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Abstract 

The paper analyses conceptualisations in the science frameworks in three large-scale 

assessments, TIMSS, PISA and NAEP. The assessments have a shared history, but have 

developed different conceptualisations. The paper asks how and why the frameworks are 

different, and seeks answers by studying their development. The methodology is document 

analysis by, first, tracing developments within each assessment, next, comparing 

developments and conceptualisation across the assessments, and last, relating the 

frameworks to trends of developments in educational theory. The outcome of the analysis 

provides a complex picture with the assessments following their own lines of development 

but with influence from trends in assessment and educational theory. Five main 

conceptualisations are found to have existed over time, with different definition of scientific 

behaviour and explanations to the relationship between knowledge and behaviour.  The 

frameworkshave moved towards more elaborated explanations of the science domain, 

providing assessors with better support for operationalising learning objectives. Currently, 

the assessments are faced with a challenge of adapting to the “practice turn” in science 

studies and learning science and thereby accounting for scientific behaviour as a community 

practice. The paper concludes with suggestions for how frameworks may be improved to 

achieve this aim.  

Introduction 

All fields need a common conceptualisation making communication possible without 

necessarily operating on a globally shared theory (Gruber, 1993). The current paper 
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analyses assessment frameworks in large-scale assessments and uses the perspective that 

these provide “an explicit specification of a conceptualization” (ibid: 199). The context of the 

analysis is the importance large-scale assessments have had for educational policy, 

curriculum development and educational practices; which suggest their conceptualisations of 

the subject domain are likely to be adopted by many educators. In other words, that the 

formal conceptualisation developed in assessments projects are likely to shape and 

influence the conceptualisation used in the field more generally. The contention of the paper, 

however, is that this influence relates not just to the status of the large-scale assessments, 

but also to the format of the frameworks. The frameworks are similar to standards 

documents or curriculum guidelines setting out goals for an educational system, because of 

defining the same curriculum domain, but use a classification format that deviates from the 

listing of learning objectives typically found in these.  They organise the subject domain into 

categories based on some organising principle (Moseley et al., 2005). The format is used, 

partly, because the assessments operate across nations and/or curricula and therefore have 

to identify more general principles and structures, and, partly, because it supports assessors 

operationalising the subject domain into items and scoring rubrics. The outcome, however, is 

bringing out conceptual structures of the domain in a way that “provides support for thinking” 

(ibid: 34) and “facilitate the mental representation of a field”. (ibid: 39). As will be shown in 

the analysis, the frameworks have developed over time towards more advanced structures 

and thereby are becoming more useful and relevant for educators. The influence may be 

positive or negative, but that it occurs at all justifies examining the frameworks critically to 

see what conceptualisation they offer. From this perspective, the paper presents an analysis 

of science frameworks used in three large-scale assessments: the Trends in Mathematics 

and Science Study (TIMSS), the National Assessment of Educational Progress (NAEP) and 

the Programme for International Student Assessment (PISA).  

The reason for aiming the analysis particularly towards the TIMSS, NAEP and PISA 

is their dominance as “world-class standards” (DeBoer, 2011; Linn & Baker, 1995), but also 

their long and shared tradition for developing assessment frameworks. All three exhibit 



 3 

similar processes in their development, characterised by continuous revision of the same 

framework over many years and the involvement of academic experts across science 

education, science, learning psychology, assessment and policymakers. The International 

Association for the Evaluation of Educational Achievement (IEA), the provider of TIMSS, was 

established in the 1960s and developed a science framework to the First International 

Science Study (FISS) in 1970/71 (Comber & Keeves, 1973; Husen & Postlewaite, 1996). 

This framework has since been revised and rewritten many times, leading to the current 

TIMSS framework (Mullis, Martin, Ruddock, O'Sullivan, & Preuschoff, 2009). NAEP started 

at the same time as the IEA studies and published its most recent science framework in 

2008 (NAGB, 2008).  These two projects have had mutual influence due to their committees 

including some experts in common and from using benchmarking studies to compare 

contents (e.g. Neidorf, Binkley, & Stephens, 2006; Nohara & Goldstein, 2001; Wu, 2010). 

The first PISA survey was conducted in year 2000, so this project has a shorter history but 

fits the same overall pattern. Although other assessments could be mentioned, TIMSS, 

NAEP and PISA have been the most continuous and trend-setting large-scale assessments, 

suggesting their science frameworks are among the most thoroughly developed 

conceptualisation of the science domain. 

The paper, however, contends that, despite their effort, the three large-scale 

assessments struggle to set an appropriate conceptualisation for the science learning 

domain. Difficulties are observed, firstly, in variation in concepts and organising principles 

between current versions of the frameworks (Mullis, et al., 2009; NAGB, 2008; OECD, 

2006), which is surprising considering their mutual influence. Secondly, looking back on 

previous versions shows all three projects have changed substantially, seemingly struggling 

to find the “right” way of conceptualising the learning domain. Contrasting these difficulties, 

are researchers failing to recognise that differences exist. Nohara and Goldstein (2001), for 

example, when comparing TIMSS, NAEP, and PISA, notice that different “dimensions” are 

used and that these do not correspond well, but choose to ignore this in their analysis. 

These authors instead select one particular framework’s conceptualisation to analyse the 
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content of other assessments.  This approach, which is common in benchmarking studies, 

serves to disguise rather than confront differences.  

The paper, therefore, has two purposes. The first is to achieve better understanding 

of how and why assessment frameworks in the three projects are different. This 

understanding draws on backgrounds to the frameworks and how these have developed 

over time. Second, the paper evaluates the frameworks for appropriateness in guiding and 

informing science assessors and educators about the science learning domain. Criteria for 

the evaluation exploit work that informed Bloom, Engelhart, Furst, Hill, & Krathwohl (1956) 

when developing their taxonomy for the cognitive domain. They established three principles 

for a framework to satisfy: first, to use a conceptualisation that is relevant to and 

communicates with teachers, curriculum developers and assessors; second, to be logical 

and internally consistent; and third, to be consistent with current perspectives in educational 

theory. The second criterion means establishing terms and definitions for consistent use in 

different areas of the learning domain, and having an organising principle that provides a 

meaningful relationship between dimensions and categories. Working in the 1950s led to 

Bloom et al. anchoring their third criterion mainly in cognitive psychology, the dominant field 

of the day. They wanted to avoid psychologically untenable distinctions that teachers made 

regularly and to include distinctions important psychologically but not frequently considered 

by teachers. More generally, of course, the conceptualisation in the framework needs to 

reflect and support general educational theories and ideas of the era. 

