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IMP: a decision aid for multiattribute evaluation using imprecise weight estimates  

 

 

1. Introduction 

 
Differentiating multiattribute alternatives may be simple, almost intuitive, if the number of 

attributes is small. As the number of attributes or the number of alternatives or both increases we 
cannot apprehend all data unaided and so some formalism, a table of attribute values, is helpful. But 
cognitive limits may mean that we still cannot cope with all attributes for all alternatives [1] and so 
we use a model which is an acceptable abstraction of our decision process. A popular model finds a 
score for each alternative as the weighted sum of scaled attribute values.  

 

 yj  =  i wixij     ;   i = 1n , j = 1m     (1) 
 

with i wi = 1 ;  0 ≤ wi ≤ 1      (2)  
 
where yj is the score for alternative j  

xij is an appropriately scaled measure of the value of attribute i for alternative j  
wi is the weight attached to attribute i  

 
In this modular design elements of the decision process are disaggregated so that judgemental 

tasks are within the cognitive bounds of the user. This strategy is effective as a way of dealing with 
decision complexity [2], although some may nevertheless prefer holistic evaluations [3].  

The elements introduced in the model – value functions, weights and aggregation – and the 
interactions between them are not necessarily straightforward. In particular, a number of factors may 
contribute to imprecise judgements about weights. The effects of cognitive limits on human 
information processing have been well known for a long time [4] as have the biases common in 
human reasoning about probabilities [5]. Different judgements are likely to be made depending on 
mood [6], how questions are framed [7,8] and the method of elicitation and subsequent calculation 
[9-11]. 

There is no agreement about an appropriate response to judgemental imprecision in general and 
about weights in particular. One view is that any attempt at quantification is foolish [12,13], that 
what makes judgements about values different from judgements about events or facts is that values 
need to be explored in sensitivity analyses until a resolution is reached. The alternative view is that 
while imprecision may be reduced it is not necessarily eliminated and that this residual should be 
described and modelled, most obviously by specifying probability distributions. This approach has 
frequently been reported, usually using simulation to generate probability distributions for scores or 
ranks. 

The argument against the probabilistic approach is that users may find probability a too abstract 
concept. Biases in the heuristics used to reason about probabilities were identified by Tversky and 
Kahneman [5] and stimulated a large body of research [14].  The situation is summarised in 
Hogarth’s well-known conclusion that “man, as a selective, step-wise information processing system 
with limited capacity, is ill-equipped for assessing subjective probability distributions” [15]. 
Although users may make the necessary probability specifications it may not be clear either to 
themselves or to others just what they have done and so commitment to a decision is undermined. 

The argument in favour is that the implications of imprecision need to be dealt with in ways that 
are in some sense comprehensive and consistent: comprehensive in that a probability distribution 
encompasses all plausible outcomes and not just those used in some sensitivity tests; consistent in 
that calculations avoid judgemental biases. There are other advantages. Being able to give ranges 
rather than precise values reduces the stress of elicitation [16] and in group decision avoids a too 
early commitment and unnecessary conflict [17].  

In multiattribute evaluation two questions arise. First, given the judgemental uncertainty of 
weight estimation is it reasonable to believe that two alternatives may be differentiated by their 
scores? Second, if they can, is it meaningful to say that, in the context of the problem, they are 
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materially different? The first question – can these scores be differentiated – may be answered by a 
significance test. The second question – is this difference meaningful – is better answered by 
considering scores.  

This paper is concerned with the first of these questions. Weights are modelled by a joint 
probability distribution which permits the probabilistic estimate of differences between scores 
without the need for simulation. Pairs of scores which cannot be differentiated result in a clustering 
of alternatives. More precision in weight estimates gives fewer and smaller clusters. These clusters 
may be sufficient to identify, say, an initial screening [18] of candidates to construct a short list for 
further examination. The model used – IMP, for IMPrecise multiattribute evaluation – is the 
development of an earlier model [19] but now incorporating a number of improvements and 
extensions.  

Judgemental uncertainty needs to be described quantitatively for modelling but it is likely that it 
is first conceptualised using words or phrases. The relation between the two languages – words and 
numbers – arises particularly when considering weights and probabilities but the difficulties are 
quite general. Language theorists have long studied these issues and their approach is used here to 
provide a useful analytical framework. The next two sections show this framework and its 
application to multicriteria problems.  

In the rest of the paper a model is described for using probabilistic weight assessments derived 
from judgements. The model is applied to a shortlisting problem both for an individual assessor and 
for several, illustrating how the approach allows the monitoring of the usefulness of the aggregation 
of assessors’ judgements. 

 
 

2.  Words and numbers 

 
2.1 Imprecise description 

 
Giving numerical judgements is not easy: “The major simplification associated with eliciting 

parameter imprecision in a prespecified format … is the natural language dialogue needed to 
establish a model of the situation” [20]. The difficulty is well captured by Williamson [21] who 
writes that “precise assertions … are more likely to be false, but more useful if true” but that 
“vagueness is a precondition of the flexibility of ordinary language”. It is this tension between the 
desire for decisiveness and the ambiguity of language which complicates attempts at elicitation and 
interpretation, a difficulty compounded in group decision making when the words may have “local 
and cultural meanings which some participants may not understand” [22]. 

