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Synopsis

In this paper, the predictions of the Pompom constitutive model in medium and large amplitude

oscillatory shear (LAOS) are examined using Fourier transform rheology (FTR). FTR is commonly

used in combination with small amplitude oscillatory shear to fit linear Maxwell parameters to

dynamic moduli, and in this paper, this process is expanded to larger strain amplitudes and to

further terms in the Fourier series. For both small and large amplitudes, these higher harmonics are

dependent on the nonlinear Pompom parameters and the Pompom parameter space is explored to

see how experimental oscillatory shear data can infer molecular detail. In the regime of small and

medium strain amplitude, there exists an asymptotic solution to the Pompom equations which

depends only on the ratio of the orientation and stretch relaxation times, sb and ss. This asymptotic
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solution is found to be accurate up to strains of order unity and the branching priority, q, only

affects the stress response at larger strains. The Pompom parameters fitted to extensional data are

compared to LAOS data for three materials; two lightly branched metallocene catalyzed high

density polyethylenes and a densely branched low density polyethylenes. In general, the Pompom

model performs well in LAOS but tends to over predict experimental results at high strain

amplitudes. VC 2014 The Society of Rheology. [http://dx.doi.org/10.1122/1.4881467]

I. INTRODUCTION

An existing challenge in linking molecular architecture to rheological measurements

is to fit the free parameters of a constitutive theory to a geometrically and practically sim-

ple experiment, so that the material can then be modeled in more general complex flow

situations. Such flows will typically contain a mix of shear and extensional flow, and it is

necessary to simultaneously characterize both flow types. In particular, the degree of

strain hardening seen in extensional flow is highly sensitive to long chain branching

(LCB) and makes extensional flow a good choice for fitting constitutive theories, such as

the Pompom model [M€unstedt et al. (1998); Inkson et al. (1999); Malmberg et al.
(2002)].

Various techniques have been developed using linear shear rheology to distinguish

between linear and branched topologies. Gabriel et al. (1998) showed creep experi-

ments can be used to distinguish between a linear low density polyethylene and a low

density polyethylene (LDPE). Various authors have used small amplitude oscillatory

shear (SAOS) with Cole-Cole [Vega et al. (1998, 1999)] and van Gurp-Palmen plots

[Wood-Adams and Dealy (2000); Wood-Adams et al. (2000); Trinkle and Friedrich

(2001); Trinkle et al. (2002); Lohse et al. (2002)]. The van Gurp-Palmen plot not only

distinguishes between linear and branched polymers but also indicates the degree of

LCB, although this can be masked by polydispersity [Vega et al. (1999); Trinkle et al.
(2002); Wood-Adams and Dealy (2000)]. Malmberg et al. (2002) used SAOS and uni-

axial extension to examine the amount of LCB in metallocene catalyzed polyethylenes.

They found that while van Gurp-Palmen analysis of the samples detected LCB, uniaxial

extension was a more sensitive technique for detecting the amount and distribution of

LCB.

To investigate the nonlinear shear response several transient flow types can be mod-

eled. Inkson et al. (1999) fitted Pompom spectra to extensional data and showed this gave

good agreement with transient shear data. Graham et al. (2001) showed that a Pompom

model fitted to extensional data of LDPE successfully predicts the stress development in

exponential shear. However, when the procedure is reversed and the Pompom model is

fitted to exponential shear, there is no guarantee of being able to capture the level of

strain hardening in extensional flow. In Hoyle et al. (2009), it was shown that step strain

measurements of polyethylenes are sensitive to the level of branching and can be pre-

dicted from Pompom spectra obtained from extensional data.

The three shear flows above (step strain, constant strain-rate, and exponential strain-rate)

are all modeled well by fitting a Pompom theory to extensional data, but the converse is not

true. These transient shear flows are less sensitive than extensional flow to details of the

branching structure, and thus they are not as useful for characterizing constitutive theories.

Much attention has recently been focused on large amplitude oscillatory shear

(LAOS) [for example, cf. the review paper: Hyun et al. (2011)], which explores oscilla-

tory shear experiments for a given frequency and varying strain amplitudes, typically

ranging from c0¼ 0.1 to 4. In particular, results have been explored using Fourier trans-

form rheology (FTR) for polymer melts, where the stress response is analyzed in Fourier

space.

970 HOYLE et al.
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We wish to analyze the performance of the Pompom model in LAOS and in particular

we ask if Pompom parameters derived from extensional rheology capture experimental

observations in LAOS, while utilizing FTR analysis?

A. General oscillatory shear

In this study, we compare steady state oscillatory shear flow to transient shear and

transient extensional flow. For a general oscillatory flow, the deformation-rate tensor K
reduces to

Kxy ¼ _c ¼ c0x cosðxtÞ; (1.1)

where c0 is the strain amplitude and x is the angular frequency of oscillation.

We can express the stress, in the quasisteady state, as its Fourier decomposition,

rFT
xy ¼

X1
N

I0N sinðNxtÞ þ
X1

N

I00N cosðNxtÞ; (1.2)

where the Fourier coefficients, I0N and I00N are given by

I0N ¼
x
p

ð p
x

�p
x

rxy sinðNxtÞdt; (1.3)

and

I00N ¼
x
p

ð p
x

�p
x

rxy cosðNxtÞdt: (1.4)

The Fourier coefficients can be defined in terms of nonlinear storage and loss moduli

by

I0N ¼ c0G0N and I00N ¼ c0G00N; (1.5)

where in the limit c0 ! 0; G01 and G001 become the usual complex moduli in the linear

regime.

We can also define the phase angle of each Fourier mode, N, as

tanð/NÞ ¼
G00N
G0N

; (1.6)

and is commonly investigated in linear rheology for the first mode, N¼ 1 [e.g., Vittorias

and Wilhelm (2007)].

Oscillatory shear flow of a fluid with characteristic relaxation time, �s, can be described

using both a Deborah number and Weissenberg number which are defined as

De ¼ x�s (1.7)

Wi ¼ c0x�s; (1.8)

where for a material described by a multimode linear Maxwell (and hence Pompom)

spectra, �s ¼ RiGis2
i

RiGisi
.
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It has been suggested that FTR is sensitive to differing levels of branching [e.g.,

Hyun et al. (2006); Hyun et al. (2007); Hyun and Wilhelm (2009); Kempf et al. (2013)]

and has the advantage that LAOS is easier experimentally than extensional flow.

Typically, measured quantities include the real and imaginary odd harmonics, I0N and I00N ,

where N ¼ 1; 3; 5…. From these parameters, the absolute value of each harmonic is

examined as a fraction of the absolute first harmonic and can be defined as

IN=1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I02N þ I002N

I021 þ I0021

:

s
(1.9)

MacSporran and Spiers (1984) have shown that LAOS and FTR is a sensitive technique

for investigating the microscopic structure of fluids, in particular the phase shift for the

third harmonic, U3 ¼ /3 � 3/1, and the third storage and loss moduli, G03;G
00
3, are of par-

ticular interest in characterizing a material and characterizing both viscous and elastic non-

linear rheology [Neidh€ofer et al. (2003)]. Wilhelm et al. (1998) showed that applying

oscillatory shear to non-Newtonian linear polymers provides a tool for investigating nonlin-

ear response independent of material. By investigating the shear response in Fourier space,

higher harmonics were used to characterize nonlinearities. Wilhelm et al. (1999) continued

investigating at the cross over from linear to nonlinear behavior using the relative magni-

tude of the third harmonic, I3=1. The authors also looked at the difference between parallel

plate and coneplate geometries, suggesting that results are not independent of geometry but

are equivalent up to a multiplicative factor. Wilhelm et al. (2000) and Wilhelm (2002)

used FTR with linear polymers to characterize their rheological response with respect to

their molecular weight, molecular weight distribution and topology.