Bloom et al. (1956) prioritised these principles in the order presented above, i.e. 

paying more attention to communication with teachers than aligning the framework with 

educational theories. This paper reverses the order, because of difficulties science 

educators have experienced in implementing findings and new ideas from educational 

research into practice. Since assessment frameworks were first introduced, science 

education research has been through “paradigm shifts” relating to developments in learning 

sciences and science studies. A key issue explored is therefore to what degree and in what 

ways large-scale assessment frameworks have been aligned with and actively helped 
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promote new ideas in science education. However, none of Bloom et al.’s three criteria can 

be ignored, so the challenge framework committees have faced is to establish assessment 

frameworks that give a plausible answer to them all.  

As a context and reference, the next section of the paper summarises key theoretical 

developments in science education occurring during the period the frameworks developed. 

Thereafter, the paper outlines the methodology used, followed by the outcomes of the 

analysis. The final section points to possible future developments and suggests specific 

changes to the organisation of assessment frameworks in science education.  

 

From science processes to science practices 

Three successive trends in science education research and practice have dominated 

science education since the large-scale assessment projects began. First, influence from 

cognitive psychology. This emerged in the late 1950s as a counter-reaction to behaviourism, 

defining achievement in terms of mental structures and processes acquired by students 

(Miller, 2003). Many processes were seen as “liberated from particular contents” (Inhelder & 

Piaget, 1958: 331) and therefore transferable between contexts. Gagne (1965), amongst 

others, used this rationale to suggest some science processes, that is, mental processes 

used by scientists when generating and testing theories, could be trained in education and 

applied to other life domains. Applied as process science this view gained popularity in 

science education research and practice far into the 1980s.  

During the 1980s “process science” was criticised (e.g. Finley, 1983; Millar & Driver, 

1987) for the implicit science philosophy and the learning psychology it promoted. Finely 

(1983), for example, claimed Gagne’s conceptualisation reflected a logical-empiricist view of 

science that contemporary philosophers had since abandoned. He quoted Quine (1969) and 

other philosophers in noting meaningful observations occur only in the context of a 

conceptual scheme, in other words, that all observations are theory-laden. Simultaneously, 

research demonstrated that prior knowledge students bring to science learning was more 
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important to learning outcomes than their ability to use cognitive operations (Driver & Easley, 

1978; Osborne & Wittrock, 1985). The same criticism was raised outside science education 

by Brown and Desforges (1977) and Donaldson (1984) who showed that children’s ability to 

reason depends on their understanding of content and contexts as well as their cognitive 

capabilities. Critics called for alternative approaches to explain both “learning” and “science”.  

A second trend developed in response, in which psychologists and science 

educators turned towards a “Kuhnian” view of science. This proposed that a person’s 

science understanding develops gradually and, occasionally, revolutionises from simple to 

more advanced ideas. Learning, it was argued, is less about logical and abstract thinking 

and more about developing and understanding domain-specific knowledge. The trend 

became known as conceptual change (Hewson, 1981; Osborne, 1982; Osborne & Wittrock, 

1985) and its underpinning philosophy related to personal constructivism. The links between 

cognitive psychology and science education were still strong, but attention in both areas 

moved towards content-rich and domain-specific environments rather than domain-general 

thinking (McCloskey, 1983).  

A third and current trend developed somewhat later as an alternative answer to the 

criticism of process science and logical-empiricism, building on a socio-cultural view on 

science and learning. This view of learning is inspired by Vygotsky(1978) and Bakhtin(1981), 

who demonstrated how higher cognitive functions are learned through social interaction 

(usually in expert company) via a process requiring communication and involving tools 

(physical, symbolic, or both). This has shifted focus towards the function of language and the 

importance of playing roles in a community (Hughes, Jewson, & Unwin, 2007). The socio-

cultural view of science, similarly, suggested science is negotiated within the scientific 

community: scientists construct tentative explanatory accounts of nature, drawing on 

information gathered, and put these forward for debate so the whole community can come to 

consensus (Kuhn, 1962; Latour, 1987). Combining these, Ford and Forman (2006) refer to 

the new trend as the “practice turn”, and suggest science students learn to play 

interchangeable roles as Constructors and Critiquers of scientific claims: “The Constructor 
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floats arguments and the Critiquers publicly identify errors in those arguments, at which point 

the presenter returns to production work and attempts to remove errors” (p15). More 

generally, much attention in science education has become directed towards establishing 

authentic discourse practices in the classroom by engaging students in scientific 

argumentation (Driver, Newton, & Osborne, 2000).  

Thus, the last five decades have seen developments that have brought major 

challenges to the groups and committees responsible for setting assessment frameworks. In 

the behaviourist era, expectations and foci were on identifying observable behaviour 

avoiding the “murkiness” of the mental world. In the cognitive area, this changed to the 

opposite position, leading to domain general mental concepts and processes becoming key 

foci.  Critique led first to a claim that reasoning is knowledge-dependent, and that science 

learning should be understood as conceptual change. Later, the focus on learning and 

science as social phenomena emphasises that an individual must adapt to community 

standards and learn to play roles as constructors and critiquers. Overall, this means shifts 

from learning as something occurring exclusively inside people’s heads to events played out 

as practices in society, and similarly, from a “science-as-logic” to a “science-as-practice” 

conception of science (Lehrer & Schauble, 2006) have occurred. 

This presentation is a simplified picture. Trends overlap and are more complex, but 

the outline serves as a basis for analysing patterns of development in the assessment 

frameworks. A question arises about how the frameworks have adapted to the changes and, 

in particular, how current versions of the frameworks have managed to include recent the 

“practice turn”.  

 

Methodology 

The study of the assessment frameworks used a three-stage document analysis. 

First, the frameworks from each assessment project were analysed separately to identify 

how they have changed over time. This meant placing versions of same framework side-by-
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side from the earliest versions onwards, looking for changes in organisation and labelling of 

dimensions and categories. This type of comparison is an established approach in 

benchmarking studies (e.g. Neidorf et al., 2006; Nohara& Goldstein, 2001; Wu, 2010), but 

commonly looking for changes in content rather than structure and comparing frameworks 

across rather within projects. The current study was looking in particular for structural and 

conceptual changes that affect the conceptual meaning of the domain. The outcome was a 

pattern of development for each project’s framework. 