Imprecision in language use arises because of both the inconsistency of application by individuals 
and groups and the vagueness or ambiguity of application by individuals (a familiar dichotomy 
[23]). 

 
2.2 Inconsistency 
 

In the study of language usage the proportion of people applying a particular label to a stimulus 
defines the  consistency profile [24] or cue validity [25]. (This has also been used for decision 
support [26]). The same idea describes the consistency of application not just of a word but of a 
number, as in a weight assessment, and not just by different people but by the same person giving 
several assessments. 

In giving weight estimates person p makes np >1 single valued numerical responses to the same 
or equivalent questions. These responses have mean µC,p and variance σ²C,p.  

In a language or user group G the inconsistency is the aggregation of the responses of the 
members. Group inconsistency is described by a probability ditribution with 

 
 
 
 
  



4 

 

 

 mean  =  µC,G  =  ∑p pµC,p 

and variance  =   σ²C,G  = ∑p p(σ²C,p + σ²M, p)    
(3) 

where p  =  np / ∑j nj 

and  σ²M,p  =  (µC,p - µC,G)² 
 

It has often been found that there is much less consistency between members of  a group than for 
individuals [27], in part because µC,p  ≠ µC,G. The larger these differences the less justified is it to call 
the group a coherent language (or user) group.  

 
2.3  Vagueness  
 

An individual may not be sure how appropriate it is to apply a label (in this case, a weight).  
Degree theorists wish this uncertainty about labelling to be quantified by a membership function of 
some measurable characteristic: 1 if the label certainly is appropriate and 0 if it certainly is not. This 
idea is most familiar in multiattribute problems as the motivation for fuzzy analysis, though to 
acknowledge vagueness is not to accept fuzzy analysis [28].  

Deciding the points at which a label becomes inappropriate gives a range [29]. It is common to 
give an intermediate value and then to assume a triangular function. The intermediate value may be 
that which is judged more appropriate for the label than any other but this doesn’t mean it is judged 
to be a perfect exemplar (membership=1). Wallsten et al [30] describe an experiment in the analysis 
of which “these scale values, normalized to be nonnegative with an arbitrary maximum of 1 … can 
be taken as the membership function”. The key word is “arbitrary”.  

Requiring an assessor to distinguish between “degree of truth = x” and  “probability = p” may be 
optimistic, so that when Jackendoff writes that a fuzzy set is “a set whose membership is defined not 
categorically, but in terms of the degree or probability of membership” [31]  he may well be 
articulating a common habit of mind.  

The vagueness of articulation by person p may be described by a probability distribution [32] 
with mean and variance µV,p and σ²V,p. In the case that there are np > 1 vague estimates simple 
averaging provides a good combination of probability estimates  [33] and so µV,p and σ²V,p are just 
the mean values of the np individual means and variances. 

The vague articulation of group G has  
 

 mean  =  µV,G  =  ∑p pµV,p       (4) 

and variance  =   σ²V,G  = ∑p pσ²V,p  
 
This estimate of variance assumes independence between group members. The plausibility of this 
assumption is discussed below in light of some experimental results. 
 
2.4 Imprecision 
 

Inconsistency describes the variability with which a value (a word or a number) is used in 
repeated application. Vagueness of articulation describes inherent uncertainty about a single 
judgement. The characteristic pattern of usage is a combination of the two: 

 
imprecision  =  inconsistency (of use) + vagueness (of articulation) 

 
While inconsistency and vagueness may be related we assume here that this is a negligible effect 

and so the means of the distributions describing vagueness and imprecision are the same and 
 

individual imprecision for person p has mean and variance 
 µI,p  =  µC,p = µV,p      (5) 
σ²I,p  =  σ²C,p  + σ²V,p   
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imprecision for group G has mean and variance 

 µI,G  =  ∑ppµI,p       (6) 

σ²I,G  =  ∑pp(σ²I,p + σ²M,p)       
 

In multiattribute problems this provides a framework for the probabilistic description of  weight 
estimates.  

 
2.5  Probability is imprecise 
 

Inconsistency is the sum of the variances of a number of point estimates. Vagueness is more 
difficult because probabilities, although numerically precise, are not always easily understood so that 
individuals are both vague and inconsistent in their assignment of labels to probability values 
[34,35]. Over a century ago Karl Pearson, discussing significance testing, described a probability of 
0.1 as “not very improbable” and one of 0.01 as “very improbable” [36], an interpretation degree 
theorists would recognise. In the assessment of probabilities interpersonal variability is usually 
higher than intrapersonal variability in the assignment of numbers to probability statements [27], 
especially if users are from different cultures [37]. 

It follows that how a receiver interprets a probability value will not necessarily be the same as the 
(vague) intention of the sender, so that using probability to communicate imprecision is not 
straightforward. This leads to the apparent paradox that people often prefer to give probability 
estimates as  words but to receive them as numbers [38]. 

The use of a standardised lexicon may help [39] by acknowledging that people feel more at ease 
giving verbal estimates but that numbers are needed for calculation [40], though this is more likely 
to be of use in making assessments than in reporting results.  

