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We present a predictive scheme connecting the topological structure of highly branched 

entangled polymers, with industrial-level complexity, to the emergent viscoelasticity of the 

polymer melt. The scheme is able to calculate the linear and non-linear viscoelasticity of a 

stochastically branched “high-pressure free radical” polymer melt as a function of the 

chemical kinetics of its formation. The method combines numerical simulation of 

polymerisation with the tube/entanglement physics of polymer dynamics extended to fully 

non-linear response. We compare calculations for a series of low-density polyethylenes 

(LDPE), with experiments on structural, and viscoelastic properties. The method provides a 

window onto the molecular processes responsible for the optimized rheology of these melts, 

connecting fundamental science to process in complex flow, and opens up the in silico design 

of new materials. 

 

One of the long-standing fundamental challenges to soft matter science is the quantitative 

connection between molecular topology and dynamics of branched entangled polymers.  The 

motivation arises from both the universality of the physics (1) and the experimental and 

engineering properties of highly branched polymers (2).  Very slow dynamical processes, on 

timescales of many seconds, emerge even when the entangled macromolecules are of simple 

linear topology.  The additional complication of branching extends the range of relaxation times 

exponentially, and generates additional elasticity in the response to strong extensional flow (3). A 

quantitative account of these phenomena has emerged for very simple polymer structures, but has 

remained elusive in highly complex blends arising from statistical polymerisation processes 

arising in industry (4). 
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The most successful theoretical approach to entangled polymer dynamics is the “tube 

model” of Doi, Edwards and de Gennes (5,6).  The model supposes that the topological 

constraints on any given chain from its neighbors are equivalent to those of a tube around the 

chain contour.  So polymer chains are free to move tangentially their local contours, but, beyond a 

characteristic “tube diameter”, not perpendicular to them.  New configurations are always 

generated by chain ends, as these may explore the surrounding field of chains without constraint.  

Adding thermal motion to this simple picture immediately predicts qualitatively different 

dynamics for linear and branched chains.  Linear chains diffuse simple curvilinear diffusion 

(“reptation”) along the tube contour.  The orientational configuration of a chosen chain is 

essentially re-equilibrated by reptation out of its original tube into a new one, a process dominated 

by a single “reptation time”.  On the other hand, in branched polymers, reptation is highly 

suppressed and new configurations of the chains can only be achieved by an exponentially-slower 

“arm retraction” mode (7).  In this case the chain reconfiguration occurs hierarchically, beginning 

rapidly at the extremities of entangled arms, and ending at segments adjacent to the branch points.  

These are visited by retracting chain ends only exponentially rarely, so giving rise to a wide range 

of experimental relaxation times along the whole entangled arm.  Experiments on well-

characterised star-polymer melts confirmed such extreme slowing down in both diffusion (8,9) 

and rheology (the stress/strain-rate relations that control fluid flow) (10).  The universal 

topological nature of the tube theory allows quantitative mapping of its predictions to any 

particular polymer chemistry and temperature via just two parameters: (i) the “plateau modulus” 

G0, which controls the level of elastic stress supported by the melt and which depends on the tube 

diameter: (ii) the entanglement time τe, which sets the timescale of the fastest entangled 

viscoelastic mode. 

Theory and experiment have since been extended to more complex single-molecule 

topologies: H-shapes (11), combs (12), and multi-arm polymers (13,14), confirming the 

predictions of universality over chemistry, and the central role of molecular topology.  The 

hierarchical relaxation of entangled star polymers generalises to more complex architectures: once 

free ends retract back to the outermost layer of branch-points, these become mobile, activating 

deeper retractions towards the second layer, and so on (15).  The relaxation time of a given tube 

segment in an ensemble of branched polymers depends on the curvilinear distance to the free end 

that eventually retracts and disentangles it, and on the dangling trees attached to this path that 

slow down the retraction process (see Figure 1).  The prediction of the linear stress-relaxation 

response of a complex melt therefore reduces to the calculation of the relaxation times by arm 

retraction of all the segments within it, a programme that has been carried through in the case of 

the simplest cases of polydisperse branched polymers generated by “metallocene” catalysts (16). 
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The tube theory also makes predictions for strongly non-linear response.  In strong flows, 

the “buried” segments of a highly branched polymer can stretch just as they would in an elastic 

network.  The distinction of the fluid melt is that this stretch must be bounded.  This non-linear 

bound on segment stretch is controlled, not by the relaxation time statistic, but by the number of 

free-ends connected to it.  Termed the “priority”, it increases rapidly with depth into a highly 

branched polymer (15,17).  Figure 1 indicates by example the segment depth and priority values 

of segments within a typical complex molecule. 

