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Abstract

In Bhatt and Roy’s minimal directed spanning tree construction for n random

points in the unit square, all edges must be in a southwesterly direction and there

must be a directed path from each vertex to the root placed at the origin. We identify

the limiting distributions (for large n) for the total length of rooted edges, and also

for the maximal length of all edges in the tree. These limit distributions have been

seen previously in analysis of the Poisson-Dirichlet distribution and elsewhere; they

are expressed in terms of Dickman’s function, and their properties are discussed in

some detail.
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1 Introduction

The probability theory of graphs, generated by randomly placing points in the unit square

and connecting nearby points according to some deterministic rule, has recently grown

considerably. Such graphs include the geometric graph, the nearest neighbour graph and

the minimal-length spanning tree. Many aspects of the large-sample asymptotic theory

for graphs of this type, which are locally determined in a certain sense, are by now

understood. See for example [17, 18, 19, 22, 25].

The minimal directed spanning tree (or MDST for short) was introduced by Bhatt and

Roy in [4]. In its structure, the MDST resembles both the standard minimal spanning

tree and the nearest neighbour graph for point sets in the plane, with the extra twist

that all edges must be oriented in a south-westerly direction. This feature gives rise to

significant boundary effects and hence to asymptotic properties which are qualitatively

different from those for many of the previously considered graphs.

Of interest is the behaviour of the length of the graph, or of various parts of the graph.

We consider elsewhere [20] the total length of all edges.

The edges incident to the origin were the principal object of analysis in [4], in which

Bhatt and Roy established (amongst other things) existence of a weak limit for the to-

tal length of such edges, without describing that limit. We use a different method to

characterize the limiting distribution as a variant of the Dickman distribution which has

previously arisen in such fields as probabilistic number theory, population genetics, and

the theory of random search trees (see Section 3). We also extend the result to power-

weighted edges.

In addition, we derive a weak convergence result for the maximum of all edge lengths in

the MDST (Bhatt and Roy obtained such a result for maximum length of edges incident

to the origin). In this case, the limiting distribution is related to the distribution of

the largest component of the Poisson-Dirichlet distribution with parameter 1. The latter

distribution has also sometimes been called a ‘Dickman distribution’ (see [2, 6]) and we

shall call it the max-Dickman distribution. In Section 3, we shall discuss both types of

Dickman distribution in some detail (they are related).

The MDST is defined formally in the next section. Motivation comes from the mod-

elling of communications or drainage networks. The communications model considered

in [4] goes as follows. Consider a network of radio masts, each of which can receive signals

only from masts to the south-west. Suppose a source transmitter is positioned at the

origin of the plane, and a network of masts is positioned in the first quadrant. Then

the graph of the transmission network can be viewed as a directed spanning tree. For
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convenience, the direction of the edges is taken to be from receiver to transmitter, so that

all the directed paths eventually meet at the origin. We restrict the model to a single link

into each receiver, which we may justify by asserting that once the first connection has

been established, further links may be ignored for many purposes. Various characteristics

of the resulting graph are then of interest.

The same graph may be considered as a model for drainage networks, following the

spirit of Rodriguez-Iturbe and Rinaldo in [21]; again, see [4]. The idea is that water is

allowed to run off an inclined bounded field, forming several drainage channels. These

channels eventually merge so that all the water flows out of the field at the lowest point on

the boundary. Given any particular landscape geometry, this situation is fairly unpleasant

to model directly, so we study a model that maintains the essential features of the above

system while being much simpler to handle.

In one model proposed in [21], given a fixed number n of points which the stream net-

work (graph) must contain as nodes, the optimal configuration is achieved by minimizing

the quantity
∑

iQ
1/2
i Li where Li is the length and Qi the discharge of stream (edge) i.

If we assume that Qi is fixed for all i (and so the flows are non-additive), and flow is

constrained to be in a south-westerly direction, the optimum configuration on a set of

points is given by the construction we consider here. Another viewpoint is to consider the

catchment of the network, which will depend on the total length of the channels.

Understanding these networks for large systems may be difficult: by investigating

the behaviour of the MDST on random points we hope to shed light on their ‘typical’

behaviour.

2 Definitions and main results

Suppose V is a finite non-empty set endowed with a partial ordering 4 (i.e., a reflexive

transitive binary relation such that u 4 v and v 4 u only when u = v; see e.g. [14]). The

partial ordering induces a directed graph G = (V,E) on V , with vertex set V and with

edge set consisting of all ordered pairs (v, u) of distinct elements of V such that u 4 v.

We make the following definitions.

A minimal element, or sink, is a vertex v0 ∈ V for which there exists no v ∈ V \ {v0}

such that v 4 v0. Let V0 denote the set of all sinks of V ; observe that V0 cannot be empty.

A directed spanning subgraph (DSS) of G is a subgraph H = (VH , EH) of (V,E) such

that VH = V and EH ⊆ E.

A directed spanning forest (DSF) T on V is a DSS on V such that for each vertex
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v ∈ V \ V0, there exists a unique directed path in T that starts at v and ends at some

sink u ∈ V0. In the case where V0 consists of a single sink, we refer to any DSF on V as

a directed spanning tree (DST) on V .

It follows from the definitions that if H is a DSF on V , then there is no branching

point in H , i.e., there do not exist distinct vertices u, u′, v ∈ V such that (v, u) and (v, u′)

are both edges of H (for if such a triple existed, the path from v to a sink would not be

unique). Hence, if we ignore the orientation of edges then the DSF H is a forest whose

components are in one-to-one correspondence with the set of sinks. If there is just one

sink, then (ignoring orientation) any DST on V is a tree.

A weight function on the edges of a directed graph (V,E) is a function w : E → [0,∞).

Definition 1 Suppose V is a partially ordered finite set, and that the induced graph G =

(V,E) carries a weight function. A minimal directed spanning forest (MDSF) on V (or,

equivalently, on G), is a directed spanning forest T on V with edge set ET ⊆ E such that

w(T ) :=
∑

e∈ET

w(e) = min







∑

e∈ET ′

w(e) : T ′ = (V,ET ′) a DSF on V







. (1)

If V has a single sink, then any minimal directed spanning forest on V is called a minimal

directed spanning tree (MDST) on V .

Thus, a MDSF on V is defined as a solution to a global optimization problem. However,

the following simple result shows that when all weights are distinct, a MDSF can be

constructed in a ‘local’ manner, reminiscent of Kruskal’s greedy algorithm [15] for finding

the minimal spanning tree in an undirected graph.

Definition 2 We say that u ∈ V is a directed nearest neighbour of v ∈ V if u 4 v and

w(v, u) ≤ w(v, u′) for all u′ ∈ V \ {v} such that u′ 4 v.

Proposition 1 Suppose that V is a finite partially ordered set with its set of sinks denoted

V0, and that the induced graph G is endowed with a weight function w. For each v ∈ V \V0,

let nv denote a directed nearest neighbour of v (chosen arbitrarily if v has more than one

directed nearest neighbour). Let M = (V,EM) be the directed spanning subgraph of V

obtained by taking

EM := {(v, nv) : v ∈ V \ V0}.

Then M is a MDSF of V .
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Proof. Let T be an arbitrary DSF on G. Then for every v ∈ V \V0, there exists a unique

element of V , denoted uv, such that (v, uv) ∈ T (uniqueness follows from the absence of

branching points). Necessarily uv 4 v, and by definition of directed nearest neighbours

we have

w(M) =
∑

v∈V \V0

w(v, nv) ≤
∑

v∈V \V0

w(v, uv) = w(T ),

for every DSF T . Thus, M is a MDSF of V . �

While the statements above apply to any partially ordered set V with weights defined

for all induced edges, in this paper we are are exclusively concerned with the case where V

is a randomly generated subset of R2, and where the partial ordering and weight function

are defined as follows.

The partial ordering (for V ⊂ R2) is defined coordinate-wise; in other words, for

u = (u1, u2) and v = (v1, v2) in V , we set u 4 v if and only if u1 ≤ v1 and u2 ≤ v2.

