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Abstract 

Understanding late Holocene to present relative sea-level changes at centennial or sub-centennial 

scales requires geological records that dovetail with the instrumental era.  Salt marsh sediments are 

one of the most reliable geological tide gauges. 

In this paper we review the methodological and technical advances that promoted research on ‘high 

resolution’ late Holocene sea-level change.  We work through an example to demonstrate different 

pathways to quantitative reconstructions of relative sea level based on salt marsh sediments. We 

demonstrate that any reconstruction is in part a result of the environment from which the record is 

taken, the modern dataset used to calibrate the fossil changes, statistical assumptions behind 

calibrating microfossil assemblages and choices made by the researchers.  With the error term of 

typical transfer function models ~10-15% of the tidal range, micro-tidal environments should 

produce the most precise sea-level reconstructions.  Sampled elevation range of the modern dataset 

also has a strong influence on model predictive ability.  Model-specific errors may under represent 

total uncertainty which comes from field practices, sedimentary environment, palaeo-tidal changes 

and sediment compaction as well as statistical uncertainties.  Geological tide gauges require a 

detailed chronology but we must be certain that apparent relative sea-level fluctuations are not 

simply a consequence of an age-depth model.   

We make six suggestions to aid the development and interpretation of geological tide gauge records. 
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1. Introduction 

Comparisons of secular trends in sea level from the twentieth century and late Holocene period 

(determined from instrumental tide gauge and geological data respectively) from the North Atlantic 

region, reveal that the instrumental tide gauge measured trends of mean sea-level are systematically 

larger than the long-term sea-level trends (Engelhart et al., 2009; Gehrels et al., 2004; Shennan and 

Horton, 2002; Shennan and Woodworth, 1992; Woodworth et al., 1999).  Additional analyses 

incorporating continuous GPS and absolute gravity estimates reinforce these observations in Britain 

(Teferle et al., 2009).  Around the UK, instrumental tide gauge trends for 1901 onwards are ~1.4 ± 

0.2 mm yr−1 larger than those inferred from geology or geodetic methods (Woodworth et al., 2009), 

suggesting a regional sea-level rise of climate change origin several one-tenths of mm per year lower 

than Church and White's  1.7 ± 0.2 mm yr−1 global estimate of 20th century sea-level rise. These 

observations highlight the importance of a regional approach to understanding past and present 

sea-level changes and the need for regional-scale predictions of future sea-level rise (Milne et al., 

2009). 

Understanding the regional patterns of sea level provides knowledge not only of the mechanisms 

and dynamics of sea-level change, but also of the mass-balance changes of ice sheets and glaciers in 

response to climate change (Milne et al., 2002).  Melting of continental ice sheets increases the 

volume of water in the oceans, which is distributed non-uniformly around the globe due to the 

change in the mass and gravitational attraction of the ice sheets (Mitrovica et al., 2001; Tamisiea 

et al., 2001).  Detailed understanding of these processes and the ‘fingerprint’ of sea level which 

results from changes in ice sheet and mountain glacier mass balance requires geological records of 

past sea level from the near-, intermediate- and far-field sites that dovetail with the instrumental 

and geodetic era (Figure 1A).  

Tide gauges or sea level recorders (WOCE, 2002) come in many different forms, and simply aim to 

determine the level of the sea at a point in time for one location.  Modern instruments provide four 

to ten readings per hour to the nearest centimetre but for some scientific questions they are limited 

by either their length of record, as noted above, or spatial coverage.  Different types of geological 

measurements of coastal environments provide quantitative measures of relative sea-level change 

over timescales of millennia and centennial (e.g. Kemp et al., 2011) through to instantaneous, in the 

case of tectonic relative sea-level change where they also provide better spatial detail (Farías et al., 

2010; Plafker, 1969).  By seeking to quantify the vertical and temporal resolutions of different types 

of geological tide gauges we can extend the spatial coverage and length of record of past sea-level 

change and therefore address new, important scientific questions.  

In this paper we aim to review the developments in using one type of geological tide gauge, salt 

marshes, to produce records of late Holocene relative sea-level change, with particular emphasis on 

the methodological and technical advances that promoted research on finer resolution, in some 

cases sub-decadal and less, relative sea-level changes over the last millennium.  We work through an 

example to demonstrate the consequences of different assumptions and decisions required during 

different stages of analysis in producing quantitative estimates of relative sea-level change.  Finally, 

we examine how to extract trends in RSL from what are inherently 'noisy' proxy reconstructions. 
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2. The background: reconstructing RSL changes using coastal sediments 

The non-uniform distribution of meltwater from continental ice sheets to the oceans means that any 

particular coastal location will only record relative sea-level change, defined as change relative to 

present (Mitrovica and Milne, 2002; Mitrovica and Milne, 2003; Mitrovica et al., 2001; Peltier, 2004; 

Plag, 2006; Shennan et al., 2012; Tamisiea et al., 2001).  The glacial isostatic modelling studies that 

led advances in understanding these processes required quantitative reconstructions of age and 

elevation of past sea level from different regions, with records covering several millennia.  Low 

energy coastal sediment sequences, from the high latitudes to the tropics, provided many of these 

records, starting with the pioneering work of Godwin (1940) followed by numerous studies from 

1960s onwards (as summarised by Pirazzoli, 1991).  Sediment cores or outcrops that contained beds 

of peat overlain or underlain by intertidal minerogenic sediments provide ideal samples for 

reconstructing past sea level.  Radiocarbon dating allows dating of organic material to give the age 

parameter, and the stratigraphic association with a tidal deposit provided the elevation relationship 

with palaeo sea level.   

Reconstructing RSL requires four attributes for each sea-level indicator or index point: location, age, 

elevation (both the measured elevation of the sample and the modern relationship to the tide level 

at which such an indicator would form today), and tendency (van de Plassche, 1986).  The tendency 

of a sea-level indicator describes the increase (positive sea-level tendency) or decrease (negative 

sea-level tendency) in marine influence recorded by the indicator.  The age-elevation plot of 

individual sea-level index points (Figure 1B) gives a suitable summary over a 10,000 year timescale 

and represents the primary method by which we use such data to test glacial isostatic adjustment 

(GIA) models (Bradley et al., 2011; Brooks et al., 2008; Lambeck et al., 1998; Peltier, 2004).  While 

the age-elevation plot comprises just the radiocarbon dated index points (Figure 1C) it does not 

reveal more subtle, though recognizable, changes in vegetation and lithology revealed during the 

analysis of coastal sediments which may help differentiate between different models of RSL (Figure 

1D).  The expression of the change in vegetation, stratigraphy or microfossils will be site specific, but 

the change in sea level of more than local significance should be recorded over the wider area.  

Unlike instrumental tide gauge data (Figure 1E), where we know the exact position of each 

observation on the time axis, unless the radiocarbon dated samples come from the same core or 

section we cannot define their precise sequence, and sub-millennial RSL changes in many cases may 

lie within the error terms and scatter of data points (Shennan, 1982; Shennan et al., 1983; Tooley, 

1982).  To identify sub-millennial scale changes it is necessary to analyse the stratigraphic and 

microfossil changes above and below each dated sample to identify trends through time (tendency) 

along with quantified error terms for age and elevation (Shennan, 1982; Tooley, 1978, 1982).   

Technical developments in the 1990s: such as AMS radiocarbon dating, short lived radionuclide 

chronology and quantitative environmental reconstruction methods developed in ecology and 

paleoceanography, provided the stimulus for further developments in studying sub millennial RSL 

change.    AMS, 210Pb and 137Cs methods allowed analysis of small samples, in some case contiguous 

0.5-1 cm slices, through organic and clastic sequences leading to better resolved age profiles 

compared to those derived from conventional radiocarbon methods.  Various studies on the eastern 

seaboard of the USA used these methods to improve the chronological control in studying the 

relationship between climate and sea level during the last two millennia (Thomas and Varekamp, 

1991; van de Plassche et al., 1998; Varekamp et al., 1992).  These and other studies aimed to 

quantify the vertical relationship between different microfossil groups and the intertidal zone (e.g. 

Gehrels, 1994; Scott and Medioli, 1980; Scott et al., 1984; Shennan et al., 1995).  Continuous records 

of sub-centennial RSL change commonly rely on subtle changes in the assemblages of microfossils 
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(mainly diatoms and foraminifera) preserved in the fossil sediments, or changes in the sediment rate 

established by chronological methods.  While a number of factors may control diatom or 

foraminifera distribution (e.g. pH, grain size, salinity, organic content, substrate) (Berkeley et al., 

2007; Sullivan and Currin, 2000; Vos and de Wolf, 1993), studies repeatedly show that elevation, 

related to tidal inundation and a proxy for salinity, is a primary control of diatom and foraminifera 

distribution across a salt marsh and therefore suitable for reconstruction of sea level (e.g. Edwards 

et al., 2004c; Freund et al., 2004; Horton et al., 1999b; Patterson et al., 2004; Roe et al., 2009; Scott 

and Medioli, 1980; Sherrod, 1999; Szkornik et al., 2006; Zong and Horton, 1998).  

Further improvements in the resolution of reconstructed elevation came from studies of 

paleoseismology in the Pacific Northwest of Canada and the USA (Atwater and Hemphill-Haley, 

1997; Shennan et al., 1996).  Guilbault et al. (1995) were the first to use the term ‘transfer function’ 

in relationship to RSL change recorded in coastal marshes. They use 19 surface samples across a 

marsh and tidal flat on Vancouver Island to reconstruct RSL changes from an adjacent Holocene 

sediment sequence, comparing their visual examination method with the same statistical methods 

originally developed by Imbrie and Kipp (1971).  These early studies threw up further issues, 

including chronological control, tidal range variations, modern sampling design and model selection 

that we shall return to.  Around the same time, research in paleoecology developed much better 

numerical models that combined improved statistical modelling of non-linear species-environment 

relationships (e.g. microfossil species abundances against elevation), improved computing power 

and more widely available software (Birks, 1995; ter Braak and Juggins, 1993; ter Braak et al., 1993).  