In spite of this progress, a predictive scheme for even the most common industrial 

polymers, that connects the molecular structure developed in a reactor to the full linear and non-

linear rheology of the emergent melt, has remained out of reach. We now have all the ingredients 

to bridge this gap.  We connect the output of a model for industrial LDPE polymerization (4) to a 

numerical algorithm (17) that captures all the relevant entangled polymer dynamics, enhanced 

with a non-linear calculation of priority as well as relaxation time statistics, making predictions 

for a range of intensively characterized industrial materials. 

  

We model the LDPE polymerisation process by adapting the original algorithm of Tobita (3) to 

produce by Monte Carlo simulation a data structure that can be read by a tube-model calculation. 

The algorithm is based upon a set of processes occurring in a batch reactor during free-radical 

polymerisation: initiation of free radicals (rate RI per unit volume); propagation or polymerisation 

(rate Rp); termination by disproportionation (rate Rtd) and combination (rate Rtc); chain transfer by 

long-chain branching (rate Rb), to small molecules (rate Rf)  and by scission (rate Rs).  Under 

steady-state conditions there emerge five independent parameters that determine the resulting 

polymer architecture for any set of reaction conditions. These are: the total conversion xf of 

monomer to polymer and the dimensionless rates of termination (τ), combination (β), branching 

(Cb) and scission (Cs) made dimensionless by the propagation rate: 
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These five parameters set the topological admixture and overall molecular weights of the melt 

resulting from a single batch process. Increasing τ or Cs results in shorter chain strands and 

smaller overall molecular weight. Increasing β  increases molecular weight and polydispersity, 

but without greatly affecting branch density or typical strand length between branchpoints.  

Increasing Cb increases branching, molecular weight and polydispersity, but reduces the strand 
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length. The natural distribution in reactor residence times xf is modelled by a weighted sum over 

simulations of two or three values of xf to match the molecular weight distribution of a single 

tubular-reactor LDPE resin. 

 
A second algorithm then applies the two fundamental processes of reptation and arm retraction to 

the numerical polymer ensemble (17).  It recognises that, at longer timescales, the relatively 

rapidly-relaxing outer parts of the molecules are no longer effective at entangling the deeper 

strands, so that the effective tube constraints widen for deeper segments, and the topologies of the 

molecules simplify (see Figure 1).  

 To predict the full non-linear response we map the priority and relaxation time 

distributions onto “pom-pom” modes, a model derived from the tube physics for an entangled 

strand trapped between two branch points (18,19).  Each strand mode i is accorded a (slow) 

orientation time, τio, a (faster) strand stretch time τis, and a strand “priority” qi which sets the 

maximum extent of its possible stretch in a fast flow. 

 The physics of hierarchical relaxation generates, beginning at each free chain end, a 

relaxation coordinate z(t) moving inwards towards the deeper segments of the molecule.  The 

orientational relaxation time τio of a segment is just that at which the relaxation front reaches it.  

In a similar way the faster segmental stretch times τis are set by a second inward-travelling front 

)(~ tZ (17). To assign the segment priorities, qi, we recognise that the values generated by the 

simple end-counting procedure described above, and in Figure 1, are valid only when all 

segments are maximally stretched (at very high flow rates).  At lower flow rates, the effective 

priority of a strand is calculated by propagating the steady-state values of segmental tension for 

that rate onto the segment from its connected free ends, noting that a segment can only stretch if 

the flow rate exceeds the inverse of its stretch relaxation time.  This is essential physics to capture, 

as we know from experiments on controlled-architecture melts (11). 

For consistency with the linear rheology predictions we actually need two sets of pom-

pom modes associated with each strand.  They correspond to stress relaxation via entanglement 

escape of strands; the second set corresponds to the consequent stress relaxation in neighbouring 

strands of longer relaxation time (17).   

