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seismicity and stress (M 2.8 - 3.1); (g) solution mining (M 1.0 - 5.2); (h) geothermal operations (M 1.0 - 
4.6) and (i) hydraulic fracturing for recovery of gas and oil from low-permeability sedimentary rocks 
(M 1.0 - 3.8).  
 
Reactivation of faults and resultant seismicity occurs due to a reduction in effective stress on fault 
planes. Hydraulic fracturing operations can trigger seismicity because it can cause an increase in the 
fluid pressure in a fault zone. Based upon the research compiled here we propose that this could occur 
by three mechanisms.  Firstly, fracturing fluid or displaced pore fluid could enter the fault. Secondly, 
there may be direct connection with the hydraulic fractures and a fluid pressure pulse could be 
transmitted to the fault. Lastly, due to poroelastic properties of rock, deformation or 'inflation' due to 
hydraulic fracturing could increase fluid pressure in the fault or in fractures connected to the fault. The 
following pathways for fluid or a fluid pressure pulse are proposed: (a) directly from the wellbore; (b) 
through new, stimulated hydraulic fractures; (c) through pre-existing fractures and minor faults; or (d) 
through the pore network of permeable beds or along bedding planes. The reactivated fault could be 
intersected by the wellbore or it could be 10s to 100s of metres from it. 
 
We propose these mechanisms have been responsible for the three known examples of felt seismicity 
that are probably induced by hydraulic fracturing. These are in the USA, Canada and the UK. The 
largest such earthquake was M 3.8 and was in the Horn River Basin, Canada. To date, hydraulic 
fracturing has been a relatively benign mechanism compared to other anthropogenic triggers, probably 
because of the low volumes of fluid and short pumping times used in hydraulic fracturing operations. 
These data and analysis should help provide useful context and inform the current debate surrounding 
hydraulic fracturing technology.  
                                
 
 
 



 Hydraulic fracturing is not an important mechanism for causing felt earthquakes  

 Fault reactivation due to hydraulic fracturing is well known and readily detected 

 Hydraulic fracturing will probably induce felt seismicity in the future 
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ABSTRACT 

 

We compile published examples of induced earthquakes that have occurred since 1929 that 

have magnitudes equal to or greater than 1.0. Of the 198 possible examples, magnitudes range 

up to 7.9. The potential causes and magnitudes are (a) mining (M 1.6 – 5.6); (b) oil and gas 

field depletion (M 1.0 – 7.3); (c) water injection for secondary oil recovery (M 1.9 – 5.1); (d) 

reservoir impoundment (M 2.0 – 7.9); (e) waste disposal (M 2.0 – 5.3); (f) academic research 

boreholes investigating induced seismicity and stress (M 2.8 – 3.1); (g) solution mining (M 

1.0 – 5.2); (h) geothermal operations (M 1.0 – 4.6) and (i) hydraulic fracturing for recovery of 

gas and oil from low-permeability sedimentary rocks (M 1.0 – 3.8).  

 

Reactivation of faults and resultant seismicity occurs due to a reduction in effective stress on 

fault planes. Hydraulic fracturing operations can trigger seismicity because it can cause an 

increase in the fluid pressure in a fault zone. Based upon the research compiled here we 

propose that this could occur by three mechanisms.  Firstly, fracturing fluid or displaced pore 

fluid could enter the fault. Secondly, there may be direct connection with the hydraulic 

fractures and a fluid pressure pulse could be transmitted to the fault. Lastly, due to poroelastic 

properties of rock, deformation or ‗inflation‘ due to hydraulic fracturing could increase fluid 

pressure in the fault or in fractures connected to the fault. The following pathways for fluid or 

a fluid pressure pulse are proposed: (a) directly from the wellbore; (b) through new, 

stimulated hydraulic fractures; (c) through pre-existing fractures and minor faults; or (d) 

through the pore network of permeable beds or along bedding planes. The reactivated fault 

could be intersected by the wellbore or it could be 10s to 100s of metres from it. 

 

We propose these mechanisms have been responsible for the three known examples of felt 

seismicity that are probably induced by hydraulic fracturing. These are in the USA, Canada 

and the UK. The largest such earthquake was M 3.8 and was in the Horn River Basin, 

Canada. To date, hydraulic fracturing has been a relatively benign mechanism compared to 

other anthropogenic triggers, probably because of the low volumes of fluid and short 

pumping times used in hydraulic fracturing operations. These data and analysis should help 

provide useful context and inform the current debate surrounding hydraulic fracturing 

technology.  
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1. INTRODUCTION 

 

It has been known since the 1960s that earthquakes can be induced by fluid injection. 

At that time, military waste fluid was injected into a 3671-m-deep borehole at the Rocky 

Mountain Arsenal, Colorado (e.g., Hsieh and Bredehoeft, 1981). This induced the so-called 

‗Denver earthquakes‘. They ranged up to M 5.3, caused extensive damage in nearby towns, 

and as a result, use of the well was discontinued in 1966. Despite the importance of induced 

seismicity, only a few holistic reviews have been published (e.g., Nicholson, 1992; Gupta, 

2002; Li et al., 2007). Compilations often focus on selected mechanisms although there are 

notable exceptions (National Academy of Sciences, 2012).  

 

Recently, the attention of regulators, agencies and the general public has been drawn 

to induced seismicity linked to the hydraulic fracturing of low-permeability sedimentary 

rocks such as ‗tight‘ sandstones and shale, for oil and gas exploration and production. 

Hydraulic fractures are stimulated to increase the surface area of rock which is connected to 

the wellbore. This is achieved by pumping water, proppant and chemicals during multiple 

fracture stages, a process known as ‗fracking‘ (e.g., King, 2010). After pumping ceases the 

injected fluid is allowed to flow back to the surface and can be disposed of by reinjection or 

processing. Although hydraulic fracturing has been carried out since the 1940s, the 

combination of multiple stages of fracturing in horizontal wells in shale and tight sandstones 

and the widespread deployment of this technology did not start until the 1990s (e.g., Curtis, 

2002).  

 

During or soon after hydraulic fracturing there may be an increase in fluid pressure 

along a fault plane, which, if critically stressed, can be reactivated inducing seismicity (Fig. 

1ab). A thorough review of the history of induced seismicity caused by a variety of 

mechanisms including hydraulic fracturing is timely as it places the magnitudes and 

frequency of hydraulic-fracturing-triggered seismicity into context. We introduce the theory 

behind how earthquakes are induced, review the context of global induced seismicity since 

1929, and discuss the evidence that faults are being reactivated as a result of hydraulic 

fracturing and the processes by which this could be occurring.  
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1.1 Earthquakes 

 

All rock masses that experience progressively changing stress are potentially 

seismogenic, i.e., capable of producing earthquakes. Progressive loading of stress by tectonic 

plate movements is the primary geological earthquake-inducing process. It results in intense 

deformation at the boundaries of plates, which are the most active earthquake zones. Plates 

are not absolutely rigid and the effect of their motions is transmitted into their interiors. 

There, lower-level, intraplate deformation occurs. This is sometimes localized in rift zones, 

e.g., the East African rift, and sometimes distributed throughout broad regions, e.g., Britain, 

mainland Europe, and the Basin and Range Province, western U.S.A. (Sykes and Sbar, 1973). 