These developments have led to numerous publications from the late 1990s of both diatom- and 

foraminifera-based transfer function models that use the relationship between the modern 

distribution of microfossils (Figure 2) to provide quantitative estimates, with error terms, of RSL 

based on fossil assemblages in coastal sediments (Figure 1F and 1G) (Barlow et al., 2012; Edwards 

and Horton, 2000; Edwards et al., 2004a; Gehrels, 1999; Gehrels, 2000; Gehrels et al., 2012; Gehrels 

et al., 2006; Hamilton and Shennan, 2005; Horton and Edwards, 2006; Horton et al., 1999a; Horton 

et al., 2000; Kemp et al., 2009a; Long et al., 2003; Long et al., 2012; Long et al., 2010; Sawai et al., 

2004a; Sawai et al., 2004b; Sherrod et al., 2000; Woodroffe and Long, 2009; Woodroffe and Long, 

2010; Zong and Horton, 1999).  These records have sometimes been termed 'high resolution', 

though high resolution is a relative term (Edwards, 2007), and rarely defined.  It is the development 

and interpretation of these 'high resolution' reconstructions that are the focus of this paper. 

 

3. Pathways of reconstructing ‘high resolution’ relative sea level from sediments 

Any former elevation estimate derived by comparing a microfossil assemblage to a dataset of 

modern plants or microfossils will be a function of the environments from which the modern data 

are collected.  Despite the apparently “objective” nature of quantitative reconstructions, they reflect 

a series of decisions on how to develop and apply this modern dataset.  A key aim of this paper is to 

demonstrate the implications of decisions that accompany the majority of reconstructions (Figure 3) 

(sections 3.2 to 3.6) and illustrate the consequences on RSL reconstructions (section 3.7). 

 

3.1. Research question and site selection  

The points discussed in this paper apply to any modern and fossil datasets from coastal sedimentary 

environments. Development of any sea-level reconstruction is in part guided by a particular research 



6 
 

question or hypothesis being tested, and field locations are selected accordingly.  An example 

research question may be: 'What is the magnitude and direction of sub-millennial late Holocene RSL 

changes around the North Atlantic?'  To answer this, a range of sites around the North Atlantic 

would be selected to provide suitable archives of late Holocene sea-level change.  In this paper our 

aim is to work through an example and illustrate the impact of decisions made at different stages of 

developing high precision RSL reconstructions and their interpretation (Figure 3), rather than draw 

conclusions about RSL.   

To demonstrate this we use a sediment core from a previously unstudied site and large body of 

previously unpublished data, therefore independent of published results or interpretations. Loch 

Laxford, on the north-west coast of Scotland, UK (Figure 4 and supplementary .kml file), is a small 

fjord, with islands and side arms that include two subsidiary lochs (Bates et al., 2004). The outermost 

part of the loch is exposed to prevailing westerlies, but at the loch head a sheltered inlet leads to a 

basin, Tràigh Bad na Bàighe, with an extensive, sand-dominated tidal flat and vegetated salt marsh 

abutting steep topography of Lewisian Gneiss Complex metamorphic rocks.  The most extensive area 

of marsh, ~200 x 70 m, lies at the north of this basin.  There are few areas of transitional succession 

from sand flat to pioneer marsh, with a salt marsh cliff, ~10cm, forming the boundary between sand 

flat and salt marsh across much of the site.  The salt marsh supports an extensive creek network, and 

covers ~1.2 m vertical elevation range, reaching a zone of Iris before heather upland communities.  

We selected a core for analysis from the mid marsh, simply as it is a shallow core by which to 

demonstrate the consequence of the decision pathways outlined in Figure 3.  The core top at 1.80 m 

OD (ordnance datum (OD) is the national leveling datum for the UK).  Mean High Water of Spring 

Tides (MHWST) is at 2.40 m OD and Mean Tide level (MTL) at 0.25 m OD. The core comprises of 42 

cm humified organic salt-marsh sediments overlying tidal flat sand.  Diatom samples were counted 

at 4-8 cm intervals from the surface to 36 cm (Figure 5).   

 

3.2. Will the modern environment at our site reflect those we find in the past? 

Quantifying the relationship between microfossil assemblages and elevation requires samples of 

modern environments that reflect those in our fossil sequence.  Commonly, the modern samples 

(also known collectively as a modern training set) are collected from across a marsh and tidal flat 

proximal to the location of the core collected for the RSL reconstruction (Gehrels et al., 2006; 

Woodroffe and Long, 2010).  This assumes that the 'local' marsh and tidal flat contains analogues for 

the full range of palaeoenvironments and their associated microfossils preserved in the core.  If 

sediments are deposited under very different environmental conditions from present, a local 

microfossil training set may not adequately cover the full diversity of palaeoenvironments and their 

microfossil assemblages.  When this occurs we must develop a training set that includes modern 

samples from other marshes that provide analogues for these past environments.  These datasets 

are often called 'regional' though the definition can vary from author to author, with regional 

datasets varying from an estuary to a 100 km stretch of coastline to a whole country (Edwards and 

Horton, 2000; Gehrels et al., 2001; Kemp et al., 2009b; Leorri et al., 2008; Szkornik et al., 2006; 

Watcham et al., 2013; Zong and Horton, 1999).  There is on-going debate as to the benefit of one 

approach over another (e.g. Gehrels et al., 2001; Horton and Edwards, 2005; Watcham et al., 2013; 

Woodroffe and Long, 2010), but in general, if a local marsh provides modern analogues for the full 

range of palaeoenvironments it reduces noise in species distribution which may occur in a regional 

modern dataset caused by factors other than elevation controlling micro-fauna and -flora 
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distribution (e.g. Woodroffe and Long, 2010).  Equally, without suitable modern analogues, RSL 

reconstructions will not be robust and a regional modern dataset will be more appropriate, even if 

this has consequences for the resulting reconstruction (e.g. Watcham et al., 2013). 

Modern microfossil surface samples are typically collected at ≤5 cm vertical intervals, either along 

one or more defined transects perpendicular to the primary direction of tidal inundation, or in a less 

stratified manner guided by vegetation and sediment transitions from the tidal flat to freshwater 

environment.  If samples are unevenly vertically distributed it is advisable to apply a data 

transformation method (Gehrels, 2000; Telford and Birks, 2011).  Sampling along defined transects 

allows one to be sure of collecting samples evenly along an environmental gradient, which allows 

accurate estimation of species distribution and abundance (Birks, 1995; Telford and Birks, 2011), 

though may increase the occurrence of spatial autocorrelation.  Positive spatial autocorrelation is 

the tendency of sites close to each other to resemble one another more than randomly selected 

sites (Legendre and Fortin, 1989), which introduces bias in transfer function model performance 

results (Telford and Birks, 2009).  Random sampling of a modern dataset is sometimes used with the 

intention of removing spatial autocorrelation (Leorri et al., 2008), and may help to reduce the effect 

but will not entirely remove it, particularly as the samples are typically collected geographically local 

to each other within one marsh or estuary.   

The method of sampling varies depending on the proxy of interest, with the topmost centimetre of 

sediment commonly collected for modern foraminifera (e.g. Wright et al., 2011), compared to a few 

millimetres of sediment, after removing the surface film, for diatoms (e.g. Hamilton and Shennan, 

2005).  The assemblage of diatoms and/or foraminifera is usually counted from a proportion of the 

whole sample (Battarbee et al., 2001; De Rijk, 1995; Freund et al., 2004; Horton et al., 1999a; Revets, 

2004).  Building up a picture of the relationship of particular species and assemblages of diatoms and 

foraminifera relative to elevation provides a basis from which to calibrate the fossil assemblages 

found within a core. 

 

3.2.1. Characteristics of the modern diatom dataset 

We present a new large modern diatom training set to calibrate the fossil diatom assemblages in the 

Loch Laxford core.  The local dataset comes from Loch Laxford itself and includes 73 samples from 

tidal flat, salt marsh and freshwater upland, over a 2.47 m vertical range.  The 'regional' dataset 

comprises 215 samples (with 357 species, of which 115 species contribute >5% of total valves 

counted) from nine tidal flat – salt marsh – upland sites along the western and northern coasts of 

Scotland (Figure 4, Table 1 and supplementary figure S1).  The large number of samples in the 

dataset helps in precisely defining the vertical species distribution.  Zong and Horton (1999) 

originally published data from 15 modern samples from two of these sites, Tramaig Bay on Jura and 

Kentra Moss in Kentra Bay.  We have added additional samples from the original Jura and Kentra Bay 

surveys (Shennan et al., 1995, and unpublished).  It can be a challenge merging datasets from 

different researchers and when doing this it is necessary, where possible, to ensure coherent 

standardizing of taxonomy and updating species names in line with current nomenclature. Our 

north-west Scotland modern diatom dataset is available for download from 

http://www.dur.ac.uk/geography/qec/research_groups/slru/sea_level_data/. 

To allow for tidal range differences between sites in the regional dataset (Table 1), authors typically 

apply a standardisation method (e.g. Gehrels, 1999; Horton et al., 1999a).  We apply the following 

standardized water level index (SWLI) equation: 
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Where SWLIn is the standardised water level index for sample n, hn is the elevation of sample n (m 

OD), hMTL is the local mean tide level elevation (m OD) and hMHWST is the local mean high water spring 

tide elevation (m OD).  Therefore MTL has a SWLI of 100 and MHWST 200.   

 

3.3. A priori, can we define the elevation range of palaeoenvironments in our core? 

Sediments of the upper intertidal zone, close to the highest astronomical tide mark, most sensitively 

record small changes in RSL, due to the fact that accommodation space is being created by sea-level 

rise (Allen, 1990).  Accommodation space lower in the intertidal zone can be filled independently of 

a change in sea level (Allen, 1990).  Low salt marshes, tidal flats and subtidal environments are 

therefore less accurate recorders of small RSL changes than mature upper salt marshes (Gehrels, 

2000).  In theory, the more sensitive environment should provide RSL reconstructions with smaller 

error terms.  Even within upper salt marshes there are elevation zones that are more sensitive than 

others, where different sediment types, vegetation communities or microfossil assemblages occupy 

narrower elevation ranges.  A key challenge is identifying these sensitive zones in both 

contemporary and fossil environments.  This is reflected in two contrasting approaches to creating 

the modern dataset used for estimating RSL changes from a fossil core.   

