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Very high oxide ion conductivity in Na-doped SrSiO3 materials Sr1−xNaxSiO3−0.5x (0 < x ≤ 0.45) has recently been 
claimed, making these materials promising candidate electrolytes for intermediate temperature solid oxide fuel 
cells. We demonstrate, by a combination of laboratory powder X-ray diffraction (PXRD), powder neutron diffrac-
tion (PND), impedance measurements, SEM, 29Si solid state NMR and quantification of amorphous content by 
Rietveld analysis, that the materials with these nominal compositions are two-phase mixtures containing one crys-
talline phase and a significant amorphous component. No significant Na doping into SrSiO3 and hence no signifi-
cant levels of oxide vacancies are found from Rietveld analysis of high-resolution neutron diffraction data. Con-
ductivity of the samples increases systematically with increasing amorphous content, suggesting that the glassy 
phase is responsible for the conductivity observed rather than single-phase Sr1−xNaxSiO3−0.5x materials.  

Recent report of very high oxide ion conductivity in K- and Na-doped SrSiO3 by Singh and Goodenough has 
placed these materials at the forefront of the search for promising candidates for electrolytes in intermediate tem-
perature solid oxide fuel cells (IT SOFCs).1-5 The exceptional transport properties were correlated with neutron 
diffraction based conclusions that K and Na get stoichiometrically doped into SrSiO3, creating large numbers of 
O2 vacancies and giving rise to oxide ion conduction.4 Most recently, excellent performance of the 
Sr1−xNaxSiO3−0.5x (x=0.45) composition in a fuel cell was reported.6 However, a very recent publication on related 
K- and Ge-doped SrSiO3 (which we became aware of during the final preparation of this manuscript), reported a 
direct investigation of oxide ion diffusivity of a nominal Sr0.8K0.2Si0.5Ge0.5O2.9 composition by Isotope Exchange 
Depth Profiling (IEDP) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), which found no evi-
dence of O2 diffusion. In addition, sub-micron elemental mapping revealed a chemical inhomogeneity of the 
sample.7  

Our work has focussed on a systematic study of Na-doped SrSiO3 materials (nominally Sr1−xNaxSiO3−0.5x, x=0; 
0.1; 0.2; 0.3; 0.4) by a combination of laboratory powder X-ray diffraction (PXRD), variable temperature powder 
neutron diffraction (PND), impedance measurements, SEM, 29Si solid state NMR and the quantification of amor-
phous content by Rietveld analysis. We conclude that x ≤ 0.4 samples contain significant amorphous material and 
far lower Na content than believed to-date. 

Laboratory PXRD and impedance measurements were used initially to confirm that the our Na-doped materials 
were similar to those reported previously.2  Bragg peaks in PXRD patterns suggest all samples are single phase 
materials, and could be fitted using the SrSiO3 structural model.8 Fig. 1 shows the conductivity vs. reciprocal 
temperature Arrhenius plot for Sr1−xNaxSiO3−0.5x, 0 ≤ x ≤ 0.4, samples, as well as the values reported for the nomi-
nal x=0.4 composition by Singh and Goodenough.2 We note that the latter are about one order of magnitude high-
er; the same potential inconsistency was observed by Bayliss et al. for the K/Ge-system. 7 



 

Figure 1. Co

 

Neutron d
lysed by Rie
refinements 

Figure 2. R
Rwp=2.299%

The startin
on the two S
and Na) an
0.01(2)SiO3.00(2

content refin
is significant
believed to-d
als. Furtherm

SEM ima
Sr0.6Na0.4SiO
tent in the se
The spectrum
signature of 

Figure 3. 29S

The broad
ments strong
ture which re
90 minutes) 

550,00045,00040,000

C
ou

nt
s

30

25

20

15

10

5

0

onductivity vs

iffraction da
etveld refinem
is illustrated 

Rietveld fit o
%.  

ng model use
Sr sites (with 
d free refin

2) and Sr1.02(2)

ned to Sr0.94(2)

tly below the
date, suggest
more, these re

ages of Na-
O2.8 composit
econd phase.
m of SrSiO3 
the Si3O9 rin

Si solid state N

d feature repr
gly suggest th
elaxes very q
is consistent 

7570,00065,00060,00055,000

s. reciprocal 

ata collected 
ment.9, 10 Exp
in Fig. 2 (fu

obtained for 

ed was the mo
the total site

nement of th
)Na-0.02(2)SiO3

)Na0.06(2)SiO2

e nominal co
ting that O2 
efinements in

doped samp
tion. EDX da
. Fig. 3 show
(shown in F

ngs present. F

NMR spectra

resents Si in 
hat the sharp 
quickly (T1 <
with a crysta

‐1

‐

‐

‐

‐

‐

‐

‐

‐

‐

Lo
g 
σ

Time-of-flight (s)
95,090,00085,00080,0005,000

temperature 

at HRPD at 
perimental de
ull size in Fig

the nominal

onoclinic SrS
e occupancy 
he fractional 
3.02(2)   for th

2.98(2). We ther
mposition. C
ion conducti

ndicate that th

ples support
ata showed ve
ws the 29Si so
Fig. S4) cont
For x ˃ 0, a se

a of Sr1−xNax

a range of e
 and the broa

< 1s) is consi
alline phase. 