Debbaut and Burhin (2002) investigate high density polyethylenes (HDPE) in various os-

cillatory measurements including LAOS and compare them with the Giesekus model, find-

ing reasonable agreement between experiment and theory. Neidh€ofer et al. (2003) used FTR

with various branched polystyrene solutions. Using the phase shift of the third harmonic,

U3, the authors were able to distinguish between linear and star branched molecules at large

amplitudes. Fleury et al. (2004) and Schlatter et al. (2005) investigated various linear and

branched materials in FTR. They compared the sensitivity of FTR to linear analysis such as

van Gurp-Palmen and Cole-Cole plots and showed that it was more sensitive to branching

than linear analysis. The authors compare two constitutive models (Wagner [Wagner and

Stephenson (1979)] and the double convected Pompom (DCPP) model [Clemeur et al.
(2003)]) and fit the models to the data in a range of plots. One of the more interesting results

shows a polar representation of the real and imaginary components of the Fourier decom-

posed shear stress, parameterized by strain amplitude. The authors claim the Wagner model

gives a better prediction of the experimental results than the DCPP model.

Hyun et al. (2006, 2007) compare a range of constitutive models to strain hardening

and nonstrain hardening data. The authors discuss the concepts of medium amplitude

oscillatory shear (MAOS) for strain amplitudes of 0.1–1 and the “intercept” of the nor-

malized absolute third harmonic, I3=1, which is the value of I3=1 at a strain amplitude of

0.01. In particular for branched materials, the authors claim that the slope of I3=1 scales

with c0 as I3=1 � cn
0, where n is less than 2, as opposed to n¼ 2 for linear molecules. The

authors also measure transient extensional data in an attempt to link the level of strain

hardening to the nonlinear response of FTR. They also note that a single mode Pompom

model has a power law of n¼ 2 in MAOS as must any model in the limit of small but fi-

nite strain amplitude. Schlatter et al. (2005) show the DCPP model can successfully pre-

dict I3=1 for a range of linear, sparsely branched and densely branched polyethylenes, and
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 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

129.234.252.67 On: Mon, 28 Jul 2014 09:08:50



in this paper, we show that the multimode form of the original Pompom model is equally

effective.

Vittorias et al. (2007) combined FTR, NMR, and DCPP simulations. They examined I3=1

and U3 and extended the van Gurp-Palmen method to the third harmonic, U0
3 ¼ limc0!0U3,

extrapolating to zero strain amplitude and investigated optimum experimental conditions for

distinguishing the branching structure of various polyethylene samples. They found that the

extended van Gurp-Palmen method is sensitive to LCB and found low frequencies opti-

mized the nonlinear stress response. The data was modeled with the DCPP model, using

only four modes. This model was able to predict I3=1 and U3 reasonably accurately although

deviations from experimental data did exist. Vittorias and Wilhelm (2007) examined SAOS,

LAOS, and FTR for linear and branched polyethylenes and showed that FTR is capable of

determining the degree of LCB and that LAOS is more sensitive to LCB than SAOS.

However, the authors point out that FTR still needs to be explored using well characterized

polymer architectures.

Wapperom et al. (2005) investigated LAOS for a HDPE comparing it to the predic-

tions of various constitutive equations, mainly focusing on the molecular stretch function

(MSF) theory but also considered the Doi–Edwards, Carreau–Yasuda, and Giesekus

models. They found that the MSF model over predicted the shear stress, although it fitted

the phase shift well. The Doi–Edwards model gave a better prediction of the stress than

the MSF model; however, the MSF model is able to capture strain hardening and only

requires one parameter.

In their paper deriving DPP (a simplified form of the DCPP model) formulation of the

Pompom model, Clemeur et al. (2003) calculated the response of the model to a double

step strain and LAOS with FTR. They presented the LAOS results in the form of

Lissajous plot of stress against strain. This makes nonlinear behavior apparent by observ-

ing visual distortion to the ellipse of linear response. The DPP model performs reason-

ably well, capturing the intensity of the harmonics and the deviations in the Lissajous

plot up to strains of around five.

More recently, Hyun and Wilhelm (2009) introduced the quantities Q and Q0, which

are defined as Q ¼ I3=1=c2
0 and Q0 ¼ limc0!0Q, respectively, where the 0 subscript

denotes the limit of zero strain amplitude. The authors show that both Q and Q0 are sensi-

tive to molecular architecture and that Q0 as a function of Deborah number can be

explored using TTS to increase the experimental range available. Hyun et al. (2013) used

the Q parameter to investigate a single mode Pompom model and showed how the ratio

of arm and backbone molecular weights in a Pompom molecule had affected the Q pa-

rameter. This differs from this work where we investigate the Pompom dynamics in

LAOS and build toward using a multimode Pompom model using experimental data to

show we can infer molecular properties of a LCB melt. In other recent work, Wagner

et al. (2011) investigated how Q0 varies with frequency to study the difference between

linear and comb architecture polystyrenes. This work used the MSF theory to discrimi-

nate between linear molecules and combs with entangled and unentangled branches.

In this work, we examine a variety of materials in SAOS and LAOS to see if these

techniques can successfully distinguish between levels of branching. We will also

explore the Pompom parameter space in order to understand what characterization or

molecular information of a material can be obtained from LAOS.

II. THE POMPOM MODEL

Polymer rheology for highly entangled molecules can be successfully correlated with

molecular topology. The concept of the tube model introduced by Edwards and de Gennes

973LAOS AND FTR-ANALYSIS OF BRANCHED POLYMERS
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[cf. Doi and Edwards (1986)] can be applied to branched polymers, in particular McLeish

and Larson [McLeish and Larson (1998); McLeish (2002)] developed a molecular theory

for the nonlinear dynamics of an entanglement melt of Pompom molecules. A Pompom

consists of a backbone with an equal number of arms attached to branch points at either

end. As with the tube model for linear polymers, the entanglements around the backbone

are smoothed to a tube that moves affinely with the applied deformation and restricts lateral

movement. However, unlike the linear case where polymers can diffuse freely along its

tube, the presence of two branch points impedes motion along the tube giving a different

stress response to deformation. In particular, the stretch relaxation time (which controls the

triggering of extensional hardening) is much longer than for a comparable linear melt.

In extensional flows of sufficient rate to stretch the backbone, the backbone is

stretched until its effective curvilinear tension matches the cumulative equilibrium

tensions in the q arms, at which point the branch points retract into the elongating back-

bone tube. Equating the tension in the backbone with the maximum tension the arms can

hold gives the supremum for the stretch to be k¼ q. This parameter is called the branch-

ing priority. The stress exerted by the backbone segments is defined as the product of the

square of the backbone stretch with a unitary tensor, the orientation tensor.

There have been several suggested algorithms for calculating the orientation tensor in

the Pompom model. It was originally derived in integral form, then in a differential

approximation based on the upper-convected Maxwell model for the central orientation

structure. The differential model is more commonly used, particularly in complex flow

calculations as it is computationally simpler, but it is not in quantitative agreement with

the integral model [McLeish and Larson (1998)].