 The second stage was looking for explanations, still within each project, for why 

observed changes had occurred. Explanations were identified in the framework documents, 

but also in other documents either preparing for or discussing the versions of the 

frameworks.  For example, prior to developing the 2009 version of NAEP a panel presented 

issues and recommendations (Champagne, Bergin, Bybee, Duschl, & Gallagher, 2004), and 

the 2006 version of PISA was influenced by the DeSeCo project (OECD, 2003a). Committee 

members have published several research papers explaining and discussing the 

frameworks. The outcome was “stories” following the pattern identified in stage one, 

describing the guiding rationales but also problems encountered when developing the 

frameworks. Recognising the limitation of this approach, of course, is important. No first-

hand information, for example, has been gathered from actual meetings and debates 

between committee members. The outcome, therefore, is an interpretation restricted by the 

material made public.  

Third, the frameworks were compared between the three assessment projects and 

evaluated by using the criteria set out in the introduction of the paper: a) relevance and 

alignment of the conceptualisation in the frameworks compared to the trends in science 

education research, b) logical consistency of the conceptualisations and c) their 

appropriateness for guiding educational practice. The comparison highlighted similarities and 

differences in the patterns of development of the conceptual structures, but also placed the 

frameworks into the wider context of developments in learning sciences and science studies.  
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The outcome was an identification of similarities and differences between the 

assessment frameworks, leading to a categorisation of different types of “common 

conceptualisations” for the science domain, and also an evaluation of the appropriateness of 

each of these.  

 

Framework development  

The analysis presents first the developments of the frameworks. This is the outcome 

of stage one of the methodology, but including the underpinning explanations from stage 

two. What is presented is therefore the story behind the current versions of the frameworks 

in TIMSS, NAEP and PISA, identifying some of the thinking, problems and influences that 

have led to and shaped the particular concepts and structures used in the current 

frameworks.  Conceptual trends across the three projects will be summarised after the 

presentation all assessments. 

 

The TIMSS Science Framework  

IEA’s First International Science Study (FISS) was conducted in 1970/71, followed by 

the second (SISS) in 1984/85 and the third (TIMSS) in 1995. The last combined 

mathematics and science, leading to TIMSS meaning the Third International Mathematics 

and Science Study, and was repeated (TIMSS R) in 1999. From 2003, TIMSS became the 

Trends in Mathematics and Science Study with surveys arranged every four years (2003, 

2007 and 2011).  

The first FISS framework introduced a two-dimensional matrix, or a table of 

specifications, based on Tyler (1950) in combination with Bloom et al.’s (1956) taxonomy. 

The principle was to categorise learning objectives into content, meaning the specific subject 

matter to be conveyed, and behaviour, explained as, what the student should do with the 

material. Presenting these in a matrix produced cells combining every behaviour category 

with every content category, generating a “blueprint” to ensure content validity; that all 
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aspects (cells) were included in the assessment. The matrix also underlined the 

inseparability of content and behaviour, demonstrating the impossibility of understanding 

content knowledge without using cognitive behaviours, and vice versa. Bloom’s taxonomy 

added another principle by providing a hierarchical structure of the cognitive behaviour. This 

helped separate simple from advanced reasoning and therefore could be used as an 

expression for cognitive demand. The framework model set a standard that was used by IEA 

across all subjects and, as will be shown, has dominated many assessment projects since. 

The FISS framework included four content categories, Earth sciences, Biology, Chemistry 

and Physics, and four hierarchical behaviour categories, Functional information, 

Comprehension, Application and Higher processes (Comber & Keeves, 1973). 

Bloom, Hastings, and Madaus(1971) published the Handbook on Formative and 

Summative Evaluation of Student Learning in the same year as FISS was carried out. This 

text was based on the Tyler-Bloom behaviour-by-content model and had invited authors to 

write chapters presenting assessment frameworks for school subjects. The authors, 

curriculum specialists with training in either a content area or educational psychology, 

approached their tasks differently (Haertel & Calfee, 1983). Psychologists tended to describe 

objectives in terms of mental structures, while content specialists looked towards the 

curriculum structure. Leopold Klopfer, the science chapter author, belonged in the latter 

group.  His chapter started with a statement about inclusion of the “full range of student 

behaviors which may be sought as outcomes of science instruction in elementary and 

secondary schools” (Klopfer, 1971: 566); including: 

 cognitive categories from Bloom’s taxonomy; 

 processes of scientific inquiry; 

 skills of performing laboratory work; 

 students’ attitudes towards science; and  

 students’ orientations to the relationships of science to other aspects of culture 

and to the individual. 
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As a move to implement all these Klopfer created a two-dimensional framework, just 

as in FISS, but including all bullet points as categories in the behaviour dimension. This 

caused three essential problems. Firstly, a “dimensionality problem” arose because very 

different elements (Bloom’s cognitive categories, laboratory skills and attitudes) were placed 

in the same dimension; secondly, the hierarchical structure introduced with Bloom’s 

taxonomy was disturbed and thereby made it more difficult to express cognitive demand;  

and thirdly, categories not fitting neatly into the separation between content and behaviour 

were brought in. Examples of the last problem are scientific inquiry and orientation (i.e. 

knowing about science). Klopfer’s writing reveals a struggle to decide if either of these 

categories is “behaviour” or “content”. The final outcome was to place them both in both the 

behaviour and content dimensions. Despite these problems, Klopfer’s framework was 

adopted for IEA’s second science study, SISS, (Rosier, 1987), with only re-labelling as a 

significant change. The Behaviour dimension became the Objective dimension. This 

reflected Klopfer’s re-interpretation of the original Tyler-Bloom matrix: the new behaviour 

dimension read as a list of objectives rather than Bloom’s interpretation of cognitive 

behaviour. In contrast, however, categories in the behaviour dimension were renamed 

similarly to Bloom’s terminology, and made to look like cognitive behaviours. Process of 

scientific inquiry, for example, was renamed Processes and the Application of scientific 

knowledge and method renamed Application. 

The two next revisions of the IEA science frameworks appear as attempts to solve 

Klopfer’s three problems. The third, TIMSS 1995, committee (Robitaille et al., 1993) focused 

on the “dimensionality problem”, resolved by splitting the behaviour dimension into two more 

coherent dimensions: Performance Expectations, which combined Bloom’s cognitive domain 

and scientific inquiry processes, and Perspectives, including attitudes and orientation. The 

solution was not ideal, making a complicated three-dimensional matrix (Performance 

Expectations, Perspectives and Content). The problem of a hierarchical performance 

dimension was also discussed, but dismissed at the time because the argument that science 
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processes can not be ordered in this way held sway. Klopfer’s third problem, that science 

inquiry is both “behaviour” and “content”, was left untouched. 

