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Abstract

The concept of isogeometric analysis, whereby the parametric func-
tions that are used to describe CAD geometry are also used to approx-
imate the unknown fields in a numerical discretisation, has progressed
rapidly in recent years. This paper advances the field further by outlin-
ing an isogeometric Boundary Element Method (IGABEM) that only re-
quires a representation of the geometry of the domain for analysis, fitting
neatly with the boundary representation provided completely by CAD.
The method circumvents the requirement to generate a boundary mesh
representing a significant step in reducing the gap between engineering
design and analysis. The current paper focuses on implementation details
of 2D IGABEM for elastostatic analysis with particular attention paid
towards the differences over conventional boundary element implementa-
tions. Examples of Matlab R© code are given whenever possible to aid
understanding of the techniques used.

1. Introduction

Isogeometric analysis (IGA) is a subject which is receiving a great deal of

attention amongst the computational mechanics community since it has the

potential to have a profound effect on the current engineering design and anal-

ysis process. The concept has the capability of leading to large steps forward

in efficiency since effectively, the process of “meshing” is either eliminated or
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greatly suppressed. To understand why this is such a revolutionary develop-

ment, it is necessary to take an abstract view of the current engineering design

and analysis process and evaluate the critical points where bottlenecks occur

which subsequently lead to delays in engineering projects.

Models are created in Computer Aided Design (CAD) software allowing

designers to materialise ideas into computational objects that can range from

simple geometries to highly detailed and complex engineering prototypes. The

wide array of CAD packages available, along with the ever-increasing geometri-

cal modelling capabilities, offers designers the ability to create realistic models

of complex components. Once a model is complete in CAD, it must be trans-

formed into a form suitable for analysis, with the most time-consuming step

taken up in creating a suitable “analysis-ready” model which forms a discreti-

sation of the domain (or boundary). This step in many cases requires human

intervention by a specialist to ensure that the discretisation is of sufficient qual-

ity to give accurate results in future simulations. But what is most important

to note, is that the relative portion of time taken to create an analysis-ready

design is approximately 80% of the total design and analysis process, thereby

dominating the entire design process.

Once a suitable discretisation has been made, analysis can be carried out

using a suitable numerical method such as the Finite Element Method (FEM),

Finite Difference Method (FDM) or the Boundary Element Method (BEM).

Analysis itself represents a relatively small portion of the design process but

importantly, we find that often the original design is affected by the results ob-

tained from analysis. In this manner, design and analysis are tightly connected

through an iterative procedure - a concept which is mirrored throughout the

engineering community.

Recently, an answer to the problems created by the mismatch between design

and analysis was proposed through the concept of Isogeometric Analysis. The

concept was initially proposed by Hughes et al. [19] and since this seminal work,

a book has been published entirely on the subject [13]. Rather than using con-

ventional piecewise polynomial shape functions to discretise both the geometry
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and unknown fields, IGA proposes to use the parametric functions used by CAD

as an approximation for both fields, most commonly taking the form of Non-

Uniform Rational B-Splines (NURBS). In this way, the isoparametric concept is

maintained but more significantly, the geometry of the problem is preserved ex-

actly. In addition, since many of the algorithms implemented in CAD packages

can also be used for numerical analysis, redundant computations are eliminated

allowing analysis to be carried out with greatly reduced pre-processing.

A great deal of research has been focussed on IGA in recent years with

implementations in areas such as patient-specific modelling [7], XFEM [11],

shells [10] and many others e.g.[6],[4],[22],[14],[33],[31]. In the majority of these

methods NURBS are used for discretisation, but the inability of the functions to

produce “watertight” geometries and allow local refinement have shown major

shortcomings. Perhaps one of the most significant developments to overcome the

deficiencies of NURBS is the introduction of T-splines [5] and later PHT-splines

[23] that produce watertight geometries and can be locally refined, benefiting

both the design and numerical analysis communities. In particular, from an

analysis standpoint, the use of such functions is essential for efficient algorithms

to exploit adaptivity. More recently IGA has been applied within a BEM context

for elastostatic analysis [28] where particular benefits are realised due to the

requirement for only a surface representation of the geometry. The present

paper builds on this work, where emphasis is given towards the implementation

details of a 2D isogeometric BEM. The organisation of the paper is as follows:

first, an outline of B-splines and NURBS which form the underlying technology

of isogeometric analysis is given, a review of the conventional BEM is given

and finally, the implementation details of isogeometric BEM are illustrated by

building-up an example problem from an inital CAD model to the final BEM

system of equations.