Other differential constitutive models were subsequently developed. A thermodynami-

cally motivated differential model was suggested by €Ottinger (2001). Verbeeten et al.
(2001) also suggested the extended Pompom (XPP) differential model, which was the moti-

vation for other subsequent forms such as the DCPP [Clemeur et al. (2003)]. These models

were developed to avoid the maximum stretch condition and improve the quantitative agree-

ment with the integral model, in particular to give a nonzero second normal stress difference

in shear. In this paper, we will use the form of the multimode Pompom model derived by

Inkson et al. (1999) with the modifications of Blackwell et al. (2000) and Lee et al. (2001).

In the multimode Pompom, the extra stress tensor is formed as the sum contributions

from different relaxation modes [Inkson et al. (1999)]. The stress contribution from each

mode is the product of the corresponding backbone stretch, k(t), and orientation tensor, SðtÞ,

r ¼ 3
XN

i

Gik
2
i ðtÞSi

ðtÞ; (2.1)

where Gi are the elastic moduli and i is the mode index.

The differential approximation uses the upper-convected Maxwell constitutive equa-

tion for the orientational degrees of freedom only, where the auxiliary tensor A satisfies,

DA

Dt
¼ K � A þ A � KT � 1

sb
A � I
� �

: (2.2)

The orientation is given by the unit tensor,

S ¼
A

trA
: (2.3)
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In the original Pompom model, the tension in the backbone is derived from a force bal-

ance between the drag force on each branching point and the backbone of the molecule

acting as a Hookean spring, imposing an elastic stretch relaxing toward the equilibrium

length of the backbone. Each arm has a maximum thermal tension that it can hold before

it becomes entropically more favorable to withdraw the arms into the backbone tube.

This gives a maximum stretch of ki¼ qi, where qi is the parameter specifying the effec-

tive degree of branching of mode i.
The flow induced branch point displacement discussed by Blackwell et al. (2000)

modifies the relaxation rate for the stretch before the critical condition ki¼ qi is met via

the physics of limited branch point withdrawal within the confining field of a tube diame-

ter. Since the relaxation time has an exponential dependence on the length of the arms,

there is a reduction in the relaxation time, ss ! sse
���ðk�1Þ, with �� ¼ 2

q�1
, [McLeish

(2002)]. Writing the stretch as the dimensionless parameter, kðtÞ ¼ LðtÞ=L0ð Þ, gives a

stretch equation which is nonlinear in kðtÞ,

D

Dt
kðtÞ ¼ kðtÞK : S � 1

ss
ðkðtÞ � 1Þe��ðki�1Þ: (2.4)

Lee et al. (2001) introduced a way of treating entangled chains in reversing flow con-

sistent with tube model physics, whereby a change in sign of the applied strain would

reduce the primitive path of the backbone chain to below that of equilibrium length, that

is, k < 1. A subsequent modification to the Pompom equations derived by Lee et al.
(2001) accounts for this process and alters the orientation relaxation time to,

1

s�b
¼ 1

sb
þ

_k
k
� K : S for k < 1: (2.5)

This aspect of the Pompom model is clearly essential to treat LAOS flows, since these

contain high-amplitude reversals of deformation repeatedly. Equations (2.1)–(2.3) (dif-

ferential model) and [(2.4) and (2.5)] constitute the Pompom models employed here.

III. NUMERICAL METHODS

The stress generated in the Pompom model in oscillatory shear and its Fourier decom-

position were calculated simultaneously. In shear flow, the constitutive equations for the

Pompom model reduce to

dAxy

dt
¼ _c � 1

s�b
Axy; (3.1)

dAxx

dt
¼ 2 _cAxy �

1

s�b
Axx � 1ð Þ; (3.2)

dk
dt
¼ _cAxy

Axx þ 2
k� 1

ss
k� 1ð Þe��ðk�1Þ: (3.3)

The orientation equations needed to be solved numerically since the relaxation time,

s�b, is a function of the nonanalytic stretch function, k(t), in reversing flow [cf. Eq. (2.5)].

Equations (3.1)–(3.3) are solved using a fourth order Runge-Kutta scheme [Burden and

Faires (2001)]. Quadruple precision was used to avoid round-off when solving solutions
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at low-strain amplitude. In choosing appropriate values for the time-step, some calcula-

tions were performed using a fifth order Runge-Kutta-Fehlberg scheme [Burden and

Faires (2001)] and solutions were checked for time-step independence for a large range

of frequencies and strain amplitudes. At small Weissenberg numbers, the third harmonic,

I3, is of order W3
i making it difficult to compute accurately at very small Wi. Good con-

vergence at both low and high strain amplitudes occurs for a step size of 10�3 times the

period of oscillation and lower.

To further reduce numerical noise, the time-step was chosen so that the period is an

integer number of steps. Convergence to steady state was checked by ensuring the maxi-

mum stress response for each period agreed to five significant figures before the start of the

Fourier integral, and the Fourier transform was performed over multiple cycles to increase

noise cancellation. The Fourier transform was calculated using a five point extension on

the trapezoid rule, known as Bode’s rule, which has an error of order h7f (6) [Press et al.
(1996)]. Care must be taken when performing the numerical Fourier transform since an ali-

asing numerical artifact can appear if the number of periods sampled is not sufficiently

larger than the Deborah number. This will be discussed in more detail in Sec. IV C.

The noise level of the Fourier transform was calculated from the second harmonic,

which is mathematically zero for the Pompom model. For strain amplitudes larger than

c0¼ 0.1, the absolute value of the second harmonic was less than 1% of the absolute

value of the third harmonic. The low-strain asymptotic solution detailed in Sec. IV

removes the need to calculate the solution at very low Weissenberg numbers.

IV. THE POMPOM MODEL IN OSCILLATORY SHEAR

In this section, we examine a one mode Pompom model in oscillatory shear to outline

the influence of the parameters on the predictions for LAOS. The Deborah number and

the Weissenberg number are defined with respect to the orientation relaxation time as

De ¼ xsb and Wi ¼ c0xsb, respectively. The Pompom model has two additional parame-

ters, r ¼ sb=ssð Þ, the ratio of relaxation times and, q, the branching priority.

In Fig. 1, the stress response of a one mode Pompom model with various values of q
and constant ratio of sb=ssð Þ ¼ r ¼ 4 are shown. The stress is plotted against time and

strain (Lissajous plots) for a constant Deborah number, De¼ 12, for q¼ 1, 2, 5, and 10.

At a Weissenberg number of Wi¼ 1.2 (c0¼ 0.1), the stress response is linear and is inde-

pendent of q, so all four lines superimpose. At Wi¼ 12 (c0¼ 1), all cases with q> 1 still

superimpose, however, for q¼ 1 the stress deviates slightly from linear behavior. For a

high Weissenberg number, Wi¼ 120 (c0¼ 10), the linear model with q¼ 1 is dramati-

cally different from the branched models, q> 1. For q¼ 1, a double peak is observed

which corresponds to cusps in the Lissajous plots. Similar shaped plots that have been

observed in experiments [Li et al. (2009)] and even hysteresis loops have been shown to

be evident in certain circumstances at the cusps [Ewoldt et al. (2008); Ewoldt and

McKinley (2010)]. Even at this high-amplitude, there is a little difference in the stress

response for q> 1, indicating that the Pompom model in LAOS is not very sensitive to

the branching priority. This is confirmed in more detail using FTR later in Sec. IV A.