The committee responsible for the fourth revision in the TIMSS 2003 framework 

(Mullis et al., 2003) attacked, and solved, all Klopfer’s three problems, however, at a certain 

cost. The solution, firstly, involved moving scientific inquiry out of the matrix to become a 

separate “overarching” dimension; “[overlapping] all of the fields of science and [having] both 

content- and skills-based components” (Mullis et al., 2001, p. 69). This alternative, (see 

below), was adapted from NAEP’s 1996-2005 framework (NAGB, 2004). Secondly, the 

Perspectives dimension, with attitudes and interests, was excluded from the framework 

entirely. Together, these two moves re-established a two-dimensional matrix where both 

dimensions are more uni-dimensional (Klopfer’s first problem); re-instated a hierarchical 

behaviour dimension (Klopfer’s second problem); and removed topics which belonged to 

both dimensions (Klopfer’s third problem). The behaviour dimension, labelled Cognitive 

Domain, included three categories simplifying Bloom’s taxonomy:  

 Factual knowledge, 

 Conceptual understanding, and 

 Reasoning and analysis. 

 

For the TIMSS 2007 study (Mullis et al., 2005) categories in the behaviour dimension 

was re-labelled to match the revised version of Bloom’s taxonomy Anderson et al. (2001) 

better, adopting: 

 Knowing,  

 Applying, and  

 Reasoning 

 

In summary, the IEA science framework have moved from and to a two-dimensional 

matrix based on the Tyler-Bloom model and defining behaviour as cognitive demand. Klopfer 
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“disturbed” this model by attempting to include the “full range of student behaviour”. This, 

however, was unsuccessful and only by classifying scientific inquiry separately and 

excluding attitudes and nature of science has the framework become conceptually coherent 

and functional. 

 

The NAEP Science Framework 

The US-based NAEP science studies began in 1969/70 and have been repeated ten 

times over the last forty years. The first few surveys were carried out at irregular intervals, 

with individual states participating voluntarily. Since 2001 the reauthorization of the 

Elementary and Secondary Education Act, often referred to as No Child Left Behind, 

requires states’ participation at grades 4 and 8 every four years in science and reading and 

mathematics biennially. The National Assessment Governing Board (NAGB) holds overall 

responsibility, while the assessment is carried out by the National Center for Education 

Statistics (NCES). NAEP results are known colloquially as the Nation’s Report Card. 

NAEP started with an open listing of objectives, styled like curriculum guidelines. A 

systematic categorisation developed after a few surveys with “dimensions and categories” 

similar to those in IEA’s frameworks (NAEP, 1979), although not combining dimension in a 

matrix. Thus, the 1976-77 survey listed three dimensions separately: 

 Content (the body of science knowledge),  

 Process (the process by which the body of knowledge comes about)  

 Science and society (the implications of the body of knowledge for mankind). 

In 1981-82, a fourth dimension, Attitudes, was added (Hueftle, Rakow, & Welch, 

1983). By having an open principle and using four dimensions, the framework omitted 

conceptual problems described in Klopfer’s and IEA’s two- and three-dimensional matrices 

above. However, the conflict between general cognition and scientific inquiry that tainted the 

IEA study was underlying and became apparent in the 1990 NAEP science framework, when 

Process was renamed Thinking Skills and given the three categories: 
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 Knowing Science,  

 Solving Problems,  

 Conducting Inquiries. 

At this stage, NAEP also adopted a matrix structure like that of IEA, and a series of 

revisions were made leading to a new framework (Figure 1) in 1996 that was kept 

unchanged for nearly ten years (NAGB, 2004). This framework had a “content” dimension 

named Fields of Science and a “behaviour” dimension named Knowing and Doing. The 

Attitudes dimension from the previous framework was removed and the Science and Society 

became an “overarching” dimension called Nature of science outside the two-dimensional 

matrix. Another overarching dimension called Themes was also added.  

 

 

The framework had commonalities with IEA developments occurring at the time, but 

with some key differences. Firstly, as with Klopfer (1971) and SISS (Rosier, 1987), NAEP 

extended the behaviour dimension by allowing it to include both (Bloomian) cognitive 

behaviour and scientific inquiry. This caused a similar re-interpretation of behaviour from 

what students should do “to knowledge” towards a general statement of what they should do 

“in science” (i.e. making it an objectives dimension rather than a classification of cognitive 
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demand). While IEA, however, returned to a Tyler-Bloom interpretation, NAEP in the 1996-

2005 framework kept the objectives interpretation. This, it seems, was influenced largely by 

US curriculum development project representation in NAEP (Ina V.S. Mullis, 1992). The 

framework committee “reviewed key blue-ribbon reports, examined exemplary practices, 

studied local and state-based innovations in science curricula, reviewed science education 

literature, and noted innovations emerging in other countries” (NAGB, 2004: 9).  Among 

projects reviewed, for example, Mullis (1992) lists Project 2061 (American Association for 

the Advancement of Science, 1989), by the American Association for the Advancement of 

Science, and Scope and Sequence (Aldridge, 1989), by the National Science Teachers 

Association. Both projects demanded widening the science curriculum from traditional 

teaching of scientific concepts and theories. In other words, there was a great pressure on 

NAEP to include “the full range of student behaviours” and not, like TIMSS, place scientific 

inquiry and nature of science (which do not fit into the Tyler-Bloom matrix) in the 

background. Secondly, NAEP expressed awareness of Millar and Driver (1987) and others 

who claimed that science behaviour is knowledge-dependent. Hence, statements such as 

“control of variables”, became something students should understand rather than a skill they 

should do. The Knowing and Doing term was thus used to express that behaviour means 

knowing and doing science (as distinct curriculum aims), and that the behaviour includes 

knowledge. These changes had the effect of making the two NAEP matrix dimensions more 

independent, combining them becoming an ideal rather than a psychologically inextricability 

as it had been in the Tyler-Bloom rationale.  