 

Fluids play a critical role in triggering seismicity in many different geological 

scenarios. Earthquake activity accompanies volcanic activity, and liquid magma is involved 

in those cases, e.g., at Yellowstone, USA. Occasionally, large earthquakes are accompanied 

by significant changes in groundwater, e.g., changes in the level of the water table. Usually, 

however, there is no direct evidence of fluid involvement. Nevertheless, fluids must lubricate 

fault surfaces that slip in earthquakes because otherwise friction on the fault plane would be 

too large to be overcome at the failure energy levels observed. This conjecture is supported 

by the absence of a large heat flow anomaly above the San Andreas fault zone, which would 

inevitably be generated by the friction of dry rock surfaces slipping past each other 

(Lachenbruch and Sass, 1980). 

 

Artificially injecting fluids into the Earth‘s crust induces earthquakes (e.g., Green et 

al., 2012). Fluid injection not only perturbs stress (Fig. 1b) (Scholz, 1990) and creates new 

fractures, but it also potentially introduces pressurised fluids into pre-existing fault zones, 

causing slip to occur earlier than it would otherwise have done naturally (Fig. 1ab).  

 

1.2 Earthquake sizes 

 

Earthquakes range in magnitude from a maximum of ~ 10 down to arbitrarily small 

values. In the most sensitive microearthquake monitoring experiments, the lower magnitude 

limit of earthquakes that are reported is approximately M -3. Although traditional earthquake 
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magnitudes are a familiar measure to most people, they are an empirical measure and no 

longer fit for modern purposes. They have thus been superseded by seismic moment, a 

measure that has physical meaning. 

 

In the past, many magnitude scales were proposed to suit convenience in different 

situations, and several are still in widespread use. Magnitudes are calculated from 

measurements made directly from recorded seismograms, such as wave amplitudes or 

durations. Magnitude formulae usually take into account the epicentral distance of the 

earthquake from the recording station, but they ignore many other factors such as the 

hypocentral depth and the structure of the Earth between the source and the recorder. As a 

result, magnitude is not a measure of source physics, but of seismogram characteristics. 

Different magnitudes are typically obtained by analysing seismograms recorded at different 

seismic stations, or by applying different magnitude scales to the same seismogram. 

Examples of different magnitude scales are the local magnitude scale (ML–popularly known 

as the ―Richter‖ magnitude scale), the surface-wave magnitude scale (mS), and the duration 

magnitude scale (MD). A further complication is that the type of instrument used may be 

included in the magnitude scale definition. For example, local magnitude is defined as 

applying to measurements made from seismograms recorded on Wood-Anderson 

seismographs. These instruments are now obsolete, so the ―Richter‖ magnitudes commonly 

reported nowadays are not valid, for this reason alone. 

 

A rigorous way of estimating earthquake size is by using seismic moment. This is the 

low-frequency scalar moment, M0, and it is a measure of size based on the fundamental 

physics of the earthquake source. M0 varies by over 18 orders of magnitude, and thus it is 

conventional to express it using an empirically derived logarithmic moment-magnitude 

relationship that yields numbers similar to typical magnitudes. This formula is: 

 

Mw = ⅔ log M0 - 10.7 

 

where M0 is measured in dyne-cm (Hanks and Kanamori, 1979; Kanamori, 1977). The 

moment magnitude (Mw) of an earthquake is theoretically the same regardless of where the 

earthquake was measured, the type of recording instrument, structure along the wavepaths, or 
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which stations are used. If earthquake size is an important parameter it is crucial to use 

moment magnitude. Only then can the sizes of earthquakes from different regions or time 

periods be meaningfully compared.  

 

If moments are unavailable, the next best thing is to use the same type of magnitude, 

e.g., ML or MD. Estimates for the same earthquake made using different magnitude scales 

may vary by one, or even as much as two, magnitude units. 

 

1.3 Earthquake numbers 

 

Earthquakes result from brittle failure of the Earth's crust. They exhibit a log normal 

frequency distribution (Gutenberg and Richter, 1944). The frequency-magnitude slope of 

earthquake sequences is usually approximately unity, meaning that for every reduction of one 

magnitude unit, ten times as many earthquakes occur (Gutenberg and Richter, 1944). The 

seismic rate for the world is approximately one magnitude 9 earthquake per decade, one 

magnitude 8 per year, 10 magnitude 7s, 100 magnitude 6s and so on. The stress released by 

an earthquake is, however, approximately 30 times that released by an earthquake one 

magnitude unit smaller. From this is easy to see why large earthquakes cannot be prevented 

by inducing many smaller earthquakes. The fractal nature of earthquakes induced by human 

operations is not fundamentally different from that of natural earthquakes, and no case has 

ever been reported where several tens of earthquakes of a given magnitude have been induced 

without also producing events a magnitude unit larger. 

 

The number of earthquakes detected by a seismic network is dependent on 

observational factors, e.g., the proximity of the nearest seismic station and the quality of the 

installation. The closer the station and the higher-quality the installation, the lower will be the 

magnitude detection threshold and the larger the number of earthquakes reported. 

Improvement of a network such that it detected earthquakes one magnitude unit lower, e.g., 

by adding additional stations close to the activated zone, would immediately increase the 

numbers of earthquakes reported by an order of magnitude. Thus, the number of earthquakes 

reported must be taken in context. For example, a report that the number of earthquakes 
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observed at one project was greater than the number observed at another project is 

meaningless unless the monitoring conditions were identical. 

 

Earthquake magnitudes follow a power law distribution described by the Gutenberg-

Richter relationship (Gutenberg and Richter, 1944): 

 

logN= a - bM, 

 

where N is the number of earthquakes with magnitude greater than or equal to magnitude M, 

and a and b are constants.  

 

1.4 Induced earthquakes 

 

A fault slips when the normal stress across a fault plane drops to a sufficiently low 

level that the shear stress overcomes the static friction on the fault surface. This is expressed 

by the Mohr diagram (Fig. 1b). A fault can be brought to a critical state either by increasing 

the shear stress, e.g., by plate motions or surface loading, or by decreasing the normal stress 

that clamps the fault surfaces together. The latter could be caused by processes such as 

stretching, exhumation and erosion and by increasing the fluid pressure in the fault zone. 

 

Stress is perturbed, and earthquakes induced, by a number of anthropogenic activities 

that change the loading state of the Earth's crust. These include the removal of subsurface 

volume by mining the solid rock or the extraction of oil and gas. Mine-quakes are a 

significant safety hazard and are common for example in the UK and South Africa. Some 

mining operations, e.g., deep gold mines in South Africa, are seismically monitored for safety 

reasons. Depleted hydrocarbon reservoirs are often seismogenic, as reservoirs collapse in 

response to the removal of pore fluids.  

 

The injection of fluids into the subsurface is an increasingly common activity. It is 

done to dispose of waste water or chemicals, to flush hydrocarbons out of oil reservoirs, to 

fracture shale for gas and oil extraction and to introduce water into geothermal reservoirs to 

create permeability and for circulation of hot fluid. Because of the importance of managing 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 

 

8 

 

induced earthquakes, the factors that could affect the size of the largest earthquakes induced 

by fluid-injection are of critical interest. Candidate operational parameters include the 

temperature and volume of the fluid injected, and its type, phase, injection rate, pressure and 

depth below the surface. The pre-existing stress- and fracture state of area, i.e., whether the 

area contains large faults and is tectonically active, may also be important. Fluid injections in 

stable continental interiors where differential stress levels are low and static, and there is no 

history of seismicity, are likely be less seismogenic than injections in areas of active tectonics 

that already have a high natural seismic rate and are thus critically stressed even before 

injection commences. Sometimes, induced seismicity can reveal the presence of previously 

unknown faults. Correlations of various operational and seismic parameters have been 

measured in an attempt to explore possible mitigating operational approaches. 