The weight function is given by power-weighted Euclidean distance, i.e., for (u, v) ∈ E

we assign weight w(u, v) = ‖u− v‖α to the edge (u, v), where ‖ · ‖ denotes the Euclidean

norm on R2, and α > 0 is an arbitrary fixed parameter.

Moreover, we shall assume that V ⊂ R2 is given by V = S ∪{0}, where 0 is the origin

in R2 and S is generated in a random manner. The random point set S will usually be

either the set of points given by a homogeneous Poisson point process Pn of intensity n on

the unit square (0, 1]2, or a binomial point process Xn of n uniformly distributed points

on (0, 1]2.

In this random setting, with probability one V0 = {0} and each point of S has a unique

directed nearest neighbour, so that by Proposition 1, V has a unique MDST, which does

not depend on the choice of α. We are concerned with the total weight of the edges

incident to 0 in the MDST on S ∪ {0}; denote this length by Lα
0 (S). Then

Lα
0 (S) =

∑

X∈S,X minimal

‖X‖α.

Our first main result describes the limiting distribution of Lα
0 (Xn) or L

α
0 (Pn) more fully

in terms of a Dickman distribution. Given θ > 0, we shall say a random variable X has a

generalized Dickman distribution with shape parameter θ (or X ∼ GD(θ) for short) if it

satisfies the distributional fixed-point identity

X
D
= U1/θ(1 +X),
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where U is uniform on (0, 1], and is independent of the X on the right, and where
D
=

denotes equality in distribution. For further information on Dickman distributions, see

Section 3.

Theorem 1 Let α > 0. Let Z have the generalized Dickman distribution with shape

parameter θ = 2/α. Then as n→ ∞,

Lα
0 (Pn)

D
−→ Z (2)

and

Lα
0 (Xn)

D
−→ Z. (3)

The limiting distribution has Laplace transform

ψZ(t) = E[e−tZ ] = exp

(

2

α

∫ t

0

e−s − 1

s
ds

)

, t ∈ R. (4)

In the special case α = 1, the distribution of the limiting variable Z has mean 2 and

variance 1, and moments m2 = 5, m3 =
44
3
, m4 =

293
6
, . . ..

Remarks. Perhaps the most natural case is α = 1 (i.e., simply take the Euclidean length

of edges). By considering the more general case allowing for any α > 0, we get the whole

range of possible generalized Dickman distributions as limits.

Bhatt and Roy [4] use a different approach based on the method of moments to prove

the weak convergence (3) (only for α = 1). Their argument is complicated and they give

only values for the first two moments of Z, not the higher moments. Nor do they say

anything about the density, distribution or moment generating functions of Z. Thus, even

for α = 1 our approach gives a good deal of extra information beyond that provided in

[4]. Conversely, since Bhatt and Roy prove convergence of all moments of L1
0(Xn) to the

corresponding moments of Z, this combined with our characterization of Z means we can

identify the limit of the k-th moment of L1
0(Xn), for any fixed k, by computing the kth

moment of Z recursively using the formula (14) below.

Our second main result concerns the maximum edge length of the MDST; when con-

sidering maxima we consider only the case with α = 1 (results on maxima for other values

of α are easily deduced from results for this case). Bhatt and Roy [4] considered the max-

imum length of edges joined to the origin, for the MDST on Xn ∪ {0}, and showed that

as n→ ∞,

max
X∈Xn,X minimal

‖X‖
D

−→ max {U1, U2}
D
= U

1/2
1 , (5)
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where U1, U2 are independent uniform random variables on (0, 1).

Here, we consider instead the global maximum of all Euclidean edge lengths in the

MDST on S ∪ {0}, not just those joined to the origin. Denote this maximal edge length

by M(S).

The limit variable for maximum edge length is given in terms of what we shall call the

max-Dickman distribution. We define this to be the (unique) distribution of a random

variable M which satisfies the distributional identity

M
D
= max(1− U, UM) (6)

where U is uniformly distributed on (0, 1) and independent of the M on the right.

Theorem 2 Suppose M and M ′ are independent max-Dickman random variables. As

n→ ∞,

M(Pn)
D

−→ max{M,M ′}. (7)

and

M(Xn)
D

−→ max{M,M ′}. (8)

We prove Theorem 2 in section 5.

The generalized Dickman GD(1) and max-Dickman distributions are more closely

related than might at first be apparent. In probabilistic terms, they can both be ex-

pressed in terms of a Poisson point process on (0, 1) with mean measure µ given by

dµ = (1/x)dx. Suppose the points of this Poisson point process are listed in decreasing

order as Y1, Y2, . . .. Then the sum
∑

i Yi has the GD(1) distribution, while the maximum

spacing max{1 − Y1, Y1 − Y2, Y2 − Y3, . . .} has the max-Dickman distribution. The latter

is also the distribution of the largest component of the Poisson-Dirichlet distribution; see

Section 3.5.

In more analytical terms, both the GD(1) and the max-Dickman probability density

functions are defined in terms of the Dickman function, which appeared in the 1930 paper

of K. Dickman on large prime factors of large integers (for a more recent reference, see

[6]). In Section 3, the Dickman function and the generalized Dickman and max-Dickman

distributions are described in more detail.

3 Dickman-type distributions

In this section, we review some of the properties of the distributions arising as limits in

Theorems 1 and 2, before returning subsequently to the MDST. Some of these properties
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can be found in the literature (see, e.g., [1, 2, 5, 8, 9, 11, 12, 24]); we endeavour to make

most of the current presentation self-contained.

3.1 The Dickman function

Dickman’s equation, which appears in analytic number theory, is the differential-difference

equation:

uρ′(u) + ρ(u− 1) = 0 (u > 1). (9)

The Dickman function is defined as the (unique) continuous solution ρ(u) to (9) with

ρ(u) = 1 for 0 < u ≤ 1 and with ρ differentiable on (1,∞). It is convenient to extend ρ

over all of R by setting ρ(u) = 0 for u ≤ 0.

It is known (see [23]) that the Dickman function is positive and decreasing on the

whole interval (1,∞); that it satisfies ρ(u) ≤ 1/Γ(u+ 1) for u > 1; and that it integrates

to
∫ ∞

0

ρ(x)dx = eγ , (10)

where γ denotes Euler’s constant, i.e. γ = limk→∞

(

∑k
i=1

1
i
− log k

)

. Numerically, γ =

0.57721566 . . ., so eγ = 1.78107 . . ..

3.2 Probabilistic properties of the GD distributions

Proposition 2 Let θ > 0. The following random variables X are distributionally equiv-

alent.

(a) A random variable X satisfying the fixed point equation

X
D
= U1/θ(1 +X), (11)

where U is uniform on (0, 1] and independent of the X on the right hand side.

(b) A random variable X given by

X =

∞
∑

j=1

(

j
∏

i=1

U
1/θ
i

)

= U
1/θ
1 + (U1U2)

1/θ + (U1U2U3)
1/θ + · · · , (12)

where U1, U2, U3, . . . are independent uniform random variables on (0, 1].
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(c) A random variable X given by

X =

∞
∑

n=1

exp(−Tn)

where T1, T2, . . . are the successive arrival times of a homogeneous Poisson process

of rate θ on the half-line (0,∞).

(d) A random variable X given by X =
∑∞

n=1 Yn, where Y1, Y2, Y3, · · · are the points

of a non-homogeneous Poisson point process on (0, 1) with mean measure (θ/x)dx,

taken in decreasing order.

We say that a random variable X given by any of the conditions (a), (b), (c) or (d) in

Proposition 2 has the generalized Dickman distribution with parameter θ (or X ∼ GD(θ)

for short).

The term Dickman distribution has previously been used for the GD(1) distribution,

i.e. that of a variable X satisfying X
D
= U(1 +X) (see e.g. [12]), and this is the usage we

favour. The same term has also been used [5] for the distribution of a random variable Y

satisfying Y
D
= UY + 1, as well as for other distributions [2]. It is easy to see that such a

Y can be obtained by taking Y = 1 +X with X ∼ GD(1). We shall see later (Corollary

5) that if X ∼ GD(1) then its density function satisfies Dickman’s equation.