Figure 2 shows the same plot as Fig. 1 for constant branching priority, q¼ 5 but with

the ratio of orientation and stretch relaxation times varied through r¼ 1, 2, 4, and 8. For

a Deborah number De¼ 12 with increasing Weissenberg number, the stress response

changes more dramatically than for the case with varied q parameter. For a Weissenberg

number of Wi¼ 120, the stress response is attenuated with increasing relaxation time

ratio. Thus, we conclude that for q> 1 the stress response of the Pompom constitutive
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model in LAOS is more sensitive to changes in the ratio of relaxation times than to

changes in branching priority.

A. Fourier transform rheology

The stress response of the Pompom model seems to be particularly sensitive to the

ratio of orientation and stretch relaxation times, r ¼ sb=ssð Þ. This ratio is proportional to

the number of effective entanglements along the backbone. A technique that is sensitive

solely to this ratio would provide a unique tool for the analysis of branched materials. To

study LAOS in further detail, it becomes more convenient to examine the stress response

in Fourier space rather than the time domain [Wilhelm et al. (1999); Wilhelm (2002)].

FIG. 1. A one mode Pompom model in oscillatory shear with various choices of the branching parameter,

q¼ 1, 2, 5, and 10. The other Pompom parameters chosen are G¼ 1000 Pa, sb ¼ 10 s and r¼ 4, giving a con-

stant Deborah number for each simulation as De¼ 12. As the Weissenberg number increases the most noticea-

ble difference is for the case q¼ 1. The stress response has low sensitivity to values of q> 1.
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The Fourier coefficients of the harmonic series can be studied independently to find

which is particularly sensitive to molecular structure. The first harmonics of the series are

already commonly used in the linear regime to fit Maxwell modes for various constitutive

equations including the Pompom model where they are used to determine fGi; sbi
g and

hence give some information about the structure of the material. We will focus on the

third harmonic and examine its sensitivity to the nonlinear Pompom parameters, q and r.

B. Asymptotic solutions

A series of low-strain asymptotic solutions can be derived to achieve analytical

solutions for Eqs. (1.3) and (1.4). This derivation is first shown in full in

FIG. 2. A one mode Pompom model in oscillatory shear with various choices of the stretch relaxation ratio,

r¼ 1, 2, 4, and 8. The other Pompom parameters chosen are G¼ 1000 Pa, sb ¼ 10 s and q¼ 5, giving a constant

Deborah number for each simulation as De¼ 12. Compared to the branching parameter (Fig. 1) the stress

response is more sensitive to variations and stretch relaxation time.
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Hoyle (2010), we review some of the results here. We can use these to look for devi-

ations from linear behavior. Once verified, these results can also be used to reduce

computation time for calculating the Fourier coefficients, as a very small time-step is

required to resolve the Fourier integrals for very low-strains. A high strain asymptote

for the case of q¼ 1 can also be derived to examine the high strain limit of a linear

Pompom model.

To derive low-strain asymptotes, it is convenient to rewrite the upper convected

Maxwell (UCM) tensor as an expansion in powers of the strain amplitude, c0

A ¼ I þ c0a
1
þ c2

0a
2
þ � � � ; (4.1)

and, similarly the stretch equation can be written as

kðtÞ ¼ 1þ c0kðtÞ1 þ c2
0kðtÞ2 þ � � � : (4.2)

In the case when s�b ¼ sb, the expansion terminates after the quadratic term. The

changes to s�b are negligible in the low-strain limit and can be neglected. Simulations

show that changes in s�b affect the Pompom stress response for strain amplitudes higher

than unity. The resulting shear stress can be expanded in odd powers of c0. The leading

order term is

rxy ¼
Gsbx cos xtð Þ þ sbx sin xtð Þð Þ

1þ s2
bx

2
c0 þ Oðc3

0Þ: (4.3)

Taking the Fourier transform of this result restores the familiar Maxwell storage and

viscous moduli,

I01 ¼
GDe2

1þ De2
c0 þ Oðc3

0Þ; (4.4)

and

I001 ¼
GDe

1þ De2
c0 þ Oðc3

0Þ; (4.5)

where the Deborah number is given by, De ¼ xsb, and the frequency is given in rad�s�1.

We can go on from the first harmonic to derive subsequent low-strain asymptotic

results for higher odd harmonic results (since the even Fourier coefficients are zero iden-

tically). The leading order term in I0n and I00n is of order cn
0 for n odd and containing only

odd powers of c0. In the limit of low-strain, only the leading power is of importance and

so higher order terms can be neglected. These were calculated by hand and checked using

the MAPLE symbolic algebra program. We give the result for the third harmonic and

concentrate on this since the third harmonic contains the next major piece of information

on nonlinearity. The storage and loss modulus for the third harmonic, in their low-strain

limit are given by

I03 ¼
GDe4ð1� r�1ÞðDe2 þ 5De2r�1 � 2� r�1Þ
ð1þ 4De2r�2Þð1þ 4De2Þð1þ De2Þ2

c3
0 þ Oðc5

0Þ; (4.6)

and
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I003 ¼ �
GDe3ð1� r�1Þð4De4r�1 � 5De2 � 8De2r�1 þ 1Þ

2ð1þ 4De2r�2Þð1þ 4De2Þð1þ De2Þ2
c3

0 þ Oðc5
0Þ: (4.7)

The two coefficients for the third harmonic are a function of Deborah number and the ra-

tio, r, of the orientation and stretch relaxation times. Neither asymptote is dependent on

the branching parameter, q, so that the influence of branching is only present in the large

amplitude regime, i.e., for Wi� 1. It should be noted that the branching priority would

enter asymptotic solutions of higher harmonics through the expansion of the exponential

relaxation term in Eq. (3.3).

In Fig. 3, we show the variation in I03=1 and I003=1 with frequency, x, where I03=1 is

defined as I03=I1

� �
and similarly I003=1 ¼ I003=I1

� �
. We plot the resulting I03=1 and I003=1 scaled

by c2
0 on a linear axis, as there exists a regime of negative contribution. The frequency is

still on a log axis. The modulus of the relative third harmonic [Eq. (1.9)] is also over-

layed. For each modulus, I03=1 and I003=1, there exists a maximum/minimum contribution to

the stress, depending on frequency.

We see in Fig. 4 that a higher ratio implies a higher maximum of I3=1. In other words,

a higher ratio implies a smaller ss and hence a smaller contribution to the stretch term in

the extra stress. Also, the Deborah number at which the peak occurs is higher for larger

ratios, r. Note, from Eqs. (4.6) and (4.7) for a ratio, r¼ 1, there is no contribution of the

third harmonic to the total stress. In fact, the contribution is of order, Oðc5
0Þ and can be

calculated analytically.

We also see in Fig. 4 that the case of q¼ 1 with the physical limit of k < q, stretch

relaxation is effectively instantaneous hence, ss ¼ 0. This causes the values I003 and I03 to

have characteristically different behavior from the cases with stretch relaxation occur-

ring. Again, from Eqs. (4.6) and (4.7), the value of I03=1 is the most dramatically different

and is nonzero in the high frequency limit, in contrast to the case for q> 1. This behavior

is unphysical as this model rejects chain Rouse modes. The difference between I003=1 for

q¼ 1 and q> 1 occurs in the high frequency regime. For the case q¼ 1, I003=1 does not

FIG. 3. A plot of I
0

3=1; I
0 0

3=1, and I3=1 as a function of Deborah number. Parameters used were G¼ 1 Pa, sb ¼ 1 s,

and ss ¼ 0:25 s.
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have a second minimum as it does for the cases where q> 1 (cf. Fig. 3). Again, this is

due to the lack of any chain stretch modes in this model.