 

2. HISTORY OF INDUCED SEISMICITY 

 

Since 1993 there have been seven generally accepted criteria that must be met before 

fault reactivation is considered to have an anthropogenic origin (Davis and Frohlich, 1993). 

These are: 

 

1. Are these events the first known earthquakes of this character in the region? 

2. Is there a clear correlation between injection and seismicity? 

3. Are epicentres near wells (within 5 km)?  

4. Do some earthquakes occur at or near injection depths? 

5. If not, are there known geologic structures that may channel flow to sites of earthquakes? 

6. Are changes in fluid pressures at well bottoms sufficient to encourage seismicity? 

7.    Are changes in fluid pressures at hypocentral distances sufficient to encourage 

seismicity? 

 

The literature on induced seismicity dates back to 1933 (Gupta, 1985; Rothé, 1970), 

well before the proposal by Davis and Frohlich (1993) of these criteria. In this paper we 

compile all potential examples of induced seismicity, many of which did not use these 

criteria. The total of 198 possible examples, come from 66 published papers and reports 

(Table 1, 2 and 3). Because we only use published examples, our database is not 
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comprehensive. For instance, we are aware of many unpublished examples of induced 

earthquakes associated with the mining industry in the UK, but it is beyond the scope of this 

review paper to analyse unpublished datasets. Lastly, in cases where a swarm of earthquakes 

thought to be induced is reported, we have only recorded the magnitude of the largest event.  

 

We subdivide the seismicity by likely trigger mechanism into: (a) mine subsidence, 

(b) oil and gas field depletion, (c) fluid injection for secondary oil recovery, (d) research-

related projects, (e) waste-water disposal, (f) solution mining, (g) Enhanced Geothermal 

Systems (EGS) operations, (h) reservoir impoundment, (i) groundwater extraction, and (j) 

hydraulic fracturing for recovery of hydrocarbons from shale. We briefly review (a) - (i), and 

consider (j) in more detail. 

 

2.1 Mine subsidence 

 

Earthquakes induced by mine subsidence are some of the most widely studied. They 

are often due to collapse of mine workings (e.g., Bennett et al., 1996; Hubert et al., 2006; Li 

et al., 2007). These earthquakes range from M 1.6 to 5.6 (Table 1). Often the only damage 

they cause is to the mines and miners working in them, but they have been known to damage 

the wider community (Li et al., 2007).  

 

2.2. Oil and gas field depletion 

 

Earthquakes are caused by compaction of reservoirs as a result of hydrocarbon 

extraction (e.g., Suckale, 2009). The flexure of the overburden generates shear stresses that 

can induce slip along weak shale strata (e.g., Hamilton et al., 1992). At the Lacq gas field 

(southwest France) 1639 earthquakes were detected around the field in the magnitude range 

M 1.9 to 6 (Bardainne et al., 2008). In 1976 and 1984 there were M 7.0 events at Gazli, 

Uzbekistan. The area around Gazli had been aseismic until these events. It is uncertain that 

these events were induced, but several criteria indicate that these are the largest examples of 

earthquakes induced by gas extraction from a conventional gas field (Table 2).  

 

2.3 Fluid injection for secondary oil recovery 
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Water is injected into oil fields to increase the percentage of oil recovered and it can 

enter faults reducing normal stress and allowing reactivation. Fluid injection for oil recovery 

also maintains reservoir pressure and reduces or eliminates the compaction effects if that 

pressure is communicated effectively throughout the reservoir. Davis and Pennington (1989) 

documented events with Mb – 4.3 to ML – 5 between 1974 and 1982 at the Cogdell oil field in 

West Texas, USA. Cesca et al. (2011) document an example of a 4.3 M event at the Ekofisk 

field (North Sea, UK), probably caused by water injection. Magnitudes of earthquakes range 

from M 1.9 - 5.1 (Table 2). 

 

2.4 Research-related projects 

 

Approximately 400 earthquakes occurred in association with the German Continental 

Deep Drilling Program, which included a borehole drilled to 9.1 km depth. They occurred at 

an average depth of 8.8 km and are thought to have been induced by injection of brine into a 

70-m-thick open-hole section near the bottom of the borehole. One conclusion of this work 

was that critically stressed, permeable fault zones exist in the crust, even at great depth and 

temperature (Zoback and Harjes, 1997). The event magnitudes ranged from 2.8 - 3.1 (Table 

2). 

 

2.5 Waste-water disposal 

 

Frohlich et al. (2011) concluded that the most likely cause of an increase in seismicity 

in the Dallas Fort Worth area, USA, with events of up to M 3.6, was probably the result of 

injecting waste flowback water derived from the hydraulic fracturing of shale for gas 

production. The depth and location of seismicity were close to recent waste water injection 

activity. Magnitudes for a range of different waste water injection activities are 2.0 - 5.3 

(Table 2).  

 

2.6 Solution mining 
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Solution mining involves drilling wells into underground salt deposits and injecting 

water into them to dissolve the salt. The earliest reported induced earthquake is attributed to 

this operational technique (see Pechmann et al., 1995). That earthquake occurred in Attica 

(New York, USA) in 1929, and had a magnitude of M 5.3. 

 

2.7 Enhanced Geothermal Systems (EGS) operations 

 

The US$60 million Basel, Switzerland Enhanced Geothermal Systems project 

involved creating a fracture network in hot rock, through which fluid could be circulated to 

extract heat. Earthquakes with magnitudes up to ML 2.9 began to occur six days into the main 

hydraulic fracturing operation (e.g., Häring et al., 2008). This activity exceeded a pre-decided 

injection-cessation threshold, but even though pumping was stopped, several more 

earthquakes with magnitudes exceeding ML 3.0 occurred over the following two months. In 

total, 13,500 earthquakes were recorded, nine of which were of ML 2.5 or larger (Table 2). 

 

2.8 Reservoir impoundment 

 

Reservoir impoundment is a widely documented cause of induced earthquakes, and a 

significant review was carried out in 1985 (Gupta, 1985). The weight of water loading on the 

surface provides enough pressure to induce earthquakes (Carder, 1945). Magnitudes of 

recorded cases range from 1.0 to 7.9 (Table 3). There is dispute, however, as to whether the 

very large Wenchuan, China M 7.9 earthquake resulted from filling the reservoir, or whether 

it was a natural process (Ge et al., 2009 vs. Deng et al., 2010). It resulted in ~ 90,000 deaths 

and ~ 100,000 injuries (Gahalaut and Gahalaut, 2010). This issue is currently causing concern 

as the Three Gorges Dam on the Yangtze river fills, and induced earthquakes as large as M 

6.5 there have been forecast (Lixin et al., 2012). 

 

2.9 Groundwater extraction 

 

González et al. (2012), suggest that stress induced by major groundwater extraction 

probably triggered the Mw 5.1 earthquake that occurred in Lorca, southeast Spain, 11th May 
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2011. This earthquake caused nine fatalities and considerable devastation for such a moderate 

event, principally because the focus was shallow at about 2-4 km depth. 