2. Geometrical modelling

The key concept of isogeometric analysis is bringing the fields of design

and analysis together into a unified framework through the use of parametric
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functions that are predominant in CAD. Therefore we concentrate in the current

section on describing such functions which most commonly take the form of

NURBS. In much of the recent literature on isogeometric analysis [13][19][5]

(and indeed, much literature in the past [24],[26]), extensive details are given

on the construction of B-splines and NURBS and therefore we only give a brief

description of these functions ensuring that relevant notation is defined to aid

the reader in later sections.

Since the present paper is focussed on implementation details, heavy use is

made of the algorithms stated in [24] which cover details ranging from evaluating

NURBS basis functions to refinement algorithms such as knot insertion and

order elevation. The reader is advised to consult this reference since the basics

of parametric functions for geometric modelling are outlined clearly.

2.1. B-splines and NURBS

The first concept which must be grasped when using B-splines or NURBS

is that both functions are parametric in that the equations which describe the

curves (or surfaces) are completely defined by a number of independent param-

eters. In the current context we will use ξ as the independent variable which

describes a B-spline or NURBS and denote it as a coordinate in the parameter

space. To understand the meaning of the variable ξ, an example B-spline is

shown in Fig.1 which illustrates the basic but important concepts of the func-

tions that are used to decribe CAD geometry. We note the following:

• The curve requires a set of control points to be defined which may or

may not lie on the curve

• The curve requires the definition of a knot vector, defined as a non-

decreasing sequence of coordinates in the parameter space, which in this

case is given by Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4}

• In this instance the curve is constructed from an open knot vector which

results in a spline that is interpolatory at the beginning and end of the

curve.
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Figure 1: Example B-spline with associated control points.

• If knot values are repeated, then it is found that the order of continuity

decreases at that point in the spline.

The knot vector is a concept which is often unfamilar to those working in the

field of numerical analysis but should be considered carefully, since it has a large

influence on the resulting spline. The most important aspect of the knot vector

is the relative difference between the components and for this reason the values

can be scaled if required. That is, the knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4} with

ξ ∈ [0, 4) is equivalent to Ξ = {0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.4, 0.4} with ξ ∈ [0, 0.4).

In later sections we will see that the process of applying refinement in IGABEM

has a considerable effect on the knot vector. Knot vectors are ubiqutous in

the fields of geometrical modelling and isogeometric analysis and therefore the

reader should become accustomed to their use.

We now introduce some more formal definitions which are required for suc-

cint notation in later sections. Denoting the dimensionality of the problem as

R
d (d = 2, 3), the following three items are required to define fully a B-spline:

• The curve degree, p, e.g. linear (p = 1), quadratic (p = 2)...
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Figure 2: Linear B-spline p = 1
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Figure 3: Quadratic B-spline, p = 2

• A set of of n control points Pa ∈ R
d , 1 ≤ a ≤ n

• A knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}

Figures 2 to 4 illustrate linear, quadratic and cubic B-splines with their

associated control points. The knot vectors associated with each curve are

{0, 0, 1, 2, 3, 3}, {0, 0, 0, 1, 2, 3, 3, 3} and {0, 0, 0, 0, 1, 2, 3, 3, 3, 3} respectively. Each

of these are found to be open knot vectors which denotes that they contain p+1

repeated components at the beginning and end of the knot vector. The fact that

the curve is interpolatory at the beginning and end is a direct consequence of
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Figure 4: Cubic B-spline, p = 3

this. In all future examples used in this paper, it can be assumed that open knot

vectors are used. Repeated knot components may also occur at points which

are not located at the extremes with a consequence that the continuity of the

curve is reduced at that point.

2.1.1. B-spline and NURBS basis functions

The previous section served as an overview of B-splines and some of the ter-

minlogy associated with their construction. But for a B-spline to be completely

defined, some attention must be paid towards their associated basis functions.

The idea of interpolating a discrete number of points mirrors the technology seen

in conventional FEMs and BEMs but with a distinct difference - the curve is

not required to exhibit the Kronecker delta property at the interpolated points.

The consequences of this are that when interpolating fields such as displacement,

the value obtained at nodal points does not represent any real displacement but

rather a coefficient used for interpolation. This is similar to meshless meth-

ods where techniques such as Lagrange multipliers [8] and the penalty method

approach [3] are employed to impose essential boundary conditions.

Turning our attention towards B-spline basis functions, we introduce the fol-

lowing expression which fully describes a B-spline in terms of its basis functions
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Figure 5: B-spline basis functions for curve shown in Fig. 4 and knot vector Ξ =
{0, 0, 0, 0, 1, 2, 3, 3, 3, 3}

and control points. This is written as

C(ξ) =

n
∑

a=1

Na,p(ξ)Pa (1)

where C(ξ) is a vector denoting the Cartesian coordinates of the location de-

scribed by the parametric coordinate ξ, and Na,p(ξ) denotes the set of B-spline

basis functions of degree p at ξ. The basis functions are defined as

Na,0(ξ) =











1 if ξa ≤ ξ < ξa+1

0 otherwise

(2)

and for p = 1, 2, 3...

