refractive

index.
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2.7. Absorption Coefficients

The absorption coefficient can be obtained from the imaginary part of the susceptibility,

χ(∆), via

α(∆) = k Im[χ(∆)], (23)

where k is the wave number of the probe beam. Im[χ(∆)] has the form of a Voigt

profile, sI(∆), multiplied by prefactors which depend on the properties of the resonant

transition.

The width of the Voigt profile is characterised by a single parameter, a: the ratio

of the widths of the Lorentzian to the Gaussian profiles. The width of the Lorentzian,

Γ, is the full-width at half-maximum (FWHM) of the hyperfine-free atomic transition.

Γ is identical for all hyperfine transitions and Zeeman sublevels within the hyperfine-

free manifold, and is also equal for different isotopes of an element. The width of the

Gaussian profile is proportional to the width of the Maxwell-Boltzmann distribution, u,

and is a function of temperature and isotopic mass. Considering all of the above, the

width of the absorption profile of every hyperfine transition for a particular isotope is

identical.

The height of the Voigt profile depends on two factors: the forms of the Lorentzian

and Gaussian functions, which are identical for all transitions for a given isotope; and

the transition strength of a particular transition.

All transitions for a particular isotope can be represented by a single Voigt profile,

which is then centred on the relevant transition frequencies, and multiplied by the

relevant transition strengths. Hence, recalling equations (10) and (23), the absorption

profile for a particular hyperfine transition Fg → Fe is

αFgFe(∆) = k Im[χ(∆)] = kC2
F d2N 1

2(2I + 1)

1

h̄ε0

sI(y)

ku
. (24)

Here, 2 (2I + 1) is the degeneracy of the ground state of the particular isotope (12 for
85Rb, 8 for 87Rb). The degeneracy appears as we are assuming that the population is

evenly distributed amongst the ground state Zeeman sublevels (at room temperature

the Boltzmann factor is 1 for the two different Fg hyperfine states, and reduces the

population of excited states to a negligible level). The expected transmission profile for

the vapour cell can then be calculated as a function of detuning.

Figure 2 shows the predicted transmission spectrum for rubidium vapour in a

75 mm-long cell for (a) D2 at 20◦C, and (b) D1 at 30◦C. The contributions of the

individual Fg → Fe transitions are shown, in addition to their combined total. For

both D lines the ground state hyperfine splitting is larger than the Doppler width of

∼ 0.5 GHz. For the D2 line, the excited hyperfine splitting of both isotopes is smaller

than the Doppler width; consequently four composite lines are observed. For the D1

line, the excited state splitting for 85Rb is smaller than the Doppler width, whereas the

splitting for 87Rb is larger; hence six composite lines are seen.
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Figure 2. Plots of the transmission through a vapour cell of length 75 mm as a
function of linear detuning, ∆/2π. Plot (a) shows D2 at 20◦C, and (b) shows D1 at
30◦C. The blue lines (i) show the transmission for the transitions 87Rb Fg = 2 → Fe,
the magenta (ii) 85Rb Fg = 3 → Fe, the green (iii) 85Rb Fg = 2 → Fe, and the orange
(iv) 87Rb Fg = 1 → Fe. The solid lines show the transitions between hyperfine states
Fg → Fe = Fg + 1, dashed Fg → Fe = Fg, and dot-dash Fg → Fe = Fg − 1. The black
line shows the total transmission through the cell. Zero detuning corresponds to the
weighted centre of the line.
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Figure 3. Schematic of the experimental apparatus. Light from an external cavity
diode laser (ECDL) passes through an optical isolator (OI) and impinges on a beam
splitter (BS). A fraction of the beam passes through a Fabry-Perot etalon onto a
photo detector (PD). Another fraction of the beam is expanded in a telescope and
passes through aperture A. Mirrors (M) steer the beam and another beam splitter is
used to make pump and probe beams which cross at a small angle in a Rb vapour cell.
The probe beam is incident on a photo detector, and neutral density filters (ND) are
used to give independent control over the pump and probe beam powers