 

Faults in the crust are in a state of frictional equilibrium under complex systems of 

stress, partly tectonic in this case through the interaction between the North African and 

Southern European areas, and also because of the weight of the overburden itself. Isostatic 

unloading and the associated elastic response of the crust and lithosphere is well known as 

a cause of seismicity, and much of NW Scotland‘s historic seismicity is associated with 

glacial unloading from the last ice sheet ca. 10,000 years ago. The Betic Cordillera is one of 

the most seismically active areas in the Iberian Peninsula and it is not surprising that the 

removal of 250 m of groundwater since 1960, a significant mass change over a short period of 

time, together with the many centimetres of subsidence caused by the consequential 

compaction, could provide the minor stress perturbation necessary to bring local faults to 

failure. 

 

Figure 2 shows a graph of earthquake magnitude vs. frequency where magnitudes 

range from 1.0 - 7.9. This graph only documents examples of induced seismicity which have 

been published, and the hundreds of anecdotal mining-induced earthquakes with M > 1 in the 

UK, for example, are not included. Figure 2 shows that the most commonly reported induced 

earthquakes are M 3 - 4. The paucity of events of smaller magnitudes reflects lack of 

detection and reporting. Mining, oil- and gas-field depletion, reservoir impoundment, EGS 

wells, and waste water injection are the most frequently reported causes of induced 

seismicity.  

 

3. HYDRAULIC FRACTURING 

 

3.1 Operations 

 

Exploration wells targeting low permeability sedimentary reservoirs, particularly in 

new exploration settings, are commonly drilled vertically and then hydraulically fractured. 

Production wells are typically deviated so that the borehole is strata-parallel through the 

reservoir (Fig. 1a). The production casing is perforated and hydraulic fractures are stimulated 
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by injecting saline water with chemical additives. ‗Proppant‘– sand or synthetic ceramic 

spheres – is used to keep the fractures open (e.g. King, 2010). Hydraulic fracture stimulation 

from a horizontal borehole is usually carried out in multiple stages with fluids with known 

volumes and compositions (e.g., Bell and Brannon, 2011). Approximately 10-40% of the 

hydraulic fracturing fluid used flows back after stimulation. In some cases faulted areas of the 

reservoir are specifically targeted because there may be pre-existing fault and fracture 

permeability. 

 

There are many good examples of hydraulic fracturing that has caused fault or fracture 

reactivation (e.g., Warpinski et al., 1998; Wolhart et al., 2005; Vulgamore et al., 2007; 

Maxwell, 2008; Cipolla et al., 2012). The seismicity is generally very low magnitude (< M 0) 

and typically not recorded above the noise level by traditional surface seismometer networks. 

Monitoring of fracture growth and fault reactivation is thus done using downhole geophone 

strings that are deployed within a few hundred metres of the hydraulic fracturing. Only by 

deploying sensors so close to the seismicity can data be collected of sufficient high quality 

that locations and other processing results can be calculated for these tiny events. 

Alternatively, massive surface arrays comprising hundreds or thousands of seismometers are 

deployed, so the signal-to-noise ratio can be enhanced by stacking the seismograms (Grechka, 

2010; Gei et al., 2011). 

 

Most of the criteria proposed by Davis and Frohlich (1993) for induced seismicity are 

fulfilled for seismicity recorded during hydraulic fracturing operations. We review the data 

here, and use it to understand the geological processes by which fault reactivation occurs 

during and after the hydraulic fracturing operations. 

 

3.2 Earthquake magnitudes 

 

Fault reactivation can cause earthquakes with magnitudes larger than expected for 

fracture propagation. Wolhart et al. (2005) demonstrated this in the Jonah Field in Wyoming, 

USA (Fig. 3). Hydraulic fracturing of the Late Cretaceous Lance Formation was carried out 

in a number of wells, with 9-11 hydraulic fracturing stages, using an energized borate cross-

linked gel (Wolhart et al., 2005; Downie et al., 2010). The East 1 well was used for seismic 
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measurements and the East 3 well was used for the hydraulic fracturing (Fig. 3). A graph of 

moment magnitude vs. distance is commonly used to identify seismicity that is anomalously 

large, and that clusters at specific distances from the monitoring well. Both characteristics 

indicate reactivation of a discrete fault (Fig. 3).  

 

Increases in the magnitude of the microearthquakes with time following the onset of 

pumping are indicative of fault reactivation. These have been reported to have been 

accompanied by a sharp reduction in b-value, calculated for a moving subset of events over 

the time that pumping took place (Maxwell et al., 2009 – Fig. 4). For example, in the case of 

the study of Maxwell et al. (2009), a thrust fault was penetrated by the treatment well. 

Sandstones offset by the fault were hydraulically fractured with a ca. 80-minute-long 

injection. After pumping ceased, the earthquakes would be expected to reduce in size, but in 

this case they became larger. The b-value dropped from ~2 to ~1, and this was interpreted as 

indicating fault reactivation (Maxwell et al., 2009; Downie et al., 2010 – Fig. 4). Until 

recently such analyses were carried out after hydraulic fracturing was completed. However, 

Kratz et al. (2012) report results from the hydraulic fracturing of four horizontal wells in 

Montague county in Texas, in the lower Barnett shale, and propose that the b-values are 

evidence for early fault movement during and after the hydraulic fracturing. 

 

Precursory microseismicity was not recorded in the Preese Hall well, in Lancashire, 

UK in 2011, where several events up to M 2.3 have been ascribed to fault reactivation (Fig. 5, 

Green et al., 2012). At the Preese Hall 1 well, 55 events were recorded. That the hydraulic 

fracturing caused fault reactivation was proposed on the basis of the unusually high 

magnitude and the close temporal coincidence with hydraulic fracturing stages (Fig. 5). 

 

3.3 Spatial and temporal characteristics 

 

Spatial clustering of the larger earthquakes can occur (Wolhart et al., 2005 - Fig. 3). 

Earthquakes induced at the Jonah Field, Wyoming, showed a spatial distribution that 

suggested new hydraulic fractures fed hydraulic fracturing fluid into a fault which 

consequently reactivated (Maxwell et al., 2008, – Fig. 6). The fault is approximately 200 m 

from the injection well.  
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Clustering can be temporal as well as spatial. Wessells et al. (2011) showed that for 

three hydraulic fracturing operations in a 24 hour period there were significant increases in 

the normalised seismic energy emitted, and this was interpreted as discrete episodes of fault 

movement. Hulsey et al. (2010) describe induced strike-slip and reverse faulting in the 

Marcellus shale, USA, resulting from hydraulic fracturing, and characterized by short bursts 

of earthquakes. 

 

 Mapping hydraulic fractures in the Montney Formation, Canada, using seismicity, 

shows that hydraulic fractures can terminate at faults which have been mapped using 3D 

seismic reflection data (Maxwell et al., 2011) (Fig. 7). The edge detection map (often used to 

identify faults in 3D seismic datasets) reveals a number of faults that trend NW-SE. The 

largest earthquakes located are close to a NW-SE trending fault, consistent with the 

interpretation that it was reactivated.  

 

 As well as injection into faults via new fractures, injection directly into faults has been 

recorded in the Barnett Shale (USA) (Kratz et al., (2012) (Fig. 8). The faults are strike-slip, 

whereas the fractures are normal. Thus, the changes in the sense of shear as well as the spatial 

clustering are diagnostic of fault reactivation rather than the stimulation of new fractures. 