Remark. The GD(θ) distributions (particularly for θ = 1 and θ = 2) also appear as the

limits of certain random variables in Hoare’s FIND algorithm on random permutations

and its variants (see e.g. [12, 16]). They also appear in the study of perpetuities (see [8]).

Proof of Proposition 2. First, suppose that X is given by the sum of the infinite

random series (12), which converges almost surely because it has nonnegative terms and

finite expectation. By (12),

X = U
1/θ
1

(

1 + U
1/θ
2 + (U2U3)

1/θ + (U2U3U4)
1/θ + · · ·

)

. (13)

The second factor in the right-hand side of (13) has the same distribution as 1 +X , and

is independent of U1; hence, X satisfies the distributional identity (11).

Conversely, suppose that X satisfies (11). Suppose U1, U2, . . . are uniform on (0, 1],

independent of X and of each other, and set Vi := U
1/θ
i , for each i. Then X has the

same distribution as V1(1 +X) = V1 + V1X , and hence the same distribution as V1(1 +

V2(1 +X)) = V1 + V1V2 + V1V2X , and so on. Repeating this process, the term involving
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X converges in probability to zero and we see that X has the same distribution as V1 +

V1V2 + V1V2V3 + · · ·.

Next, suppose that X is given by definition (c), i.e. X =
∑

n e
−Tn where {Tn} are

successive arrival times of a Poisson process of rate θ on (0,∞). Set Y1 = T1 and Yn =

Tn − Tn−1 for n ≥ 2. The inter-arrival times Y1, Y2, . . . are independent and exponentially

distributed with parameter θ, so for each i, and for 0 < t ≤ 1,

P [e−Yi ≤ t] = P [Yi ≥ − log(t)] = eθ log t = tθ

so that e−Yi has the same distribution as U1/θ, where U is uniform on (0, 1]. Since

X =

∞
∑

n=1

e−Tn =

∞
∑

n=1

(

n
∏

i=1

e−Yi

)

,

it follows that X has the same distribution as given in part (b).

Finally, definition (d) is distributionally equivalent to definition (c) by the Mapping

Theorem [13], because the image of the uniform (Lebesgue) measure on (0,∞) with den-

sity θ, under the mapping x 7→ e−x, is the measure on (0, 1) with density (θ/x). �

We now collect some further properties of the generalized Dickman distribution.

Proposition 3 (a) If X ∼ GD(θ), then the Laplace transform ψ of the distribution of

X is given by

ψ(t) = E
[

e−tX
]

= exp

(

θ

∫ t

0

e−s − 1

s
ds

)

= exp

(

θ

∫ 1

0

e−tu − 1

u
du

)

, t ∈ R.

(b) For θ, θ′ ∈ (0,∞) if X and Y are independent random variables with X ∼ GD(θ)

and Y ∼ GD(θ′), then X + Y ∼ GD(θ + θ′).

(c) The GD(θ) distribution is infinitely divisible.

(d) If X ∼ GD(θ) then the k-th cumulant of X is equal to θ
k
.

(e) If X ∼ GD(θ) then the moments mk := E[Xk] satisfy m0 = 1 and, for integer

k ≥ 1,

mk =
θ

k

k−1
∑

j=0

(

k

j

)

mj. (14)

In particular, X has expected value θ and variance θ
2
.
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Proof. Suppose X ∼ GD(θ) and set ψ(t) = E[e−tX ], the Laplace transform of the

distribution of X . Then by definition, X
D
= U1/θ(X + 1) and so

ψ(t) = E
[

E
[

exp (−tU1/θ(X + 1))|U
]]

=

∫ 1

0

E
[

e−tu1/θ

e−tu1/θX
]

du =

∫ 1

0

e−tu1/θ

ψ(tu1/θ)du

=

∫ t

0

e−wψ(w)
θwθ−1

tθ
dw

⇒ tθψ(t) = θ

∫ t

0

e−wψ(w)wθ−1dw

⇒ tθψ′(t) + θtθ−1ψ(t) = θe−tψ(t)tθ−1

⇒ tψ′(t) = θ(e−t − 1)ψ(t).

We have the initial condition ψ(0) = 1 and so we have

log(ψ(t)) =

∫ t

0

ψ′(s)

ψ(s)
ds = θ

∫ t

0

e−s − 1

s
ds = θ

∫ 1

0

e−tu − 1

u
du.

This completes the proof of part (a). Parts (b) and (c) follow at once from (a), or

alternatively by a more probabilistic argument based on the Poisson process representation

of X in part (d) of Proposition 2.

Since the kth cumulant of X is defined to be the kth derivative of logψ(−t), evaluated

at t = 0, part (d) can also be deduced from (a).

To prove part (e), suppose X ∼ GD(θ), and write mk for E[Xk]. Then by (11),

mk = E[Xk] = E[Uk/θ]E[(1 +X)k]

⇒ mk =
θ

k + θ

(

mk +

k−1
∑

j=0

(

k

j

)

mj

)

⇒ mk =
θ

k
·

k−1
∑

j=0

(

k

j

)

mj . �

3.3 GD probability density and distribution functions

In this section we derive further properties of generalized Dickman distributions, including,

among other things, a partially explicit form of the probability density and distribution

functions for these distributions.

We show first that the GD(θ) distribution has a probability density function that

is continuous except at 0, is piecewise differentiable and satisfies a certain differential-

difference equation, which generalizes Dickman’s equation.
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Proposition 4 The generalized Dickman distribution with parameter θ > 0 has a prob-

ability density function gθ which is identically zero on (−∞, 0), is continuous on (0,∞),

and is differentiable on (0, 1) ∪ (1,∞), satisfying the differential-difference equation

tg′θ(t) = (θ − 1)gθ(t)− θgθ(t− 1). (15)

Proof. Let X ∼ GD(θ). Let Gθ be the cumulative distribution function of X . By (11),

we have that

Gθ(t) = P [X ≤ t] =

∫ 1

0

P
[

u1/θ(1 +X) ≤ t
]

du

=

∫ 1

0

Gθ

(

t

u1/θ
− 1

)

du. (16)

Make the substitution s = t
u1/θ − 1, so that u =

(

t
s+1

)θ
. This gives

Gθ(t) = −

∫ ∞

t−1

Gθ(s)
du

ds
ds.

Integrating by parts, we obtain

Gθ(t) = Gθ(t− 1) + tθ
∫ ∞

t−1

(s+ 1)−θdGθ(s). (17)

By the characterization of X in part (b) of Proposition 2, P [X > 0] = 1; hence, Gθ(t) = 0

for t ≤ 0. By (17),

Gθ(t) = κθt
θ, 0 ≤ t ≤ 1, (18)

where κθ := E[(X + 1)−θ].

By (17) and induction on n, Gθ is continuous on the interval (−∞, n) and continuously

differentiable on the interval (n − 1, n) for n = 1, 2, 3, . . .. (the case n = 1 is covered by

(18)). Setting gθ(t) = G
′

θ(t), for non-integer t > 0 we may differentiate (17) to obtain

gθ(t) = θtθ−1

∫ ∞

t−1

(s+ 1)−θdGθ(s). (19)

Rearranging (19) and then differentiating once more yields

t1−θgθ(t) = θ

∫ ∞

t−1

gθ(s)

(s+ 1)θ
ds

⇒ t1−θg′θ(t) + (1− θ)t−θgθ(t) = −θt−θgθ(t− 1),
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and further rearrangement gives us (15) for non-integer t. Finally, since probability den-

sity functions are defined only modulo a set of measure zero we may define the density

function gθ by (19) for integer t; with this definition we see from (19) and (15) that gθ is

continuous on the whole interval (0,∞) and differentiable on the interval (1,∞). �

Remark. From (15), we see that, for t > 1, g′θ(t) is negative when (θ−1)gθ(t)−θgθ(t−1) <

0. This is true for all t > 1 if θ ≤ 1 , and so, for 0 < θ ≤ 1, gθ is a decreasing function for

t > 1. For θ > 1, gθ is eventually decreasing.

Corollary 5 The generalized Dickman distribution with parameter θ = 1 has a probability

density function given by

g1(x) = e−γρ(x) (x ∈ R), (20)

where ρ is the Dickman function.