By abandoning the Tyler-Bloom interpretation of behaviour, NAEP was left with the 

same problem of describing levels of achievement as IEA had experienced (i.e. Klopfer’s 

second problem). The solution came in terms of the “Angoff principle” and took place against 

a background of general debate about US academic achievement, which claimed 

unacceptably low levels, masked by norm-referenced reporting (Koretz, 2008: 182). Angoff 

(1971) suggested using panels of judges to evaluate item difficulty, coupled with alignment 

with cut-scores for achievement levels on assessment scales. Subsequently, three levels 
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were introduced across all NAEP frameworks (NAGB, 2004). These were: Basic, denoting 

“partial mastery of prerequisite knowledge and skills that are fundamental for proficient work” 

(p. 36); Proficient, representing “competency over challenging subject matter, including 

subject matter knowledge, application of such knowledge to real-world situations, and 

analytical skills appropriate to the subject matter solid academic performance” (p. 36); and 

Advanced, meaning that students could “integrate, interpolate, and extrapolate information 

embedded in data to draw well-formulated explanations and conclusions” and “use complex 

reasoning skills to apply scientific knowledge to make predictions” (p. 36). Placing this 

principle onto the two-dimensional matrix (content and behaviour) created a “third 

dimension” for achievement level. Interestingly, this new dimension became similar to the 

hierarchical ordering of the TIMSS cognitive demand dimension, i.e. still had resemblance 

with Bloom’s taxonomy.  For example, the basic, proficient and advanced levels matching 

knowing, applying and reasoning, and with many similar cognitive processes at each level. A 

difference, however, was NAEP including the complexity of knowledge and not just 

reasoning in their definition of cognitive demand. 

One observation from the NAEP 1996-2005 framework document is the struggle in 

explaining the changes being made. Labelling the behaviour dimension Knowing and Doing, 

for example, illustrated a fundamental problem accounting for the knowledge-dependency of 

the behaviour dimension.  The combination of content (Fields of Science) and behaviour 

(Knowing and Doing) into the third achievement level dimension was also explained 

hesitantly.  

The next, current, version (See Figure 2) for 2009 corrected some of this uncertainty, 

making the principles from the previous version explicit and theoretically coherent. The 

achievement level dimension, for example, was named Performance Expectations and 

explained: 

… science content statements can be combined (crossed) with science [behaviour] 

to generate performance expectations (i.e., descriptions of students’ expected and 

observable performances on the NAEP Science Assessment). Based on these 
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performance expectations, assessment items can be developed and then inferences 

can be derived from student responses about what students know and can do in 

science. 

(NAGB, 2008: 63) 

This version of the framework emerged from another comprehensive development 

process involving many experts from different academic areas and an extensive hearing 

among science educators. NAEP, however, this time has moved away from the “curriculum 

influence” expressing more interest in including “new advances from science and cognitive 

research” and “to learn from experiences in TIMSS and PISA” (NAGB, 2008: 2). This has 

resulted in new principles, but also new ambiguities in the conceptualisation; discussed next. 

The framework has moved away the overarching dimensions (Nature of Science and 

Themes), and by using two dimensions only appears more similar to the traditional content-

by-behaviour matrix. The behaviour dimension, however, has become Science Practices, 

demonstrating an interest to adapt to the “practice turn” in learning sciences and science 

studies. One implication arising is that the nature of science dimension is embedded in 

behaviour and linked to students’ cognition. The framework document explains this using Li 

and Shavelson’s (2001) distinction between declarative-, procedural- , schematic- and 

strategic knowledge, presented as “knowing that”, “knowing how”, “knowing why”, and 

“knowing when and where to apply knowledge” (NAGB, 2008: 65). For example, the practice 

“Using scientific principles” is explained as drawing on schematic and declarative knowledge 

to predict observations and evaluate alternative explanations (p. 68). Other practices in 

Figure 2 are explained similarly. 

The framework, however, implies uncertainty about what procedural, schematic and 

strategic knowledge actually are. Firstly, the knowledge is concealed in the framework, and 

not listed explicitly, and secondly, Li and Shavelson (2001) link these concepts to 

psychology rather than science philosophy, making it unclear how they can replace nature of 

science.  
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The lack of rationale for outlining and choosing categories in the science practice 

dimension is also problematic. These are presented as a “natural outcome” of the fact that 

“science knowledge is used to reason about the natural world and improve the quality of 

scientific thought and action” (NAGB, 2008: 66), a statement which gives poor guidelines for 

knowing what are sufficient or necessary categories. The actual practice categories included 

have many similarities to the Knowing and Doing categories in the previous version of the 

framework, suggesting these have been influential in what is regarded as “natural”.  

The overall impression is, therefore, that NAEP’s attempt to be at the cutting edge of 

science education has produced a framework which support current perspectives in learning 

science and science studies, but which fail to operationalise these at a detailed level.  The 

commitment to bring in “hundreds of individuals across the country” (NAGB, 2008: vi) seems 

further to have forced compromises to the labelling and organising principles of the 

framework. 

In summary, the NAEP science framework offers an alternative to that of the IEA. 

Both use two-dimensional content-by-behaviour matrixes, but with different dimensions and 

underlying principles. TIMSS retains a “cognitive matrix”, describing behaviours as what 

students should “do to the knowledge”. NAEP, in contrast, first established a “curriculum 

matrix”, treating the behaviour dimension as a fuller list of “objectives” of the science 

curriculum. This required a third dimension to define achievement levels. The 

conceptualisation has later been modified in the current version of the framework by 

redefining the behaviour dimension as scientific practices. It is, however, unclear how this 

actually should be interpreted and the framework document fails somewhat to explain the 

difference between science practice and science process.  NAEP’s framework has been 

influenced by US curriculum changes and the intention to implement educational research 

findings, but these act as double-edge swords, causing uncertainties about understanding of 

concepts and principles. Current challenges include explaining the meaning of embedding 

nature of science into science practices and establishing a rationale for selecting science 

practices. 
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The PISA Science Framework 

The PISA project was established in 1997 and started triennial surveys from 2000. 

The surveys focus on literacy in reading, mathematics and science, alternating between 

each domain as its main focus. Thus, the first PISA survey with science as main focus took 

place in 2006, with the next due in 2015. The OECD Secretariat is responsible for PISA 

survey design and implementation is through an international consortium led by the 

Australian Council for Educational Research (ACER).  

Starting in the late 1990s, PISA was in a different position to NAEP and TIMSS, as 

no previous version guided the choice of assessment framework.  Hence, a new model 

could have been created. However, Wynne Harlen, the first framework committee chair, had 

experience from two assessment projects, namely the Techniques for the Assessment of 

Practical Skills (TAPS) (Bryce, McCall, MacGregor, Robertson, & Weston, 1988) and the 

Assessment for Performance Unit (APU) (Johnson, 1989). Both proved influential to the 

PISA development process. The first PISA framework (OECD, 1999) was similar to the APU 

framework (Murphy & Gott, 1984), adopting a three dimensional framework with scientific 
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processes, scientific concepts and situations as dimensions. As in TAPS and APU, PISA 

announced scientific processes as the main target. Harlen (1999) continued a debate about 

knowledge-dependency of scientific processes using arguments similar to those emerging 

from TAPS and APU (Gott & Murphy, 1987). The framework document (OECD, 1999), for 

example, argued “there is no meaning in content-free processes” (p. 60) and scientific 

knowledge and process “are bound together” (p. 60). Operationalising these arguments 

proved to be as difficult as NAEP found. Authors resorted to phrases such as “processes, 

because they are scientific, involve knowledge” (p. 60) and “priority is given to processes 

about science compared to processes within science” (p. 61, their emphasis). 