Because of these difficulties vague probability assessments ought to be treated as parameters in a 
sensitivity analysis.  

 

 

3.  Application to multicriteria problems 

 
There exist a great many recommendations of how best to ask questions the answers to which 

may be interpreted as judgements about the values of weights. Although weight values are likely to 
vary depending on the method of elicitation [9-11] it is unusual for different methods to be used in 
any single application, though inconsistency due to method variation would fit the framework above.  

Imprecision is most easily expressed by giving just upper and lower limits. These may be treated 
as deterministic bounds as in the ARIADNE model [20] which allow ranges to be set as constraints 
and minimum and maximum values of scores found for each alternative. If these ranges do not 
overlap then a clear preference has been established and a decision may be made. If not, making the 
constraints tighter and rerunning the model might lead to a decision, provided that such tightening is 
possible. Testing the effects of changing limits recognises the vagueness of the initial values.  

This use of limits also underpins the PAIRS model [41] and preference programming generally 
[42], with application to SMART and SWING models [43]. 

The SMAA model [44] and its derivatives [45,46] explore the weight space by finding weight 
combinations which result in a given alternative achieving a particular rank . The proportion of the 
whole weight space volume defined by those combinations is a measure of support for that rank. 
This acceptability index may be interpreted as the probability of the ranking given specified 
probability distributions for the weights. In particular, if no distributions are given it is assumed that 
all weights are specified by maximally ignorant uniform distributions over the range [0,1]. In the 
SMAA-2 model [47] weights may be described in a number of ways, such as point estimates, or as an 
ordering or, if there is no preference information, the uniform weight distribution is used [48].  

The Analytic Hierarchy Process, AHP,  has attracted a body of work relevant to this paper. The 
reciprocal matrix method estimates values for n weights from n(n-1)/2 judgements of weight ratios, a 
problem with positive degrees of freedom. This allows for an estimate of inconsistency whereas with 
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direct assessment in models such as SMART, having no degrees of freedom, only vagueness may be 
assessed.  

AHP is also noted for providing a guide for users in giving weight ratios from 1 to 9. The adoption 
of this lexicon leads to a method which may be seen as “essentially qualitative and not realistically 
quantitative” [49] and that such judgements “should be treated as qualitative information without 
associating any quantitative meaning” [50]. These verdicts may be a little harsh but do draw 
attention to the difficulty involved in language use in pursuit of constructing a “model that computes 
with words directly” [51], which seems an impossible goal. Shirland et al [52] report the use of a 
number of suggested ratio values from 1-3 to 1-9 with and without suggested meanings and that 
“results are reasonably consistent across rating systems” but that “respondents find the 1-9 scale 
mentally taxing”. Inconsistencies in using lexicons [53] indicate that their use may impair 
communication between assessors. (The reciprocal matrix method has been used to construct a 
lexicon [54]).  

A number of studies of AHP have used simulation to find the effect of vague weight estimates, 
frequently using uniform or triangular distributions [54-57]. The focus is usually on the effect on 
ranks [58-60] so that the probability of an alternative having a particular rank is given, as with the 
SMAA models. These and other papers [61,62] have suggested alternative probability distributions 
for describing joint imprecision about weights. 

Simulation is unnecessary with linear models such as (1). Rosenbloom [58] uses three point 
estimates and from them obtains means and variances analytically using methods familiar in 
decision and risk analysis. This approach is adopted here. 

 

 

4.  Method 

 
4.1 Overview 
 

If the uncertainty about weights can be described by a probability distribution with 

variance/covariance matrix ij, the variance of the estimate of the score for alternative k  is  
 

 var(yk)  =  i j ijxkixkj        (7) 
 

The difference of scores for alternatives a and b has mean  (ya – yb) and variance 
 

 var(a,b)  =  i j ij (xia – xib) (xja – xjb)        (8) 
 
 

The Dirichlet distribution has been used to model imprecise probabilities [63,64] and in 
combining expert opinion [65] as well as modelling weights [66]. It is a multinomial form of the 
Beta distribution and so has Beta marginal distributions which, having limits [0,1], are appropriate 
models for single weight estimates as they have been for imprecise probabilities. Model parameters 
are found so that, first, the marginal means are the same as the assessed mean weight values and, 
second, so that the marginal variances are as close as possible to the variances of the imprecise 
weight estimates. The steps in the model are 
 

1. Obtain a 3-point estimate for each weight 
2. Infer mean and variance for each 
3. Fit a Dirichlet distribution  
4. Calculate means and variances of the differences between pairs of alternatives 
5. Display differences, subject to imprecision, to aid discrimination 

 
4.2 The Dirichlet distribution 
 

The Dirichlet density  
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f(wi)    wi

 ui -1(1-wi)
j uj  

- ui - 1         
  
has marginal mean and variance  
 

 i  =  ui / j uj             (9) 

 i²  =  αi(1-i)        (10) 
 

where α  =  1 / (1 + i ui)          (11) 
 
The mean values (9) are used in the evaluation (1). Because of (2) weights are negatively correlated: 
 

 ij  =  - αij  ;  i≠j        

and rij  =  - [ ij / (1-i)(1-j) ]
0.5

        
 

In this way the Dirichlet model accounts for correlations between weight estimates even though 
marginal judgements will almost certainly have been made disregarding them.  