Na,p(ξ) =
ξ − ξa

ξa+p − ξa

Na,p−1(ξ)

+
ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1(ξ). (3)
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Fig. 5 illustrates the basis functions corresponding to the B-spline shown in

Fig. 1; here the interpolatory nature of the first and last basis functions is evi-

dent. What should be noted is that Eqns. (2) and (5) are recursive in nature and,

in their current form, considerably more expensive than conventional polynomial

basis function expressions. However, there exist several efficient computational

algorithms for their evaluation such as the Cox-de-Boor algorithm[24],[26] and,

more recently, the extraction operator [27]. B-spline derivatives are also re-

quired for numerical analysis, but the algorithms for determining their values

are standard in CAD literature, with details given in A.1.

In CAD surface modelling packages, NURBS represent the dominant tool

used to describe curves and surfaces where, in fact, they are found to be a

superset of B-splines and only differ from their counterparts by the use of an

additional coordinate often referred to as a ‘weighting’. In some interpretations

NURBS are seen as a ‘projection’ of B-splines from a higher dimensional space

(see [13]), and it can be shown that some attractive properties emerge. In par-

ticular, NURBS are able to reproduce circular arcs, spheres and conic sections

exactly (cf. B-splines which only approximate such shapes) and this is achieved

through the appropriate choice of weightings. Each control point Pa is associ-

ated with a weighting wa leading to a set of NURBS basis functions denoted by

Ra,p(ξ). The curve is then interpolated as

C(ξ) =
n

∑

a=1

Ra,p(ξ)Pa (4)

with the NURBS basis functions given by

Ra,p(ξ) =
Na,p(ξ)wa

∑n

â=1 Nâ,p(ξ)wâ

(5)

where Na,p can be found from Eqns (2) and (3). In the case that the weights

are all set to unity (i.e. wa = 1 ∀a), the basis functions given by (5) reduce

to the B-spline basis functions of (3). Expressions for the derivaties of NURBS

basis functions can also be found, and are detailed in A.2. Since B-splines are a

subset of NURBS, for the sake of generality, NURBS will be considered for all

future examples.
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Isogeometric analysis relies on the use of the basis functions outlined in this

section and is conceptually very simple - we use the basis functions used to

describe the geometry of the problem to approximate the unknown fields in the

governing PDEs. That is, in the case of elastostatic analysis using BEM, the

displacement and traction components are approximated using NURBS basis

functions. The benefit of this approach is clear, since the task of producing

a boundary discretisation (mesh) is completely provided by CAD and, once

boundary conditions and material properties have been defined, analysis can be

carried out immediately.

3. Conventional BEM

To illustrate the differences between conventional and isogeometric BEM

implementations some details of standard BEM technology are presented here.

The purpose of this section is not to give a complete derivation of the method but

rather an overview to aid understanding in later sections. The interested reader

is advised to consult standard BEM references for more details [12],[2],[15],[34].

In this section we describe the direct collocation form of the BEM using piece-

wise polynomial shape functions; the indirect form of the BEM and the Galerkin

BEM are not described, though there appears to be no reason why the Galerkin

BEM cannot be developed in an isogeometric framework.

To begin, we define the domain of the problem Ω with boundary Γ = ∂Ω.

We also define two points x′ and x, commonly referred to as the source point

and field point respectively, these points being separated by a distance r given

by the Euclidean norm

r := ||x′ − x|| (6)

(see Fig. 6). The point x′ is often referred to as the collocation point, since in

the conventional collocation BEM implementation, the system of equations is

constructed by taking the collocation point to lie at each nodal point in turn.

The field point x represents any sampling point, considered in a numerical inte-

gration scheme, on the portion of boundary over which integration is performed.
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Figure 6: Definition of problem domain with source and field points.

Making the assumption of linear elasticity and in the absence of body forces,

we can write the displacement boundary integral equation (DBIE) which relates

displacements and tractions around the boundary Γ,

Cij(x
′)uj(x

′) + −
∫

Γ

Tij(x
′,x)uj(x) dΓ(x)

=

∫

Γ

Uij(x
′,x)tj(x) dΓ(x) i, j = 1, 2 (7)

where Cij is a jump term that arises from the limiting process of the boundary

integral on the left hand side of (7) and is dependent on the geometry at the

source point, uj and tj are the components of displacement and traction around

the boundary and Uij and Tij are displacement and traction fundamental so-

lutions relating to a source point direction component i and field point compo-

nent j. These fundamental solutions for 2D linear elasticity may be found in

Appendix B.1.