Proof. By the case θ = 1 of Proposition 4, the probability density function g1 of the

GD(1) distribution satisfies Dickman’s equation (9), and since g1 must be normalized to

be a probability density function, by (10) it is given by (20), as required. �

Returning to the case of general θ > 0, define the constant κθ by

κθ := E[(1 +X)−θ], X ∼ GD(θ).

The constant κθ, θ > 0, is actually given by

κθ =
e−θγ

Γ(θ + 1)
; (21)

see, for example, [10] or [24]. In particular, κ1 = e−γ and κ2 =
1
2
e−2γ. We also note that

κθ =
κθ
1

Γ(θ+1)
.

The next result gives expressions for the GD(θ) density and distribution functions

obtained piecewise on the unit intervals of the positive real line, where the piecewise

components are given recursively by an integral recursion relation, which can sometimes

be solved explicitly.

Proposition 6 Let gθ and Gθ denote the probability density and cumulative distribution

function, respectively, of the GD(θ) distribution. Then gθ(t) = Gθ(t) = 0 for t ≤ 0, and

12



the functions gθ(t) and Gθ(t) can be expressed piecewise over the unit intervals t ∈ [n, n+1]

for n ∈ N, as

gθ(t) =

{

θκθt
θ−1 if 0 < t ≤ 1

(

t
n

)θ−1
gθ(n)− θtθ−1

∫ t−1

n−1
gθ(s)
(s+1)θ

ds if n ≤ t ≤ n+ 1 (n ∈ N)
(22)

and

Gθ(t) =

{

κθt
θ if 0 < t ≤ 1

Gθ(t− 1) + t
θ
gθ(t) if t ≥ 1

(23)

Proof. For both gθ and Gθ, the case t ≤ 0 follows from Proposition 4, and the case

0 < t ≤ 1 follows from (18).

Suppose n ≤ t ≤ n+ 1 for n ∈ N. Then equation (19) yields

t1−θgθ(t)− n1−θgθ(n) = −θ

∫ t−1

n−1

gθ(s)

(s+ 1)θ
ds.

Rearranging this gives us (22).

Substituting in for the integral in equation (17) from equation (19) gives

θ (Gθ(t)−Gθ(t− 1)) = tgθ(t),

and (23) follows. �

The integrals one is required to perform to obtain expressions for gθ(t) and Gθ(t) with

t ∈ [n, n + 1] and n ≥ 1 get successively more complicated as n increases, and appear to

be intractable for n ≥ 2. However, one can make progress in the n = 1 case. By (22) we

have that for 1 ≤ t ≤ 2,

gθ(t) = θκθt
θ−1 − θtθ−1

∫ t−1

0

θκθs
θ−1

(s+ 1)θ
ds = θκθt

θ−1

(

1− θ

∫ t

1

(u− 1)θ−1

uθ
du

)

. (24)

In particular, for θ = 1 we see that equation (24) reduces to

g1(t) = κ1(1− log t), 1 ≤ t ≤ 2 (25)

and using (23) we obtain

G1(t) = κ1(2t− t log t− 1), 1 ≤ t ≤ 2, (26)
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while for θ = 2 and 1 ≤ t ≤ 2 we obtain

g2(t) = 2κ2t

(

1− 2

∫ t

1

u− 1

u2
du

)

= 2κ2t

(

1− 2

(

log t+
1

t
− 1

))

= 2κ2 (3t− 2t log t− 2) , (27)

and then

G2(t) = κ2(4t
2 − 4t− 2t2 log t+ 1), 1 ≤ t ≤ 2. (28)

For general θ, we have that

∫

sθ−1

(s+ 1)θ
ds =

sθ

Γ(θ)

∞
∑

k=0

Γ(θ + k)(−s)k

(θ + k)k!
,

so that for 1 ≤ t ≤ 2,

gθ(t) = θκθt
θ−1 − θ2κθt

θ−1

[

(t− 1)θ

Γ(θ)

∞
∑

k=0

Γ(θ + k)(−(t− 1))k

(θ + k)k!

]

. (29)

3.4 A generalization of Dickman’s function

The density function gθ also appears in connection with the Poisson-Dirichlet distribution

with parameter θ > 0, and a generalization of Dickman’s function. See e.g. [11]. Define

the function ρθ such that ρθ(t) = 1 for 0 ≤ t ≤ 1 and ρθ satisfies the differential-difference

equation

tθρ′θ(t) + θ(t− 1)θ−1ρθ(t− 1) = 0, (t > 1). (30)

Then

gθ(t) =
e−γθ

Γ(θ)
tθ−1ρθ(t) = θκθt

θ−1ρθ(t), (31)

where one can check that gθ(t) is indeed the probability density function of our GD(θ)

random variable, as it satisfies the Dickman-type equation (15). Also, notice that if we

integrate (30) between 1 and ∞, making use of (31) we obtain Gθ(1) = κθ (compare

Proposition 6). One can often deduce results about ρθ(x) by studying gθ(x), which is

often easier to handle.

As Holst remarks [11], gθ is the density of an infinitely divisible distribution with Lévy-

Khinchine measure θ1{0 < x < 1}(1/x)dx. See also Section 6.3 of Goldie and Grübel [8],

which is concerned with the tail behaviour of a class distributions obtained as sums of

products, including the GD distributions.
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In fact, the largest component of the Poisson-Dirichlet distribution with parameter θ

has distribution function ρθ(1/x). We return to this in section 3.5, where we discuss this

distribution when θ = 1 (which we call the max-Dickman distribution), since it turns out

to describe the limiting distribution of the maximum edge length in the MDST.

3.5 The max-Dickman distribution

As in the case of the GD(θ) distributions, there are many characterizations of the max-

Dickman distribution.

Proposition 7 The following random variables are distributionally equivalent.

(a) A random variable M satisfying the fixed point equation

M
D
= max{1− U, UM}, (32)

where U is uniform on (0, 1) and independent of the M on the right hand side.

(b) A random variable M given by

M = max {1− U1, U1(1− U2), U1U2(1− U3), U1U2U3(1− U4), . . .}, (33)

where Ui, i = 1, 2, 3, . . . are i.i.d. uniform random variables on (0, 1).

(c) A random variable M given by M = max{1 − Y1, Y1 − Y2, Y2 − Y3, . . .}, where

Y1, Y2, Y3, . . . are the points of a Poisson point process on (0, 1) whose intensity

measure has a density 1/x (taken in decreasing order).

(d) A random variable M given by the largest (and first) component of the Poisson-

Dirichlet distribution with parameter 1.

(e) A random variable M with distribution function P [M ≤ x] = ρ(1/x), where ρ is the

Dickman function.

(f) A random variable M with the size-biased distribution of 1/(Z + 1), where Z ∼

GD(1).

We shall say that a random variable given by any of the conditions (a) – (f) in Proposi-

tion 7 has the max-Dickman distribution. Like the GD(θ) distribution, the max-Dickman

distribution on (0, 1) has arisen in various contexts. See, for example, [6, 11].
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Proof of Proposition 7. The proof of equivalence of (a) and (b) is similar to that given

in the proof of Proposition 2, and is omitted this time round.

Let Y1, Y2, Y3, . . . be the points of a Poisson point process on (0, 1) whose intensity

measure has a density 1/x (taken in decreasing order). We have seen in the proof of

Proposition 2 that the variables Y1, Y2/Y1, Y3/Y2, . . . are independent and uniform on

(0, 1). If we set U1 := Y1 and Ui := Yi/Yi−1 for i ≥ 2, then the Ui are independent U(0, 1)

variables, and with this definition of the Uis the definitions (b) and (c) are identical.

The equivalence of (c) and (d) follows from the fact that the vector of variables

1 − Y1, Y1 − Y2, Y2 − Y3, . . ., rearranged in decreasing order, has the Poisson-Dirichlet

distribution with parameter 1. See e.g. [6].