While any non-negative parameter values are permissible, values ui<1 give U-shaped Beta 
distributions and for ui=1 a highly skewed distribution with a mode of 0 (or 1) and resembling a right 
triangle. It is not plausible that assessors had either in mind when making judgements and so the 
restriction ui>1 applies in what follows.  

Mean weight values (9) are determined by the relative values of the parameters. The precision of 
the estimate (10) is mainly determined by the sum of the parameter values, so that α summarises the 
overall precision of the estimates.  

 
4.3 Three-point estimates 

 
In describing their experiences in eliciting subjective probabilities Kadane and Wolfson [67] 

offer a number of recommendations among which are that experts should be used, that quantiles of 
observable quantities should be elicited, and that estimates of variance and higher moments of the 
distribution should not be sought.  

In risk analysis  and project planning  judgements are made of the values of quantities which are 
observable, if only in retrospect, and about which experts have knowledge and this permits 
assessment of judgemental accuracy [68]. If these estimates are based on recollection the availability 
heuristic [5] would support an interpretation of  best estimates as modes. There is no reason to think 
this argument also holds for weight estimates which encode vague judgements of values rather than 
estimates of verifiable quantities. It is the mean value used in (1) which the assessor will have in 
mind and so the best weight estimate, M , will be taken as a mean. 

In providing three-point estimates for activity times in PERT analyses [69-72], and in decision 
analysis [73], low and high estimates, L and H, have been  interpreted as percentiles of a probability 
distribution determining a c% confidence interval and the formula 
 
 estimated standard deviation, s  =  b(H-L)    (12) 
 
used where b depends on the confidence level c. In the literature values for b have been given for 
particular values of c. The results may be generalised by generating values of  L and H for Beta 
parameters = 2,3…9 and for c = 80, 85, 90, 95, 99. Values of b were found by regression of s against 
(H-L) as in (12). The results were good: r

2
>0.99 except for c=99 when r

2
=0.94. Figure 1 shows the 

relation which may be used to estimate b from c: 
 

b  =  1.066 - 0.00853c        (13) 
 
4.4 Fitting the Dirichlet distribution 
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In the Dirichlet equations (9) and (10) put i  = wi = M . To most closely respect the judgemental 

variances minimise  ∑i(i²-si
2
)

2  
to give 

 

α  =  i wi (1 - wi )si
2
 / i [wi (1 - wi)]

2
      (14) 

 
The summations are over only those weights for which three-point estimates have been made. For 

example, in direct assessments where an anchor value is used uncertainty will be expressed only 
about other values but not about the anchor itself, which is fixed. This does not prevent an estimate 
for α being made so that variances and covariances are found even for those (few) weights for which 
only a point estimate is available because it is an anchor or when the number of judgements is high 
and fatigue is a factor, as with large reciprocal matrices, perhaps. The more general case of missing 
information is well recognised [74].  

If, in (14), the variance si
2
 is the aggregation of a number, k , of variances (such as for a number of 

assessors and/or from a number of sources), and assuming independence, 
 
 si

2
  =  s(1)i

2
 + s(2)i

2
 + … s(k)i

2
 

 

then α  =  i wi (1 - wi )[s(1)i
2
 + s(2)i

2
 + … s(k)i

2
] / i [wi (1 - wi)]

2
      

 

     =  i wi (1 - wi )s(1)i
2
/ i [wi (1 - wi)]

2
  +  i wi (1 - wi )s(2)i

2
/ i [wi (1 - wi)]

2
  + … 

 
   α  =  α(1) + α(2) + … + α(k) 
 
It may sometimes be more convenient to aggregate α values rather than variances. 
 
 

5.  Non-judgemental analysis  
 

An assessor may feel able to give point estimates for weights but does not wish to give lower and 
upper bounds. We assume that there is no objection in principle to the use of a probabilistic 
description of vagueness, just a requirement that because of the wish to be minimally judgemental it 
should contain as little information as possible. The variance of Dirichlet weight estimates (10) is 
maximised when α is maximised by minimising the parameters ui (11). The smallest parameter 
value, umin = 1+ε, is that associated with the smallest weight, wmin.  Other parameters are scaled to 
preserve the weights 

 
 ui  =  ( wi / wmin )(1+ε)   
 

which gives i ui = (1+ε) / wmin and, as ε is trivially small, 
 
 α  =  1 / (1 + 1/wmin)        (15) 
 
There are two special cases. First, there may sometimes be a reluctance to provide any 

judgements about weights. This may be because the assessor is reluctant to say anything about 
relative preferences, or it may be that some minimally informed base case is to be established. It is 
usual to interpret this using a uniform weight distribution justified by either Laplace’s indifference 
principle or by maximum entropy arguments that weights should be minimally different. Since all 
weights are 1/n,  α  =  1/(1+n). Second, the assessor may rank weights. Rank order centroid (ROC) 
weights [75] have been found to give good estimates [76] in which wmin = 1/n² and so α  =  1/(1+n²). 