In its current form, Eq. (7) is not amenable for numerical implementation

since uj and tj represent unknown continuous fields. We therefore proceed in

the usual fashion of discretisation by splitting the boundary of the problem into

elements with local coordinate η ∈ [−1, 1] over which the geometry and fields
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Figure 7: Continuous quadratic basis functions

can be approximated as

xe(η) =

nb
∑

b=1

Nb(η)xb (8)

ue(η) =

nb
∑

b=1

Nb(η)ub (9)

te(η) =

nb
∑

b=1

Nb(η)tb (10)

where nb is the number of local basis functions (eg. b = 3 for a quadratic

element), Nb(η) are the set of polynomial basis functions (see Fig. 7 for the

commonly used quadratic Lagrangian basis functions) and xb, ub, tb are vectors

of nodal coordinates, displacements and tractions respectively. The subscript e

has been used in Eqns (8) to (10) to denote that the vectors apply to a specific

element e. By inserting Eqns (9) and (10) into (7), the discretised DBIE can be

written as

Cij(x
′)uj(x

′)

+

Ne
∑

e=1

nb
∑

b=1

[
∫ +1

−1

Tij(x
′,x(η))Nb(η)Je(η) dη

]

ueb
j

=

Ne
∑

e=1

nb
∑

b=1

[
∫ +1

−1

Uij(x
′,x(η))Nb(η)Je(η) dη

]

teb
j . (11)
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where Je(η) represents the Jacobian of transformation for element e that maps

η → Γ and 1 ≤ e ≤ Ne is the set of element numbers.

As mentioned previously, the system of equations is formed by considering

the collocation point x′ to lie at each nodal point in turn. In this way, a set

of matrices are assembled relating all displacement components and traction

components. This set of equations can be written as

Hu = Gt (12)

with the square matrix H containing all integrals of the Tij kernel plus the jump

terms Cij , the rectangular matrix G containing all integrals of the Uij kernel,

and the vectors u, t containing nodal displacement and traction components

respectively. By prescribing a suitable set of boundary conditions, which may

consist of a set of displacements and tractions, equation (12) may be rearranged

to give a set of linear equations in the form

Ax = b, (13)

where x represents the vector of unknown degrees of freedom. The linear system

(13) can be solved for x using conventional or fast solvers [9, 25] while noting

that A is a full, non-symmetric matrix.

4. Isogeometric BEM

Our attention now focuses on the main idea of the paper: presenting the iso-

geometric boundary element method implementation for 2D elastostatic analy-

sis. However, before more details are given, a comment should be made on the

key difference of IGABEM over conventional BEM. Essentially, it can be reduced

to the use of NURBS basis functions in place of the conventional polynomial

counterparts. There are certain consequences for implementation when NURBS

basis functions are used (such as dealing with nodal points which no longer lie

on the boundary), but this key concept should be kept in mind throughout the

following sections.
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Figure 8: Control points and NURBS curve definition for reactor problem. Ap-
pendix C details the control point coordinates and weights.

Figure 9: NURBS basis functions for reactor problem.

We begin by considering a simple 2D geometry of a nuclear reactor vessel;

symmetry has been exploited to simplify the problem. The exact geometry can

be described using the NURBS as illustrated in Fig. 8. All information necessary

to define the NURBS curve is provided by a CAD model. In this example we

have chosen, for the entire boundary, to use quadratic basis functions (p = 2)

which are illustrated in Fig. 9 .

4.1. Element definition

As shown in Sec. 3, the boundary integrals in the DBIE are evaluated over

the entire domain by summing all elemental contributions. But for IGABEM, it
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Figure 10: NURBS basis functions for first element of reactor problem.

is not immediately obvious what our definition of elements should be. However,

we should bear in mind that some notion of ‘elements’ is used in IGABEM

simply as a construct for numerical integration, and this is the definition used

in the remainder of this paper. The element domain is required to cover only

the portion of the boundary where the relevant basis functions are non-zero. For

convenience this leads us to a definition of element boundaries as the unique

values of the knot vector, which can be implemented simply as

uniqueKnots = unique(knotVec);

elRanges = [uniqueKnots(1:end-1)’ uniqueKnots(2:end)’];

For example, the first element for the reactor problem is defined by ξ ∈ [0, 1]

with the set of non-zero basis functions over this element illustrated in Fig. 10.

For the purposes of numerical integration using Gauss-Legendre quadra-

ture, local coordinates in the range [−1, 1] over a particular element are most

commonly used, so a transformation that maps from the parameter space ξ ∈
[ξ1, ξa+p+1] to a parent coordinate space defined over an element as ξ̂ ∈ [−1, 1]

is required. To achieve this, a Jacobian of transformation is used which com-

prises two terms combined in the chain rule sense: a mapping from the physical

coordinate space to parameter space (dΓ/dξ) and a mapping from parameter

space to the local parent coordinate space (dξ/dξ̂). This results in the following

Jacobian of transformation:
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J(ξ̂) =
dΓ

dξ̂
=

dΓ

dξ

dξ

dξ̂
(14)

Explicit expressions for the derivatives on the right hand side of Eq. (14) are

given in Appendix B.2.2.