In one method the modern samples come from only the section of the modern environment 

expected to be an analogue for the fossil environments recorded in the core.  The critical question is 

whether we can use independent parameters a priori to determine the elevation range for taking 

these samples.  This may result in different modern datasets being applied to different sediment 

lithologies (e.g. Hamilton and Shennan, 2005) or by using other micofossil evidence (e.g. pollen or 

testate amaobae).  A combination of the enhanced mixing processes on tidal flats, and the often 

poorly defined lower ranges of flora and fauna distribution associated with these environments, 

inevitably results in larger uncertainties for assemblages from intertidal minerogenic units than 

organic units.  This has led to many studies focusing on continuous salt marsh peats rather than 

intercalated layers of peat and silt to study small scale RSL changes over the last few millennia 

(Barlow et al., 2012; Edwards, 2001; Gehrels, 2000; Gehrels et al., 2006; Gehrels et al., 2004; Kemp 

et al., 2011; Leorri and Cearreta, 2009; Woodroffe and Long, 2009).  Therefore some authors would 

only collect modern samples from organic middle to high salt marsh environments and not from 

adjacent environments.  They argue that small changes in the abundance of species from the low 

marsh and tidal flats can considerably affect the model predicted heights of the microfossil 

assemblage from high marsh settings and, as a result, decrease the precision of the reconstruction 

(e.g. Gehrels, 2000). 

The alternative method is to collect modern samples over a much larger vertical range from the 

coastal transition, typically the freshwater zone to intertidal environments, though few studies 

include sub tidal samples (Woodroffe, 2009).  This method captures a larger number of species 

across the range of environments and often provides a fuller picture of species distribution, meaning 

the training set is less likely to miss the tails of species distributions.  

To demonstrate these two approaches we divide the local and regional modern training sets from 

Scotland into two environmental gradient lengths.  Environmental gradient length is a generic term 

for the sampled range of the environmental variable of interest.  In our example this is elevation, so 
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our long environmental gradient dataset, the “coastal transition model”, has modern samples 

ranging vertically from intertidal sand flat at MTL (SWLI 100), to just above the transition to the 

upland freshwater zone (SWLI 300).  The short environmental gradient dataset, the “salt marsh 

model”, only includes samples from SWLI of 140 to 200.  This is the range covered by the 

contemporary salt marsh environments at Loch Laxford and therefore we make the assumption it 

will provide analogues for assemblages present in a core containing salt marsh sediments.    

 

3.4. Is the species response to elevation linear or unimodal? 

A transfer function models the relationship between the modern micro-fauna and -flora assemblage 

and an environmental variable of interest, in this instance, elevation (Birks, 1995, 2010).  The models 

provide a predictive equation to transform the microfossil assemblage in a sediment layer to 

calculate the fossil layer's elevation in the tidal frame at the time it was deposited.  This quantitative 

estimate of palaeo marsh surface elevation (PMSE) includes an associated error term (Gehrels, 2000; 

Horton et al., 2000; Horton and Sawai, 2010; Zong and Horton, 1999).  Each transfer function model 

has specific choices and underlying statistical assumptions which can impact the resulting 

reconstructions.   

One vital part of developing a transfer function model is assessing whether the modern species-

environmental response is unimodal or linear, typically using constrained ordination methods (Birks, 

1995, 2010; ter Braak and Prentice, 1988).  Birks (2010 p37) notes that weighted averaging (WA) and 

weighted averaging partial least-squares (WA-PLS) are currently considered 'simple, robust and 

widely used approaches’ where unimodal species-environmental responses are demonstrated (Birks, 

1995, 2010; ter Braak and Juggins, 1993; ter Braak et al., 1993).  Alternative approaches model linear 

species-environmental responses.  It is relatively uncommon to find linear species-environment 

responses in Holocene RSL studies due to the typically Gaussian distribution of species relative to an 

environmental variable and therefore we do not explore this part of the reconstruction pathway 

further.  Exceptions include Leorri et al. (2010) and Rossi et al. (2011) who develop foraminifera 

datasets from a relatively short vertical range with respect to the local tidal range, and therefore the 

modelled species-environmental response appears linear.  Birks (1995, 2003, 2010) provides 

comprehensive reviews of the different statistical approaches; they are not the specific focus of this 

paper. 

To assess whether the species-environment response in our datasets is linear or unimodal we use 

Detrended Canonical Correspondence Analysis (DCCA) in CANOCO version 4.5 (ter Braak and 

Smilauer, 2002) to quantify the diatom assemblage change with elevation.  The species turnover is 

measured by DCCA axis 1.  A general rule of thumb is where the DCCA gradient length is greater than 

two standard deviations sufficient species in the training set having their optima located along the 

environmental gradient and are collectively responding unimodally to elevation (Birks, 1995; ter 

Braak and Prentice, 1988).  Less than two standard deviation units and the species are more 

monotonic along the gradient meaning linear methods are more appropriate (ter Braak and Juggins, 

1993).  Table 2 summarises the DCCA results for our four modern training sets, all of which have 

gradient lengths >2 allowing us to apply unimodal regression models.  The regional models have a 

shorter axis 1 length than the comparable local modern dataset.  This may be due to environmental 

factors other than elevation controlling diatom distributions or due to spatial autocorrelation in the 

dataset (Guiot and de Vernal, 2011; Telford and Birks, 2005).  We use the WA-PLS technique in the 

palaeoenvironmental reconstruction programme, C2 (Juggins, 2003).  This uses the average 
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distribution of taxa along the environmental gradient, weighted by their abundance, to estimate 

fossil elevations (as in the weighted averaging (WA) technique).  Partial Least Squares adds 

additional components which take into account correlations in the residuals to improve fit between 

the species data and elevation in the modern dataset and therefore is generally considered superior 

to WA (Birks, 1995, 2010; ter Braak and Juggins, 1993; ter Braak et al., 1993). 

   

3.5. How many components (WA-PLS)? 

Selecting the number of components for a WA-PLS model is an important decision as it may impact 

on the elevation reconstruction and its error term (ter Braak and Juggins, 1993; Wright et al., 2011).  

The number of components used is often selected based on the predictive ability of the model 

summarised by the Root Mean Squared Error of Prediction (RMSEP), with a lower RMSEP suggesting 

improved model performance (Table 2).  Telford et al. (2004) discuss the limitations of using the 

RMSEP and suggest it is preferable to assess model performance using a range of evidence, including 

RMSEP, the bootstrapped coefficient of determination (rboot
2) and simple scatterplots of observed 

and predicted values.  Simply choosing the number of components based on which model has the 

smallest RMSEP is not good practice. 

Table 2 shows the RMSEP and rboot
2 values from first three components of our four modern training 

sets and Figure 6 some of the corresponding scatterplots.  The scatterplots show that a two or three 

component solution provides a better statistical fit across the full elevation range of the modern 

data, with a one component model showing a non-linear distortion at the ends of the distribution 

that is also well known in both weighted averaging and correspondence analysis (Birks, 1995).  

Authors hold different opinions regarding the use of multiple component models (e.g. Birks, 1995, 

1998; Wright et al., 2011), with some arguing (e.g. Wright et al., 2011) that more components add 

statistical complexity and a less direct measure of the relationship with the environmental variable 

of interest.  Further components update the species coefficients and can alter the resulting 

reconstruction.  Other variables that influence microfossil distributions also co-vary with elevation, 

so the statistical structure within the residuals of a simple one-component model may reflect such 

relationships; therefore it is acceptable to use multiple component models.  The unknown is when 

this structure becomes less than statistic noise.  Therefore, we apply a general rule of thumb: to 

apply no more than three components and only select the successive component if the model 

performance increases by >5% measured by RMSEP and rboot
2 (Birks, 1998).  Based upon these 

measures and their associated scatterplots we select the two component models for all the datasets 

(Table 2).  In later sections we also show the consequences of applying one-, two- and three-

component models to reconstructions.  The summary statistics (Table 2) suggest that the local ‘salt 

marsh model’ appears to have the best predictive ability but as we explain below it is important not 

to rely solely on these measures when selecting models and assessing their reconstructions.  

 

3.6. Should we exclude any training set samples? 

The next phase in the decision pathway (Figure 3) is whether to try and improve the predictive 

ability of the transfer function by excluding samples from a modern dataset.  This is different to the 

question raised in section 3.3 where our example modern training sets reflect an a priori decision 

that we can define the elevation range of palaeoenvironments in our core.  There is no consensus on 

the approach to excluding samples.  Examples in sea-level and other studies include: Gasse et al. 
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(1995) who remove samples that have a difference between the predicted and observed values 

greater than one-quarter of the total observed range; Edwards et al. (2004a) and Gehrels et al. 

(2005) who eliminate samples whose residual value is greater than the standard deviation of SWLI; 

and Heiri et al. (2011) remove samples based on environmental parameters.  The alternative is to 

leave all the samples in, on the implicit assumption that spread in the dataset captures the diversity 

of the sampled modern environments.  For our worked examples we do not exclude any samples 

beyond the a priori decisions made in section 3.3, but note that removing samples from a training 

set will impact the resulting reconstruction and the error term for each fossil sample.  For example, 

the results in  able 2 shows how the shorter environmental gradient models (the ‘salt marsh’ 

models) have smaller R  EP values than the longer ‘coastal transition’ models.  A similar effect may 

be achieved when removing selected samples by other approaches.   

 

3.7. Resulting reconstructions and assessing accuracy 

Once a decision pathway has been made, the resulting model(s) are applied to the fossil 

assemblages in each sample taken from a core, and provide reconstructions of palaeo marsh surface 

elevation.  This is the estimated elevation, at which each fossil sample formed relative to tide levels 

and measured to a common datum.  We convert these values to RSL by subtracting the model 

estimate of palaeo marsh surface elevation from the present elevation of the sample, both 

measured relative to the common datum.  Bootstrapping cross validation derives a RMSEP value 

(sample specific vertical error term) for individual fossil samples (Birks, 1995).   