As the knowledge-dependency problem remained unresolved, the PISA framework’s   

originality relative to TAPS and APU became the scientific literacy focus. This meant 

emphasising the processes of evaluating scientific evidence and claims in socio-scientific 

contexts, giving less attention to experiments and data gathering in a laboratory context. 

Five categories developed on the scientific process dimension were (OECD, 1999: 62): 

1. Recognising scientifically investigable questions. 

2. Identifying evidence needed in a scientific investigation. 

3. Drawing or evaluating conclusions. 

4. Communicating valid conclusions. 

5. Demonstrating understanding of scientific concepts. 

The second PISA framework retained the process-oriented focus, but rearranged the 

process dimension into three categories (OECD, 2003b: 137):  

 Process 1: Describing, explaining and predicting scientific phenomena; 

 Process 2: Understanding scientific investigation; and 

 Process 3: Interpreting scientific evidence and conclusions 

As with many previous framework reviews, limited explanation for this is found, but 

the new categories became similar to Klahr and Li’s (2005) three main “phases of the 

scientific discovery process” (p. 218).  A move is therefore observed away from the step-
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wise approach to the scientific method seen in TAPS and APU, towards describing more 

how science works in principle. This was a small but important step towards the same 

“practice turn” as observed in NAEP. The conceptual problem, however, about defining 

science processes as “knowledge-based” remained unsolved in the 2003 framework. 

The scientific concepts and situation dimensions played inferior roles in both the first 

two PISA frameworks. The situation dimension, however, added an important difference 

from TIMSS and NAEP by describing characteristics of the context rather than what students 

should learn. This will be discussed later as an extension of the conceptualisation of the 

science domain.  

The next development, when scientific literacy became main focus in PISA 2006, 

offered a new start and a new committee chaired by Rodger Bybee from the US national 

standards for science education committee. His background together with developments in 

OECD’s DeSeCo project to define key competencies for the future’s (OECD, 2003a) made 

ground for a revised framework with scientific competency  instead of science processes as 

main focus and using a new organising principle (see Figure 3). 
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The most notable characteristic on the new frameworks is omitting the traditional 

“matrix model”, representing the domain instead as a concept map. Compared to the matrix 

model, this format allows additional dimensions to be involved and it explains more explicitly 

relationships between the dimensions.  Accordingly, the PISA framework in Figure 3 

suggests students’ competency to “do science” is influenced by their knowledge and 

attitudes. This principle resolved Harlen’s earlier conceptual problem of ascribing meaning to 

a science process being knowledge-based. It also provided an alternative to NAEP’s 

problem discussed earlier about explaining nature of science as “embedded” in science 

behaviour. In the PISA framework, knowledge about science is placed alongside knowledge 

of science, that is, as a similar “cause” for scientific behaviour. The framework has stayed 

unchanged since 2006, and gradually become familiar to many science educators as PISA 

has become a more important source for international comparison and for defining scientific 

literacy (DeBoer, 2011). 

Understanding the changes made to the new PISA framework, it is necessary to look 

towards the tradition of competency modelling that developed from the 1990s (Shippman et 

al., 2000) and was stimulated in particular by Prahalad and Hamel’s (1990) demand for core 

competencies to prepare for increased global competition. In this context, competency is 

firstly a “managerial” concept, used, for example, by assessment centres conducting “job 

analysis” (Anastasi & Urbina, 1997). The concept merges two aspects; the activity or task 

someone should be able to master and the knowledge, attitudes, skills and other 

characteristics (so-called KASOs) that a person needs to learn in order to solve the task 

successfully. Kane (1992) uses these aspects in a competence definition: 

 

.. an individual’s level of competence in an area of practice can be defined as the 

degree to which the individual can use the knowledge, skills, and judgment 

associated with the profession to perform effectively in the domain of possible 

encounters defining the scope of professional practice (166). 
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In this perspective, PISA made two major changes to framework development. 

Firstly, it defined scientific behaviour by turning towards “task analysis” for citizenship. The 

guiding question put forward was “What is it important for citizens to know, value, and be 

able to do in situations involving science and technology?” (OECD, 2006: 20, emphasis 

added). This is significant because behaviour is defined through the situations and tasks 

students should be able to handle rather than scientific principles. The PISA framework 

mentions briefly that competencies “rest on [their] importance for scientific investigation” (p. 

29), but elaborating this is deemed unnecessary as “tasks define behaviour”. Secondly, 

PISA made it more obvious and explicit that developing a framework means modelling and 

not just categorising the subject domain. The NAEP 2009 framework also had gone further 

than previous frameworks in trying to provide a rationale explaining the domain. In both 

frameworks, organising principle becomes a key to understand the domain.  

In summary, the PISA framework’s initial conceptualisation was similar to the UK-

based APU and TAPS assessments, focusing on science processes and using a matrix as 

the organising principle. Inspired by competency modelling in the managerial sector, from 

2006 this changed to science competencies. PISA then replaced the matrix-model with a 

concept-map, explaining that science behaviour is influenced by knowledge and attitudes. 

Competency modelling made the conceptualisation become “task-oriented”, which means 

PISA has moved away from explaining science principles towards identifying task students 

should be able to handle in everyday life. PISA has become a recognised conceptualisation 

among science educators, not at least for its support to scientific literacy, but also because 

many agree to competency as an appropriate concept for scientific behaviour. 

 

Conceptualisations of the science domain 

The outlines so far have revealed how all three assessments have undergone a 

series of revisions to arrive at their current conceptualisations of the science domain. Once a 

framework is established, any later version is a negotiated combination of the original and 
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new ideas introduced by incoming committees. Leaving old ideas, it seems, has proved as 

difficult as taking on new ones, exacerbated by democratic intentions to include many 

experts and stakeholders’ opinions. All three criteria listed by Bloom et al. (1956) (i.e. 

support in educational theory, logical consistency and relevance to practice) have caused 

challenges. The first attempt to summarise the development is a listing of the types of 

dimensions that have been included: 

1. Conceptual knowledge. This has been a main dimension in all frameworks and 

understood similarly as science theories, laws and concepts.  