Suppose now that M is given by the definition in part (e). Then, following [11], we

have for 0 ≤ t ≤ 1 that if U is uniform on (0, 1) and independent of M , then

P [max{1− U, UM} ≤ t] =

∫ 1

1−t

P

[

M ≤
t

u

]

du =

∫ 1

1−t

ρ
(u

t

)

du

= t

∫ 1/t

(1/t)−1

ρ(y)dy = ρ(1/t),

where the last equality follows from (23) and Corollary 5. Thus, M satisfies (32).

To check the equivalence of definitions (f) and (e), let Y = (Z+1)−1 with Z ∼ GD(1),

and let fY denote the probability density function of Y . Then for 0 < t ≤ 1, using

Dickman’s equation we have

P [Y ≤ t] = 1−G1(t
−1 − 1)

⇒ fY (t) = t−2g1(t
−1 − 1) = −t−3g′1(t

−1),

so that the size-biased distribution of Y has a probability density function on (0, 1) pro-

portional to −t−2g′1(t
−1).

On the other hand,M given by definition (e) has probability density function−x−2ρ′(1/x).

These two distributions are the same. �

Let h and H respectively denote the probability density and distribution functions of

the max-Dickman distribution. We can obtain expressions for h and H from the GD(1)

density function g1. Again, we obtain a piecewise description of the functions, but now

the intervals are
[

1
n+1

, 1
n

]

, n ∈ N. Note that the cumulative distribution of the limiting

variable in Theorem 2, namely that of the maximum of two independent max-Dickman

variables, is given by H(·)2, so the next result provides some partial information about

this distribution function.
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Proposition 8 The max-Dickman density and distribution functions h and H are given

in terms of the GD(1) density function g1 as follows:

h(x)=



















0 if x ≥ 1

1/x if 1
2
≤ x < 1

1
x
+ 1

x
log
(

x
1−x

)

if 1
3
≤ x < 1

2
eγ

x
g1
(

1−x
x

)

if 1
n+1

≤ x < 1
n

and H(x)=











1 if x ≥ 1

1 + log x if 1
2
≤ x < 1

eγg1(1/x) if 1
n+1

≤ x < 1
n

for all n ∈ N, and with h(x) = H(x) = 0 for x ≤ 0.

Proof. By part (e) of Proposition 7, H(x) = ρ(1/x). Differentiating, we obtain

h(x) = −
1

x2
ρ′(1/x) =

1

x
ρ

(

1

x
− 1

)

=
eγ

x
g1

(

1− x

x

)

,

where the second equality follows from Dickman’s equation. Using the fact that g1(x) =

e−γ for 0 ≤ x ≤ 1 and g1(x) = e−γ(1− log x) for 1 ≤ x ≤ 2 then yields

h(x) =
1

x
(1 ≥ x ≥ 1/2); h(x) =

1

x

(

1− log
1− x

x

)

, (1/2 ≥ x ≥ 1/3),

and

H(x) = 1− log (1/x) = 1 + log x, (1 ≥ x ≥ 1/2).

This completes the proof. �

Remarks. Also of interest is the largest component M of the Poisson-Dirichlet dis-

tribution with parameter θ, for general θ > 0. See, for example, [9, 11, 24]. Then

P [M ≤ x] = ρθ(1/x), where the function ρθ, related to gθ, is as introduced in Section 3.4.

Let E1(y) denote the exponential integral function,

E1(y) =

∫ ∞

y

e−x

x
dx =

∫ ∞

1

e−yx

x
dx.

Then, Proposition 2.2 of [11] (with a minor correction to the denominator there) shows

that for k = 1, 2, 3, . . .,

E[Mk] =
Γ(θ)

Γ(θ + k)

∫ ∞

0

yk−1 exp (−y − θE1(y)). (34)

In particular, for the θ = 1 case this leads to E[M ] =
∫∞

0
e−y−E1(y)dy, which can be

evaluated numerically to give E[M ] = 0.6243299.. (see e.g. [24]). Griffiths [9] tabulates

values for P [M > x] for several values of θ.
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Returning to the case with θ = 1, we note that one can show that E[(M + 1)−1] =

E[M ], and that E[M−k] = keγmk−1 for k ∈ N, where (mk)k≥1 are the moments of the

GD(1) distribution. Thus, using (14) one can recursively generate the moments of the

distribution of M−1, which is yet another distribution that has on occasion been given

the term ‘Dickman distribution’ (see [2]).

4 Proof of Theorem 1

The intuition behind Theorem 1 goes as follows. If there exists a minimal point of Pn

(or Xn) near to the origin, then there is no minimal point lying to the north-east of that

point. Hence, the minimal points are likely to all lie near to either the x-axis or the y-

axis, and the contributions from these two axes are nearly independent. Near the x-axis,

the x-coordinates of successive minimal points (taken in order of increasing y-coordinate)

form a sequence of products of uniforms U1, U1U2, U1U2U3, . . . and summing these gives a

Dickman distribution. Similarly for the y-axis.

In the course of the proof we use the notation card(X ) for the number of elements

(i.e., the cardinality) of any finite point set X . We shall also use Slutsky’s Theorem (see

e.g. [7, 17]). This says that if (ξn, ζn)n≥1 is a sequence of random pairs with ξn
D

−→ ξ and

ζn
P

−→ 0 as n→ ∞ for some ξ, then ξn + ζn
D

−→ ξ.

We shall also use the following coupling lemma relating the point processes Xn and

Pn.

Lemma 1 There exist point processes X ′
n,P

′
n defined on the same probability space as

each other for each n, such that:

• X ′
n has the same distribution as Xn.

• P ′
n has the same distribution as Pn.

• With probability tending to 1 as n → ∞, the set of minimal elements of P ′
n is

identical to the set of minimal elements of X ′
n.

Proof. LetU1,U2,U3, . . . be independent and uniformly distributed on (0, 1]2, let N(n) be

Poisson with parameter n and independent of (U1,U2,U3, . . .), let P
′
n := {U1, . . . ,UN(n)},

and for m ∈ N set X ′
m := {U1, . . . ,Um}. Then P ′

n
D
= Pn and X ′

n
D
= Xn.

Let Am be the event that Um is a minimal element of X ′
m, and let δm be the number

of minimal elements of X ′
m. By exchangeability, each point Ui, i ≤ m is equally likely to
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be minimal in X ′
m, so that E[δm] = mP [Am]. By [3], or by the proof of Theorem 1.1(a)

of [4]

E[δm] =

m
∑

i=1

(1/i) ∼ log(m) as m→ ∞.

Hence, P [Am] ∼ (logm)/m as m→ ∞, and therefore

P
[

∪n−n3/4≤m≤n+n3/4Am

]

≤ 3n3/4(logn)/n→ 0. (35)

Let En denote event that the set of minimal points in X ′
n differs from the set of minimal

points of P ′
n. By the coupling of X ′

m (m ≥ 1) and P ′
n, En occurs only if Am occurs for

some m with N(n) < m ≤ n (if N(n) < n) or with n < m ≤ N(n) (if N(n) > n). Hence,

P [En] ≤ P [|N(n)− n| ≥ n3/4] + P [∪n−n3/4≤m≤n+n3/4Am].

In the right hand side, the first probability tends to zero by Chebyshev’s inequality while

the second tends to zero by (35), and hence P [En] → 0 as asserted. �

We now work towards a proof of (2). Let Yn be the set of minimal elements of the

point set Pn, i.e., the set of elements of Pn which are joined to 0 in the MDST on Pn∪{0}.

Lemma 2 As n→ ∞, we have (log n)−1card(Yn)
P

−→ 1.

Proof. The corresponding result for the number of minimal points of binomial point pro-

cess Xn (actually with almost sure convergence) is Theorem 1.1(a) of [4]. Using Lemma

1, we can deduce the result asserted for the Poisson point process Pn. �

Fix a constant δ lying in the range (0, 1/2) but otherwise arbitrary. Define the point

sets

Yx
n := Yn ∩

(

(0, 1]× (0, n−δ]
)

; Yy
n := Yn ∩

(

(0, n−δ]× (0, 1]
)

.

Fix α > 0, as given in the statement of Theorem 1. Define the variables

Lx
n :=

∑

X∈Yx
n
‖X‖α; Ly

n :=
∑

X∈Yy
n

‖X‖α; (36)

Nx
n := card(Yx

n); Ny
n := card(Yy

n).