Figure 7A shows RSL reconstructions derived from 12 models applied to our core (the first three 

component models for four modern datasets).  These results illustrate how different decision 

pathways can influence the RSL reconstructions.  As mentioned before, we do not aim to draw 

conclusions about regional RSL change from these records, but rather assess how a record may differ 

based on the decisions taken in its development.  The overall trend, of increasing sea level, is similar 

between all the records, though the magnitude of change and inflections within the overall trend 

vary.  For example, there is a ~40 cm difference in estimated RSL between the different models for 

some of the fossil samples.   

The two most commonly adopted approaches to RSL reconstruction are using a large regional 

training set with a long environmental gradient (e.g. Sawai et al., 2004a), or a local dataset with the 

modern elevation range defined a priori by the palaeoenvironments in the core (e.g. Gehrels et al., 

2006) (Figure 7B).  In our example the regional ’coastal transition’ model estimates greater RSL 

change than the reconstruction resulting from local ‘salt marsh’ model, though the long 

environmental gradient regional ‘coastal transition’ model has ~3 times larger vertical errors than 

the local ‘salt marsh’ model (we analyse this further in section 4).  Figure 7C shows that in some 

instances, the number of components does not have a major impact on the resulting reconstruction 

(e.g. regional ‘salt marsh’ models), whereas the various components result in quite diverging results 

with other models (e.g. regional ‘coastal transition’ models).  The results in Figure 7 should not be 

interpreted as a blueprint for other datasets.  Rather, the key point is to recognize that differing 

results will likely occur as function of decisions taken at different stages of model development.  

Investigators should therefore be explicit about the reasons for making the choices and indicate 

their effects on their results. 

Since all transfer function reconstruction pathways will provide results, irrespective of model 

evaluation and performance, it is important to assess the accuracy and reliability of any 
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reconstruction using independent techniques.  For example, some previous studies validate fossil 

reconstructions against instrumental tide gauges (Gehrels et al., 2006; Kemp et al., 2009a; Leorri and 

Cearreta, 2009; Rossi et al., 2011), or observations of coseismic land-level deformation (Hamilton 

and Shennan, 2005; Watcham et al., 2013).  In the absence of such independent data, the most basic 

test is to check whether the transfer function can accurately reconstruct the leveled elevation of the 

core top by calibrating the elevation of the assemblage in the 0 cm sample.  In our example datasets 

the regional models produce closer fits than the local models.   With larger datasets it is possible to 

use a proportion of the modern dataset to reconstruct the elevations of an excluded subset and 

compare the reconstructed values with the known leveled heights to check model accuracy (Callard 

et al., 2011; Charman et al., 2010; Reavie and Juggins, 2011).   

A reconstructed elevation is likely to have some reliability if the fossil sample has a microfossil 

assemblage with close analogues in the modern training set (Birks, 1995; Edwards and Horton, 2000; 

Hamilton and Shennan, 2005).  As we go back in time, there is likely greater change in the fossil 

record, relative to the modern environment (Watcham et al., 2013), particularly as the present 

relationship between micro-fauna and -flora and elevation may be disturbed by human activities 

(Guiot, 1990).  Therefore, analogue matching is an important means of evaluating the likely 

reliability of environmental reconstructions (Birks, 1995).   

The modern analogue technique (MAT) quantifies the similarity between each fossil sample and the 

modern training set using a squared chord distance dissimilarity measure (Birks, 1995). The MAT 

produces a minimum dissimilarity coefficient (minDC) for each fossil sample, with a minDC value of 

zero indicating exact similarity with the closest modern sample, and higher values indicating 

increasing dissimilarity (Jackson and Williams, 2004).  There are no fixed rules in defining a “good”, 

“close” or “poor/no” modern analogue, but it is typical to consider the distribution of dissimilarities 

within the modern dataset.  We follow Watcham et al. (2013) using the 20th percentile of the 

dissimilarity coefficients calculated between all modern samples as the cut-off between ‘close’ and 

‘poor’ modern analogues for fossil samples, and the 5th percentile as the threshold for defining 

‘good’ modern analogues ( able 2 gives the threshold values for each dataset).  These are quite strict 

measures compared to the threshold used by Woodroffe (2009) who used the largest DC value 

calculated between all modern samples as a cut-off for each fossil sample between a ‘good’ and 

‘poor’ match.  Figure 7C shows whether the fossil samples have a good, close or poor modern 

analogue in the respective modern dataset (note the MAT dissimilarity coefficient does not vary for 

each WA-PLS component, just between each modern training set).  Based on the 5th and 20th 

percentile thresholds, the regional model reconstructions are the most reliable with no fossil 

samples have a minDC greater than the 20th percentile value, and six out of the seven fossil samples 

having a good modern analogue with samples in the regional ’coastal transition model’.  By 

comparison, when calibrated with either of the local models, six fossil samples have poor modern 

analogues, and only one a close analogue (the top sample), suggesting the local marsh is not a good 

approximation of all past environments.  This is comparable to the results of Watcham et al. (2013) 

in Alaskan environments probably much less disturbed by human activity.  If based simply upon the 

RMSEP of the models and sample specific error terms, the local ‘salt marsh’ model appears most 

precise, but the MAT identifies that the results are not reliable, and therefore may not be accurate.  

 n our example, the regional ‘coastal transition’ two components model has the best combination of 

model predictive ability, fit to known elevation of core top and matching modern analogues, though 

the largest error terms.  These error terms are likely a truer representation of the amount of 

uncertainty than those estimated by the local and elevation restricted training sets. 
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3.8. Additional factors 

There are environmental factors which are not part of the decision pathways in Figure 3.  These may 

impact on RSL reconstructions, but are often difficult to quantify and not included in the reported 

transfer function calculated error terms.   

Differences between diatom valve morphology, and their amount and type of silica means diatoms 

suffer variably from abrasion, dissolution and drying, and can be differentially preserved in coastal 

sediments (e.g. Cooper et al., 2010; Jordon and Stickley, 2010 and references cited within).  More 

robust species are also tolerant to transport by tidal currents which can lead to preferential 

enrichment of these species in high intertidal sediments, meaning the preserved assemblage may 

have little to do with the palaeoenvironments formation elevation, compared to that characterised 

by an autochthonous assemblage (Sawai, 2001; Vos and de Wolf, 1988).  Some authors try to include 

assessments of dissolution, fragmentation and the proportion of allochthonous to autochthonous 

species to account for some of these processes (Ryves et al., 2009; Ryves et al., 2001; Vos and de 

Wolf, 1988).  By sampling the top 2-10 mm of modern sediments, samples will incorporate death 

assemblages from a number of years allowing the transfer function to incorporate the net effect of 

all these factors rather than quantify the effect of each one. 

Comparable processes result in variable foraminifera preservation, with agglutinated foraminifera 

more resistant to dissolution than calcareous species in the low pH conditions common on many 

marshes (Bradshaw, 1968; Jonasson and Patterson, 1992; Phleger, 1966).  This is why often only 

dead foraminiferal tests are included in modern training sets, which also helps remove anomalies 

arising from seasonal growth effects (Edwards et al., 2004a; Horton et al., 1999a; Murray, 2000).  In 

addition, Patterson et al. (2004) suggest that bioturbation, mean annual temperature variations and 

oxygenation of the marsh sediments may impact the potential to use foraminifera to reconstruct 

RSL.   

Sediment mixing, whether from bioturbation or other processes, has the potential to blur the 

record, but there are few studies that show its impact.  Foraminifera can live up to 30 cm below the 

marsh surface (Goldstein and Harben, 1993; Hill et al., 2011; Massey et al., 2006a) potentially biasing 

the fossil assemblage towards species which burrow into the sediment column.   With respect to 

diatoms, experiments on Alaskan marshes suggests sediment mixing was limited to 8 mm from the 

surface in silt rich sediment but to a greater depth (1-2 cm) in peat (Hamilton et al., 2005; Shennan 

and Hamilton, 2006).   

 

3.9. Reviewing model performance and RSL reconstructions 

Considering the number of potential pathways to a RSL reconstruction (Figure 3), it is vital to apply 

independent methods to assess which reconstruction produces the most realistic estimate of former 

sea level.  This may not always be the reconstruction with the smallest errors.  We should consider 

at least three criteria ( atcham et al., in press): number of fossil samples with ‘poor’ or no modern 

analogues; that reconstructions are reasonable when compared to independent measurements; and 

finally that the reconstructions make ecological and environmental sense.  In addition to 

independent observations, such as instrumental tide gauge records or measures of co-seismic 

subsidence, as discussed above, the first test should be to asses each reconstructed elevation 

against sediment lithology within the core.  As noted in section 2, lithostratigraphic position may 

define smaller uncertainty terms for samples close to sedimentary boundaries, compared to those in 
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the middle of homogenous sediments.  In our example, a fossil sample from salt marsh peat would 

have an error term in the order of ±40 cm (Figure 7), whereas the lower limit may be more precisely 

defined by measurements of the lowest occurrence of salt marsh peat formation in the present 

environment.  A similar constraint may be applied at the upper end of a salt marsh if there is a clear 

transition to a Sphagnum peat or another sediment that clearly forms above the influence of highest 

tides. To make ecological and environmental sense, we would expect the RSL reconstruction to 

match environmental gradients observed in the lithology, such as intertidal sand flat or mudflat to 

vegetated marsh.  Any reconstruction should therefore consider the ecology and lithological context 

for each assemblage before committing to a RSL reconstruction, not least adherence to Walther’s 

Law of the Correlation (or Succession) of Facies, which identifies that a vertical sequence of facies 

will be the product of a series of depositional environments occurring laterally adjacent to each 

other (in the absence of hiatuses/erosion in the sequence).   

 

4. Tidal range and errors in relative sea-level reconstruction 

There is a positive correlation between transfer function model error terms and tidal range at the 

site(s) used for the modern training set (Table 3 and Figure 8A).  As described above, RSL 

reconstructions from minerogenic units that represent mid- to low intertidal flat environments will 

most likely have the largest error terms because of the lack of narrow micro-fauna and -flora zones 

and poorly defined lower elevation ranges.  We can address this at different stages during our 

analysis by targeting sediment sequences that come from higher intertidal environments (Section 3 

and Figure 3).  Other influences of tidal range still remain, particularly the strong relationship 

between the elevation range of the modern samples used to generate the transfer function model 

and the resulting model error term (Figure 8B). 