4.1.1. Element connectivity

Before approximations of the geometry and unknown fields can be given,

the non-zero basis functions must be determined for a particular element, thus

forming a connectivity function. If this is done, then a set of local basis functions

that are related to the global basis functions can be defined as

Ne
b (ξ̂) ≡ Ra,p(ξ(ξ̂)) (15)

where the local basis function number b, element number e and global basis

function number are related by

a = conn(e, b) (16)

where conn() is a connectivity function. The connectivity function for the re-

actor problem is given in Appendix C.2. Using this definition of local basis

functions, it is now possible to state isogeometric approximations for the geom-

etry, displacement and traction as follows:

xe(ξ̂) =

p+1
∑

b=1

Ne
b (ξ̂)xb (17)

ue(ξ̂) =

p+1
∑

b=1

Ne
b (ξ̂)db (18)

te(ξ̂) =

p+1
∑

b=1

Ne
b (ξ̂)qb (19)

where xb, db and qb are vectors of the geometric coordinates, displacement

coefficients and traction coefficients respectively, associated with the control

point corresponding to the basis function b. It should be noted that we have

used the term coefficient since the NURBS basis functions do not necessarily

obey the Kronecker-delta property (in contrast to the polynomial basis functions
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shown in Fig. 7). Therefore, the terms db and qb do not necessarily represent

real displacements and tractions.

Is it is now a simple case of substituting Eqns (18) and (19) into the DBIE

of (7) while using the Jacobian given by (14). This results in the following

discretised equation for IGABEM:

Cij(x
′)

p+1
∑

l=1

N ē
l (ξ̂′)dlē

j

+

Ne
∑

e=1

p+1
∑

l=1

[
∫ +1

−1

Tij(x
′,x(ξ̂))Ne

l (ξ̂)J(ξ̂) dξ̂

]

dle
j

=

Ne
∑

e=1

p+1
∑

l=1

[
∫ +1

−1

Uij(x
′,x(ξ̂))Ne

l (ξ̂)J(ξ̂) dξ̂

]

qle
j . (20)

where dle
j and qle

j represent components of the vectors db and qb for the element

e. We denote ē as the element containing the collocation point x′ and ξ̂′ is the

local coordinate of the collocation point in element ē. The reason for specifiying

these terms concerns the term uj(x
′) as seen in Eq. (11). In the conventional

implementation where collocation occurs at nodal points, the Kronecker-delta

property of the basis functions ensures that at the collocation point itself the

basis functions are interpolatory. In contrast to this, the IGABEM formulation

cannot guarantee that this is true and the displacement must be interpolated

as uj(x
′) =

∑p+1
l=1 N ē

l (ξ̂′)dlē
j .

4.2. Collocation point definition

A significant change in IGABEM over conventional BEM is in the location of

collocation points, since the normal practice of collocation at nodal positions is

no longer valid. We can easily see why this is the case by inspecting the position

of the control points in Fig. 8; it is evident that there is one control point in this

example that does not lie on the boundary. Indeed, for most curved boundaries

the control points will not lie on the boundary. Since the control points can be

interpreted as nodes in the IGABEM formulation, this presents a problem since

it is essential that collocation takes place on the boundary Γ. To overcome this,

we choose to use the Greville abscissae definition [17], [20] to define the position
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Figure 11: Collocation point and element definitions for reactor problem.

of collocation points in parameter space. This is defined as:

ξ′a =
ξa+1 + ξa+2 + · · · + ξa+p

p
a = 1, 2, · · · , n (21)

In Matlab R© , this is easily evaluated as:

collocPts = zeros(1,n);

for i=1:n

collocPts(i) = sum(knotVec(i+1:i+p)) / p;

end

where n denotes the number of control points, p is the curve order and knotVec

is the knot vector. If this definition is applied to the geometry of the reactor

vessel, then the collocation points are as shown in Fig. 11. The coordinates in

physical space can be found by using (1) with the NURBS basis functions given

by (5). The definition of the element boundaries is also illustrated in this figure.

4.3. Implementation aspects

The previous two sections outlining the definition of boundary elements and

collocation points within an isogeometric BEM framework specify the key as-

pects that must be changed for an existing collocation BEM implementation.