The larger the problem the greater the precision of these weight estimates, and just by having 
unequal weights precision is increased.  

 
 

6.  Illustration 
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6.1  Data and judgement 

 
Figure 2 shows an application of the method.  
The task was the initial evaluation of  Northern European full-time  MBA programmes using data 

from the 2011 Financial Times listing. There were twenty one programmes. For this exercise each 
was described by seven of the twenty attributes used by the FT: 

 
Salary increase 
Aims achieved 
Employed at 3 months 
Women faculty 
Women students 
International faculty 
International students 

 
The value function was chosen to scale attributes to the range [0,1]. 
Weight values given by an MBA student are shown at the bottom left of the screen. Direct 

elicitation was used: an anchor value of 100 given to the most important attribute and three-point 
estimates made for all other weights. The central values are scaled to sum to 1 and are shown next to 
the input. Low and high values are scaled by the same factor. These are the values L,M ,H. 

The student agreed to give 5th and 95th percentiles to describe a 90% confidence interval. The 
resulting Dirichlet model had a parameter α = 0.0086. 

The results of this sort of evaluation are usually shown as a ranked list based on scores, as in the 
FT and elsewhere, but this is insufficient for it takes no account of imprecision. The two-
dimensional chart shows the different programmes separated by distances closely approximating the 
values 

 

 zab  =  |ya – yb| / [i j ij (xia – xib) (xja – xjb)]
0.5

        (16) 
 

Giving a value for p, as in statistical significance, identifies pairs of programmes between which 
discrimination is less easy to justify given the judgmental imprecision about weights: smaller values 
of p provide greater support for discrimination. In the illustration p=10%. 

 
6.2 Display and interaction 

 
How results of imprecise analysis are shown is important if the analysis is to be useful [77]. The 

object of the screen design for this simple spreadsheet was that the user could readily see both the 
judgements made and their results so that exploratory interaction is made easy.  

The main output is the chart in the centre of the screen. This shows the alternatives identified 
either by a sequential identifier or, as here, by their score rank. To help in using this information 
lines are drawn between pairs which are, in the statistical sense, not significantly different: given the 
imprecision of the weight estimates there is little support for differentiation based on scores. The 
display encourages the consideration of clusters rather than ranks, though ranks are shown too. This 
grouping shows “alternatives whose relative rankings cannot be visibly differentitaed” [78] rather 
than the more familir clusters based on the similarity of attributes [79]. 

  Changing the p value will alter the membership of justifiable clusters and show the point at 
which a particular  pair may be differentiated. In this way users may explore the effect of setting 
different p values, the degree of support for differentiation, which is hard to set in advance. 

This p value is shown to the right with some basic inputs and the confidence level for the three-
point weight estimates. Neither p nor the confidence level are easy to fix despite the ubiquity of 
commonly accepted values (95% confidence intervals, for example). Such default values may be a 
useful starting point but exploration of the effect of different values is to be encouraged. It is 
undesirable that a decision should be based on the unthinking acceptance of default values for what 
are, after all, vague parameters. At bottom right is the value for the Dirichlet parameter α. 
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Of the m(m-1)/2 = 210 pairwise comparisons 82% can be differentiated. This value is shown at 
the bottom  right of the screen and indicates overall discrimination. 

The result shown in the chart is fairly clear. There are three clusters. The programmes ranked 1 – 
4 are undifferentiated and should be considered as a group, as should the other two clusters. It may 
be that identifying the leading four is enough to make a short list for further investigation. 

 
6.3  Non-judgemental results 

 
Figure 3 shows results of the two non-informative analyses. When point only weight estimates 

are given the result is, in this case, not much different from that with the three-point estimates. 
Although the assessor provides only point values the Dirichlet distribution provides maximum 
variance estimates, as discussed in Section 5.  

It is not surprising that giving no weight information at all greatly reduces discrimination. 
 
 

7.  Aggregation 
 

7.1 General structure 
 
The aggregation of a number of assessments is made using the framework described in (5) and 

(6) and treating Dirichlet marginal distributions as imprecise assessments. Each assessor p makes np 

imprecise assessments for each weight. The means are weight values wi,p with imprecision I,i,p² and 
so, as in (6), the aggregated estimate is 

 

 wi  =  ∑ppwi,p        (17) 

σi²  =  ∑pp(σ²I,i,,p + σ²M,i,p)  
 

For a single assessor σ²M,i,p = 0. 
 

The parameter α scales variances and so either the variance of each weight estimate from all 
sources can be found using (17) and then the Dirichlet fitted, or Dirichlet estimates of the 
components can be found and aggregated (Section 4.4): 

 

α  =  ∑pp[αI,p + αM,p]  =  ∑pp[αC,p + αV,p + αM,p]    (18) 
 
The α values are a convenient way of comparing the relative contributions of the different 

sources of imprecision. 
 
 

7.2 Application to reciprocal matrix estimation 
 
A particular application is when weights are given via a reciprocal matrix. Because of the degrees 

of freedom in this model both sources of imprecision are present. The Simple Normalised Column 
Sum analysis is used in which each column is scaled to sum to 1 and treated as a single evaluation.  