These relationships (Figures 8a and b) show first, as Southall et al. (2006), Edwards and Horton 

(2006) and Callard et al. (2011) also note, that micro-tidal environments can provide more precise 

sea-level reconstructions than meso- or macro-tidal settings.  However, as the tidal range in micro-

tidal environments decreases, environmental controls other than salinity can potentially be more 

dominant on species distribution, than in larger tidal settings.  For example, changes in local 

hydrology and groundwater conditions can change marsh elevation trends through shrink–swell of 

marsh soils (Cahoon et al., 2011).  This could be tested by producing RSL reconstructions from more 

than one location at the site to determine within-site variance (e.g. Barlow et al., 2012; Long et al., 

2012).  As we shall see, in micro-tidal settings, developing a high precision age model (section 5) 

becomes especially important for reliable RSL reconstruction. 

A second important observation is that decisions taken in selecting the elevation range of the 

modern sample will strongly influence error terms of RSL reconstruction, with the majority of studies 

producing RMSEPs between 5 and 15% of the sampled vertical range of the modern dataset (Table 

3), and therefore we should be mindful of this when testing hypotheses of decimetre to centimetre-

scale RSL fluctuations.  If a reconstruction has errors >~5% of the modern tidal range, we should 

explore why this is the case. 

Tidal range varies along the world’s coastlines producing micro-, meso- and macro-tidal regimes.  

Typically macro-tidal regions are defined as having a mean tidal range >4 m, a meso-tidal range is 2-4 

m and micro-tidal regions have a tidal range <2 m (Davies, 1964).  Ideally all reconstructions would 

be from microtidal environments and have small error terms, but to provide the coverage required 
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to asses the drivers of spatial variations in late Holocene sea level this is not possible and as a result 

we must be prepared to develop reconstructions of former sea levels from a range of tidal regimes.   

 

5. Additional vertical uncertainty 

Sample specific errors determined from transfer function models are just one part of the total error 

of RSL reconstructions.  Vertical uncertainty in RSL reconstruction also comes from potential errors 

in the field or laboratory which are not a function of the transfer function model uncertainty.  

Defining the correct temporal and spatial scales of the study (Section 2 and Figure 1) will help 

determine which errors are relevant to a particular study.  For example, correlation of sea-level 

index points from different sites (Figure 1B) must accommodate different sources of uncertainty 

than a RSL reconstruction from a single core (Figure 1G). 

Vertical errors of sea level index points should also include: errors from levelling; angle of the 

borehole; measuring sample depth; extrapolating tidal range estimates over large distances or in an 

area with a large tidal range; overlying sediment compaction; core compaction; change in vegetation 

types over time; changes in the water table; uncertainty in identifying the correct tidal datum for the 

indicator of interest and changes in tidal regime (Devoy, 1982; Gehrels et al., 1996; Heyworth and 

Kidson, 1982; Massey et al., 2008; Preuss, 1979; Shennan, 1982).  The magnitude of each error varies 

case by case, for example levelling errors are greater when sampling from a boat, than levelling on a 

salt marsh.  There are no defined standard approaches; authors provide estimates of errors 

according to their methods, with some using 1 sigma and others 2 sigma or 95% probability 

estimates.  Whichever measures are used, the total error (Et) for each sample is calculated as: 

      
    

     
     

  

Where e1...en are the individual sources of error (Preuss, 1979).   

Typically when producing a transfer function reconstructions the RMSEP sample-specific error is not 

combined with these other sources of error.  The importance of Et relative to RMSEP transfer 

function error terms varies in different tidal settings.  For example, the 2 sigma total error for the 

intercalated and basal peat index points shown in Figure 1B range from ~0.2 to 1.2 m, with a mean 

of 0.33 m. In a theoretical microtidal environment with a tidal range of 20 cm we may expect a 

transfer function model RMSEP about ±2cm (i.e. 10% of the tidal range).  The sample specific error 

for each fossil sample will include an additional error depending upon the similarity between the 

modern and fossil assemblages.  This standard deviation sample specific error must be multiplied by 

1.96 to give the 95% probability error term.  For a microtidal example, the 2 sigma transfer function 

model error is relatively small compared to the other errors.  In contrast, in a macrotidal 

environment with a 5 m tidal range, a model RMSEP in the order of ±50 cm is a large additional 

uncertainty, likely greater than the sum of the other errors.  As a result quoted transfer function 

error terms for reconstructions from microtidal environments may under represent the true level of 

uncertainty and Et should include the errors listed above, along with the RSMEP error.  However, this 

only matters when combining datasets from different locations, not when working on a single core, 

and reinforces the requirement to properly consider within-site and between-site variance. 

Post-depositional compaction of the sediment column, either under its own weight or as a 

consequence of subsequent loading by water or overlying sediment burden, results in lowering the 

elevation of sediment from their original depositional altitude (Edwards, 2006; Hill et al., 2011; 
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Jelgersma, 1961; Long et al., 2006; Long et al., 2010; Massey et al., 2006b; Shennan et al., 2000b; 

Streif, 1979; Tornqvist et al., 2008; van de Plassche, 1982).  Methods that allow for post-depositional 

compaction vary and their suitability, once again, depends upon the research question.  For 

example, when investigating RSL over millennial timescales and comparing RSL between estuaries, 

such as in Figure 1B, authors may target thin basal peat layers that overlie incompressible basement 

sand or rock (e.g. Jelgersma, 1961; Tornqvist et al., 1998; van de Plassche, 1982).  Comparison of 

basal peat index points with those within a thick sediment column and underlain by compressible 

sediments, (the intercalated peat index points in Figure 1B), will provide an estimate of the net 

effect of compaction over millennia (Horton and Shennan, 2009; Shennan and Horton, 2002; 

Shennan et al., 2000a). To combine with transfer function derived RSL reconstructions through a 

single core we require numerical modeling in order to quantify compaction processes. Brain et al. 

(2012) model the effect of compaction on salt marsh reconstructions of late Holocene sea level, and 

find that thicker (>1 m) sequences experience greater compaction, with transgressive sequences 

experiencing greater post-depositional lowering than regressive sequences.  They show that where a 

transgressive sequence occurs in association with a large change in organic content at a stratigraphic 

contact, sediment compaction can result in a corresponding inflection in the reconstructed sea-level 

curve, which will contribute a proportion of any reconstructed apparent sea-level acceleration.  Lack 

of quantification of the magnitude of sediment compaction can result in erroneous estimates of the 

rate and magnitude of sea-level change (van de Plassche et al., 1998).   

Changes in sediment supply, land level, configuration of coastal geography and land use means that 

in many locations, tidal regimes were likely different in the past.  Many of the late Holocene RSL 

records cited in this paper do not take into account tidal changes through time, largely because they 

are small on centennial timescales.  They are also hard to quantify and there are a limited number of 

models that provide estimates of local/regional palaeotides (Austin, 1991; Gehrels et al., 1995; Hill 

et al., 2011; Hinton, 1996; Shennan et al., 2003; Uehara et al., 2006).  Changes in tidal range have 

implications for a RSL reconstruction, either because the distribution of the micro-fauna and -flora as 

controlled by tidal inundation in the present day may be different under a different tidal regime 

(which a transfer function is unable to account for); or because changes in the elevation of reference 

water levels used to constrain the altitude of sea level index points results in over or under 

prediction of their reconstructed elevation.  This is an area of research that requires further 

attention to be able to produce models which have the spatial and temporal resolution required for 

correcting late Holocene salt marsh RSL records.  Human modification of the coastal zone also 

becomes an important consideration.  Land reclamation over the last 2000 years in estuaries such as 

Southampton Water, the Humber and Fenland in the UK seems to have caused a major change in 

tidal range within these estuaries and which are manifested in the stratigraphy (Long et al., 2000; 

Shennan et al., 2003). Over shorter timescales, instrumental tide gauges reveal the effects of 

dredging estuaries (Cox et al., 2003; Wang et al., 2002). 

Most forms of vertical uncertainty discussed in this section do not apply when developing and 

interpreting a single salt marsh RSL record.  However, if reconstructions from within an estuary, or 

region, are combined to produce a regional sea-level curve, or the magnitude of reconstructed RSL 

change between regions is compared, understanding and quantifying the amount of vertical 

uncertainty is important as otherwise offsets between data may occur and be misinterpreted as a 

differential RSL signal. 
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6. Age model independent relative sea-level changes 

An important part of developing geological tide gauges is defining the timing of any sea-level change.  

Precise chronologies allow comparison of records and assessment of the potential driving 

mechanisms of the reconstructed changes.  Advances in AMS 14C techniques provides the ability to 

date carefully selected small samples of known origin, removing uncertainties caused by 

contamination by other material which may occur in bulk dating.  This allows numerous radiocarbon 

dates from a single core, which, with age-depth modeling (e.g. Blaauw et al., 2003; Blockley et al., 

2007; Yeloff et al., 2006) can provide a interpolated chronological framework for the whole 

sequence.  There are challenges of developing radiocarbon chronologies for records of recent sea-

level change.  Large fluctuations in atmospheric 14C characterise the last 500 years, driven by the 

Spörer, Maunder and Dalton solar minima and changes in the carbon cycle associated with Little Ice 

Age climate changes, as well as human industrial activity (Bard et al., 1997; Stuiver and Quay, 1980).  

As a result, several plateaus exists in the relationship between radiocarbon ages and calendar years 

from AD 1650 to 1950 (e.g. Reimer et al., 2009), complicated further by the effect of nuclear 

weapons from AD 1950 (Hua and Barbetti, 2004).  This potentially limits the use of conventional 

radiocarbon dating in recent sediments as several possible calibrations solutions can exists for one 

date (Figure 9).  This has driven the use of other, independent, chronological controls to date recent 

coastal sediments and refine 14C calibration solutions, including 210Pb, 137Cs, stable Pb isotopes, 

tephra, pollutant horizons, pollen markers and palaeomagnetic analyses (Cundy and Croudace, 1995; 

Cundy et al., 2003; Gehrels et al., 2012; Gehrels et al., 2006; Haslett et al., 2003; Kemp et al., 2009a; 

Long et al., 1999; Long et al., 2012; Marshall et al., 2009; Marshall et al., 2007). 