3. Experimental methods and results

3.1. Experimental apparatus

We now test the accuracy of the prediction experimentally. A schematic of the

experiment is shown in figure 3. External cavity diode lasers were the source of light
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(Toptica DL100 at 780.2 nm and 795.0 nm for D2 and D1 respectively). A fraction of the

output beam was used as a probe beam for rubidium vapour in a 7.5 cm cell. A portion

of the light was also sent into a Fabry-Perot etalon. A telescope was used to expand the

probe beam before the cell. Before the cell the beam had a radius of (2.00±0.05) mm.

The cell could be heated to change the vapour pressure of rubidium and hence the

opacity. A thermocouple was used to measure the approximate temperature of the

cell. No attempt was made to null the laboratory magnetic field. A pump beam

generated sub-Doppler spectral features to provide a frequency reference. The crossing

angle between probe and counterpropagating pump within the vapour cell was 6 mrad.

Neutral density filters were used to give independent control of the pump and probe

powers. The Fabry-Perot etalon was used to assist with calibrating and linearizing the

frequency scan. A plane-plane cavity was used, with a separation of the mirrors of

25 cm, with a free-spectral range of 0.60 GHz. The probe beam was incident on a photo

detector comprising a simple current-to-voltage circuit designed to output a voltage

linearly proportional to the incident power.

3.2. Scaling the frequency axis.

For the D2 line the frequency axis of the laser scans were linearized by use of the

etalon transmission peaks. In order to generate atomic frequency markers on a scale

narrower than the Doppler-broadened features pump-probe spectroscopy was employed.

By counterpropagating a pump beam with the weak probe it is possible to generate

sub-Doppler saturated-absorption and hyperfine-pumping spectra [30]. For each isotope

ground state Fg, three transitions Fg → Fe = Fg, Fg ±1 are resolved, and so-called cross

over resonances [30] are seen halfway between each resonance. In this way it is possible

to obtain 24 atomic resonances.

Figure 4(a) shows a plot of the difference between the measured and expected

detunings of the 24 atomic resonances before linearization. The expected detunings were

obtained from table 1(a). The relatively large deviations from zero are seen to have a

polynomial relationship with expected frequency. Figure 4(b) shows a plot of measured

detuning of the atomic resonances versus the expected detuning after linearization. The

solid line has slope 1 and passes through the origin. The inset shows the deviation

between measured and expected frequency. It can be seen that each atomic resonance

is within 5 MHz of this ideal fit over a span of 8 GHz. The residual deviations are a

consequence of laser drift. If a better frequency fitting were desired additional reference

etalons could be used.

Figure 5 shows the pump-probe transmission features for the upper hyperfine level

for each isotope; six sub-Doppler features are clearly seen, with their positions being in

excellent agreement with the predicted values.
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Figure 4. (a) Deviation of the measured spectral line frequencies from their expected
positions for the D2 line before linearization of the laser scan. The black crosses mark
the measured positions of the sub-Doppler spectra. (b) Linear fitting of the expected
to the measured frequency after linearization. The red line shows a linear relationship
between the two axes, with a gradient of 1 and an intercept of zero. The inset shows
the deviation of the measured spectral line frequencies from their expected positions.
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Figure 5. Experimentally measured transmission plots for D2 showing saturated-
absorption/hyperfine pumping spectra of (a) the 87Rb Fg = 2 line, and (b) the 85Rb
Fg = 3. The vertical reference lines show the expected peak positions.

4. Results

4.1. Effects of hyperfine pumping

Figure 6 shows a plot for the D2 line of the transmission, T , versus linear detuning,

∆/2π for a probe intensity of 1.6 µW/mm2, corresponding to I/Isat = 0.1. The expected

transmission is also plotted. The temperature measured using the thermocouple

was adjusted at the 0.1◦C level in order to fit to the measured data. Reasonable

agreement is obtained for transitions from the upper hyperfine level of the ground term

Fg = I+1/2 → Fe (labelled i and ii), often referred to as the “laser cooling” transitions.