Thus, Lx
n is the total weight of α-power-weighted edges of the MDST on Pn which are

incident to the origin and lie entirely in the horizontal strip (0, 1]× (0, n−δ], while Nx
n is

the number of such edges; Ly
n and Ny

n are defined analogously in terms of a vertical strip.
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Proposition 9 Let S ∼ GD(1/α), i.e. let S be a generalized Dickman random variable

with parameter θ = 1/α. Then as n→ ∞,

Lx
n

D
−→ S, and Ly

n
D

−→ S.

Proof. We give the proof only for Lx
n; the argument for Ly

n is entirely analogous.

List the minimal points Yx
n , in order of increasing y-coordinate, as Xx

1 ,X
x
2, . . . ,X

x
Nx

n
.

In co-ordinates we set Xx
j = (Xx

j , Y
x
j ). Since the points Xx

j are minimal, we have that

Y x
1 < Y x

2 < · · · < Y x
Nx

n
, and Xx

1 > Xx
2 > · · · > Xx

Nx
n
.

Then Lx
n =

∑Nx
n

j=1

∥

∥Xx
j

∥

∥

α
. For each n, let Sx

n be the estimate for Lx
n obtained by counting

only the projections of the edge lengths onto the x-axis, i.e., set

Sx
n =

Nx
n
∑

j=1

(Xx
j )

α.

If (x, y) ∈ (0, 1]2 then ‖(x, y)‖ ≤ x+ y, and by the Mean Value Theorem,

‖(x, y)‖α − xα ≤ (x+ y)α − xα ≤ α2α−1y (α ≥ 1)

whereas by the concavity of the function t 7→ tα for α < 1,

‖(x, y)‖α − xα ≤ (x+ y)α − xα ≤ yα (0 < α < 1).

Hence, there is a constant C(α) such that with probability 1,

0 ≤ Lx
n − Sx

n ≤ C(α)

Nx
n
∑

j=1

(Y x
j )

min(1,α)

≤ C(α)n−δmin(1,α)Nx
n . (37)

Since Nx
n = O(log(n)) in probability by Lemma 2, it follows that n−δmin(1,α)Nx

n converges

in probability to zero as n → ∞, and hence so does Lx
n − Sx

n. Therefore, by Slutsky’s

theorem it suffices to prove that

Sx
n

D
−→ S as n→ ∞. (38)

We prove this by a coupling argument in which we construct (copies of) the random

variables Sx
n (n ≥ 1) on a common probability space.
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Let H be a homogeneous Poisson process of unit intensity on the infinite strip (0, 1]×

(0,∞). Let Hn be the image of H under the linear mapping τn : R2 → R2 given by

τn((x, y)) = (x, n−1y). (39)

By the Mapping Theorem [13], Hn is a homogeneous Poisson process of intensity n on

the same strip (0, 1] × (0,∞). Since we are interested only in proving a convergence in

distribution result (38), we may assume without loss of generality that Pn is the restriction

of the Poisson process Hn to the unit square (0, 1]× (0, 1].

List the minimal elements of H in order of increasing y-coordinate as X1,X2,X3 . . .,

with coordinate representation Xj = (Xj, Yj). Then Y1 < Y2 < Y3 < · · ·, and X1 > X2 >

· · ·. Define U1 = X1, and set

Uj =
Xj

Xj−1
, j = 2, 3, . . . .

It is not hard to see that U1, U2, . . . are mutually independent and are each uniformly

distributed over (0, 1). Therefore, setting

S :=

∞
∑

j=1

Xα
j =

∞
∑

j=1

(

j
∏

i=1

Uα
i

)

, (40)

we see from Proposition 2 that S has a generalized Dickman distribution GD(1/α).

The set of minimal elements of a point set in R2 is invariant under the linear transfor-

mation τn(·) defined at (39), as is the relative order of the y-coordinates of the minimal

elements. Therefore, under our assumption that Pn is the restriction of τn(H) to the unit

square, we see that Xx
j = τn(Xj) for 1 ≤ j ≤ Nx

n . Hence, since the mapping τn leaves

x-coordinates unchanged,

Sx
n =

Nx
n
∑

j=1

Xα
j .

Since Nx
n is the number of minimal elements in the restriction of H to the set (0, 1] ×

(0, n1−δ], it is the case that Nx
n → ∞ almost surely as n → ∞. Therefore, with this par-

ticular coupled construction of the point processes Pn, n ≥ 1, the variables Sx
n converge

to S as n → ∞, almost surely and hence in distribution. In other words, (38) holds as

required. �

The random variables Lx
n and Ly

n are not quite independent since they both depend

on the configuration of points of Pn in (0, n−δ]2. Our argument to deal with this fact
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requires some further terminology. Fix a further constant β with 0 < β < δ < 1/2, and

define the following rectangular regions, as shown in Figure 1 below:

Rx
2(n) := (n−β, 1]× (0, n−δ]; Ry

2(n) := (0, n−δ]× (n−β, 1];

Rx
1(n) := (n−δ, n−β]× (0, n−δ]; Ry

1(n) := (0, n−δ]× (n−δ, n−β];

R0(n) := (0, n−δ]2; R3(n) := (n−δ, 1]2.

R
x
2
(n)R0(n)

n
−β

n
−δ

R
y
1
(n)

R
y
2
(n)

R
x
1
(n)

R3(n)

0

1

1

n
−δ

n
−β

Figure 1: The regions of (0, 1]2.

Let Nx
2 (n), N

y
2 (n), N

x
1 (n), N

y
1 (n), N0(n), and N3(n) be the number of elements of Yn

that fall in the regions Rx
2(n), R

y
2(n), R

x
1(n), R

y
1(n), R0(n) and R3(n) respectively.

Similarly, let Lx
2(n), L

y
2(n), L

x
1(n), L

y
1(n), L0(n), and L3(n) be the total weights of

edges that are incident to the origin in the MDST on Pn∪{0} and start from points that

fall in the regions Rx
2(n), R

y
2(n), R

x
1(n), R

y
1(n), R0(n) and R3(n) respectively, i.e., set

Lx
2(n) :=

∑

X∈Yn∩Rx
2
(n)

‖X‖α, Lx
1(n) :=

∑

X∈Yn∩Rx
1
(n)

‖X‖α, L0(n) :=
∑

X∈Yn∩R0(n)

‖X‖α, (41)

Ly
2(n) :=

∑

X∈Yn∩R
y
2
(n)

‖X‖α, Ly
1(n) :=

∑

X∈Yn∩R
y
1
(n)

‖X‖α, L3(n) :=
∑

X∈Yn∩R3(n)

‖X‖α. (42)

Then

Lα
0 (Pn) = Lx

2(n) + Ly
2(n) + Lx

1(n) + Ly
1(n) + L0(n) + L3(n). (43)

The next result shows that most of the terms in (43) are asymptotically negligible.
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Lemma 3 As n→ ∞,

Lx
1(n) + Ly

1(n) + L0(n) + L3(n)
P

−→ 0.

Proof. Observe first that

Lx
1(n) + Ly

1(n) + L0(n) ≤ (2n−β)α(Nx
1 (n) +Ny

1 (n) +N0(n))

and since Nx
1 (n) +Ny

1 (n) +N0(n) = O(logn) in probability by Lemma 2,

Lx
1(n) + Ly

1(n) + L0(n)
P

−→ 0. (44)

If card(Pn ∩ R0(n)) > 0 then L3(n) = N3(n) = 0. However, card(Pn ∩ R0(n)) is Pois-

son with parameter n1−2δ, which tends to infinity since we assume δ < 1/2. Hence,

P [L3(n) 6= 0] → 0, so that L3(n)
P

−→ 0. Combined with (44), this gives us the result. �

Define P̃n to be the point process Pn with all points in the corner regionR0(n) removed,

i.e., set

P̃n := Pn\R0(n).

Let Ỹn be the set of minimal elements of P̃n. Define the point sets

Zx
n := Yn ∩ R

x
2(n); Z̃x

n := Ỹn ∩R
x
2(n);

Zy
n := Yn ∩ R

y
2(n); Z̃y

n := Ỹn ∩R
y
2(n).