One method for incorporating the rheology of a linear molecule is to set the stretch relax-

ation time to the Rouse time and allow q!1. This limit approximates to the RoliePoly

constitutive equations [Graham et al. (2003)] without convective constraint release and this

limit has been previously studied by Venerus (2005) and Venerus and Nair (2006) to suc-

cessfully model step strain flow of both finite and ideal step imposition time.

In the case of q¼ 1, we can derive high strain asymptotes for each Fourier coefficient.

Using the previous expansion of the UCM tensor in powers of the strain amplitude [Eq.

(4.1)], it can be shown that in high strain all Fourier coefficients scale as c�1
0 .

Subsequently, the Fourier coefficients for the first harmonic can be expressed as

I01 ¼
1

c0

ffiffiffi
3
p

G 2De
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3ð1þ 4De2ÞÞ

p
� 4De2 � 1

� �
De

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4De2Þ

p ; (4.8)

I001 ¼
1

c0

3G

De
; (4.9)

and the Fourier coefficients for the third harmonic can similarly be written as

I03¼�
1

c0

ffiffiffi
3
p

G 20De4�6De3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4De2þ1Þ

p
�17De2þ6De

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4De2þ1Þ

p
�1

� �
Deð1þDe2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4De2þ1
p ; (4.10)

and

I003 ¼
1

c0

ffiffiffi
3
p

G 11De2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4De2 þ 1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4De2 þ 1Þ

p
� 36De3

� �
Deð1þ De2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4De2 þ 1
p : (4.11)

FIG. 4. A plot of I3=1 as a function of Deborah number for various ratios, r¼ 1, 2, 4, 5, 10 and r ¼ 1. The

linear parameters are G¼ 1 Pa and sb ¼ 1 s. The maximum in I3 increases as a function of r up to the case of

ss ¼ 0 s ðr ¼ 1Þ which has asymptotically different behavior compared to finite r.
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Unfortunately, we have not been able to find an equivalent solution for q> 1.

The high strain asymptote (for q¼ 1 only) is independent of strain amplitude and so for

a fixed Deborah number it is also independent of Weissenberg number, as seen in Fig. 6.

The value of I3=1 has two regimes in high strain. For low Deborah numbers, De� 1, the

ratio of the third and first absolute harmonics is �1, implying each harmonic contributes

equally in the Fourier series. For De� 1, the value of I3=1 plateaus at approximately 0.27

with the transition between the two regimes occurring at De � 1. This is in contrast to the

low-strain asymptotic results that show peaks in I3=1 at a Deborah number �2.

C. Simulation results

In this section, the Pompom model is explored in LAOS with the Pompom equations

solved using the numerical techniques detailed in Sec. III.

In Figs. 3 and 4, the asymptote of I3=1 shows one peak that occurs at higher Deborah

numbers with increased ratio. This is in contrast to results shown in Hyun et al. (2013),

where a secondary peak is observed at higher Deborah numbers. The asymptotes are an

analytical solution of the Pompom model and are therefore the correct solutions in the

limit of low-strain amplitude. We believe the secondary peak observed by Hyun et al.
(2013) is a numerical artifact associated with how the Fourier transform was taken. In

Fig. 5, a one mode Pompom model is simulated for a constant strain amplitude of

c0¼ 0.01 as a function of Deborah number. The Pompom parameters chosen are G¼ 1 Pa,

sb ¼ 1 s, q¼ 20, and r¼ 10. The simulation is repeated with different choices (120 cycles,

480 cycles, and 1920 cycles) of sampling used to calculate the Fourier transform. It can be

seen in the figure that when the Deborah number is equal to the number cycles sampled

there is a peak in the noise (calculated from the second harmonic, which is mathematically

zero) which can be seen as a secondary hump in the simulated value of I3=1. This phenom-

enon can also be seen in Hyun et al. (2013) in Fig. 3. The quoted number of periods

sampled is 32, and this coincides with the secondary peak in the relative third harmonic. It

is clear that care must be taken when performing the numerical transform and the

FIG. 5. The relative third harmonic I3=1 plotted as a function of Deborah number for a one mode Pompom

model with parameters G¼ 1 Pa, sb ¼ 1 s, q¼ 20, and r¼ 10, with a strain amplitude of 0.01 used for the simu-

lations. The different lines show how the Fourier transform noise is affected by the number of cycles sampled.
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theoretical results in this paper have been sampled appropriately and the noise has been

checked to ensure that it does not contribute to any rheological stress responses.

Experimentally, this effect will not be significant in this work due to the polydispersity

of the samples. The polydispersity implies that there is a range of relaxation times and

thus any effect of sample size will be averaged out over this distribution of characteristic

times and subsequently reduced in significance.

Both theoretically and experimentally, this effect is also more pronounced at low-

strain amplitudes. As the strain amplitude increases, the stress signal is increased signifi-

cantly above the noise levels of the Fourier transform.

In Fig. 6, a one mode Pompom model is compared in LAOS for De¼ 12 and a range

of branching priorities, q¼ 1, 2, 5, and 10. The solution agrees with the low-strain

asymptote for Weissenberg numbers in the range 1 < Wi < 10, and for the case q¼ 1 the

high strain asymptote agrees with the solution for Wi > 100. The solution deviates from

the low-strain asymptote at around a Wi � 10, at which point small differences can be

seen for the various choices of q, for cases with q> 1.

In Fig. 7, a plot of I3=1 is shown for various ratios of orientation and stretch relaxation

time, r¼ 1, 2, 4, and 8, and constant branching priority, q¼ 5. For r> 1, the linear

response superimposes onto the low-strain asymptote. For the case of r¼ 1, the leading

order terms given in Eqs. (4.6) and (4.7) are zero so that I3=1 is of order c4
0 and not c2

0.

Comparing Figs. 6 and 7, it can be seen that the predominant Pompom parameter that

controls the stress response in LAOS is the stretch relaxation time, ss.

In Fig. 8, the real and imaginary parts of the absolute value of the third harmonic, I3=1,

are plotted as a function of Weissenberg number for fixed Deborah number of De¼ 12,

for various choices of branching priority, q, and ratio of orientation and stretch relaxation

time, r. The linear Pompom parameters are chosen as G¼ 1000 Pa and sb ¼ 10 s. The

imaginary and real parts of I3=1 are denoted as I03=1 and I003=1, respectively.

In Fig. 8 (left), the real and imaginary parts of I3=1 are plotted for various choices of

branching priority, q, and a fixed ratio, r¼ 4. For q> 1, there is only a small effect on the

values of I03=1 and I003=1 with changing q. For q¼ 1, I03=1 is considerably larger than for the

case of q> 1 and also for q¼ 1, I003=1 is positive as opposed to negative for the case q> 1.

FIG. 6. The relative third harmonic I3=1 plotted as a function of Weissenberg number for a one mode Pompom

model with variations in branching priority, q. The other Pompom parameters are G¼ 1000 Pa, sb ¼ 10 s, and

r¼ 4 giving a Deborah number, De¼ 12.
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As discussed above, the limit q¼ 1 is unphysical at high Weissenberg numbers as it

neglects chain stretch, which occurs even for linear polymers at rates higher than the

inverse chain Rouse time.