Our attention now focuses on the implementation for the reactor vessel problem

to illustrate these aspects.
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4.3.1. Refinement

The discretisation in Fig. 8 represents the geometry of the reactor prob-

lem exactly, but experienced analysts will be acutely aware that, although the

geometry may be captured, the basis functions may be insufficient to capture

the gradients in the unknown fields, consequently leading to large errors in the

solution. This leads to one of the most beneficial properties of B-splines and

NURBS for numerical analysis, which is that the mesh can be refined to ar-

rive at a richer set of basis functions while preserving the exact geometry at all

stages. In the current paper we present two types of refinement: knot insertion

and order elevation, termed h-refinement and p-refinement in numerical analysis

literature. The algorithms for these refinement processes are standard in CAD,

with details given in [24],[26] and source code given in [1].

We can illustrate both knot insertion and order elevation using the reactor

problem shown in Fig. 8. Figs 12 and 13 illustrate knot insertion where addi-

tional knots have been inserted uniformly into the original knot vector. Figs 14

and 15 illustrate order elevation where the basis functions have been increased

from quadratic (p = 2) to cubic (p = 3). Both types of refinement introduce

changes to the knot vector and set of control points. A third type of refine-

ment which is often referred to as k-refinement can also be considered which is

a combination of p- and h- refinement. It arises due to the non-commutative

nature of the aforementioned refinements. k-refinement is not considered in the

present paper.

4.3.2. Integration

A key feature of any BEM implementation is the evaluation of the boundary

integrals containing the kernels over element domains. It is well-known that

both regular and singular integrands are found depending on the position of

the collocation point relative to the field element. Essentially, the evaluation of

BEM integrals is split into three different types described as

1. Regular integration: the collocation point lies in an element different

from the field element.
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Figure 12: Control points and NURBS curve definition for reactor problem after
knot insertion.

Figure 13: NURBS basis functions for reactor problem after uniform knot insertion
(h-refinment)

Figure 14: Control points and NURBS curve for reactor problem after order elevation
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Figure 15: NURBS basis functions for reactor problem after order elevation

2. Nearly singular integration: the collocation point lies in a element not

on but near the field element.

3. Singular integration: the collocation point lies in the field element and

can be one of two types:

Strongly singular integrals: (Tij kernel, O(1/r) in 2D)

Weakly singular integrals: (Uij kernel, O(ln(1/r)) in 2D)

In the present study, we choose to treat the regular and nearly-singular integrals

in the same manner, although several methods exists for the efficient treatment

of integrals of the latter type [32],[21],[16]. The evaluation of singular integrals

must be given close consideration since they are found to have a large influence

on the accuracy of the resulting solution.

The present work uses the subtraction of singularity method (SST) [18] to

evaluate strongly singular integrals, in which the integrand is split into its reg-

ular and singular parts. Further details of the method are shown in [29] with

a full implementation given in [1]. The idea is to separate the integral into a

regular part (which can evaluated using standard quadrature routines) and a

singular part which can be evaluated analytically (for 2D boundary integrals).

If the SST method is used, however, the jump term Cij must be calculated ex-

plicitly (c.f. the rigid body motion technique [15] which calculates it implicitly).
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However, a simple formula exists [18] for the 2D case which is restated here as

C =
1

8π(1 − ν̄)

















4(1 − ν̄)(θ1 − θ2)

+ (sin 2θ1 − sin 2θ2)
cos 2θ2 − cos 2θ1

cos 2θ2 − cos 2θ1

4(1 − ν̄)(θ1 − θ2)

− (sin 2θ1 − sin 2θ2)

















(22)

where ν̄ = ν for plane strain and ν̄ = ν/(1 + ν) for plane stress and the angles

θ1, θ2 are related to the normals of the surface at the collocation point (see Fig.2

in [18]).

For weakly singular integrals, a variety of techniques are available includ-

ing specific logarithmic quadrature points and weights [30], but in the present

study we choose to use the Telles transformation [32] which cancels the sin-

gularity leaving a regular integrand. This is achieved through the following

transformation:

ξ̂ =
(γ − γ′)3 + γ′(γ′2 + 3)

(1 + 3γ′2)
(23)

where

γ′ =
3

√

ξ̂′(ξ̂′2 − 1) + |ξ̂′2 − 1| + 3

√

ξ̂′(ξ̂′2 − 1) − |ξ̂′2 − 1| + ξ̂′ (24)

ξ′ denotes the location of the singularity in the parent space (ξ′ ∈ [−1, 1]) and γ

represents the new integration variable. Therefore, a Jacobian which transforms

from the parent space ξ̂ ∈ [−1, 1] to γ is required. This is given as:

dξ̂ =
3(γ − γ′)2

1 + 3γ′2
dγ (25)

Using Eqn. (23), (24) and (25), the transformation of the integration can be

expressed as:

∫ +1

−1

f(ξ̂)dξ̂ =

∫ +1

−1

f

[

(γ − γ′)3 + γ′(γ′2 + 3)

(1 + 3γ′2)

]

3(γ − γ′)2

1 + 3γ′2
dγ (26)

A derivation of the transformation is given completely in [32] with a full imple-

mentation for the Uij kernels given in [1].
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4.3.3. IGABEM algorithm

Now that the integration routines which form the core of IGABEM imple-

mentation have been outlined, we are in a position to give an overview of the

entire IGABEM algorithm, illustrated in Algorithm 1.