 

There is a growing body of research that models the process of fluid-injection-induced 

seismicity (e.g., Shapiro and Dinske, 2009). For example Rozhko (2010) focus on the spatial 

and temporal development of the microseismicity that occurs due to hydraulic fracturing and 

proposes that it can modelled on the basis of linear pressure diffusion in the fluid, coupled to 

deformation of a linear poroelastic medium. The microseismicity is considered to be caused 

by changes in the Coulomb yielding stress along a pressure diffusion front, caused by seepage 

forces (Rozhko, 2010). Geiser et al., (2012) propose that they can image extensive pre-

existing fractures stimulated by these processes using a passive seismic method coined 

‗tomographic fracture imaging‘ caused by transmission of a fluid pressure pulse. The 

following year Lacazette and Geiser (in press) clarified that, it‘s not only a fluid pressure 

pulse but also poroelastic coupling of the stress in the rock to pore and fracture fluids could 
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cause the stress changes without any fluid flow that stimulates fractures 100s of metres from 

place where hydraulic fractures were initiated.  

 
3.4 Long-period and long-duration events 

 

 Because of the high pressure of the hydraulic fracturing fluid, faults poorly orientated 

relative to the stress field may slip, but the slip may be slow and not generate conventional 

high-frequency microearthquakes (Das and Zoback, 2011). Das and Zoback (2011) studied 

10-80 Hz, long-period, long-duration (LPLD) events which have similar characteristics to 

tectonic tremors observed in subduction zones and strike-slip plate boundaries. The maximum 

number of LPLD events were detected in the hydraulic fracturing stages with the highest 

pumping pressure and the highest natural fracture density (Fig. 9). The events were 

interpreted as slow shear slip on pre-existing natural fractures as a result of the high fluid 

pressure. The faults that moved were poorly orientated relative to the stress field.  

 

3.5 Nuisance seismicity 

 

The majority of data from the USA show that when fault reactivation occurs the 

earthquake magnitudes tend to be very low, and do not exceed ~ M 1 (Fig. 10). There are 

three known exceptions to this, Etsho and Kiwigana, Canada in 2009, 2010 and 2011 (BC Oil 

and Gas Commission, 2012), the Eola Field, Oklahoma, USA in 2011 (Holland, 2011) and 

Lancashire, UK in 2011 (de Pater and Baisch, 2011). In 2011 a felt earthquake of magnitude 

M 2.3 occurred in Lancashire, UK, as a result of hydraulic fracturing of the Preese Hall well 

(Fig. 5). The seismicity at the Eola Field, southern Garvin County, Oklahoma, has been 

tentatively attributed to hydraulic fracturing. The field is characterised by a series of WNW - 

ESE striking faults. 43 earthquakes were located there in 2011 with magnitudes up to 2.8. 

Hydraulic fracturing was carried out in a number of stages and earthquakes onset 13 hours 

after operations began (Holland, 2011).  

 

A total of 216 earthquakes occurred 2009-2011 at the Etsho and Kiwigana fields in 

Horn River, Canada and 19 were between ML 2 and 3 (Fig. 11). The largest event had a 

magnitude of ML 3.8, it occurred in May 2011, and it was felt. There was a clear temporal 
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relationship between pumping and the seismicity, with earthquakes starting several hours 

after the beginning of pumping (BC Oil and Gas Commission, 2012).  

 

4. PROCESS MODEL 

 

 A number of conclusions can be drawn from these examples. Firstly there is evidence 

that faults can be connected to the injection well via hydraulic fractures (Fig. 6) as well as 

direct injection into faults intersecting the treatment wells (Fig. 8). Even where faults are 

intersected by the treatment wells, there is often a time lag of several hours between the start 

of pumping and fault reactivation. At the Preese Hall 1 well, (Lancashire, UK) there was a 

delay of 10 hours between cessation of pumping and the M 2.3 earthquake (de Pater and 

Baisch, 2011). The same observation was made by Maxwell et al. (2009) who observed a 

delay of approximately 80 minutes from the onset of pumping and evidence for fault 

reactivation in gas wells in Western Canada. Examples of felt seismicity documented in the 

Horn River, Canada occurred several hours after the start of pumping (BC Oil and Gas 

Commission, 2012). The delay between pumping and the reactivation of some faults (e.g., 

Maxwell et al., 2009) may in part be because the fault into which fluid is injected has inherent 

storage and transmissibility characteristics, or due to the time required for the transmission of 

fluid pressure by pressure diffusion and due to poroelasticity (Lacazette and Geiser, in press).  

 

In summary there are several mechanism by which faults are reactivated due to hydraulic 

fracturing to cause felt seismicity.  Fracturing fluid or displaced pore fluid could enter the 

fault, a fluid pressure pulse could be transmitted to the fault and due to poroelasticity, 

deformation or ‗inflation‘ of the rock due to injection could increase fluid pressure in the fault 

or in the fractures connected to the fault (e.g. Lacazette and Geiser, in press). The following 

pathways for fluid or a fluid pressure pulse are proposed: (a) directly from the wellbore; (b) 

through new, stimulated hydraulic fractures; (c) through pre-existing fractures and minor 

faults; or (d) through the pore network of permeable beds or along bedding planes (Fig. 12). 

The reactivated fault could be intersected by the wellbore or it could be 10s to 100s of metres 

from it. 

 

5. CONCLUSIONS 
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Of the 198 possible examples of induced seismicity reported in the literature, 

magnitudes range up to M 7.9. Hydraulic fracturing of sedimentary rocks, for recovery of gas 

from shale, usually generates very small magnitude earthquakes only, compared to processes 

such as reservoir impoundment, conventional oil and gas field depletion, water injection for 

geothermal energy recovery, and waste water injections. We have proposed four primary 

mechanisms for fault reactivation by hydraulic fracturing. Although there are approaches for 

mitigating the risks (e.g., Brodylo et al., 2011; Green et al., 2012) and faults can often be 

imaged by seismic reflection data, and avoided, it cannot be ruled out that reactivation of pre-

existing faults could induce felt seismicity. It should be noted, however, that after hundreds of 

thousands of fracturing operations, only three examples of felt seismicity have been 

documented. The likelihood of inducing felt seismicity by hydraulic fracturing is thus 

extremely small but cannot be ruled out.  
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FIGURES 

 

Figure 1. Induced seismicity caused by hydraulic fracturing. (a) Cartoon of a well drilled 

vertically and then horizontally into fine-grained, low-permeability strata (dark grey), which 

are offset by a normal fault (thick black line). Fluid, or a fluid pressure pulse, can be 

transmitted into a nearby or intersecting, critically stressed fault (white arrows). Compressive 

stresses σ1, σ2, and σ3 act upon the fault. In this case σ1 is depicted as being vertical, σ2 is 

horizontal (out of the page and not shown), and σN is the normal stress acting on the fault 

plane. Failure occurs when the shear stress (τ) is higher than the sum of the shear strength (τo) 

and frictional stress on the fault plane (µσN), where µ is the coefficient of friction. (b) A Mohr 

diagram for the fault plane. Mohr Circle 1 represents σ1 and σ3 for the critically stressed fault 

plane prior to hydraulic fracturing. It is therefore located close to the Mohr failure envelope. 