The shape of the radiocarbon calibration curve can lead to 'wiggles' in the age-depth model that 

could be interpreted as changes in the marsh surface elevation over time, and therefore apparent 

rather than real RSL changes.  Van de Plassche et al. (2001) demonstrate the need for closely-spaced 
14C dates when developing age-depth models in recent salt marsh sequence, to fully utilise the 

‘wiggles’ in the 14C calibration curve.  However, using simulated radiocarbon dates in OxCal (Bronk 

Ramsey, 2001), Figure 9 (after Gehrels et al., 2005) shows how closely-spaced 14C dated samples, 

covering the 1000 years, results in a series of stacked calibration solutions, which would appear as 

periods of rapid sediment accumulation (Long et al., 2012; Long et al., 2010).  If the calibrated 

microfossil assemblages show little change in palaeo marsh surface elevation (Gehrels et al., 2006; 

Kemp et al., 2009a), these stacked 14C ages on an age-altitude plot may appear to represent periods 

of sea-level acceleration, whereas they are simply a function of the shape of the calibration curve.   

Absolute and relative methods of dating recent salt marsh sequences are subject to various post 

depositional processes and have differing assumptions behind their use.  This can result in misfits 

between different chronological controls applied to the same core (Gehrels and Woodworth, in 

press).  For example, Turner et al. (2006) advise that some age models based on 137Cs can suggest 

higher accretion rates than 210Pb age models because the former applies to younger sediments, 

whereas the effects of root penetration and decomposition are greater in the latter.  A challenge of 

combining AMS 14C dating with 210Pb is that both require 'modelling'.  To combine them requires 

calculating calendar year 210Pb dates based on a sediment accumulation model, which are then 

combined (often by Bayesian modelling or wiggle match dating) with 14C dates that require 

calibration, to give a new accumulation model which may not be consistent with the initial 

accumulation model.  This may explain why there can appear to be offset between 210Pb and 14C 

ages in some settings (e.g. Gehrels et al., 2005; Kemp et al., 2009a), often in a period critical to 

establishing the onset of recent rates of sea-level change and the timing of apparent 

accelerations/inflexions.  It is important to develop chronological frameworks with multiple, 
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overlapping methods; for example bomb spike 14C dates within 210Pb sequences (Kemp et al., 2009a; 

Marshall et al., 2007).  An alternative approach is to assess rates of sea-level change solely using 

dated levels rather than age-depth model interpolated data points (Gehrels and Woodworth, in 

press). 

To ensure that the reconstructed RSL changes are real, rather than an artifact of the dating 

method(s), it is important to interrogate the data to assess whether there are changes in palaeo 

marsh surface elevation which are independent of the chronology.  A high marsh core that contains 

high marsh foraminifera which shows little change in reconstructed palaeo marsh surface elevation 

only confirms the marsh is keeping pace with the rate of sea-level change (Gehrels et al., 2006; 

Kemp et al., 2009a).  Developing a detailed microfossil diagram is very labour intensive, and it may 

be of more value to focus resources on developing a very precise chronological framework that 

identifies subtle changes in sediment accumulation that the microfossils do not pick up.  In 

comparison, where changes in palaeo marsh surface elevation can be identified independently from 

an age-depth model, identification of changes in the rate of sea level that are not driven by ‘wiggles’ 

in the 14C calibration curve becomes possible.  This is easier where micro-fauna and -flora have 

narrow ecological tolerances relative to the tidal range; for example diatoms in meso- or macro-tidal 

settings (Barlow et al., 2012; Woodroffe and Long, 2009).  Both foraminifera and diatom based 

reconstructions, in both micro and macro-tidal environments, have merit but it is necessary to assess 

whether in testing the proposed hypothesis it is of more value to focus significant attention on the 

development of a detailed chronology or a detailed microfossil record at a particular site.  We 

explore this further in the following section when considering how to separate trends from the 

inherently noisy geological tide gauge records. 

 

7. Salt marshes as geological tide gauges 

Integrating instrumental tide gauge and satellite-derived observations of RSL with centennial to 

millennial scale reconstructions of past changes provides insights into climate-ice-ocean interactions 

but requires a clear understanding of how decisions made during the analysis may influence the 

result.  Central to this is clarity regarding the relevant temporal and spatial scales of the dependent 

and independent variables under consideration. These depend directly upon the research question 

itself.  For example, where the investigation aims to understand earth-climate-ice-ocean interactions 

we compare GIA model predictions with the Holocene radiocarbon dated index points of RSL from 

an estuary (Figure 1B).  We seek a best fit for the eustatic, isostatic and tectonic parameters that 

operate at regional to global scales and aim to explain the residuals as the result of local-scale 

processes, such as tidal range, sediment compaction and coastal geomorphology (Shennan et al., 

2012).  In this type of analysis we only derive the centennial to millennial trends and use them to 

contrast with the shorter records from instrumental tide gauges and satellite data, identifying 

systematic offsets that suggest a climate change cause (e.g. Woodworth et al., 2009).  A research 

question that focuses upon processes that operate over sub-centennial to decadal timescales 

requires a different approach due to the imprecision in correlating individual radiocarbon-dated 

index points from different locations.  Salt marsh geological tide gauges use variations through a 

continuous sediment profile to quantify changes in RSL (Figure 1A and 1G and section 3).  This offers 

numerous potential benefits.  We know the exact order of data through time, in sequence one 

above another, even though there will be a sample-specific age error term (Figure 9). At this scale 

we still aim to consider the trends and importance of fluctuations or deviations from general trends 

(Figure 1G). 
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7.1. Interpreting geological tide gauge records 

With a good age model, microfossil-based methods provide quantitative elevation reconstructions, 

so we can look at sub-centennial to decadal, or perhaps even finer resolution, RSL changes not 

identifiable from estuarine Holocene sea level index points from multiple sites.  For example, Figure 

10 shows how a microfossil based reconstruction and associated chronology may be combined to 

produce a geological tide gauge record (comparable to Figure 1A), and its subsequent interpretation.  

In this hypothetical case (Figure 10), we assume the microfossils show no change in palaeo marsh 

surface elevation with the marsh accumulating at the same rate as RSL change.   

Figure 10A shows the trends already well established from Holocene sea level index points (Figure 

1B) and instrumental tide gauge data (Figure 1E).  Using radiocarbon dating we establish a 

chronology (Figure 10B).  Microfossil based reconstruction of palaeo marsh surface elevation 

establish changes in RSL during the late Holocene (Figure 10C).  Depending upon the sampling 

interval of microfossil analyses and radiocarbon samples the age parameter comes from whatever 

age model we select (Figure 10D).  This is clearly a critical decision and is an example of how it may 

be of more value to devote resources on a detailed chronology and its careful interpretation, than 

additional microfossil analysis, as the pattern of change in Figure 10E and 10F are very similar and 

driven by the age-model.  

The challenge is interpreting the records; and the choice of summary statistic and method of display 

can greatly influence the interpretations of tide-gauge data and geological sea-level reconstructions.  

For example, while giving the same linear trend line, using monthly or annual instrumental tide 

gauge data will convey different images (Figure 1E).  In Figure 10 it may be possible to interpret the 

salt marsh record as a linear rate of sea-level rise (Figure 10E) or as a series of RSL fluctuations 

(Figure 10F), which may, or may not, be driven by the shape of the radiocarbon calibration curve.   

It is important to show whether we can discriminate between a linear or non-linear trend from our 

analyses.  Some of the deviations from the trend may appear random whereas others reveal a 

systematic pattern (Figure 1G).  Where they are systematic we need to show that we have 

accounted for other local scale factors that may influence the reconstructed elevation.  This will 

include sediment compaction, changes though time of the relationship between tide levels within 

the estuary and the open coast due to local factors such as barrier morphology, sediment supply or 

river discharge, and changes in tidal range at the open coast.  We could aim to model each of these, 

as attempted by Kemp et al. (2011), and provide additional error estimates. 

 

7.2. Replication 

Modelling the separate parameters is only a part answer.  The next stage is to determine within-site 

variability.  We can isolate purely local-scale effects by identifying the spatial scale over which we 

observe the same trend in RSL.  For example, for the hypothetical site in Figure 10, if we collect a 

number of cores from the same estuary, do we get the same RSL fluctuations of different magnitude 

and duration? Such an approach has been used to quantify past RSL due to coseismic deformation 

and Little Ice Age GIA in Alaska (Barlow et al., 2012; Shennan and Hamilton, 2006) and these 

examples would suggest about three cores from one marsh as a minimum target.  This of course 

incurs substantive additional resource and time.  In addition to validating the transfer-function 

model results, assessing local-scale variability by using multiple cores from the same marsh and 

additional marshes within an estuary will help to identify the effects of sediment compaction, age 
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model creation and the other coastal processes that control salt marsh accretion under different 

tidal ranges (see sections 4 and 5).   

Replication can also include temporal – spatial scale constraints applied to the way we formulate our 

research questions.  Temporal correlation of the direction and rate of RSL change can be explicitly 

tested by comparing RSL reconstructions from sites with different GIA histories, where the 

millennial-scale change is independently derived (Barlow et al., 2012; Long et al., 2012; Shennan, 

1999; Shennan et al., 1983).  For example, we can test the regional significance of the oscillation 

between ~AD1750 and 1800 in Figure 1A with a site undergoing greater GIA subsidence, where the 

rising limb should be at a greater rate, and a site undergoing GIA uplift should more clearly record 

the falling limb; assuming all other variables remains constant.  Comparing sites over large distances 

reduces noise created by local process which may obscure the signals you are trying to test for. 

 

7.3. Lithology 

In striving to increase model precision based on micro-fauna and -flora assemblages, we must not 

ignore sediment lithology.  This applies at numerous stages.  Knowledge of the modern elevation 

range in which different coastal sediments occur can provide constraints both in transfer function 

model development (in the case of the ‘salt marsh’ or ‘coastal transition’ models discussion in 

section 3.3) and assessment of transfer function reconstructions (section 3.9).  It can also apply to 

site selection.  Both foraminifera and diatoms provide better resolution of elevation changes within 

the upper part of the tidal range, or salt marsh environment, than lower down in tidal flat and sub-

tidal environments (see section 3.3).  As Edwards et al. (2004b) note, it is more reliable to exploit the 

varying sensitivities and tolerances of individual taxa across a range of elevations.  While some 

studies, such as the paleoseismology of great earthquakes, are best addressed using salt marsh and 

tidal flat sediments (Hamilton and Shennan, 2005; Nelson et al., 1996; Sawai et al., 2002), it is now 

generally recognised that gradual RSL change over the last 2000 years are better resolved using only 

salt marsh sediments.   