Poor agreement is seen for transitions from the lower hyperfine level of the ground term
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Fg = I − 1/2 → Fe (iii and iv), often referred to as the “repump” transitions.
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Figure 6. Transmission through the vapour cell at 25.4◦C, showing the role of
hyperfine pumping in absorption spectroscopy on the D2 line. The solid red line
is the experimentally measured transmission and the solid black the predicted value.
Superimposed are the expected transmissions for the individual hyperfine transitions,
according to the colour scheme in Figure 1.

Although the power of the beam is such that the intensity is less than the saturation

intensity, the assumption that the atomic population has not been influenced by the

propagation of the probe through the medium is obviously invalid. The process by

which an atom is excited from one Fg level and is transferred by spontaneous emission

into the other Fg level is known as optical, or hyperfine, pumping. Allowing for transfer

out of the two-level system is known to modify the absorption process [31].

To investigate this further a sequence of spectra were recorded for different probe

powers, for both D transitions. Figure 7 shows the line-centre transmission for (a) the

D2 transition in a room temperature cell, and (b) the D1 transition in a cell heated to

36◦C. The laser intensity has been normalized in terms of the saturation intensity [13].

Consider the closed hyperfine-resolved transition D2 line: Fg = I+1/2 → Fe = I+3/2.

Owing to the ∆F = 0,±1 selection rule atoms excited into this state have to decay
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Figure 7. (a) The transmission at the centre of the four Doppler-broadened absorption
features for D2 is plotted against laser intensity. The data points correspond to the
measured transmission, and the solid lines show the transmission expected. The dotted
lines are guides to the eye. The cell was at 25◦C. (b) Similar for D1 where six Doppler-
broadened absorption features are observed. Here the cell was at 36◦C in order to
make the minimum transmission comparable to the D2 line.

to the ground state from which they started. These transitions have a significantly

larger oscillator strength than the two neighbouring transitions Fg = I + 1/2 → Fe =

I ± 1/2, found in the Doppler-broadened transitions 87Rb, Fg = 2 → Fe (i) and 85Rb,

Fg = 3 → Fe (ii). Consequently, the agreement with the theory which neglects transfer

into other ground states is good. Notice in Figure 6 the agreement is excellent on the

high-frequency side of the resonance but poor on the low-frequency side - the presence of

optical pumping not only reduces the peak absorption but also distorts the lineshape [32].

For the Doppler-broadened transitions 85Rb Fg = 2 → Fe (iii) and 87Rb Fg = 1 → Fe

(iv) there are two closed transitions, Fg = I − 1/2 → Fe = I − 3/2. However these

have similar linestrengths to their neighbouring transitions, and hence do not dominate

the absorption profile. There are no such closed transitions in the D1 spectrum. The

conclusion therefore is that great care has to be taken to ensure that the probe beam

intensity is sufficiently low that hyperfine pumping does not occur during an atom’s

transit through the beam - this places a far more strict limitation on the upper intensity

to be used in contrast to the condition I < Isat valid for two-level atoms [33].

An alternative way to visualize the relative importance of optical pumping is to

plot the normalized absorption coefficient α(I)/α(0). This is done in figure 8 for the

two D2 repump transitions, and all D1 transitions. Also included is the theoretical

prediction for a Doppler-broadened medium consisting of two-level atoms [13] of the

form 1/
√

1 + I/Isat. It is apparent that optical pumping reduces the absorption at

intensities much weaker than those necessary to saturate the transition. The large error-
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Figure 8. Normalized line-centre absorption showing the effects of hyperfine pumping.
The solid line is the theoretical prediction for a Doppler-broadened medium of two-level
atoms. The dotted lines are guides to the eye. Hyperfine pumping on open transitions
is seen to be more effective at reducing the line-centre absorption than saturation.

bars for small intensities are a consequence of the very low light levels and consequently

poor signal-to-noise. The data are fit to curves of the form 1/
√

1 + β(I/Isat), with

β being a parameter that characterises the effective reduction in saturation intensity.