 

We have obtained, from the two different companies in our collaboration, commercial LDPE 

materials generated in tubular reactors which were analysed with GPC-MALLS (Gel-Permeation-

Chromatography coupled with Multi-Angle-Laser-Light-Scattering) and subsequently measured 

the linear and non-linear rheology (material data are given in SOM). These techniques give two 

measures of the molecular weight distribution (MWD).  Firstly the weight of material in each 
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fraction gives the (MWD) itself.  Secondly, light-scattering on each fraction gives the mean 

solution radius of gyration of its molecules.  This is usually expressed as a fraction of the radius 

of gyration of a linear polymer of the same molecular weight in the same solution.  Termed the 

“g-factor”, it is a measure of the degree of branching: the more branch-points within the molecule, 

the more compact its size in solution.  Both MWD and g(M) can also be calculated from our 

numerical ensemble.  This allowed us to iterate the parameters of the polymerisation model for 

each material until we found a theoretical LDPE ensemble consistent with both functions 

(parameters in SOM). In Figure 2(a) we give a typical example (for LDPE2).  The MWDs are 

captured very well by the fits.  We set 0=sC  throughout, since its value appeared to be 

consistently small when left as a free parameter. The termination-rate parameter τ controls the low 

weight tail of the MWD, while its breadth could be increased by increasing either β or Cb.  

Increasing the ratio β/Cb tended to result in more sparsely branched molecules (thus increasing 

g(M) ). Increasing the conversion xs amplified the effects of both β and Cb. A reasonable fit could 

be obtained by combining a high-conversion fraction (which provides the high molecular weight 

tail) with one or two lower conversion fractions (filling out the MWD at lower molecular weight). 

We found the expected underdetermination of the complex set of structure parameters from static 

structure parameters alone.  This is one of the motivations of a quantitative molecular calculation 

of the more sensitive rheological response. 

Fixing the two relevant tube model parameters of Go and τe (rheological material 

parameters and methods are given in SOM), and taking numerical blends consistent only with 

MWD and g(M) allowed initial prediction of their linear rheology curves within roughly half a 

decade. As expected from the greater sensitivity of the rheology to branched structure, small 

adjustments to the reaction parameters (resulting in almost indistinguishable results for MWD and 

g(M) ) could then be made so as to fit the linear rheology: these are the results in Figure 2 (lower 

panel). This is a remarkable indication of the success of our methodology: because of the 

exponential dependence of rheological relaxation times on branch length, predictions of this type 

can easily be orders of magnitude from data.  The results also confirm that even the dense 

branching of LDPE permits a theoretical treatment using tube-theory; even subtle features such as 

the cross-over frequencies of in-phase and out-of-phase responses are accurate. Only a very small 

weight of very slow modes appears in the model but not in the data.   

With no further adjustment of the reaction scheme or rheological parameters at all, we 

calculated the non-linear transient response in strong shear and extension of the test materials.  

Theoretical predictions and experimental data are given over a wide range of deformation rates in 

Figure 3 for the first three samples. Using the new algorithm for assigning effective segment 

priorities, for all three melts the technologically essential extensional response is predicted with 
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remarkable accuracy.  The onset, slope and maximum of the extensional hardening are consistent 

with the data in each case (note that for the higher molecular weight (LDPE 2 and 3) materials, 

the extensional sample always breaks before the maximum stress is reached).  Crucially we also 

capture in the case of LDPE1 the rate at which hardening sets in (as well as its much reduced 

scale).  In shear the model predicts the existence and position of a transient stress maximum in 

each case, and the qualitatively different “thinning” behaviour in contrast to the “hardening” in 

extension. 

The successful non-linear predictions are surprising: the phenomenon is highly-sensitive 

to details of the long chain branching still underdetermined by the solution measurements and 

linear rheology.  Might the non-linear predictions be fortuitous, and other numerical ensembles 

equally consistent with the linear measurements give radically different non-linear predictions?  