On the right of Fig. 8, the ratio of orientation and stretch relation times, r, is varied

with a fixed branching parameter, q¼ 5. The figure shows the results for a fixed Deborah

number of, De¼ 12, as a function of Weissenberg number. Again it can be seen that vary-

ing ss and hence r has a much bigger effect on I03=1 and I003=1 than the branching priority, q.

Studying the real and imaginary parts of I3=1 provides a deeper insight into how a con-

stitutive equation performs in LAOS, compared to the absolute value of I3=1, since such

quantities as the phase shift (of the nth harmonic) are calculated from I0n and I00n . In Sec. V,

the principles discussed here are used to compare simulations of multimode Pompom con-

stitutive model to experimental results of various polyethylenes.

FIG. 7. The relative third harmonic I3=1 plotted as a function of Weissenberg number for a one mode Pompom

model with variations in the ratio of orientation and stretch relaxation times, r. The dashed lines represent the

low-strain asymptotic solution and the simulation was performed at a fixed Deborah number of De¼ 12. The

other Pompom parameters are G¼ 1000 Pa, sb ¼ 10 s, and q¼ 5.

FIG. 8. The real and imaginary parts of the relative third harmonic, I3=1, plotted against Weissenberg number

for various choices of branching priority, q, (left) and the ratio of orientation and stretch relaxation times, r
(right), both with De¼ 12.
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V. EXPERIMENTAL RESULTS

In this study, we compare the results of three polyethylenes made from two different

synthesis routes. We consider two branched HDPEs and an LDPE. The LDPE 1840H is

produced by high pressure, high temperature free radical polymerisation, whereas the

two HDPEs, HDB3 and HDB6, in this study are produced by metallocene catalyzed poly-

merisation, which is produced at relatively lower pressures and temperatures compared

to that for the polymerisation of LDPE. Further details of these practices can be found in,

for example Peacock (2000). These materials have been investigated and well character-

ized in previous studies, e.g., Costeux et al. (2002), Das et al. (2006), Hassell et al.
(2008), and Hoyle et al. (2009, 2013).

A. Experimental and materials

The LAOS experiments were performed on a strain-controlled ARES rotational rhe-

ometer (Advanced Rheometric Expansion System, TA Instruments) using a 13 mm paral-

lel plate geometry, with a gap of around 1 mm. The temperature was controlled through

the use of the convection oven of the ARES, with heated nitrogen being flushed to

achieve the desired temperature and avoid degradation. During the LAOS experiments, a

temperature of 150 �C was used for 1840H, and 155 �C for HDB3 and HDB6. All the

samples were previously prepared on a heated press under vacuum which ensured sam-

ples were free of trapped air bubbles and stress. For the frequencies of 0.2 Hz

(1.26 rad�s�1) and 2 Hz (12.6 rad�s�1), eleven strain amplitudes between 0.1 and 1 (10%

and 100% strain) equally spaced on a log-scale were used. For the lower frequency (0.02

Hz, 0.126 rad�s�1), only six strains (also equally spaced) were used due to possible ther-

mal degradation derived from the extended duration of the measurement. The apparent

strain amplitudes were shifted to account for the use of a parallel plate, which does not

provide homogeneous shear [cf. Wilhelm et al. (1999); Wagner et al. (2011)]. Adopting

the results of Wagner et al. (2011), we shift the apparent strain amplitude to the true

strain amplitude by a factor,
ffiffi
2
3

q
.

For the analysis of the LAOS data, the FTR framework was used [van Dusschoten and

Wilhelm (2001); Wilhelm (2002); Neidh€ofer et al. (2003)]. The raw strain and torque

data were collected directly from the ARES and externally digitized. The quantities

obtained from Fourier analysis of the raw torque signal were the relative intensities of the

higher harmonics In=1, and the relative phase differences Un, as explained by Neidh€ofer

et al. (2003).

Rheological measurements of the materials in both small amplitude oscillatory and

transient shear and uniaxial extensional flow were performed using a strain-controlled

ARES rheometer advanced rheometric expansion system (Rheometric Scientific) with a

force-rebalanced transducer (2 K-FRT). The specimens were compression moulded at

170–190 �C with the dimensions corrected for the thermal expansion. The rheological

tests were repeated to assess the thermal stability and showed that no detectable molecu-

lar structure changes took place during the experiments.

SAOS tests were carried out using 10 mm parallel plates, while transient shear tests

were carried out using various cone and plate geometries with cone angles between 2�

and 10� and a diameter of 10 mm. Frequency sweeps were performed at a range of tem-

peratures and the data shifted to the same temperature as the nonlinear rheology using

WLF theory [Ferry (1961)].

The nonlinear elongational flow behavior was characterized using the uniaxial stretch-

ing device SER (Sentmanat elongational rheometer, Xpansion instruments [Sentmanat

(2004)]) attached to the ARES rheometer. Different Hencky strain-rates between
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0.001 s�1 and 10 s�1 were applied to compression molded specimens with a width from 3

to 10 mm and a thickness of about 1 mm [cf., for example, M€unstedt and Auhl (2005)].

From this we will discuss the rheological tests commonly used to characterize polymer

melts and then fit the experimental data with Pompom parameters. All experimental data

in this paper were provided to us through the microscale polymer processing project

(lPP2).1

We shall now compare the predictions of the multimode Pompom model fitted to

extensional rheology with experimental measurements for three materials, namely, the

HDPEs; HDB3 and HDB6, and the LDPE, 1840H [Auhl et al. (2011)]. The Pompom

model fitted to the experimental linear and non-linear rheology can be seen in Figs. 9–11

for HDB3, HDB6 and 1840H, respectively. All three materials have similar zero shear

viscosities, of around 50 kPa.s, details of which and other material parameters can be

found in Table I and the Pompom parameters used here can be found in the Appendix.

The linear and nonlinear Pompom parameters were fitted to data using REPTATE soft-

ware (Ramirez and Likhtman2). This software provides an automated fitting tool which

uses the downhill simplex method and searches for the minimum error between experi-

mental data points and theory.

The multimode Pompom model described in Sec. II contains four parameters per

mode. The linear Maxwell parameters are fitted to the dynamic moduli obtained from os-

cillatory shear measurements and as a further check the Maxwell parameters are then

checked against the same data in the form of the complex viscosity. Frequency sweeps

were performed at various temperatures and then are used to create a master curve using

time-temperature superposition theory with two parameters [Ferry (1961)].

The nonlinear Pompom parameters, ssi
and qi, are fitted using the protocol set out by

Inkson et al. (1999). The authors suggest physical constraints on the choice of nonlinear

Pompom parameters ðssi
; qiÞ. Namely, that the priority of branching must increase

FIG. 9. A comparison between theory fitted to oscillatory shear, transient shear, and transient uniaxial extension

for HDB3. Left: The dynamic moduli and complex viscosity fitted to a linear Maxwell spectrum. Right:

Transient shear and transient uniaxial extension data used to fit the nonlinear parameters (ss and q) of the

Pompom model. Data symbols correspond to shear/extension rates given in Table II and the Pompom parame-

ters for HDB3 are given in Table III.