60700800

10.0

‐9.0

‐8.0

‐7.0

‐6.0

‐5.0

‐4.0

‐3.0

‐2.0

‐1.0

0.9 1.1

115,0110,000105,000100,000000

plot for the n

the ISIS fac
etails are giv

g. S3).  

 

l Sr0.6Na0.4Si

SiO3 structur
constrained t

occupancie
e x=0.2 and 
refore conclu

Consequently
ion via vacan
he bulk of N

the presen
ery low Na c
olid state NM
tains a single
econd broad 

xSiO3−0.5x, 0.1

environments
ad resonance
istent with a 
 

4050000

1.3 1

1000/T (K‐

T (°C)

120,000000

Sr0.6Na0.4SiO2.8 100.00 %

nominal Sr1−x

cility on sam
en as Supple

iO2.8 compo

re reported by
to 1, but with

es of five O
0.3 samples,
ude that the a
y, the level of
ncy-hopping 

Na must be pr

nce of two 
content in the
MR spectra f
e resonance w
resonance ap

; 0.2; 0.3; 0.4

s typical of a
e originate fro
glass, while 

30000

1.5 1.7
‐1)

Sr0.6Na0.4SiO2.8
Sr0.7Na0.3SiO2.85
Sr0.8Na0.2SiO2.9
Sr0.9Na0.1SiO2.95
SrSiO3
Sr0.6Na0.4SiO2.8_L

 

xNaxSiO3−0.5x

mples with x=
ementary Info

sition using 

y Nishi.8 Ref
hout any rest

O sites gave 
, respectively
amount of Na
f O2 vacanci
mechanism 

resent in a sec

phases; Fig
e Sr-containin
for samples w
with a chemi
ppears and in

4. 

amorphous ph
om two diffe
the sharp lin

1.9

Lit

x (0 ≤ x ≤ 0.4)

=0.2, 0.3 and
formation; the

high resolu

finement of N
traints on the

composition
y; for the x=0
a doped into 
ies created is
is unlikely in
cond, amorph

g. S2 shows
ng phase, and
with increasin
ical shift of 
ncreases in in

hases. Relax
erent phases. 
ne with a muc

) samples. 

d 0.4 were an
e quality of t

ution ND da

Na occupanci
e amounts of 
ns  Sr1.01(2)N
0.4 sample, t
SrSiO3, if an

s far below th
n these mate
hous, phase.

s the nomin
d high Na co
ng Na conten
-84.9 ppm, t

ntensity with 

ation measur
The broad fe
ch longer T1

na-
the 

ata; 

ies 
Sr 

Na-

the 
ny, 
hat 
eri-

nal 
on-
nt. 
the 
x. 

re-
ea-
(~ 



x

 

The observ
pled with so
sent. For zer

Sr1-xNaxSiO3

implies 27 w
amorphous c
micro-absorp
before measu
amorphous c
with addition
ditional com
with no sign
with x=0.1 t
monoclinic s
the amorpho
hypothesis th

Figure 4. Am
all the Na we

 

For x=0, o
lated from th
positions wh
served at sim
for by a trigo
suggested po
bt=3/3 bm, 
space group 
S6) show ex
from a small
x=0.1 sample

Figure 5. R
(Rwp=8.515%

5.4 5.2 5 4.8 4.6

C
ou

nt
s

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0

-20,000

40,00035,00030,000

C
ou

nt
s

20

15

10

5

0

-5

(a)

(b)

0.62           0.73          0.83       

vations from
lid state NM

ro Na doping 

3-0.5x → (1 – x

wt% of amor
content of ou
ption and oth
urement. Me
content of 33
nal quantities

mponents gav
nificant Na do
to x=0.4. Ex
structure. Th
ous phase. Th
hat the bulk o

morphous con
ere present in

our powder d
he existing s
here no peak
milar 2(Fi
onal unit cell
ossible space
ct=cm and V
P-31c and r

xcellent agree
l percentage 
e gave a ~50

Rietveld fits o
%). 