This is done as a guide to the eye, and care should be taken not to over interpret this

parameterisation. In this work the beams had a fixed width and the intensity was varied

by changing the probe power. It is possible to realise the same intensity with different

power beams of different radii; in this case the presence of optical pumping means that

knowledge of intensity alone is not enough to predict the absorption strength [33].

4.2. Comparison of experiment and theory

With knowledge of how weak the probe beam had to be, we performed a series of

experiments to test the agreement between our theory for the Doppler-broadened

absorption profile of rubidium vapour and experiment. The probe intensity was

32 nW/mm2, corresponding to I/Isat = 0.002. Figure 9 shows transmission spectra

at three different temperatures (16.5◦C, 25.0◦C and 36.6◦C) for the D2 line. There is

excellent agreement between theory and experiment; the rms discrepancy is at the 0.2%

level. Note that the measured absorption is still slightly smaller than the predicted
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value. This could arise due to the broad pedestal of the emission from the laser, and

also the finite laser linewidth which is of the order of 0.1% of the Doppler width.
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Figure 9. Transmission plots for the comparison between experiment and theory, at
temperatures of 16.5◦C (top), 25.0◦C (middle), and 36.6◦C (bottom). Red and black
lines show measured and expected transmission respectively. Below the main figure is
a plot of the difference in transmission between theory and experiment for the 16.5◦C
measurement.

5. Conclusion

In summary, we have studied Doppler-broadened spectra for the Rb D lines. A model

was developed which allows the absorption profile and refractive index to be evaluated

in terms of tabulated functions. Excellent agreement was found between theory and

experiment for transmissions ranging from 5 to 95%. We showed that the effect of

hyperfine pumping is significant for open transitions, and outlined how to achieve the

weak-field limit. The weak-probe limit is only reached for I/Isat ≈ 0.001 for a beam

width of 2 mm. Our model allowing quantitative predictions of the absorption and

dispersion in alkali metal vapour will both aid the burgeoning field of controlled light

propagation [8, 9, 10] and in the understanding of the spectra obtained in widely used

laser locking schemes [16, 17, 18].
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Appendix A. Vapour Pressure and Number Density

The rubidium vapour cell contains 85Rb (relative atomic mass M85 = 84.911789738)

and 87Rb (M87 = 86.909180527) in their natural abundances of 72.17% and 27.83%

respectively [34]. The vapour pressure (in Torr), p, for solid rubidium is given by the

following equation [35],

log10p = −94.04826 − 1961.258

T
− 0.03771687× T + 42.57526 × log10T, (A.1)

and for liquid rubidium is given by

log10p = 15.88253− 4529.635

T
+ 0.00058663 × T − 2.99138 × log10T. (A.2)

Using this vapour pressure, the number density, N , of rubidium atoms can be calculated,

N =
133.323 × p

kBT
. (A.3)

The melting point of rubidium is 39.31 ◦C. The factor of 133.323 converts the vapour

pressure from Torr to Pa. Since there are two isotopes present in the cell, the number

densities need to be calculated separately according to their abundance.

Appendix B. Transition Coefficients

The values of the transition strength factors C2
F of the D lines are tabulated in this

Appendix.

Table B1. C2
F for the D2 line of (a) 85Rb, and (b) 87Rb.

(a)

Fg Fe

1 2 3 4

2 1
3

35
81

28
81

0

3 0 10
81

35
81

1

(b)

Fg Fe

0 1 2 3

1 1
9

5
18

5
18

0

2 0 1
18

5
18

7
9
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