1http://www.irc.leeds.ac.uk/mupp2/
2Ramirez, J., and A. E. Likhtman, Reptate: Rheology of entangled polymers, toolkit for analysis of theory and

experiment, 2007, http://www.reptate.com.
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toward the center of a molecule, i.e., the qi is an increasing function in sbi
and that the ra-

tio of relaxation times, ri ¼ sb=ssð Þ, is proportional to the number of entanglements in

the backbone section. Although the number of entanglements is unknown the limit of

ri¼ 1 implies an unentangled backbone section. Inkson et al. (1999) also suggests that

sbi�1
< ssi

, however, this rule is not strictly adhered to and in the interests of improving

the fit between experimental data and theory the relaxation time ratios are varied in the

range, 1 < ri < 10.

The nonlinear parameters are fitted to the extensional data and then against shear

predictions. The value of qi is mainly determined from the estimated limiting value in

extensional viscosity at large strains. However, the extensional data obtained from the

SER never reach a steady state plateau as stretching experiments are prone to sample

FIG. 11. A comparison between theory fitted to oscillatory shear, transient shear and transient uniaxial exten-

sion for 1840H. Left: The dynamic moduli and complex viscosity fitted to a linear Maxwell spectrum. Right:

Transient shear and transient uniaxial extension data used to fit the nonlinear parameters (ss and q) of the

Pompom model. Data symbols correspond to shear/extension rates given in Table II and the Pompom parame-

ters for 1840H are given in Table V.

FIG. 10. A comparison between theory fitted to oscillatory shear, transient shear, and transient uniaxial exten-

sion for HDB6. Left: The dynamic moduli and complex viscosity fitted to a linear Maxwell spectrum. Right:

Transient shear and transient uniaxial extension data used to fit the nonlinear parameters (ss and q) of the

Pompom model. Data symbols correspond to shear/extension rates given in Table II and the Pompom parame-

ters for HDB6 are given in Table IV.
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inhomogeneity and sample rupture [cf. Minoshima and White (1986a, 1986b); McKinley

and Sridhar (2002); Aho et al. (2010a, 2010b)], and experiments are limited to Hencky

strains less than four. This leaves an open question as to how to fit the Pompom theory to

the data. We have chosen to fit the Pompom steady state plateau to equal the maximum

SER data value reached before sample rupture.

This will enable us to consider the question: Can Pompom spectra with nonlinear

parameters fitted to extensional data capture the behavior of branched materials in LAOS?

B. LAOS

In this section, a range of strain amplitudes typically larger than those used for SAOS

are examined. Absolute strain amplitudes in the range c0¼ 0.1 to c0¼ 1 were accessible

with the experimental technique used. Strain amplitudes beyond some critical point will

depart from the low-strain asymptote which is proportional to the square of the strain am-

plitude, and tend to a plateau [e.g., Neidh€ofer et al. (2003)]. This plateau is not reached

in the experiments.

In the last section, it was shown that in a multimode Pompom constitutive model the

number of modes with nonlinear parameters (i.e., modes with q> 1) affects the results

for higher harmonics at small strain amplitudes. On a natural progression, one can ask if

the number of nonlinear modes affect the LAOS results and how sensitive LAOS predic-

tions are to the branching parameter, q? Another test for LAOS is to see if measurements

can be used to distinguish between materials with differing levels of LCB.

Figure 12 shows a comparison between experiment and theory for each material for

the three frequencies used in this study. Since each experiment is performed at a different

Deborah number the value of I3=1 is normalized by Deborah number for clarity and is

plotted as a function of Weissenberg number. To calculate Deborah and Weissenberg

numbers, the average relaxation time ð�s ¼ RiGis2
i =RiGisi

� �
Þ for each material was taken

from Table I. The dotted lines represent the low-strain asymptotic solution derived in the

last section and the solid lines are the numerical results. The experimental results follow

the W2
i scaling predicted by the small strain asymptotic theory.

In general, the Pompom model (with parameters fitted to extensional rheology) is able

to predict the experimental results with good accuracy, even departing from the W2
i

behavior at the same point as experiments. The best results are for the intermediate

frequency, 1.2 rad/s where experiment and theory agree well. The smallest and largest

frequencies are modeled less precisely, with the Pompom parameterizations used here,

over-predicting the experimental results.

As noted earlier, the imaginary and real parts, I03=1 and I003=1 respectively, contain phase

information that does not appear in I3=1. Figures 13–15 show the real and imaginary parts

of the absolute third harmonic, I3=1, plotted for varying Weissenberg numbers for HDB3,

HDB6(a), and 1840H. Generally, the real part, I003=1, is larger and dominates the absolute

modulus for each Deborah number. The initial quadratic behavior modeled by the

low-strain asymptote of I3=1 is seen in I003=1. In contrast, the imaginary part of the absolute

TABLE I. Material properties of polyethylenes investigated.

Sample Code MW (kg/mol) MW/MN (-) T (8C) g0 (kPa s) �sb (s)

Tubular 1840H 240 9 150 51 50

LCB-met. HDB3 86 2.1 155 43 22.1

LCB-met. HDB6 68 2.2 155 50 28
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third harmonic, I03=1, is much smaller than I003=1 and tends to decrease and become nega-

tive. In each plot, the Pompom prediction is shown with a solid line in the experimental

regime and a dotted line for Weissenberg numbers that were not experimentally

available.

All the multimode Pompom spectra show a similar pattern of behavior with increasing

Wi. The real part of I3=1 typically grows quadratically with Wi before reaching a turning

point, at which point I003=1 decreases and becomes negative. The imaginary part of I3=1 is

FIG. 13. A comparison between experiment and Pompom theory of the real (right) and imaginary (left) parts of

I3=1 for HDB3. The Pompom model has reasonable agreement with data with the biggest discrepancy occurring

for the largest Deborah number, De¼ 280. The Pompom parameters for HDB3 are given in Table III.

FIG. 12. A comparison between experiment and theory for each material for the three frequencies used in this

study. Since each experiment is performed at a different Deborah number the value of I3=1 is normalized by

Deborah number for clarity and is plotted as a function of Weissenberg number. The dotted lines represent the

low-strain asymptotic solution derived in the last section and the solid lines are the simulated results. Pompom

parameters for each material are given in the appendix.
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much smaller than the real component but still grows negatively as the Weissenberg

number is increased. For all three materials, the highest Deborah number plot of both I03=1

and I003=1 show maxima that are much higher than is observed experimentally.

For HDB3 I03=1 is modeled well for the lowest Deborah number (De¼ 2.8), but for the

two higher Deborah numbers (De¼ 28, 280) the downturn occurs at a higher

Weissenberg numbers for the model than in the experiments (cf. Fig. 13). The real com-

ponent, I003=1, is predicted well for low Weissenberg numbers for all Deborah numbers, but

the Pompom model predicts a maximum which is much higher than the data.

The results are similar for HDB6 (Fig. 14) with the first two Deborah (De¼ 3.8, 38)

numbers being modeled well by the Pompom model, although slightly over-predicting

the experimental data. For the highest Deborah number (De¼ 380), the Pompom model

FIG. 14. A comparison between experiment and Pompom theory of the real (right) and imaginary (left) parts of

I3=1 for HDB6. The Pompom model has good agreement with data with the biggest discrepancy occurring for

the largest Deborah number, De¼ 350. The Pompom parameters for HDB6 are given in Table IV.

FIG. 15. A comparison between experiment and Pompom theory of the real (left) and imaginary (right) parts of

I3=1 for the LDPE 1840H. The Pompom model has good agreement with real data with the biggest discrepancy

occurring for the imaginary component, I
0

3=1, for the largest two Deborah numbers, De¼ 63 and De¼ 630. The

Pompom parameters for 1840H are given in Table V.
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generally over-predicts the experimental data and predicts a large maximum for both the

real and imaginary components. No significant maximum is seen in the imaginary experi-

mental data and the maximum observed in the real data is much smaller than the

Pompom predictions.