2. Behaviour.  This is a second main dimension in all frameworks, but showing much 

greater variation. The labels have been Behaviour Dimension (Klopfer in 1971), 

Objective Dimension (SISS 1984), Performance Expectation (TIMSS 1995-1999), 

Science Cognitive Domain (TIMSS 2003-), Process (NAEP 1978-1982), Thinking 

Skills (NAEP 1990-94), Knowing and Doing (NAEP 1996-2005), Scientific Process 

(PISA 2000-2003), Science Practices (NAEP 2009-) and Competencies (PISA 2006-

). The meanings of these will be discussed below. 

3. Knowledge about science. This has been included in all frameworks but with 

variation in both organisation and meaning. Klopfer (1971) used Orientation as 

subcategory within the content domain and General knowledge (including Nature of 

science and Nature of scientific inquiry) in the behaviour domain. SISS 1984 copied 

this, but TIMSS 1995 (the next framework) made a change and placed Knowledge 

about science in a separate dimension, Perspectives, alongside Safety in science 

performance and Attitudes. The current TIMSS framework has stopped using 

knowledge about science as a separate category and makes a short mentioning only 

within Scientific Inquiry. NAEP started by having Science and society as a main 

dimension.  Nature of science was later made an “overarching” dimension in NAEP 

1996-2005, before the current NAEP framework “embedded” procedural, schematic 

and strategic knowledge in Science practice. PISA, from a literacy perspective, 

started in 2000 by mentioning nature of science as a key area, but struggled to 
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operationalise this into categories. From 2006, however, knowledge about science 

has been a sub-category alongside knowledge of science in the content dimension. 

4. Attitudes. In one form or the other, this has been mentioned at some stage in the 

frameworks of all the projects. Klopfer 1971 placed it as sub-category in the 

behaviour dimension, TIMSS 1995 as a category in perspectives and NAEP 1981/82 

as a separate main dimension. Currently, however, PISA is the only framework 

including attitudes in the science learning domain. It measures both attitudes towards 

science (interest in science) and scientific attitudes (support for scientific enquiry). 

The other projects measures attitudes towards school science as a “background 

variable” in a student questionnaire.  

5. Context/Situation. PISA is the only framework to list context as a dimension. The 

dimension is principally different from any of the above, because it is not something 

students should acquire, and bringing it into the framework extends the meaning of 

the science domain. 

On one hand, these dimensions suggest a shared conceptualisation of the science 

domain. They are fundamental dimensions science educators use when describing the 

science curriculum and what students should learn. On the other hand, the variation within 

them reveals discrepancies. Grasping the differences is not straightforward, but a place to 

start is the behaviour dimension, which has shown most variation and is central to 

understanding the domain. Table 1 presents the dimension with sub-categories across the 

frameworks. Similarities now appear between categories, but these are “false friends” if the 

dimension has different definitions. Similarities and differences among the frameworks, 

therefore, have to be traced in a combination of organising principles, definition of 

dimensions and choice of categories. From this perspective, Table 2 suggests five main 

types of conceptualisations appearing among the frameworks. Frameworks not mentioned in 

the table are found to use a combination of the listed conceptualisations. 

The first row presents the simplest conceptualisation, which defines the behaviour 

dimension as objectives (demonstrated by SISS 1984 in Table 1). Although this 
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conceptualisation uses two dimensions (content knowledge and objectives), it is a 

prolonging of the same listing of learning objectives that is commonly found in standards 

documents. Parallels, for example, can be drawn between the early NAEP frameworks, 

which listed four independent dimensions, similar to many standards documents, and SISS 

including all these dimensions in the behaviour dimension. The advantage of the 

conceptualisation is an unlimited possibility to include any learning objective found important. 

The disadvantage is limiting the explanation of the domain and inviting fragmentation of the 

science domain, both caused by a simple organising principle. 

A second, and more elaborated, conceptualisation is the two-dimensional content-

behaviour rationale underpinning the Tyler-Bloom matrix and used in TIMSS from 2003. This 

is a common conceptualisation used in assessments across subjects and relating behaviour 

to cognitive demand, defined as the thinking students “do to the material” (Bloom, Hastings 

and Madaus, 1971: 28). It means organising behaviour hierarchically from lower to higher 

order thinking, using domain-general levels adjusted to subject-related thinking. The 

conceptualisation is more powerful than the previous because of (a) linking the dimensions 

(conceptual understanding and cognitive demand are psychological inextricable), (b) offering 

a clear definition of the behaviour dimension and criteria for necessary and sufficient 

categories (all cognitive levels from recall to higher order reasoning should be included), and 

(c) identifying progression (as lower to higher order cognition).  

One weakness of the conceptualisation, however, is narrowing the science 

curriculum. There is no obvious place for attitudes, knowledge about science or even 

scientific inquiry in the content-behaviour grid. It is telling, for example, how Klopfer’s attempt 

to include “the full range of science achievement” failed. The only way to include scientific 

inquiry into the behaviour dimension is by taking a strict “nothing special view” (Simon, 

1966), suggesting scientific method is accounted for by general cognitive behaviour. This, 

however, reveals a second and more serious problem with this conceptualisation: by linking 

general and scientific thinking it supports a logical-empiricist view of science (Finley, 1983; 



 27 

Koslowski, 1996). TIMSS has attempted to compensate for both problems by having a 

separate classification of scientific inquiry, however, then creating a fragmented framework.  

The third conceptualisation relates knowledge and behaviour to product and process 

in science, i.e. to science knowledge and science method. At first, this conceptualisation 

appeared as a way of making the previous conceptualisation more domain-specific by 

replacing or merging cognitive behaviour with science process in the Tyler-Bloom matrix. 

This modification, however, builds on the “nothing special view” mentioned above.  

Framework committees in PISA 2000 and 2003 and NAEP 1996 adapting to the critique of 

the process approach (e.g. Millar and Driver, 1987), therefore, tried explaining how science 

process is different from general cognition. The outcome was interpreting science process 

as a more independent concept, that is, as something to “know and do” rather than “thinking 

students do to knowledge”. This turned behaviour into a “commodity” that students can learn 

parallel to science conceptual knowledge. Table 1 demonstrated this difference when, for 

example, comparing PISA 2000 with TIMSS 2007. The latter lists levels of cognition students 

apply when expressing their understanding of science knowledge, while the former lists 

processes as something students may acquire and that can be measured with a separate 

scale (Adams & Wu, 2002).  