For a single assessor p (18) becomes 
 

α   =  αI,p   =  αC,p + αV,p         (19) 
 
Each column element is a three-point estimate from which a mean and variance is found. The 

variance is a measure of vagueness and so the mean of these variances taken across all columns 
gives the values si

2
 in (14) from which αV,p is calculated. The variance of the mean estimates 

measures inconsistency. Using these in (14) these gives αC,p. 



11 

 

Nine students made weight estimates using the reciprocal matrix method but giving three-point 
estimates on the 1-9 scale. As in the previous illustration a 90% confidence interval was used. Table 
1 shows the results. 

The top section of the table shows the mean weight values for each student. For comparison, the 
weights used by the FT are also shown. The FT weights do not closely resemble those of the 
students.  

The middle section of the table shows the Dirichlet parameter values. Of the two sources of 
imprecision, inconsistency αC,p is, in all cases but one, the greater, usually by a large margin. 
Students were much more inconsistent than their self-assessed vagueness. 

The effect of imprecision is shown in the bottom section of Table 1. Discrimination is quite good 
if only vagueness due to articulation is used but when inconsistency (model estimation error in this 
case) is taken into account discrimination is much reduced. Figure 4 shows the effect. The shape of 
the curve is probably general, the parameters being set by the particular weight estimates and also 
the similarity of the characteristics of the alternatives. This curve could be used as a descriptor of 
different decision problems. 

 
7.3 Aggregation of assessors 

 
The students’ views as expressed in the weights seem broadly to fall into two groups: first, those 

for whom internationalisation and employment are most important and, second, those for whom 
salary and the achievement of their aims predominate. It may therefore make sense to aggregate 
some assessors into groups, with results shown in Table 2. Discrimination is not high. By far the 
largest source of imprecision is intrapersonal inconsistency. Interpersonal effects are low for the 
groups with a salary focus, indicating a coherent group. 

The effect for those four students with a salary focus is shown in Figure 5(a). It is hard to see how 
a cluster of alternatives might be identified from this chart. The level of imprecision is fixed by the 
students’ judgements but the level of support for differentiation, p, is not and the effects of different 
values should be tested. Figure 5(b) shows that if p=0.5 a preferred group begins to emerge. This 
would usually be thought a recklessly high value for statistical inference, but the purpose here is 
different: we wish to see the level of support for discrimination. Kreye et al [77] report that in giving 
forecasts experts and non-experts gave self-assessed confidence levels of about 40%, so p=0.5 may 
not be so unreasonable. 

The programmes ranked in the top five are the same in all cases. 
 
 

8. Discussion 
 

The probabilistic approach raises five issues: the specification of probability inputs, the 
probability model, the interpretation of results, the sources of imprecision, the efficacy of 
aggregation. 
 
8.1 Probability inputs 
 

In the experiments described here subjects had no uneasiness about giving three-point estimates. 
Giving marginal estimates for each weight focuses attention on the individual estimates, just as a 

strategy of disaggregation is meant to do. The probability that all weights will lie within their 
specified intervals is less than the confidence level for each. In the illustration (Fig 2) 90% intervals 
were given so that there was a probability of 0.9

7
 = 0.48 that weights would fall within all limits. 

This is much less than the confidence level of 0.9 used for each weight specification and may come 
as a surprise to some users. This would be consistent with research that judgements about 
conjunctive probabilities are heavily influenced by the assessed probabilities of the constituents [80]. 
Had users wished this conjunctive probability to be 0.9 then each weight estimate should have been 
at the confidence level of  0.9

1/7
 = 0.99. In this particular case, discrimination increases a little from 

82% to 84%; the fifth ranked MBA becomes a singleton but otherwise there remain four clusters as 
shown.  
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The same issue arises in hypothesis testing [81-84] and also, presumably, in PERT and risk 
analyses where disaggregated elicitation is the norm. While it is easy to point up the effect there 
seems no justification for altering the elicitation. Asking users to give confidence levels for each 
weight interval is likely to be the more comprehensible task. 
 
8.2 The probability model 
 

In specifying Bayesian priors 

“It must be stressed that the assessor has no built-in prior distribution which is 
there for the taking. That is, there is no “true” prior distribution. Rather, the 
assessor has certain prior knowledge which is not easy to express quantitatively 
without careful thought.” [85] 

When dealing with values (weights) rather than events or facts there is no prior knowledge to be 
had. This is why the idea of vagueness is so important. It is known from the heuristics and biases 
literature that people do not behave as probability theory recommends, but neither do they adhere to 
the predictions of fuzzy theory [86]. Both formalisms have been applied to multiattribute problems.  

Probability is preferred because it permits the easy combination of vagueness and imprecision 
and because of the plausibility of the analogy with sensitivity testing and simulation. If we ask what 
vague descriptions are for it is reasonable to think they are permissive. Assessors may believe that 
any values within the range are permissible, sometimes in varying degree, as model input to a 
sensitivity analysis. It would then be quite natural to see how often different scores were found and 
to collect these results in a frequency distribution. This immediately leads to a probabilistic 
interpretation.  

Distributions other than the Dirichlet have been used in the analysis of reciprocal matrices and 
some are given in the references cited in Section 3. The column sum analysis lends itself naturally to 
the linear model of imprecision. 
 