Then Zx
n ⊆ Z̃x

n , since adding the points in R0(n) cannot cause any new minimal points

in Rx
2(n) to be created, although it can cause previously minimal points in Rx

2(n) to cease

to be minimal. Using the convention min{} = +∞, set

Y −
0 (n) := min{Y : X = (X, Y ) ∈ Pn ∩ R0(n)},

which is the y-coordinate of the lowest point of Pn in R0(n) (or +∞ if no such point

exists). Let

Y −
1 (n) := min{Y : X = (X, Y ) ∈ Pn ∩ R

x
1(n)},

which is the y-coordinate of the lowest point of Pn in Rx
1(n) (or +∞ if there are no such

points).

Lemma 4 If Y −
1 (n) < Y −

0 (n), then Zx
n = Z̃x

n .
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Proof. If X = (X, Y ) ∈ Rx
2(n) and X′ = (X ′, Y ′) ∈ R0(n) ∪ Rx

1(n), then X′ 4 X

if and only if Y ′ ≤ Y . Hence, Z̃x
n consists of those minimal elements of Pn ∩ Rx

2(n)

that have a lower y-coordinate than Y −
1 (n). Likewise, Zx

n consists of those minimal ele-

ments of Pn ∩ Rx
2(n) that have a lower y-coordinate than min(Y −

1 (n), Y −
0 (n)). Thus, if

Y −
1 (n) < Y −

0 (n), then the sets Z̃x
n and Zx

n must be identical. �

Lemma 5 As n→ ∞, P [Y −
1 (n) < Y −

0 (n)] → 1.

Proof. Assume without loss of generality that Pn is the restriction to (0, 1]2 of a Poisson

process Hn of intensity n on (0, 1]× (0,∞). List the points of Hn ∩
(

(0, n−β]× (0,∞)
)

in

order of increasing y-coordinate as Vn
1 ,V

n
2 ,V

n
3 . . .. In coordinates, write Vn

1 = (V n
1 ,W

n
1 ).

Then V n
1 is uniform on (0, n−β] and is independent of W n

1 . Also W n
1 is exponential with

parameter n1−β . Since β < δ and δ < 1/2 < 1− β,

P [{V1 ∈ (n−δ, n−β]} ∩ {W1 < n−δ}] → 1 as n→ ∞.

However, if this event occurs then Y −
1 (n) < Y −

0 (n) so the proof is complete. �

Define the random variables

L̃x
2(n) :=

∑

X∈Z̃x
n

‖X‖α, L̃y
2(n) :=

∑

X∈Z̃y
n

‖X‖α.

In other words, L̃x
2(n), L̃

y
2(n) are the total weight of edges from points in Rx

2(n), R
y
2(n)

respectively joined to the origin in the MDST on P̃n ∪ {0}.

We assert that L̃x
2(n) and L̃y

2(n) are independent. This follows because L̃x
2(n) is de-

termined by the configuration of Pn ∩ (Rx
1(n) ∪R

x
2(n)), whereas L̃

y
n is determined by the

configuration of Pn∩ (Ry
1(n)∪R

y
2(n)). Since the regions R

x
1(n)∪R

x
2(n) and R

y
1(n)∪R

y
2(n)

are disjoint, the independence asserted follows from the standard spatial independence

properties of the Poisson process.

Proof of Theorem 1. By the earlier definitions at (36) and (41), Lx
n = Lx

2(n)+Lx
1(n)+

L0(n). Hence,

L̃x
2(n) = (Lx

n − Lx
1(n)− L0(n)) + (L̃x

2(n)− Lx
2(n)).

By Lemma 3, Lx
1(n) + L0(n)

P
−→ 0. Also, by Lemmas 4 and 5, L̃x

2(n) − Lx
2(n)

P
−→ 0.

Hence, by Proposition 9, and Slutsky’s theorem,

L̃x
2(n)

D
−→ S,
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where S ∼ GD(1/α), and by an analogous argument we obtain L̃y
2(n)

D
−→ S.

Let S and S ′ be independent GD(1/α) variables and let Z ∼ GD(2/α). Since L̃x
2(n)

and L̃y
2(n) are independent, we obtain

L̃x
2(n) + L̃y

2(n)
D

−→ S + S ′ D
= Z, (45)

where the last distributional equality follows from Proposition 3 (b). By (43), we have

Lα
0 (Pn)− (L̃x

2(n) + L̃y
2(n)) = (Lx

2(n)− L̃x
2(n)) + (Ly

2(n)− L̃y
2(n))

+Lx
1(n) + Ly

1(n) + L0(n) + L3(n).

In this expression, the right hand side tends to zero in probability by Lemmas 3, 4 and

5. Hence, by (45) and Slutsky’s theorem we obtain (2).

Next we prove (3). To do this we use the coupled copies X ′
n and P ′

n of Xn, Pn

respectively, given by Lemma 1. That result gives us

Lα
0 (P

′
n)−Lα

0 (X
′
n)

P
−→ 0 as n→ ∞. (46)

Since P ′
n

D
= Pn, we see from (2) that Lα

0 (P
′
n) converges in distribution to the GD(2/α)

variable Z. By (46) and Slutsky’s theorem, the same is true of Lα
0 (X

′
n), and (3) follows

since X ′
n

D
= Xn. �

In the case α = 1, the limiting variable Z is GD(2); its moments and moment gener-

ating function are obtained by application of Proposition 3 . �

5 Proof of Theorem 2

The intuition behind Theorem 2 is that the longest edge is likely to be near either the

x-axis or y-axis. Near the x-axis, the x-coordinates of the points of Pn (or Xn), taken in

order of increasing y-coordinate, form a sequence of uniforms with each uniform joined to

its nearest predecessor lying to its left. Similarly for the y-coordinate.

The proof of Theorem 2 follows similar lines to that of Theorem 1 (see Section 4). Fix

a constant δ ∈ (1/2, 1). Define the point sets

Px
n := Pn ∩

(

(0, 1]× (0, n−δ]
)

; Py
n := Pn ∩

(

(0, n−δ]× (0, 1]
)

.

For X ∈ Pn, if X
′ is the directed nearest neighbour of X in Pn, write d(X) for the

length of the edge from X in the MDST, i.e. d(X) = ‖X−X′‖. Define

Mx
n := max

X∈Px
n

d(X); My
n := max

X∈Py
n

d(X). (47)
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Thus, Mx
n is the length of the longest edge in the MDST on Pn from points in the

horizontal strip (0, 1]× (0, n−δ]; My
n is defined analogously in terms of a vertical strip.

Proposition 10 Let M have the max-Dickman distribution given by (32). Then as n→

∞,

Mx
n

D
−→M, and My

n
D

−→M.

Proof. We give the proof only for Mx
n ; the argument for My

n is entirely analogous.

Define the random variable ν(n) := card(Px
n). List the points of Px

n , in order of

increasing y-coordinate, as Xx
1 ,X

x
2,X

x
3, . . . ,X

x
ν(n). In co-ordinates we set Xx

j = (Xx
j , Y

x
j ).

Then Y x
1 < Y x

2 < · · · < Y x
ν(n).

For each n, let ξxn be the estimate forMx
n obtained by considering only the projections

of the edge lengths onto the x-axis, i.e., set

ξxn = max
1≤i≤ν(n)

{

Xx
i − max

0≤j<i

(

Xx
j 1{Xx

j <Xx
i }

)

}

. (48)

where we set Xx
0 := 0.

By construction of the MDST and the triangle inequality, with probability 1,

0 ≤Mx
n − ξxn ≤ n−δ,

so that Mx
n − ξxn converges to 0 almost surely. Therefore, by Slutsky’s theorem it suffices

to prove that

ξxn
D

−→M as n→ ∞. (49)

As in the proof of Proposition 9, let H be a homogeneous Poisson process of unit

intensity on the infinite strip (0, 1] × (0,∞), and let Hn be the image of H under the

linear mapping τn defined at (39). Again, we may assume without loss of generality that

Pn is the restriction of the Poisson process Hn to the unit square (0, 1]2.