 

7.4. Field sampling design 

In sections 3.1 to 3.6 we addressed key questions that directly influence the outcomes of RSL 

reconstructions using quantitative methods.  These focussed on different opinions and approaches 

to selecting the appropriate samples for the modern and fossil datasets.  These datasets may 

comprise 100’s of samples and, in the case of diatoms, species.  Implicit in the different approaches 

is that the field sampling design adequately caters for ecological and environmental variability.  Most 

of the studies summarised in Table 3 use an approximately straight transect across a marsh to collect 

samples from a range of elevations.  The elevation range for sampling may be constrained by 

another parameter, such as lithology or vegetation community.  In a similar way to the debates 

surrounding development of large pollen (Huntley, 2012) or chironomid (Brooks and Birks, 2001) 

datasets, sampling designs need to adequately address variability within a marsh and between 

marshes separated by increasing distance.  For example, at a single marsh in west Scotland, Shennan 

et al. (2005) show that sedimentary and vegetation boundaries vary in the order of ±0.1 m.  In 

Maine, Jacobson and Jacobson (1989) show salt marsh flora zonation varies greatly in both the 

number of zones present per marsh and the species assemblages within zones.  Data from a single 

modern micro-fauna and -flora transect cannot determine spatial variability and in some cases the 
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whole dataset is scaled by a single observation along the transect, such as the highest occurrence of 

foraminifera (e.g. Wright et al., 2011).  While numerous studies show variability of microfossil 

assemblages between sites, leading to the ‘local’ versus ‘regional’ question (section 3) we currently 

do not have enough studies that measure within-site variance to assess the effect of spatial 

autocorrelation (Telford and Birks, 2005) and the propagation of error through to RSL 

reconstructions.   

 

7.5. Developing and interpreting geological tide gauge records: suggestions 

We cite numerous papers which apply differing approaches to statistical based reconstruction of 

RSL, many of which have direct or indirect links with the authors of this paper.  This goes to show 

that even within the authorship of this review there is no consensus to developing records of past 

RSL.  We do not suggest that there is a need to adopt a one-pathway-fits-all methodology as 

different sites and research questions (e.g. RSL changes over different timescales) do require 

differing approaches.  We have six suggestions which may help in the development and 

interpretation of geological tide gauge records: 

1. Do not strive for over precision: recognise that transfer function reconstruction errors are 

probably underestimates of both within-site and between site variance; and a RMSEP <10% 

of the sampled elevation range of the modern dataset may be a result of the methodology 

or approach taken by the researcher. 

2. Develop methods to assess reliability of reconstructions, including statistical methods such 

as dissimilarity coefficients and independent measures of elevation. 

3. Recognise, describe and, where possible, quantify the effect and uncertainties of transfer 

function model choices on reconstructions (Figure 7). 

4. Question if the reconstruction makes sense with reference to ecology, lithology and 

environmental succession. 

5. Where possible, use multiple cores from the same site to evaluate findings by replication.  If 

microfossil analyses and dating of multiple cores are too time-consuming or too costly, then 

ascertain that the stratigraphy of the core location is representative of the study site by 

documenting the site’s lithostratigraphy in detail. 

6. Evaluate age model dependence and be cautious where RSL changes appear to reflect the 

structure of the radiocarbon calibration curve or where inflections coincide with the 

boundary between different age models or chronological controls. 

All time series of sea-level change are inherently noisy, whether from instrumental or geological tide 

gauges.  We seek to identify trends and changes that are smaller in magnitude than daily tides and 

waves. Just because individual error terms may be larger than the magnitude of some local late 

Holocene RSL fluctuations does not mean that a RSL reconstruction is not worthwhile.  Studies of 

decadal to centennial-scale sea-level changes should seek to define the trends, linear and non-linear, 

and their associated standard errors.  Even when individual errors appear large, identifying changes 

in trends at multiple sites, both within an estuary and between different estuaries, allow us to test 

hypotheses about changes in the rate and direction of RSL. 
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8. Conclusions 

There is no doubt that advances in palaeoenvironmental reconstruction and dating increase our 

understanding of late Holocene RSL, and subsequently ocean-atmosphere-cryosphere interactions.  

By following the pathways outlined (Figure 3) it is possible to develop near continuous records of 

sub-centennial changes in sea level.  But, as we show using the north-west Scotland example, the 

reconstruction is not independent of a series of choices made by the researcher, the most important 

of which are: the environment from which the record is taken; the modern dataset chosen to 

calibrate the fossil changes; statistical assumptions behind calibrating microfossil assemblages; and 

the chosen age model.  Adoption of the suggestions set out in this paper may help in the 

development and interpretation of geological tide gauge records. 

For most of the coastlines of the world we can only reconstruct historical sea-level changes on 

timescales relevant to society by using proxy methods. Salt marsh geological tide gauges are our 

best option and are needed from multiple sites around the globe.  This requires development of 

different reconstruction models that will inevitably have different vertical uncertainties.  The 

challenge is to know and quantify what those uncertainties really are, and then to develop ways of 

comparing different records and trends in RSL to constrain some of the most pressing scientific 

questions that face society today.  
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Figure 1 – Different approaches to estimating past sea-level changes.  A: Salt marsh foraminifera 

based reconstruction of relative sea-level change in North Carolina, adapted from Kemp et al. 

(2011), compared to nearby instrumental tide gauge at Wilmington, South Carolina (NOAA).  B: 

Holocene sea level index points from Fenland, UK compared to glacial isostatic adjustment (GIA) 

model prediction of RSL (after Shennan et al., 2012).  C: Age-altitude plot of sea level index points 

(simulated dataset for illustration).  D: Age-altitude plot of sea level index points, from ‘C’, with 

different models of RSL change between data points (simulated dataset for illustration).  E: Monthly 

and annual mean instrumental tide gauge data from Newlyn, UK (psmsl.org.uk).  F: Percentage of 

freshwater diatoms of total number of diatoms counted from samples down a core from ~AD 800 to 

AD 2000 (simulated dataset for illustration).  G: Sea level reconstructions derived from diatom data 

in ‘F’ (simulated dataset for illustration).  
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Figure 2 - A schematic salt marsh transect showing the vegetation zones of a modern salt marsh and 

reference water levels (HAT = highest astronomical tide; MHHW = mean higher high water; MTL = 

mean tide level).  The graphs above show the distribution of selected diatom species across the 

marsh based on percentage assemblage data from the regional Scotland dataset presented in the 

paper.  Different species of diatoms, and other salt marsh organisms, have differing distributions 

controlled by tidal inundation and salinity which relates to elevation. 

 



35 
 

 

Figure 3 - Decision tree showing the typical pathways to microfossil based reconstruction of RSL 

change.  The decision tree in B applies to any (WA-PLS) unimodal model route in A, but only one 

pathway is shown for clarity. 
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Figure 4 - Map of Scotland showing the location of the sites of modern diatom data used in the 

Scotland regional transfer function (as listed in Table 1) and Tràigh Bad na Bàighe, Loch Laxford, the 

location of the fossil core.  Location of tidal ports, proximal to field sites, given in Table 1. 
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Figure 5 -  ithology and diatom biostratigraphy (showing diatoms that account for ≥5% total diatom 

valves counted) in a core from Loch Laxford used to demonstrate the consequence of different 

decision pathways in Figure 3.  The diatoms are grouped based on their salinity preferences. 
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Figure 6 - Scatterplots of the observed standarised water level index (SWLI) against the WA-PLS 

transfer function model predicted SWLI for the regional Scotland 'coastal transition' diatom training 

set for the first three components (as detailed in Table 2).  The one component model shows a non-

linear distortion in the lower part of the elevation range.  The two and three component models 

uses the structure in the residuals to produce a better statistical fit across the full elevation range of 

the modern data.  The colours match the decision pathways in Figure 3B and the reconstruction 

results in Figure 7. 
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Figure 7 - The results of reconstruction of RSL change in the Loch Laxford core (Figure 4) based on 

the four modern datasets and the first three WA-PLS components following the unimodal decision 

pathways in Figure 3.  A - the result of all 12 model reconstructions with the largest model errors 

bars (in grey) from the regional 'coastal transition' one component model.  B - the reconstruction 

results for the two most commonly adopted approaches: a regional dataset with a long 

environmental gradient (in blue) and a local dataset with a restricted environmental gradient (in 

orange).  Both reconstructions use two component models based on the best combination of RMSEP 

and rboot
2 statistics in Table 3.  C - the reconstruction results from A, grouped by model to show the 

impact of selecting different WA-PLS components.  The white, black and grey circles show which 

samples have a 'good', 'close' and 'poor' modern analogue based on the modern analogue technique 

(MAT) thresholds detailed in section 3.7 and Table 2. D - the average ± σ error bars for all the 

reconstructions in C, with the colours of each bar providing the key for the results in all the other 

graphs. 
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Figure 8 - Relationship between transfer function model performance and tidal range (A), and 

elevation range of samples in the model (B).  Model performance shown by root mean squared error 

of prediction (RMSEP) of 30 transfer function models (26 published, 4 from this paper) (detailed in 

Table 3).  Values in brackets is the r2 excluding the Bristol Channel dataset (top right data point in 

both panels) (Hill et al., 2007) which is an outlier relative to the rest of the datasets. 
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Figure 9 - A series of simulated radiocarbon dates evenly distributed through a core, at 50 calendar 

year intervals for the last 1000 years, produced by OxCal (Bronk Ramsey, 2001).  Shown are 

probability distributions and 2σ ranges. Note how the shape of the IntCal09 calibration curve 

(Reimer et al., 2009) can result in a series of stacked calibration solutions, which would appear as 

periods of rapid sediment accumulation and therefore suggest apparent changes in the rate of RSL, 

when in fact the sedimentation rate of the sequence is constant. The fluctuations are simply a 

function of changes in atmospheric 14C.   Updated from Gehrels et al. (2005). 
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Figure 10 – Reconstruction and interpretation of Holocene sea level data and trends.  A: Known 

constant trend of late Holocene sea level established from sea level index datasets such as in Figure 

1B compared with instrumental tide gauge records of 20th century RSL (Figure 1E); B: calibrated 14C 

dates (from Figure 9) for a hypothetical salt marsh core; C: 95% calibrated age ranges from ‘B’ with 

hypothetical RSL reconstruction with ±5 cm errors shown as box for each dated and reconstructed 

level in a core; D: interpretation of dates in ‘B’ can take the form of a modelled or eyeballed linear or 

non-linear trend.  The results of the steps in B, C and D can be interpreted as a linear RSL trend (E), 

similar to that in ‘A’; or a series of R   accelerations or decelerations (F).   ndependent tests of the 

reconstruction precision and accuracy and intra- and inter-site replication of trends (see text for 

discussion) aids in determining which interpretation is mostly likely correct. 