 
8.3 Interpretation of results 

 
Statistical significance tests have been used to decide whether two alternatives may be 

differentiated [59,60]  but usually as a precursor to finding the probability of a particular rank. (It 
should be noted that despite their popularity significance tests are controversial [87].) Here we prefer 
to show clusters for three reasons. First,  the analogy with constructing long lists and short lists may 
help interpretation and understanding. Second, the idea of clusters is familiar in listings provided by 
the Financial Times and others but the gaps are defined only by the appearance of score differences 
large in comparison with others in the list; a better support is given in the method here. Third, 
because the display in Fig 2 encourages comparison between pairs of alternatives. 

How best to report the role of probability in discrimination of alternatives will depend on the 
user. For example, simply saying it is has the same form as a test for statistical significance may be 
sufficient for those familiar with statistical method, while analogy with repeated sensitivity testing 
may make more sense for others. Avoiding explicit presentation of standard deviations is advisable 
[88]. 

The essential point is that  smaller values of p offer more support for discriminating between 
alternatives. Trying different values and seeing what happens to clusters in Figure 2 will show the 
robustness of a given clustering.  

High values of z in (16) occur if either the difference in scores is high or the imprecision is low or 
both. Figure 6 shows the comparison between one particular alternative – the target, here the MBA 
ranked 16 – and the others.  The vertical axis shows scores on which to base a judgement about 
material difference. The horizontal axis shows p, support for any differentiation at all. Using a 
criterial value, p = 10%, gives four quadrants showing the combinations of statistical support and 
material difference. Discrimination between 16 and 17, 18, 19 and 20 is unlikely to be supported. 
For 17 (and 18?) the differences also look unimportant because the scores are close to those of the 
target.  
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Considering all 210 pairs, and requiring that all differences be at least 5% as well as that p < 10% 
gives only an extra 7 nondifferentiated pairs, reducing discrimination from 82% (Fig 2) to 79%. 
While discrimination is not much altered, taking explicit account of both material and statistical 
significance may lead to greater confidence in the final recommendation. 

Altering the numerator of (16) to (|ya – yb| - ), p would be the level of support for the non-zero 

difference . This is standard significance testing and suitable for those familiar with the method. 
For others, keeping the two elements separate may be a more helpful decision support. 

 
 

8.4 Vagueness and inconsistency 
 
In the illustration, for eight of the nine assessors inconsistency between weight estimates given in 

a reciprocal matrix was a greater source of imprecision than vagueness of articulation (Table 1): 
people were less precise than they thought they were.  

In Sec 2.4 correlations between vagueness and imprecision were disregarded. Figure 7 shows that 
this was justified. We may tentatively suggest that inconsistency (from the estimation process) is a 
greater source of imprecision than vagueness but that there is no consistent relation between them. 

Assessors of probabilities are typically overconfident [89-91] which may be due to anchoring and 
adjustment [5]  as well as a conservatism inherent in some cultures [15]. This means that vague 
estimates are likely to be optimistic and this may account for the result. 

It is usual for inconsistency to be recognised by an index, as in AHP. Measuring inconsistency by 
Dirichlet parameters provides not only a relative indicator but also, because of the probabilistic 
approach, shows the effect on discrimination between alternatives. Because the α values are additive 
the relative impact of different effects are easily shown. 

Imprecision can be eliminated entirely, of course, by asking just one assessor to make n-1 point 
estimates. It is clear from Table 1 that disregarding inconsistency and focusing only on vagueness 
would give greatly improved discrimination (as Figure 2). The argument for doing so is that a 
method should provide a heuristic framework for decision support [13], that forcing degrees of 
freedom is artificial and that the subsequent statistical analysis is “unduly conservative” [92]. But 
methods with positive degrees of freedom naturally invite a statistical approach; it is hard to think of 
a reason for ignoring the consequences. 

Inconsistency accounts for about 80% of the value of α parameters (Table 1) and so is the main 
factor determining low levels of discrimination. Inconsistency may come either from making a 
number of estimates as part of the elicitation method (as here) or from making estimates in different 
circumstances, as when multiple methods are used [93]. In that sense any particular decision 
problem is one from a number of such evaluations. As an aid to making a particular decision this 
does not matter, but there may be an argument for measuring these other effects, if practical 
considerations permit, further to assess robustness. 

 
 

8.5 Aggregation and groups 
 
Many decisions are group decisions [94,95], either in some form of decision conference or in 

distributed teams [96]. This process is likely to comprise a number of meetings between which 
preferences may alter [97]. It is common that a consensus is formed by feedback and discussion 
between group members [98] where individual judgements are formed and then shared so that, at the 
collective level, a joint decision is made [99]. 

Aggregation of individuals into groups permits the use of just one estimate which may, with care, 
be treated as a consensus. The aggregation may be by behavioural methods (discussion) or 
mechanical methods (calculation) [100]. A number of computational methods are available to 
perform this aggregation and to suggest when plausible groups exist (eg. [101]), but an overall 
consensus is not always possible, though more discussion may help.  