List the elements of H in order of increasing y-coordinate as X1,X2,X3 . . ., with coor-

dinate representation Xj = (Xj , Yj). Since the linear mapping τn preserves x-coordinates

and the relative order of y-coordinates, our coupling of Pn to H means that the sequence

Xx
1 , . . .X

x
ν(n) is identical to the first ν(n) terms in the infinite sequence (X1, X2, . . .).

A record value in the sequence X1, X2, X3, . . . is a value Xi which exceeds max{X1,

. . ., Xi−1} (the first value X1 is also included as a record value). Let j(1), j(2), j(3), . . . be

the values of i ∈ {1, 2, 3, . . .} such that Xi is a record value, arranged in increasing order
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so that 1 = j(1) < j(2) < j(3) < · · ·. Let Rn := max{k : j(k) ≤ ν(n)} be the number of

record values in the finite sequence (X1, X2 . . . , Xν(n)).

Since each non-record Xi lies in an interval between preceding record values, the first

maximum in the definition at (48) is achieved at a record value, so that

ξxn = max
1≤i≤Rn

Xj(i) −Xj(i−1), (50)

where we set j(0) = 0 and X0 = 0. Define U1 = 1−X1, and set

Ui =
1−Xj(i)

1−Xj(i−1)

, i = 2, 3, . . . .

It is not hard to see that U1, U2, . . . are mutually independent and are each uniformly

distributed over (0, 1). Therefore, setting

M := max {1− U1, U1(1− U2), U1U2(1− U3), U1U2U3(1− U4), . . .} , (51)

we see that M indeed has the max-Dickman distribution as described in Proposition 7

(b). Further,

(1− Uk)

k−1
∏

i=1

Ui =
Xj(k) −Xj(k−1)

1−Xj(k−1)

k−1
∏

i=1

(

1−Xj(i)

1−Xj(i−1)

)

= Xj(k) −Xj(k−1), (52)

for k = 2, 3, . . ..

With our chosen coupling of Pn to H, ν(n) := card(Px
n) is the number of points in the

restriction of H to the set (0, 1]× (0, n1−δ], so that ν(n) → ∞ almost surely as n → ∞.

Therefore, since there are almost surely infinitely many records, Rn → ∞ almost surely

as n → ∞. Hence by (50), (51) and (52), ξxn → M as n → ∞, almost surely with this

coupling. Hence, (49) holds as required. �

Let M3(n) denote the maximum edge length of edges of the MDST on Pn starting in

(n−δ, 1]2, i.e., set

M3(n) := max{‖d(X)‖ : X ∈ Pn ∩ (n−δ, 1]2}.

Lemma 6 It is the case that M3(n)
P

−→ 0 as n→ ∞.

Proof. Recall that (1/2) < δ < 1. Choose a second constant ε ∈ (0, 1 − δ). Consider a

collection of overlapping horizontal and vertical rectangles of the form

((i− 1)n−ε, in−ε]× ((j − 1)n−δ, jn−δ], (i, j) ∈ N×N, i ≤ ⌊nε⌋, j ≤ ⌊nδ⌋,

((i− 1)n−δ, in−δ]× ((j − 1)n−ε, jn−ε], (i, j) ∈ N×N, i ≤ ⌊nδ⌋, j ≤ ⌊nε⌋.
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For each rectangle, the number of points of Pn in the rectangle is Poisson with parameter

n1−δ−ε, so that the probability that at least one subsquare contains no point of Pn is

bounded by

2nδ+ε exp(−n1−δ−ε) → 0.

However, if each rectangle contains at least one point of Pn then M3(n) is bounded by

3n−ε, and the result follows. �

Proof of Theorem 2 It is a little easier to deal with the non-independence of Mx
n and

My
n than with the corresponding problem in the proof of Theorem 1. Define M̃x

n to be

the maximal edge-length of edges starting in (0, 1]× (0, n−δ] for the MDST on the point

set

(Pn ∩ ((n−δ, 1]× (0, n−δ])) ∪ {0}.

In other words, M̃x
n is the same as Mx

n except that Poisson points in (0, n−δ]2 are ignored

in defining M̃x
n . By independence properties of the Poisson process, M̃x

n is independent

of My
n .

It is not hard to see that

|Mx
n − M̃x

n | ≤ 2n−δ, almost surely. (53)

Let M,M ′ be independent random variables both having the max-Dickman distribu-

tion. By Proposition 10, equation (53), and Slutsky’s theorem,

M̃x
n

D
−→ M and My

n
D

−→ M,

and since M̃x
n and My

n are independent,

max(M̃x
n ,M

y
n)

D
−→ max(M,M ′). (54)

By (53), with probability 1,

|max(Mx
n ,M

y
n)−max(M̃x

n ,M
y
n)| ≤ 2n−δ,

so by (54) and Slutsky’s theorem,

max(Mx
n ,M

y
n)

D
−→ max(M,M ′). (55)

Also,

M(Pn) = max(Mx
n ,M

y
n ,M3(n)),
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so that

0 ≤ M(Pn)−max(Mx
n ,M

y
n) ≤M3(n),

which tends to zero in probability by Lemma 6. Hence, a further application of Slutsky’s

theorem to (55) shows that M(Pn)
D

−→ max(M,M ′), i.e., (7) holds.

To deduce (8) from (7), consider the coupled point processes X ′
n and P ′

n described in

Lemma 1, given in terms of a sequence of independent uniform points Ui in (0, 1]2 and

an independent Poisson variable N(n) as given in the proof of Lemma 1. Let Bn be the

event that at least one point of the symmetric difference X ′
n△P ′

n lies in (0, 1]2 \ (n−δ, 1]2.

Then

P [Bn] ≤ P [|N(n)− n| > n(1/4)+(δ/2)] + 2n(1/4)+(δ/2)P [U1 ∈ (0, 1]2 \ (n−δ, 1]2] → 0, (56)

where the convergence follows by Chebyshev’s inequality and the fact that we took δ >

1/2.

Recall thatM3(n) denotes the maximum length for edges of the MDST on Pn starting

in (n−δ, 1]2; similarly, letM ′
3(n), respectively M̃3(n), denote the maximum edge length for

edges of the MDST on P ′
n, respectively on X ′

n, starting in (n−δ, 1]2. Then M ′
3(n)

P
−→ 0 by

Lemma 6, and a similar proof shows that M̃3(n)
P

−→ 0 as well. Using also (56) we obtain

|M(X ′
n)−M(P ′

n)| ≤ 21Bn +M ′
3(n) + M̃3(n)

P
−→ 0,

and since M(Xn)
D
= M(X ′

n) and M(Pn)
D
= M(P ′

n), eqn (8) follows from (7) by yet

another application of Slutsky’s theorem. �

Acknowledgements

The first author began this work while at the University of Durham, and was also sup-

ported by the Isaac Newton Institute for Mathematical Sciences, Cambridge. The second

author was supported by the EPSRC.

References

[1] B. C. Arnold and J. A. Villaseñor (1998), The asymptotic distribution of sums of

records, Extremes 1, 351–363.

[2] R. Arratia (1998), On the central role of scale invariant Poisson processes on (0,∞).

Microsurveys in discrete probability (Princeton, NJ, 1997), 21–41, DIMACS Series

in Discrete Mathematics and Theoretical Computer Science 41, AMS, Providence,

RI.

29



[3] O. Barndorff-Nielsen and M. Sobel (1966), On the distribution of the number of

admissible points in a vector random sample, Theory Probab. Appl. 11, 249–269.

[4] A.G. Bhatt and R. Roy (2004), On a random directed spanning tree, Adv. Appl.

Probab. 36, 19–42.

[5] L. Devroye and R. Neininger (2002), Density approximation and exact simulation of

random variables that are solutions of fixed-point equations, Adv. Appl. Probab. 34,

441–468.

[6] P. Donnelly, and G. Grimmett (1993), On the asymptotic distribution of large prime

factors, J. London Math. Soc. 47, 395–404.

[7] R. Durrett, (1991) Probability: Theory and Examples, Wadsworth and Brooks/Cole,

Pacific Grove.
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