Algorithm 1 IGABEM algorithm

1: Read CAD input data ⊲ e.g. Control points, knot vector
2: Read material properties, boundary conditions
3: Perform mesh refinement ⊲ e.g. knot insertion or order elevation
4:

5: for c ← 1, nc do ⊲ Loop over collocation pts
6: jumpTerm ← calcJumpTerm(collocNormals(c)) ⊲ Calculate Cij

7: for e ← 1, nel do ⊲ Loop over elements
8: elementConn ← glbConn(e) ⊲ Element connectivity
9: elRange ← ElmtRanges(e) ⊲ Range of element

10:

11: if c ∈ elRange then ⊲ Singular integration
12: Hsub ← SSTIntegration(c, e, Cij) ⊲ SST integration
13: Gsub ← TellesIntegration(c, e) ⊲ Telles transformation
14: else ⊲ Non-singular integration
15: [Hsub,Gsub] ← GaussLegendreQuad(c, e)
16: end if
17:

18: H(c, elementConn) ← Hsub ⊲ Add submatrix to global H matrix
19: G(c, elementConn) ← Gsub ⊲ Add submatrix to global G matrix
20: end for
21: end for
22:

23: ⊲ Apply boundary conditions
24: [A, z] ← applyBoundConds(H,G)
25: x ← solve(A, z) ⊲ Solve system of equations

In this algorithm the H and G matrices have been calculated explicitly before

boundary conditions are applied to arrive at the final system of equations. For

efficiency, commercial BEM implementations often calculate A and z directly,

thereby making the construction of the H and G matrices redundant.

4.4. Example

Finally, an example problem using the geometry of the reactor used through-

out the current paper is defined and analysed. The problem geometry, bound-

23



ary conditions and material properties are shown in Fig. 16 where symmetrical

boundary conditions are applied at x = 100 and y = 0, and a constant pressure

is exerted on the inner boundary. Plane strain is assumed.

By applying knot insertion to the original mesh shown in Fig. 11, the dis-

cretisation shown in Fig. 17 was used to perform the IGABEM analysis. The

results are shown in Fig. 18 by plotting the exaggerated displacement profile

with FEM results also plotted for comparison. As can be seen, excellent agree-

ment is obtained. In addition, a convergence study was carried out to assess the

accuracy of IGABEM over a standard BEM implementation with quadratic ba-

sis functions. Using h-refinement in both methods, the L2 norm in displacement

was calculated for each mesh as:

||u||L2
=

√

√

√

√

∫

Γ

d
∑

i=1

(ui)2 dΓ (27)

The results obtained are shown in Fig. 19 where a significant improvement in

accuracy over the standard BEM implementation can be seen. The reference

solution corresponds to the converged result of a BEM analysis using quadratic

basis functions.

5. Conclusions

The implementation aspects of an isogeometric BEM were outlined, with

attention paid to areas which differ from a conventional BEM implementation.

What is evident is that IGABEM present a particularly attractive approach for

analysis, since the data provided by CAD can be used directly without the need

to create a mesh. In addition, refinement schemes were outlined which provide

more refinement or richer basis functions in required areas. Finally, an example

was used to illustrate the simplicity and accuracy of the method where it was

shown that good aggrement with FEM was obtained, and in addition, significant

improvements in accuracy over a standard BEM implementation with quadratic

basis functions were demonstrated.
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(45, 100)

(45, 75)

(0, 15)
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Figure 16: Definition of nuclear reactor geometry, boundary conditions and material
properties.

Figure 17: Mesh used for reactor problem IGABEM analysis detailing element edges
and collocation point positions.
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Figure 18: Comparison of IGABEM and FEM results for reactor problem - exagger-
ated displacement profile.

Figure 19: Comparison of L2 displacement norms for reactor problem using IGA-
BEM and standard BEM with quadratic basis functions.
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A. B-splines/NURBS

A.1. B-spline derivatives

The first order derivative of the B-spline basis function is expressed as

d

dξ
Na,p(ξ) =

p

ξa+p − ξa

Na,p−1(ξ) −
p

ξa+p+1 − ξa+1
Na+1,p−1(ξ). (28)

where p is the polynomial order, a the basis function index. The higher order

derivatives can be obtained by differentiating the two sides of equation (28):

dk

dkξ
Na,p(ξ) =

p

ξa+p − ξa

(

dk−1

dk−1ξ
Na,p−1(ξ)

)

− p

ξa+p+1 − ξa+1

(

dk−1

dk−1ξ
Na+1,p−1(ξ)

)

.