6 4.4 4.2 4 3.8 3.6 3.4 3

660,00055,00050,00045,000

d-spa

d-spa

   0.93          1.04          1.14          1.24          

m Rietveld re
MR and SEM 

 into SrSiO3,

x) SrSiO3 + x

rphous mater
ur samples b
her systemat
easurements p
3(4) wt%. Me
s of amorpho
e an amorph
oping. Fig. 4
trapolation t

he dashed line
he similarity 
of the Na is p

ntent in Sr1−x

n an amorpho

diffraction da
structural mo
ks were obse
igs. S1 and S
l with cell pa
e groups P31

Vt=1/6 Vm. B
refined again
ement for all 
of a Si-rich 

0:50 mix of th

obtained for

d
3.2 3 2.8 2.6 2.4 2.2 2

8580,00075,00070,00065,000

cing (Å)

cing (Å)

 1.35           1.45       1.55          1.66           

finements of
data, sugges

, the formal r

x/2 Na2Si2O5

rial for x=0.4
by mixing wi
tic errors we 
performed on
easurements 
ous SiO2 in a

hous content 
4 shows amor
to x=0 shows
e gives the a
in slope of t

present in an

xNaxSiO3−0.5x,
ous phase. 

ata revealed s
odel. Non-ze
erved in the P
S5). Indexing
arameters a=
1c and P-31c
ased on this

nst XRD and
but two wea
phase neede

he trigonal an

r trigonal Sr

1.8 1.6 1.4 1.2 1

SrSiO3 86.20 %

Sr2SiO4 13.80 %

100,00095,00090,0005,000

SrSiO3 90.60 %

Sr2SiO4 9.40 %

1.76          1.86         1.97           2.07 

f our apparen
st that signifi
reaction  

4. We have u
ith a known 
 chose Si as
n the x=0.4 s
were also pe

addition to a 
of 26(2) wt%
rphous conte
s low 5(2) w

amorphous w
the experime
amorphous m

, x=0.1; 0.2; 

some discrep
ero intensities
PXRD and N

g of the PXR
=4.12 Å c=10
c. The trigon
 relationship

d high-resolut
ak peaks in th
ed for compo
nd monoclini

 

rSiO3; overal

ntly single ph
ficant quantiti

used quantita
mass of a cr
 an internal 
sample with 
erformed on 
20% Si spik

%. Both meth
ent determine
wt% content 
weight percen
ental and pre
material for a

 

0.3; 0.4. The

pancies betwe
s are predict
ND patterns

RD pattern sh
0.12 Å and V
nal and the m
p, the SrSiO3

tion ND data
he neutron da
ositional bala
ic forms. 

ll Rwp=4.912

hase sample
ies of amorp

ative Rietveld
rystalline pha
standard and
5 different co
a series of s

ke phase. Ext
hods give am
ed using a 20
for hypothet

nt expected if
edicted lines 
all samples. 

e dashed line

een the obser
ted by the m
(though wea

howed that al
V=148.88 Å3,
monoclinic c
3 structure w
a. The final 
ata (~ 1.23 an

ance. Rietveld

2%. (a) PXR

s containing 
phous materia

d analysis to
ase. To minim
d samples w
oncentration
amples delib
trapolation b

morphous con
0 wt% Si spi
tical x=0 ma
f all the Na w
gives strong

e gives the w

rved pattern 
monoclinic Sr
ak broad fea
l peaks could
, while system
cells are relat
was solved by

Rietveld plo
nd 1.02 Å); t
d fitting of N

RD (Rwp=2.2

little Na, co
al must be pr

o determine t
mise effects 
ere micronis
s of Si gave 

berately dilut
ack to zero a

ntent consiste
ike for sampl
aterial with t
were present 
g support to t

wt% expected

and that calc
rSiO3 model 
atures were o
d be account
matic absenc
ted: at=1/3 a
y inspection

ots (Figs. 5 a
these may ari
ND data for t

243%); (a) N

ou-
re-

the 
of 

sed 
an 

ted 
ad-
ent 
les 
the 
in 

the 

d if 

cu-
at 

ob-
ted 
ces 
am, 
in 

and 
ise 
the 

ND 



 

Figure 6. Tri
pink spheres
Ordered Si3O
nal structure

 

The SrSiO
edge-sharing
of corner-sha
onal structur
bly local ord
We presume
where forma

In conclus
properties to
component. 
neutron diffr
phous compo
gesting that 
materials. 