During hydraulic fracturing, or during shut in of the well before flowback, the fluid pressure 
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within the fault zone could increase. This could occur due to transmission of a fluid pressure 

wave or because hydraulic fracturing fluid or pore fluid enters the fault increasing fluid 

pressure. This causes a reduction in the compressive stress, σ1 and σ3, so the Mohr circle 

shifts to the left (red arrow, Mohr Circle 2), intersects the failure envelope, shear failure 

occurs, and if this is over a significant length of the fault, there is the potential for felt 

seismicity. 

 

Figure 2 Frequency vs. magnitude for 198 published examples of induced seismicity (see 

Tables 1, 2 and 3). The many examples of induced seismicity that are not published are not 

included on this graph. 

 

Figure 3 Moment magnitude vs. distance from seismic stations for induced hydraulic 

fracturing operations in a number of wells in the Jonah Field (Wyoming, USA – after Wolhart 

et al., 2005). The clustering of events with larger magnitudes is indicative of fault reactivation 

due to pumping of hydraulic fracturing fluid. Inset – location map. 

 

Figure 4 Detecting fault reactivation by changes in b-value. In this example a thrust fault was 

reactivated after the injection period had ended and this is marked by a change in the b-value 

from 2 to 1 (after Maxwell et al., 2009).  

 

Figure 5 Pumped volume, flowback volume and moment magnitude for several 

microearthquakes vs. time for the Preese Hall well, drilled in 2011 in Lancashire, UK (de 

Pater and Baisch, 2011). 

 

Figure 6 Microearthquakes from the Jonah Field, (Wyoming, USA, location Fig. 3 inset). 

Blue dots: microearthquakes caused by the propagation of hydraulic fractures in East 3 well. 

This probably allowed fluid movement into a fault, reducing normal stress, and reactivating it 

(yellow and green dots). After Wolhart et al. (2005). 

 

Figure 7 (a) Three wells, A, B, and C, drilled into the early Triassic upper Montney 

Formation in northeast British Columbia. The orange dashed line bounds the microseismicity 
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in the northeast. (b) Edge attribute (see Brown, 2010) for a reflection in a 3D dataset over the 

upper Montney Formation showing NW-SE orientated faults. After Maxwell et al. (2011). 

 

Figure 8 Map of microearthquakes induced by multiple stages of hydraulic fracturing in the 

Barnett shale (after Kratz et al., 2012). Blue lines – boreholes, blue dots – earthquakes with 

strike-slip motion, red dots – earthquakes with dip slip motion. Changes in the sense of shear 

on failure planes are thought to indicate a change from the stimulation of new hydraulic 

fractures (red dots) to fault reactivation (blue dots). Yellow-dashed lines mark interpreted 

extents of damage zones. This case study probably represents an example of the direct 

injection of fracturing fluid into a fault zone.  

 

Figure 9 Long-period, long-duration (LPLD) seismicity recorded during a multi-well, multi-

stage hydraulic fracturing operation in the Barnett Shale in Texas (after Das and Zoback, 

2011). (a) Geometry and arrangement of wells A-E with reported seismicity. (b) Axial 

spectrogram of stage 7 of wells A and B revealing numerous LPLD events. (c) Examples of 

LPLD events observed at frequencies below 100 Hz taken from (b). Blue arrows point to the 

LPLD seismic events. 

 

Figure 10 Comparison of earthquake moment magnitudes recorded in the USA, Canada and 

UK. Red dots indicate felt seismicity with the magnitude marked. (1) from Warpinski et al. 

(2012); (2) from Pater and Baisch (2011); (3) from Holland (2011); (4) from the BC Oil and 

Gas Commission (2012). 

 

Figure 11 Range of magnitudes for the cases of felt seismicity including only magnitudes > M 

1. Etsho and Kiwiganaola were reported on the ML scale (magnitudes from figure 9 of BC Oil 

and Gas Commission, 2012), Preese Hall-1 events were recorded as moment magnitudes (de 

Pater and Baisch, 2011) and Eola Field, Oklahoma, USA events as duration magnitude.  

 

Figure 12 Cartoon of low-permeability reservoir with an intersecting fault and potential 

mechanisms for the transmission of a pore fluid pressure pulse or fluid into a fault to cause 

reactivation. 1 – Direct connection and injection into the fault (e.g., Hulsey et al., 2010); 2 – 

fluid flow through the stimulated hydraulic fractures into the fault (e.g., Wolhart et al., 2005); 
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3 – fluid flow through the existing fractures; 4 – fluid flow through permeable strata and 

along bedding planes.  

 

Table 1. Earthquakes induced by mining operations. 1. Pechmann et al. (1995); 2. Bennett et 

al. (1996); 3. Hubert et al. (2006); 4. Bischoff et al. (2009); 5. Redmayne (1988); 6. Fritschen 

(2009); 7. Arabasz et al. (2005); 8. Zhang Zhong et al. (1997); 9. Vallejos and McKinnon 

(2011); 10. Li et al. (2007); 11. Amidzic et al. (1999); 12. Majer (2011). Gaps in this and 

subsequent tables are where information was not specified in the published source. 

 

Table 2. Earthquakes induced by waste injection, oil and gas field depletion, pressure support 

for oil and gas fields, salt mining, hydraulic fracturing for shale gas exploitation and 

geothermal exploitation. 1. Nicholson (1992); 2. Davis et al. (1995); 3. Lahaie et al. (1998); 4. 

Mirzoev et al. (2009); 5. Roest and Kuilman. (1994); 5. Jalali et al. (2008); 6. Davis and 

Pennington (1989); 7. Doser (1992); 8. Galybin et al. (1998); 9. Genmo et al. (1995); 10. 

Ottermoller (2005); 11. Kouznetsov et al. (1994); 12. Giardini (2011); 13. Howe et al. (2010); 

14. Van Eck et al. (2006); 15. Ohtake (1974); 16. Nicholson and Wesson (1990); 17. Zoback 

and Harjes (1997); 18. Frohlich et al. (2011); 19. de Pater and Baisch (2011); 20. Van Poollen 

and Hoover (1970); 21. Ake et al. (2005); 22. Holland (2011); 23. Julian et al. (1996); 24. 

Gibbs et al. (1973); 25. Häring et al. (2006); 26. Baisch et al. (2006); 27. Bourouis and Pascal 

(2008); 28. Majer et al. (2007); 29. Keiding et al. (2010); 30. Batini (1985); 31. Phillips et al. 

(2002); 32. Evans et al. (2012); 33. Kugaenko et al. (2005); 34. Kaieda et al. (2010). 35. BC 

Oil and Gas Commission, (2012).  

 

Table 3. Earthquakes induced by surface reservoir construction and impoundment. 1: Gupta 

(1985); 2: Rothé (1970); 3: Gough and Gough (1970); 4: Stein et al. (1982); 5: Keith et al. 