We tested this by constructing examples of these alternative distributions.  The dashed curves in 

Figure 3 for LDPE 2 show the extensional and shear predictions for an ensemble constructed from 

a blend of two, rather than three degrees of conversion (parameter values in SOM).  MWD, g(M) 

and linear rheology are essentially identical, but the reaction parameters in the two fractions differ 

markedly from any of the three in the first model.  Yet we see that the non-linear predictions are 

robust.  But the reason for this commercially vital feature is subtle: it is sensitive to the branched 

structure only though the relaxation time/priority distribution.  Providing this is correct, variations 

in structure within that ensemble will not result in variation of rheological response.  The 

additional constraints from the polymerisation scheme are sufficient to ensure that the ensemble 

belongs to the correct region of relaxation time/priority space.  Figure SOM1 in the shows an 

example of a time-dependent correlation map of relaxation time and priority (for LDPE1).  It also 

indicates the two extreme structures of perfect combs and perfect Cayley trees which constitute 

bounds for such maps.  At the earliest time the outer structures and lowest molecular weights 

resemble comb-like topologies, but at longer times the larger structures acquire a more ramified 

topology of branching, although an important finding is that the ensemble is always very far from 

being accurately represented by Cayley trees (20).   

We are now in a position to start exploring hypothetical variations in reaction conditions 

with a view towards molecular design of new melts.  We chose to tackle the important question of 

independent tuning of the linear and non-linear rheology, and created different single-batch 

ensembles (see Table 1) with near-identical linear rheology.  

 

Resin Τ β Cb Cs xs1 w1 
BATCH1 1×10-3 8×10-5 2×10-2 0 0.15 1 

BATCH2 8.5×10-4 8×10-5 5×10-3 0 0.15 1 
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Table 1: The reaction model parameters of the hypothetical materials  

 

The predicted MWD, branching structure and linear rheology spectrum for the two melts 

are shown in Figure 4. Also shown is the predicted transient response in strong extension of two 

resins. The first is predicted to show much stronger extension hardening (similar in magnitude to 

LDPE2 and 3) than the second (similar to LDPE1).  This is a result of its higher degree of 

branching (larger Cb), compensated in the second by a smaller strand molecular weight (the 

parameter τ is also larger for melt 1).  This example serves to illustrate that, by separately 

controlling the degree of branching and strand molecular weight, independent control can in 

principle be exercised over the linear rheology and extension hardening of LDPE resins: this is a 

vital principle for design of custom materials. 
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Figure 1 

Upper panel: discrete values of the segment depth (controlling relaxation time) (left) and priority 

(right) values for segments in an arbitrarily chosen branched polymer. 

Lower panel: A typical branched molecule within a branched ensemble undergoing 

configurational relaxation after a step strain at time t.  The co-ordinate z(t) divides a branch into 

relaxed (z<z(t)) and unrelaxed (z>z(t)) portions.  The co-ordinate )(~ zZ , also increasing with t, 

indicates the effective root at time t of the branch relaxing the front at z(t).  On the branch at the 

left is indicated the increasing effective tube diameter for deeper segments as the entanglement 

network dilutes. 
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Figure 2 

(Upper) Example of simultaneous fit of the reaction scheme to the molecular weight distribution 
(black) and branching factor g’(M) (red) for the sample LDPE2. 

(Lower) Linear rheological response of the LDPE materials in the frequency domain showing in 
phase (G’(ω) : dashed lines / squares) and out of phase (G’’(ω) : solid lines / circles) components 
of stress.  In each case data are points and the model results smooth curves.  Samples 4, 5 and 6 
are shifted upwards by 2 decades for clarity. 
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Figure 3 

Non-linear transient viscosity growth curves in uniaxial extension (upper curves) and shear (lower 

curves) for (top) LDPE1, (middle) LDPE2, (bottom) LDPE3.  The temperature is 150ºC. Rates 

range from 0.003s-1 to 100s-1 and as shown on the plots.  Data are symbols; the parameter-free 

model predictions are solid curves.  The dashed curves for LDPE2 show the predictions of an 

alternative bimodal (rather than trimodal) numerical polymerisation ensemble, equally consistent 

with solution measurements and linear rheology, and indicative of the robustness of the scheme to 

fine details of molecular ensemble once relaxation time and priority structures are correct. 
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Figure 4 

Two reaction models (Batch 1, Batch 2) with the parameters as in Table 1 were used to calculate 

Upper: molecular weight (and branching; g) distributions; Middle: linear rheology (solid curves 

are G'', dashed curves G') and Lower: extensional rheology at a range of rates (black curves are 

Batch 1, red curves are Batch 2).  All rheology calculations use the parameters from Table 2.  

Although they have very similar linear rheology, this has been achieved through different 

combinations of branching and molecular weight distributions. As a result, the degree of 

extension hardening for the two hypothetical resins is quite different.   
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