(29)

From Eqn (28) and (29), we can express high order derivatives with Na,p−k, · · · , Na+k,p−k:

dk

dkξ
Na,p(ξ) =

p!

(p − k)!

k
∑

j=0

αk,bNa+b,p−k(ξ), (30)

with

α0,0 = 1,

αk,0 =
αk−1,0

ξa+p−k+1 − ξa

,

αk,b =
αk−1,b − αk−1,b−1

ξa+p+b−k+1 − ξa+b

b = 1, . . . , k − 1,

αk,k =
−αk−1,k−1

ξa+p+1 − ξa+k

.

A.2. NURBS derivatives

From Eqn (5), we can give the first order derivative of NURBS basis function

d

dξ
Rp

a(ξ) = wa

W (ξ)N ′

a,p(ξ) − W ′(ξ)Na,p(ξ)

(W (ξ))2
, (31)

where N ′

a,p(ξ) ≡ d
dξ

Na,p(ξ) and

W ′(ξ) =
n

∑

â=1

N ′

â,p(ξ)wâ. (32)

We introduce some notations for convenience

A(k)
a (ξ) = wa

dk

dξk
Na,p(ξ), (no sum on i) (33)
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and

W (k)(ξ) =
dk

dξk
W (ξ). (34)

Then higher-order derivatives of these rational functions may be expressed in

terms of lower-order derivatives as

dk

dξk
Rp

a(ξ) =
A

(k)
a (ξ) − ∑k

b=1

(

k
b

)

W (b)(ξ) d(k−b)

dξ(k−b) R
p
a(ξ)

W (ξ)
, (35)

where
(

k

b

)

=
k!

b!(k − b)!
. (36)

B. BEM

B.1. 2D Fundamental solutions

Denoting µ as the shear modulus, ν as Poisson’s ratio, δij as the kronecker-

delta function defined by

δij =











0 i 6= j

1 i = j,

(37)

and noting that a comma denotes differentiation, the fundamental solutions for

2D linear elasticity are given by:

Uij(x
′,x) =

1

8πµ(1 − ν)

{

(3 − 4ν) ln

(

1

r

)

δij + r,ir,j

}

(38)

Tij(x
′,x) =

−1

4π(1 − ν)r

{

∂r

∂n
[(1 − 2ν)δij + 2r,ir,j ] − (1 − 2ν)(r,inj − r,jni)

}

(39)

B.2. Boundary element integration parameters

B.2.1. Normals

The normals can be calculated by:

nx =
1

J(ξ)

[

dy(ξ)

dξ

]

, (40)

ny =
1

J(ξ)

[

dx(ξ)

dξ

]

, (41)
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with

dx(ξ)

dξ
=

p+1
∑

b=1

dNb(ξ)

dξ
xb, (42)

dy(ξ)

dξ
=

p+1
∑

b=1

dNb(ξ)

dξ
yb. (43)

B.2.2. Jacobian of transformation

dξ(ξ̂)

dξ̂
=

ξf − ξs

2
, (44)

where ξs and ξf denotes the values of knots at the beginning and end of the

element respectively (assuming an outward pointing normal).

dΓ

dξ
=

√

(

dx(ξ)

dξ

)2

+

(

dy(ξ)

dξ

)2

. (45)
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C. Reactor problem data

C.1. Control points and weights

index (a) Control point coordinate (Pa) Weight wa

1 (0, 0) 1

2 (20, 0) 1

3 (40, 0) 1

4 (40, 60)
√

2/2

5 (100, 60) 1

6 (100, 80) 1

7 (100, 100) 1

8 (72.5, 100) 1

9 (45, 100) 1

10 (45, 87.5) 1

11 (45, 75) 1

12 (35, 75) 1

13 (25, 75) 1

14 (25, 57.5) 1

15 (25, 40) 1

16 (17.5, 40) 1

17 (10, 40) 1

18 (10, 27.5) 1

19 (10, 15) 1

20 (5, 15) 1

21 (0, 15) 1

22 (0, 7.5) 1

23 (0, 0) 1
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C.2. Connectivity matrix

element index (e) global basis index (a) for (b1,b2,b3)

1 1, 2, 3

2 3, 4, 5

3 5, 6, 7

4 7, 8, 9

5 9, 10, 11

6 11, 12, 13

7 13, 14, 15

8 15, 16, 17

9 17, 18, 19

10 19, 20, 21

11 21, 22, 1
v
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