(1982); 6: Zoback and Hickman (1982); 7: Chung and Chao (1992); 8: Gahalaut and Gahalaut 

(2010); 9: Lei et al. (2008); 10: Klose (2007); 11: Ge et al. (2009). 
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Table 1 

Mine Location Resource 

Largest Earthquake 

Reference Date Magnitude 

Magnitude Type 

reported 

Trona Mines Wyoming Trona 1995 5.1 
ML 

1 

Newcastle Australia Coal 1989 5.6 
Mo 

2 

Ural Mts Russia   1995 4.4 
M 

2 

  South Africa   1994 5.6 
M 

2 

Kentucky USA   1995 4 
M 

2 

New York USA   1994 3.6 
M 

2 

Welkom South Africa Gold 1976 5.2 
ML 

3 

Klerksdorp South Africa Gold 1977 5.2 
ML 

3 

Carletonville South Africa Gold 1992 4.7 
ML 

3 

Klerksdorp South Africa Gold 2004 4.9 
ML 

3 

Klerksdorp South Africa Gold 2005 5.3 
ML 

3 

Saar Germany Coal 2008 4 
ML 

4 

Ruhr Germany Coal 2007 3.3 
ML 

4 

  UK Coal 1986 2.8 
ML 

5 

Saarland Germany Coal 2008 4 
ML 

6 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

34 

 

34 

 

Utah USA Coal 2000 2.2 
ML 

7 

Liaoning  China Coal 1977 4.3 
M 

8 

Copper Cliff North Ontario, Canada   2008 3.8 
Mo 

9 

Craig Ontario, Canada   2007 2.2 
Mo 

9 

Creighton Ontario, Canada   2006 4.1 
Mo 

9 

Fraser Ontario, Canada   2008 2.4 
Mo 

9 

Garson Ontario, Canada   2008 3.3 
Mo 

9 

Kidd Creek Ontario, Canada   2009 3.8 
Mo 

9 

Macassa Ontario, Canada   2008 3.1 
Mo 

9 

Nanshan China Coal 2001 3.7 
ML 

10 

Gangdong China Coal   2.3 
ML 

10 

Shengli China Coal 1978 2.8 
ML 

10 

Laohutai China Coal 1981 2.5 
ML 

10 

Wulong China Coal 2004 3.8 
ML 

10 

Taiji China Coal 1977 4.3 
ML 

10 

Benxi Caitun China Coal 2004 2.8 
ML 

10 

Mentougou China Coal 1994 4.2 
ML 

10 

Chengzi China Coal   3.4 
ML 

10 

Fangshan China Coal 1997 3 
ML 

10 
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Jinhuagong China Coal   2.1 
ML 

10 

Baidong China Coal 1983 2.7 
ML 

10 

Hauting China Coal   3.3 
ML 

10 

Taozhuang China Coal 1982 3.6 
ML 

10 

Shunyuan China Coal 2002 3.6 
ML 

10 

Sanhejian China Coal 2003 3.4 
ML 

10 

Weixi China Salt 1979 4.2 
ML 

10 

Zigong China Salt 1985 4.6 
ML 

10 

Louguanshan China   1994 4.3 
ML 

10 

Chayuan China Coal 1987 4.3 
ML 

10 

Yanshitai China Coal 1987 4.3 
ML 

10 

Huachu China Coal 1982 4.1 
ML 

10 

Sijiaotian China Coal 1985 2.7 
ML 

10 

Liuzhi China Coal 1991 3.6 
ML 

10 

Dizong China Coal 1985 2.7 
ML 

10 

Bingshuijing China Coal 1991 3.6 
ML 

10 

Dayong China Coal 1991 3.1 
ML 

10 

Xifeng Nanshan China Coal 1991 3.1 
ML 

10 

Shanjiaocun China Coal 1997 3.1 
ML 

10 
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Yueliangtian China Coal 1997 3.1 
ML 

10 

Dahebian China Coal 1985 2.8 
ML 

10 

Kaiyang China Phosphorus 1990 2.2 
ML 

10 

Meitanba China Coal 1991 2.8 
ML 

10 

Enkou China Coal 1976 2.9 
ML 

10 

Doulishan China Coal 1985 2.5 
ML 

10 

Qiaotouhe China Coal 1974 2.2 
ML 

10 

Shixiajiang China Coal 1991 1.6 
ML 

10 

Xindong China Coal 1994 3 
ML 

10 

Niumasi China Coal 1997 3.2 
ML 

10 

Dahuatang China Coal 1997 2.7 
ML 

10 

Qingshan China Pyrite 1996 2.6 
ML 

10 

Qixingjiezhen China Coal 1996 3.1 
ML 

10 

Xujiadong China Uranium 1998 3.4 
ML 

10 

Niwan China Gypsum 2003 2.8 
ML 

10 

Shuikoushan China Lead-Zinc   2 
ML 

10 

Yanguan China Coal 1988 2.5 
ML 

10 

Huayazi China Coal 1973 2.8 
ML 

10 

Huaibashi China Coal 1972 3.6 
ML 

10 
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Wacang China Coal 1971 3.8 
ML 

10 

Western Deep Levels East South Africa Gold 1996 4 
ML 

11 

Wapingers Falls New York, USA   1974 3.3 
M 

12 

Reading Pennsylvania, USA   1994 4.3 
M 

12 

Belchatow Poland Coal 1980 4.6 
M 

12 
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Table 2 

Project Location Resource Activity 

Largest Earthquake 

Ref 
Year Magnitude 

Magnitude Type 

reported 

Catoosa Oklahoma, USA Gas Withdrawal 1956 4.7 
ML 

1 

East Durant Oklahoma, USA Gas Withdrawal 1968 3.5 
ML 

1 

El Reno Oklahoma, USA Gas Withdrawal   5.2 
ML 

1 

Flashing Field Texas, USA Gas Withdrawal   3.4 
ML 

1 

Imogene Field Texas, USA Gas Withdrawal 1984 3.9 
ML 

1 

War-Wink Texas, USA Gas Withdrawal   3 
ML 

1 

Fashing Texas, USA Gas Withdrawal 1993 4.3 
Mb 

2 

Lacq France Gas Withdrawal 1978 4.2 
ML 

3 

Gazli Uzbekistan Gas Withdrawal 1976 7.3 
ML 

4 

Eleveld Netherlands Gas   1991 2.7 
ML 

5 

Snipe Lake Alberta, Canada Hydrocarbons Secondary Recovery 1970 5.1 
ML 

1 

Strachan Alberta, Canada Hydrocarbons Secondary Recovery 1974 4 
ML 

1 

Sleepy Hollow Nebraska, USA Hydrocarbons Secondary Recovery   2.9 
ML 

1 

Love Co Oklahoma, USA Hydrocarbons Secondary Recovery   1.9 
ML 

1 

Gobles Field Ontario, USA Hydrocarbons Secondary Recovery 1979 2.8 
ML 

1 

Cogdell Field Texas, USA Hydrocarbons Secondary Recovery 1989 5.3 
ML 

1,6 

Dollarhide Texas, USA Hydrocarbons Secondary Recovery   3.5 
ML 

1 
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Dora Roberts Texas, USA Hydrocarbons Secondary Recovery   3 
ML 