ASSOCIAT

Additional e

AUTHOR I

Correspond

ivana.radosa

ACKNOWL

The solid-sta
versity. Dr. D
spectra. Dr. L
for useful dis

REFERENC

igonal struct
s bridging O 
O9 groups in 
 (left).  

O3 structure in
g SrO8 group
aring SiO4 te
re they are st
dering of the
e that formati
ation of SrSiO

sion, our ma
o those repor
The amount 
raction. Quan
onent. Condu
a glassy pha

TED CONTE

xperimental 

INFORMAT

ding Author 

avljevic@dur

LEDGMEN

ate NMR spe
David Apperl
Leon Bowen
scussions.  

CES 

ture of SrSiO
atoms in Si3O
the monoclin

n space group
s which stack

etrahedra. In 
tatistically di
se groups wi
ion of the trig
O3 is faster. 

aterials with 
rted before b
of Na doped

ntification of
uctivity of th
se is respons

ENT  

and data ana

TION 

rham.ac.uk 

T  

ectra were ob
ley is acknow

n is acknowle

O3. Green sph
O9 groups. (a
nic structure 

up P-31c is cl
k along the c
the monoclin

isordered ove
ithin the stru
gonal form i

nominal co
but are mixtu
d into SrSiO3

f amorphous 
he samples in
sible for the c

alysis details 

btained at the
wledged for t
edged for SEM

heres are Sr, 
a) Layers sta
(right) and d

losely related
c-axis (Fig. 6
nic structure,
er three equiv

ucture, but no
is a kinetic ef

mpositions S
ures containin
3 is below the
content sugg

ncreases syst
conductivity 

are available

e EPSRC UK
the data colle
M. We thank

blue sphere
acked along t
disorder of S

d to the mono
6a), alternatin
, the silicate 
valent positio
o long range 
ffect as it oc

Sr1−xNaxSiO3

ng a crystall
e reliable det
gests that the
tematically w
observed, ra

e as Supporti

K National So
ection and as
k Professor A

 

s Si, red sph
the c-axis. (b
Si and the bri

oclinic struct
ng with layer
groups are o
ons, Figs. 6b
order leadin
curs for synt

3−0.5x, x=0.1; 
line phase an
tection limit 
e bulk of the

with increasin
ather than sin

ing Informati

olid-state NM
sistance with

Arthur Sleigh

heres termina
) View down
dging O atom

ture. Both co
rs of Si3O9 g

ordered, wher
b and 6c. The
ng to monocl
theses in the 

0.2; 0.3; 0.4
nd a significa
of our high q

e Na is presen
ng amorphou
ngle-phase Sr

ion. 

MR Service a
h interpretatio
t (Oregon St

al O atoms a
n the c-axis. (
ms in the trig

ontain layers 
groups made 
reas in the tri
ere is presum
inic symmet
absence of N

4 have simil
ant amorpho
quality powd
nt in the amo

us content, su
r1−xNaxSiO3−0

at Durham Un
on of the NM
tate Universit

and 
(c)  
go-

of 
up 
ig-

ma-
try. 
Na 

lar 
ous 
der 
or-
ug-
0.5x 

ni-
MR 
ty) 



 

 
1. Singh, P.; Goodenough, J. B., Energy & Environmental Science 2012, 5, (11), 9626-9631. 
2. Singh, P.; Goodenough, J. B., Journal of the American Chemical Society 2013, 135, (27), 10149-10154. 
3. Goodenough, J. B.; Singh, P. US 2014/0080019, 2014. 
4. Martinez-Coronado, R.; Singh, P.; Alonso-Alonso, J.; Goodenough, J. B., Journal of Materials Chemistry 

A 2014, 2, (12), 4355-4360. 
5. Xu, J.; Wang, X.; Fu, H.; Brown, C. M.; Jing, X.; Liao, F.; Lu, F.; Li, X.; Kuang, X.; Wu, M., Inorganic 

Chemistry 2014, 53, (13), 6962-8. 
6. Wei, T.; Singh, P.; Gong, Y.; Goodenough, J. B.; Huang, Y.; Huang, K., Energy & Environmental Science 

2014, 7, (5), 1680-1684. 
7. Bayliss, R. D.; Cook, S. N.; Fearn, S.; Kilner, J. A.; Greaves, C.; Skinner, S. J., Energy & Environmental 

Science 2014. 
8. Nishi, F., Acta Crystallographica Section C-Crystal Structure Communications 1997, 53, 534-536. 
9. Coelho, A. A.; Evans, J. S. O.; Evans, I. R.; Kern, A.; Parsons, S., Powder Diffraction 2011, 26, (4), S22. 
10. Rietveld, H. M., Journal of Applied Crystallography 1969, 2, 65. 
 

 
 