 

 



43 
 

 

 

Supplementary Figure 1 – Scottish modern diatom training set: species >20% total valves counted 
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Table 1 - Sites in the Scotland regional diatom dataset (Figure 4) with the nearest tide gauge observations of mean high water spring tides (MHWST) and 

mean tide level (MTL).  The nearest tidal observations for Tramaig Bay on the isle of Jura are too far away and therefore we estimate MHWST and MTL from 

local observations. 

 

 

 

 

Site 
Site latitude, 

longitude 
Nearest port (tidal observations) Port latitude, 

longitude 
MHWST tidal 

station (m OD) 
MTL tidal 

station (m OD) 

Balmacara, Loch Alsh 57.28, -5.62 Kyle of Lochalsh, Loch Alsh 57.17, -5.43 2.57 0.32 

Eilean nan Gall, Loch Duich 57.21, -5.42 
Dornie Bridge, Loch Long 57.17, -5.31 2.62 0.30 

Nonach, Loch Long 57.31, -5.44 

Kentra Moss, Kentra Bay  56.75, -5.85 
Mallaig, Lochaber 57.00, -5.50 2.38 0.28 

Saideal Ceapaich, Loch nan Ceall 56.91, -5.85 

Loch Creran, Loch Linnhe 56.55, -5.24 Port Appin, Loch Linnhe 56.33, -5.25 2.25 0.55 

Kinloch, Kyle of Tongue 58.44, -4.47 Portnancon, Loch Eriboll 58.30, -4.42 2.42 -0.30 

Tràigh Bad na Bàighe, Loch Laxford 58.37, -5.04 Loch Laxford 58.24, -5.05 2.40 0.25 

Tramaig Bay, Jura 56.03, -5.76 Based on local observations - 0.51 -0.27 
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Table 2 - Details of the four diatom training set models used to reconstruct RSL based on the fossil diatom assemblages in the Loch Laxford core (Figure 5).  The WA-

PLS model performance statistics and modern analogue technique dissimilarity coefficients (MAT DC) are reported from the C2 programme (Juggins, 2003).  The 

reconstruction results of each model and component are shown in Figure 7.  

Model 
# of 

samples 
SWLI 
range 

DCCA Axis 
1 length 

(SD units) 

Bootstrapped r2 RMSEP (SWLI) MAT DC 

Number of components Number of components 5th 
percentile 

20th 
percentile 1 2 3 1 2 3 

Regional ‘coastal transition' 
model 

215 100-300 4.08 0.73 0.78 0.81 19.5 18.5 19.5 68.6 118.9 

Regional 'salt marsh' model 121 140-200 2.06 0.57 0.67 0.70 10.9 9.9 9.7 42.7 93.7 

 och  axford ‘coastal transition' 
model 

73 100-300 5.08 0.87 0.92 0.93 9.3 7.3 7.5 28.7 56.1 

Loch Laxford 'salt marsh' model 53 140-200 2.47 0.86 0.91 0.91 5.9 4.8 4.9 17.6 41.2 
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Site 

# of 
sam
ples 

Model 
type 

Reported 
RMSEP 

(m) 

Elevation 
range of 

samples (m) 

Mean 
tidal 

range (m) 

RMSEP/ 
tidal 

range (%) 

RMSEP/ 
elevation range 
of samples (%) Reference 

Foraminifera training set            

Tasmania, Australia 43 WA-PLS 0.10 0.80 Ɨ 0.60 16.7 12.5 Callard et al. (2011) 

Catlins Coast, New Zealand 31 WA-Tol 0.05 0.31 1.50 3.3 15.9 Southall et al. (2006) 

Oregon, USA (average of 5 
locations).  Values given relative 
to South Beach. 

91 WA-PLS 0.20 2.28 Ɨ 2.54 7.9 8.8 Hawkes et al. (2010) 

Norfolk, England (average of 2 
locations).  Values given relative 
to Thornham marsh. 

47 WA-PLS 0.25 4.11 Ɨ 4.80 5.2 6.1 Horton and Edwards (2005) 

South Devon, England (average 
of 2 locations) 

85 WA-PLS 0.29 4.20 4.65 6.2 6.9 Massey et al. (2006) 

Brittany, France (average of 2 
locations) 

36 PLS 0.07 0.74 Ɨ 3.00 2.3 9.5 Rossi et al. (2011) 

Brittany, France 43 PLS 0.13 0.32 2.59 4.9 39.3 Leorri et al. (2010) 

Northern Spain (average of 4 
locations).  Values given relative 
to Minho estuary. 

30 WA-PLS 0.19 1.25 Ɨ 2.50 7.6 15.2 Leorri et al. (2008) 

Northern Portugal 49 WA-PLS 0.13 3.63 Ɨ 1.81 7.2 3.6 Leorri et al. (2011) 

Southern Portugal 22 PLS 0.10 0.46 2.00 4.8 20.7 Leorri et al. (2010) 

Viðarholmi, Iceland 21 WA-Tol 0.20 1.08 Ɨ 2.10 9.5 18.5 Gehrels et al. (2006) 

Nova Scotia, Canada 46 WA-Tol 0.06 0.28 1.86 3.2 21.4 Gehrels et al. (2005) 

Newfoundland, Canada 37 WA-PLS 0.07 0.80 Ɨ* 0.83 8.4 8.8 Wright et al. (2011) 

Maine, USA (average of 4 
locations) 

68 WA-PLS 0.25 2.05 Ɨ 3.11 8.0 12.2 Gehrels (2000) 

New Jersey, USA (average of 3 
locations).  Values given relative 
to Leeds Point. 

56 WA-PLS 0.14 1.30 Ɨ 1.10 12.7 10.8 Kemp et al. (2012) 

Connecticut, USA (average of 4 
locations).  Values given relative 

91 WA-PLS 0.09 0.99 Ɨ 1.28 7.0 9.1 Edwards et al. (2004a) 
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to Menunketesuck. 

Pattagansett River, Connecticut, 
USA 

26 WA-PLS 0.10 0.80 Ɨ* 1.16 8.6 12.5 Wright et al. (2011) 

Elizabeth River, North Carolina, 
USA 

53 WA-PLS 0.14 1.65 Ɨ* 1.34 10.4 8.5 Wright et al. (2011) 

Outer Banks, North Carolina, USA 
(average of 10 locations).  Values 
given relative to Sand Point. 

49 WA-PLS 0.04 0.24 Ɨ 0.17 23.5 16.7 Kemp et al. (2009b) 

Diatom training set            

Regional ‘coastal transition' 
model, Scotland (average of 9 
locations).  Values given relative 
to Loch Laxford. 

215 WA-PLS 0.40 3.86 Ɨ 4.30 9.3 10.3 This paper 

Regional 'salt marsh' model, 
Scotland (average of 9 locations).   
Values given relative to Loch 
Laxford. 

121 WA-PLS 0.21 1.25 Ɨ 4.30 5.0 17.0 This paper 

 och  axford ‘coastal transition' 
model, Scotland 

73 WA-PLS 0.16 2.47 4.30 3.7 6.4 This paper 

 och  axford ‘salt marsh' model, 
Scotland 

53 WA-PLS 0.10 1.18 4.30 2.4 8.7 This paper 

Upper Cook Inlet, Alaska, USA 
(average of 4 locations).  Values 
given relative to Bird Point. 

149 WA-PLS 0.30 3.64 Ɨ 7.98 3.8 8.2 Barlow et al. (2012) 

Aasiaat, Greenland 64 WA-PLS 0.16 1.34 2.70 5.9 11.9 Woodroffe and Long (2010) 

Sisimiut, Greenland 70 WA-PLS 0.19 2.56 4.50 4.2 7.4 Woodroffe and Long (2010) 

Ho Bugt, Denmark 40 WA-PLS 0.14 1.93 Ɨ 1.50 9.3 7.3 Szkornik et al. (2006) 

Outer Banks, North Carolina, USA 
(average of 3 locations).  Values 
given relative to Oregon Inlet. 

46 WA-PLS 0.08 0.88 Ɨ* 0.35 22.9 9.1 Horton et al. (2006) 

Hokkaido, Japan (average of 2 
locations) 

78 WA-PLS 0.29 3.85 Ɨ* 1.05 27.6 7.5 Sawai et al. (2004) 
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Bristol Channel, England 61 WA-Tol 0.88 7.71 Ɨ 11.66 7.5 11.4 Hill et al. (2007) 
Ɨ 
Maximum vertical elevation range from datasets over more than one transect.   

*Elevation range estimated from Figures in referenced paper as the absolute values are not given. 
 
 

Table 3 - Modern foraminifera and diatom datasets from salt marshes around the world, showing the reported RMSEP, the maximum vertical elevation range of the 

modern dataset and the mean tidal range.  WA-Tol — Tolerance Down-Weighted Weighted Average regression; WA-PLS — Weighted-Average Partial-Least-Squares 

regression; PLS — Partial-Least-Squares regression.  Figure 8 shows the relationship between RSMEP, mean tidal range and elevation range of the modern dataset.  

Table updated from that published by Callard et al. (2011). 

 