1 

Kermit Field Texas, USA Hydrocarbons Secondary Recovery   4 
ML 

1 

Keystone Texas, USA Hydrocarbons Secondary Recovery   3.5 
ML 

1 

Monahans Texas, USA Hydrocarbons Secondary Recovery   3 
ML 

1 

Panhandle Texas, USA Hydrocarbons Secondary Recovery   3.4 
ML 

1 

Ward-Estes Texas, USA Hydrocarbons Secondary Recovery   3.5 
ML 

1 

Ward-South Texas, USA Hydrocarbons Secondary Recovery   3 
ML 

1 

Apollo Hendrick Field Texas, USA Hydrocarbons Secondary Recovery   2 
M 

7 

  Iran Hydrocarbons     6 
ML 

5 

Montebello California, USA Oil Production 1987 5.9 
ML 

1 

Orcutt Field California, USA Oil Production 1991 3.5 
ML 

1 

Wilmington California, USA Oil Production   5.1 
ML 

1 

Richland Illinois, USA Oil Production   4.9 
ML 

1 

Romashkinskoye Russia Oil Production 1991 4 
Mo 

8 

Renqiu China Oil Production 1987 4.5 
ML 

9 

Xingtai China Oil Production 1981 6 
ML 

9 

Hunt Field Mississippi, USA Oil Secondary Recovery 1978 3.6 
ML 

1 

East Texas Texas, USA Oil Secondary Recovery 1957 4.3 
ML 

1 

Ekofisk North Sea, UK Oil Secondary Recovery 2001 4.2 
Mo 

10 

Barsa-Gelmes-Wishka Turkmenistan Oil Secondary Recovery   6 
ML 

11 

Akmaar Netherlands Oil Withdrawal   3.5 
M 

12 
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Cleburne Texas, USA Oil Withdrawal   2.8 
M 

13 

Groningen Field Netherlands Oil Withdrawal   3.2 
M 

14 

Roswinkel Netherlands Oil Withdrawal   3.4 
M 

14 

Rotenburg Germany Oil Withdrawal   4.5 
M 

13 

Elsenbech Germany Other     5.8 
M 

13 

Upper Silesian Germany Other     4.5 
M 

13 

Rangely Colorado, USA Research Research   3.1 
ML 

1 

Matsushiro Japan Research Research 1970 2.8 
M 

15,16 

KTB Germany Research Research   2.8 
M 

17 

Attica New York, USA Salt Solution Mining 1929 5.2 
ML 

1 

Dale New York, USA Salt Solution Mining 1971 1 
ML 

1 

Cleveland Ohio, USA Salt Solution Mining   3 
ML 

1 

Dallas-Fort Worth Texas, USA Shale Gas Water Disposal 2009 3.3 
M 

18 

Ashtubla Ohio, USA Shale Gas Water Disposal 1987 3.6 
ML 

1 

Perry Ohio, USA Shale Gas Water Disposal   2.7 
ML 

1 

Bowland UK Shale Gas Withdrawal 2011 2.3 
Mo 

19 

Etsho and Kiwigana, Canada Shale Gas Withdrawal 2009-2011 3.8 
ML 

35 

Eola Field Ohio Water Injection   2.8 
M 

22 

Cold Lake Alberta, Canada Waste Disposal   2 
ML 

1 

El Dorado Arizona, USA Waste Disposal   3 
ML 

1,16 

Denver Colorado, USA Waste Disposal 1967 5.3 
ML 

1,20 
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Lake Charles Los Angeles, USA Waste Disposal   3.8 
ML 

1 

Paradox Valley Colorado, USA Waste Disposal   4.3 
M 

21 

Geysers California, USA Geothermal   1982 4.6 
ML 

23 

Rangely Colorado, USA Geothermal   1964 3.4 
ML 

24 

Basel Switzerland Geothermal   2006 3.4 
ML 

25 

Cooper Basin Australia Geothermal   2003 3.7 
Mo 

26 

Soultz France Geothermal     2.7 
ML 

27 

Berlin El Salvador Geothermal   2003 4.4 
Mo 

28 

Reykjanes Iceland Geothermal   2008 4 
ML 

29 

Larderello Italy Geothermal   1978 3.2 
ML 

30 

Fenton Hill New Mexico, USA Geothermal   1971 1 
M 

31 

Bad Urach Germany Geothermal     1.8 
Mo 

32 

Cesano Italy Geothermal     2 
Mo 

32 

Krafla Iceland Geothermal     2 
Mo 

32 

Landau Germany Geothermal     2.7 
Mo 

32 

Latera Italy Geothermal     3 
Mo 

32 

German Continental  

Germany Geothermal     1.2 Mo 32 Deep Drilling Program 

Monte Amiata Italy Geothermal     3.5 
Mo 

32 

Mutnovsky Russia Geothermal     2 
M 

33 

Ogachi Japan Geothermal     2 
M 

34 
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Rosemanowes UK Geothermal     2 
Mo 

32 

Torre Alfina Italy Geothermal     3 
Mo 

32 

Unterhaching Germany Geothermal     2.4 
Mo 

32 
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Table 3 

Reservoir Location 

Year of 

Impoundment 

Largest Earthquake 

References Date Magnitude  Magnitude Type Reported 

Marathon Greece 1929 1938 5.7 
ML 

1 

Oued Fodda Algeria 1932 1933 3 
ML 

1, 2 

Hoover Nevada, USA 1935 1939 5 
ML 

1, 2  

Shasta California, USA 1944 1944 3 
ML 

1 

Clark Hill Indiana, USA 1952 1974 4.3 
ML 

1 

Eucumbene Australia 1957 1959 5 
ML 

1 

Kariba Zambia 1958 1963 6.2 
ML 

1, 3 

Kerr North Carolina, USA 1958 1971 4.9 
ML 

1 

Camerillas Spain 1960 1964 4.1 
ML 

1 

Canellas Spain 1960 1962 4.7 
ML 

1, 2 

Kurobe Japan 1960 1961 4.9 
ML 

1 

Koyna India 1962 1967 6.3 
ML 

1, 2 

Monteynard France 1962 1963 4.9 
ML 

1, 2 

Contra Switzerland 1963 1965 3 
ML 

1 

Aswan Dam Egypt 1964 1981 5.5 
ML 

1 

Benmore New Zealand 1964 1966 5 
ML 

1 

Kremesta Greece 1965 1966 6.3 
ML 

1, 2, 4 

Piastra Italy 1965 1966 4.4 
ML 

1 
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Grancarevo Serbia 1967 1967 3 
ML 

1 

Oroville Washington, USA 1967 1975 5.7 
ML 

1 

Blowering Australia 1968 1973 3.5 
ML 

1 

Vouglans France 1968 1971 4.4 
ML 

1 

Kastraki Greece 1969 1969 4.6 
ML 

1 

Hendrik Verwoerd South Africa 1970 1971 2 
ML 

1 

Kamafusa Japan 1970 1970 3 
ML 

1 

Schlegeis Austria 1970 1971 2 
ML 

1 

Jocassee South Carolina, USA 1971 1975 3.2 
ML 

1, 5, 6 

Talbingo Australia 1971 1973 3.5 
ML 

1 

Nurek Tajikistan 1972 1972 4.6 
ML 

1, 5 

Emmonson Switzerland 1973 1973 3 
ML 

1 

Keban Turkey 1973 1973 3.5 
ML 

1 

Volta Grande Brazil 1973 1974 4 
ML 

1 

Idukki India 1975 1977 3.5 
ML 

1 

Manicouagan Quebec Canada 1975 1975 4.1 
ML 

1 

Itezhitezhi Zambia 1976 1978 4 
ML 

1 

Monticello California, USA 1977 1979 2.8 
ML 

1 

Srinagarind Thailand 1977 1983 5.9 
ML 

1, 7 

Toktogul Kyrgyzstan 1977   2.5 
ML 

1 

Zipingpu China 2006 2008 7.9 
ML 

1, 8, 9, 10, 11 
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