If disparate views are nonetheless aggregated the ability to discriminate between alternatives will 
fall. This is shown in Table 2.  The role of the different sources of imprecision are shown by α 
values. For the salary focus groups interpersonal effects are the smallest component. This is unlike 
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findings elsewhere that interpersonal effects are the greater ([92] gives an AHP application) and 
indicates that members of these groups have made similar assessments; they are coherent. The more 
frequently reported situation is shown for the group with an internationalisation focus and for all 
students considered together. Judgements are, at this initial stage, too different to justify a group 
view. The simple aggregation of parameters (18) permits an easy monitoring. 

The subjects in the illustration made individual judgements. The groups suggested in Table 2 are 
post hoc suggestions. 

 
 

9.  Conclusion   
 
This paper presents a model which makes explicit judgemental inconsistency and vagueness as 

sources of  imprecision and provides for their combination.  
Imprecision is described probabilistically. Recognising the difficulties implicit in interpreting 

probability values this decision aid enables easy interaction with probability inputs and outputs to 
discourage too great a reliance on commonly accepted values and  encourage an assessment of 
sensitivity. 

The Dirichlet parameter α provides a means of comparing whole distributions, not just estimates 
for one weight, and the various sources of imprecision. For individual assessments this shows that 
imprecision is the far greater effect than vagueness. This raises the issue of whether methods which 
permit imprecision to be assessed are to be preferred to those that do not (provided that the 
imprecision really is assessed and not just described as an index). It is common in statistical 
modelling to prefer more data from which to infer values and estimation error. Users of a decision 
aid may prefer only to express vagueness, at most. What to do must be a matter of choice of what 
best supports a decision for a particular individual or group. It is the firm presumption of the method 
described here that explicitly acknowledging imprecision is better than ignoring it.  
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student assessor p  

 

 
a b c d e f g h i  FT 

Weights (%)            

Salary increase 8 13 17 18 30 31 34 36 41  54 

Aims achieved 9 11 19 36 10 14 25 26 21  8 

Employed at 3 
months 

29 25 17 14 31 32 17 17 16  5 

Women faculty 4 4 4 2 2 3 3 2 3  5 

Women students 3 3 12 4 6 6 6 3 4  5 

International faculty 22 21 3 6 4 5 4 7 7  11 

International students 24 24 28 20 17 9 11 10 8  11 

          
 

 
Dirichlet parameters            

inconsistency, αC,p  0.277 0.028 0.101 0.080 0.054 0.036 0.057 0.168 0.097  
 

vagueness, αV,p 0.014 0.009 0.011 0.028 0.063 0.011 0.015 0.015 0.016  
 

αI,p = αV,p + αC,p 0.291 0.037 0.113 0.109 0.117 0.047 0.072 0.183 0.112  
 

αcC,p / αI,p (%) 95 76 89 73 46 77 79 92 87  
 

            

Discrimination (%)           

using αC,p 6 59 25 37 48 55 38 11 23   

using αV,p 74 78 72 59 46 71 59 57 56   

using αI,p 6 54 23 30 27 48 33 10 20   

 

Table 1. Evaluation by nine students using reciprocal matrix. 
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 salary focus  internationalisation focus   

group e,f g,h e,f,g,h  b,c,d  all 

        

α values        

inconsistency, αC  0.045 0.113 0.079  0.070  0.100 

vagueness, αV 0.037 0.015 0.026  0.016  0.020 

interpersonal, αM 0.002 0.000 0.013  0.025  0.038 

total, αI 0.084 0.128 0.118  0.112  0.158 

        

relative  contribution        

inconsistency, αC  54 88 67  63  63 

vagueness, αV 44 12 22  14  13 

interpersonal, αM 2 0 11  23  24 

total, αI 100% 100% 100%  100%  100% 

        

Weights        

Salary increase 30 35 33  16  25 

Aims achieved 12 25 19  22  19 

Employed at 3 months 31 17 24  19  22 

Women faculty 3 2 3  3  3 

Women students 6 4 5  6  5 

International faculty 4 6 5  10  9 

International students 13 10 11  24  17 

        

discrimination % 36 18 24  20  10 

 

Table 2.  The effects of aggregation. 
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Figure 1.   
Relation between b and c for inferring standard deviation from L and H. 
                 Note some previous estimates of b:  (i) 0.377 [67,68] ;  (ii) 0.308

 
[69] 
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Figure 2.  Screen design for interactive model. 
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(a) single point weight estimates                                               (b) no weight estimates  

      α = 0.0185; discrimination = 72%                                             α  = 0.1247; discrimination = 16% 

 

Figure 3. Results for non-informative analyses for a single user (p = 10%). 
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Figure 4. Relation between discrimination and Dirichlet parameter α  (Table 1). 
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(a)  p = 0.1  ;  discrimnation = 24%                                          (b)  p = 0.5  ;  discrimnation =  57% 

 

Figure 5. Results for aggregated results: salary focus (Table 2, students e–h). 
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Figure 6.  Identifiers show rank. Target = 16, from data in Figure 2.  (based on Figure 1.1 of  [87]) 
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Figure 7. Dirichlet parameters for consistency and vagueness assessments: r² = 0.03 (Source: Table 

1) 

 

 

 

 