For LDPE 1840H (Fig. 15), the lowest Deborah number experiment is predicted well

by the Pompom model, however, I003=1 is still over-predicted. For the other two Deborah

numbers, the Pompom model predicts a maximum in I03=1 which is not experimentally

visible. For the largest Deborah number, the experiments find a downturn in I003=1 which is

not captured by the Pompom model until much higher Weissenberg numbers.

Examining the real and imaginary components of the absolute third harmonic sepa-

rately for all three materials gives greater insight into the performance of the Pompom

equations in LAOS compared to looking at the absolute value alone. The imaginary com-

ponent is much smaller than the real part and thus has little contribution to the absolute

third harmonic thus studying this variable separately can show discrepancies not seen

when studying the absolute third harmonic alone. Also both components become nega-

tive in the range of Weissenberg numbers accessible. The Pompom model captures the

magnitude of the harmonic well but the prediction of the phase angle of the harmonic is

poor. This can be seen, for example, in Figs. 12 and 14 in the largest Deborah number for

the material HDB6, and for all the materials investigated here.

In general, the Pompom constitutive model with parameters fitted to extensional rheol-

ogy captures the rheology of LAOS reasonably well. When discrepancies occur the

Pompom model over-predicts experimental results. In the one mode Pompom model, we

found that the value of I3=1 showed a different rheological response for modes with a

branching priority of q¼ 1 than for q> 1, in particular giving larger values of I3=1. As

noted earlier, a linear molecule would still exhibit chain stretch relaxation that is not

modeled by the q¼ 1 Pompom model.

In fitting parameters to extensional data both the nonlinear Pompom parameters (ss

and q) are fitted simultaneously and the fitting is most sensitive to the branching parame-

ter, q. Using LAOS as a rheological technique can be used to ascertain the stretch relaxa-

tion time independently and provide a better understanding of material architecture. In

particular, using the low-strain asymptotes allows an experimentally accessible method

for investigating stretch relaxation time-scales.

VI. CONCLUSIONS

In this paper, the Pompom constitutive model was examined in LAOS to see if the

model can successfully predict experimental results, and to determine the sensitivity of

this experiment to the Pompom nonlinear parameters. In particular, can a Pompom

parameter set that has been fitted to extensional data capture the behavior of the material

in LAOS?

As this is a periodic flow it is convenient to use Fourier analysis to analyze the results.

Since the first harmonic is dominated by the linear viscoelastic response, the most

TABLE II. The symbols used for transient shear and transient uniaxial extension plots in Figs. 9–11. Other

strain-rates are specified in the plots.

Strain rate (s�1) 0.01 0.03 0.1 0.3 1.0 3.0 10 30

Symbol � � � � � � � /
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sensitive measurements of nonlinearity come from the higher harmonics (which are zero

for Oldroyd and UCM models). In this study, we focus our attention on the third har-

monic Fourier coefficients, which are the largest nonlinear coefficients and hence most

easily measured.

The Pompom parameters infer detail about molecular architecture and so by analyz-

ing a one mode Pompom model it was possible to deduce which of the Pompom param-

eters are sensitive in LAOS. Of the two nonlinear Pompom parameters, the stretch

relaxation time is the more dominant parameter, with the branching priority having

only a minor effect on the stress response, for q> 1. For the Pompom model, a low-

strain asymptotic solution was derived and from this it was shown that the absolute rel-

ative third harmonic, I3=1, has a power law of 2, with respect to Weissenberg number.

The low-strain asymptotes can be used to reduce computation time when simulating

the full LAOS stress response and Fourier decomposition. The low-strain asymptotes

are independent of branching parameter, q, and so provide a method for measuring ss

alone.

The multimode Pompom model is compared to experimental data for three mate-

rials; two HDPEs HDB3, HDB6 and the LDPE 1840H. Experiments were per-

formed at three frequencies (0.02, 0.2 and 2 Hz) and strain amplitudes ranging from

c0¼ 0.1 to c0¼ 1. The Pompom parameters for each material were fitted to the

dynamic moduli and extensional rheology and each spectrum shows a reasonable

degree of accuracy in predicting I3=1. Deviations away from the low-strain asymp-

tote were hard to examine as the experimental data did not go far enough into the

high strain regime. Overall, LAOS discriminated between the levels of LCB in the

three samples. Analysis of the Pompom model shows this is probably not due to

the number of branches but instead the number of branch-points, which is a subtle

but important difference. This is reflected in the Pompom model with the sensitivity

to the relaxation ratio, r, and not the branching priority, q.

To examine the accuracy of the Pompom model further, the variation of the real

and imaginary parts of the relative third harmonic were examined with increasing

strain amplitude (Weissenberg number). In general, the Pompom parameterizations

agreed with experiments well for the two lower frequencies but large deviations

occurred for the larger frequency. For the higher Weissenberg numbers both the real

and imaginary components of I3=1 showed a significant downturn, however, the

Pompom model predicts a large peak and does not downturn until much higher

Weissenberg numbers.

LAOS experiments provide a unique tool for analyzing branched polymer melts. The

topic of this publication is characterizing LCB, but when trying to parameterize the

Pompom model to flows such as transient extension the two nonlinear Pompom parame-

ters are fitted for each mode simultaneously. This provides multiple fits all satisfying

experimental rheology equally. In LAOS, the stress response is strongly dependent on

only one nonlinear Pompom parameter and so could be used to determine this parameter

independently. The low-strain asymptotes provide a powerful tool for this analysis as the

experiments are easier to perform in this limit.
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APPENDIX: POMPOM PARAMETERS USED IN THIS STUDY

Tables III–V detail the Pompom parameters used in this study.

TABLE III. A list of Pompom parameters for material HDB3 used in this study. Linear Maxwell parameters

are fitted to oscillatory shear and nonlinear parameters are fitted to transient shear and uniaxial flow.

HDB3 at 155 �C, 12 modes

Mode GiðPaÞ sb;iðsÞ sb;i=ss;i qi

1 422713 0.0016 — 1

2 116060 0.0043 — 1

3 62123.9 0.0118 — 1

4 30703.6 0.0323 — 1

5 16501.1 0.0882 — 1

6 9527.73 0.2409 — 1

7 5934.25 0.6579 — 1

8 3362.16 1.7970 2 1.3

9 1770.38 4.9081 9 1.4

10 688.780 13.405 9 1.5

11 147.668 36.613 9 1.8

12 64.4183 100.00 7 5

TABLE IV. A list of Pompom parameters for material HDB6 used in this study. Linear Maxwell parameters

are fitted to oscillatory shear and nonlinear parameters are fitted to transient shear and uniaxial flow.

HDB6 at 155 �C, 12 modes

Mode, i GiðPaÞ sb;iðsÞ sb;i=ss;i qi

1 219226 0.0009 — 1

2 179387 0.0028 — 1

3 37873.9 0.0093 — 1

4 32981.4 0.0306 — 1

5 18896.9 0.1009 — 1

6 11820.4 0.3333 — 1

7 6053.40 1.1009 — 1

8 2767.03 3.6361 9 3

9 840.575 12.009 9 3

10 224.024 39.662 3 5

11 26.7746 130.99 2 8

12 1.94559 432.63 7 20
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