Later, however, the product-process conceptualisation has met more resistance than 

just the false alliance between science method and general cognition, and attention has 

been drawn towards denying the existence of a general science method (Duschl & Grandy, 

2008). Jenkins (2007)describes how science method originated as a means for scientists 

and science educators to promote science in the 19th century, and has dominated much of 

the 20th century thinking about science, despite philosophical, conceptual, and 

methodological differences between scientific disciplines and against developments in 

science philosophy. Denying then both science process and science method, has meant 

framework committees over the last years have had to come up with an alternative approach 

to account for scientific behaviour. 
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Interestingly, PISA 2006 and NAEP 2009, in the last two rows in Table 2 and in Table 

1, have provided very different answers to this challenge.  PISA has replaced science 

process with scientific competencies, which has background in “managerial job-analysis” 

and suggests students, like scientists, should  develop knowledge and attitudes to solve 

particular tasks or activities. The concept has a pragmatic use and is defined by listing 

“professional encounters” (Kane, 1992), which PISA has exchanged with “encounters 

citizens meet in everyday life”. NAEP uses scientific practice, which emerges more directly 

from the “practice turn” in science studies and learning sciences. Pickering (1992), for 

example, defines science practice as an activity driven by the interest of the individual and 

the community, and with resulting products evaluated against community standards. Lave 

and Wenger’s (1991) describe practice is a “joint enterprise” based on “mutual engagement” 

and using a “shared repertoire of communal resources”. Both this and Pickering’s account 

make clear that science behaviour can be understood only through social and epistemic 

aspects of the science community. NAEP reflects this view, but by holding on to a two-

dimensional matrix struggles to establish a sufficient organising principle. PISA, on the other 

hand, offers a solution to the organising problem through the concept-map. The science 

domain is then not forced into a two or three-dimensional matrix but presented in a model 

explaining relationships between dimensions. The model offers a potential also to bring in 

more dimensions and scientific behaviour is explained as influenced by knowledge of 

science, knowledge about science and conceptual understanding.  A further development of 

the framework conceptualisation, as will be suggested in the next section, therefore invites 

combining ideas from these two assessments. 

As a conclusion, the conceptualisation of the science domain in the large-scale 

assessments has been dominated very much by the struggle to define science behaviour. 

From other developments in science education over the last forty years, this is maybe no big 

surprise. The puzzling outcome, however, is how much the struggle has impacted on 

inclusions or exclusion of other dimensions in the domain.   
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SISS 1984 

Objectives Dimension 

TIMSS 1995 

Performance 

Expectation 

TIMSS 2003 

Science Cognitive 

Domain 

TIMSS 2007  

Science Cognitive 

Domain 

Knowledge and 

comprehension 

 

Process  

 
Applications  

 

Manual skills 

 

Attitudes  

 

Orientations 

Understanding 

 

Theorizing, analyzing, 

solving problems 

 
Using tools, routine 

procedures and science 

processes 

 

Investigation the natural 

world 

 

Communicating  

Factual knowledge 

 

Conceptual understanding 

 

Reasoning and analysis 
 

Knowing 

 

Applying 

 

Reasoning 

NAEP 1990 

Thinking Skills 

NAEP 1996-2005 

Knowing and Doing 

NAEP 2009 

Science Practices 

Knowing Science 

 

Solving Problems 
 

Conducting Inquiries. 

 

Conceptual Understanding 

 

Scientific Investigation 
 

Practical  Reasoning 
 
 

Identifying Science 

Principles 

 
Using Scientific 

Principles 

 

Using Scientific Inquiry 

 

Using Technological 

Design 

 PISA 2000 

Processes 

PISA 2003 

Processes 

PISA 2006  

Competencies 

 Recognising scientifically 

investigable questions 

 

Identifying evidence 
needed in a scientific 

investigation 

 

Drawing or evaluating 

conclusions 

 

Communicating valid 

conclusions 

 

Demonstrating 

understanding of scientific 

concepts  

Describing, explaining 

and predicting scientific 

phenomena 

 
Understanding scientific 

investigation 

 

Interpreting scientific 

evidence and conclusions 

 

 

Identifying scientific 

issues 

 

 
Explaining phenomena 

scientifically 

 

Using scientific evidence 

 
Table 1: Labelling of and main categories in the ‘behaviour dimension’ of the frameworks 
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The way ahead? 

Table 2 suggests a development towards more advanced explanations of the science 

domain. The fact that all assessments have put much effort and resources into this 

development suggests they find “explanatory” conceptualisations important and useful. The 

reason, we may think, is supporting the interpretive argument when comparing the intended 

and actual constructs (Kane, 2006; Wiley, 2001). In other words, that a framework offering a 

rationale for the science domain helps assessors maintain construct validity when 

developing items and interpreting results in a better way than one just listing dimensions. 

The same argument would apply to teachers operationalising the intended curriculum into 

teaching. PISA and NAEP, currently, have frameworks with the most elaborated 

explanations, but neither of them accounts sufficiently for the “practice turn” in the science 

studies and the learning sciences. A way forward, as suggested above, is developing 

elements from these two frameworks to provide better explanations of the science domain. 

 What particularly needs explaining is the meaning of scientific behaviour being a 

“community practice”. This influences the definition of dimensions involved and the 

relationship between them, but also the choice of sub-categories. PISA relates scientific 

behaviour to “science competency” and explains this as influenced by knowledge of science, 

knowledge about science and attitudes. NAEP uses “scientific practice” and explains that 

conceptual, procedural, schematic and strategic knowledge is embedded in scientific 

behaviour. The alternative that will be suggested is explaining scientific behaviour as defined 

by the knowledge and attitudes. As a “community practice”, behaving scientifically means 

using shared understanding and following norms and standards of the science community 

(Ford and Foreman, 2006), which are defined through conceptual, procedural and epistemic 

knowledge. This makes scientific knowledge and behaviour sociologically and 

psychologically inextricable. 
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Conceptualisation Behaviour Dimension Organising Principle Background Comments Framework 

Objectives listing ‘Objectives’ 
Anything students do 
in science 

Listing content and learning 
objectives  

Curriculum analysis to 
identify aims for Science  

Inclusive of many 
objectives, but limited 
explanatory power 

Klopfer 1971 
SISS 1984 
 

Content-Behaviour ‘Cognitive demand’ 
Cognition students do 
to science knowledge 

Combining content and  
cognition to form  hierarchically 
categories from lower to higher-
order thinking 

Psychological 
conceptualisation of  
human performance 

Explains cognitive 
demand  in a way that is 
incongruent with domain-
specific views of science 

TIMSS 2003 
and current 

Product-Process ‘Science Process’ 
Thinking and/or 
methods used by 
scientists 

Combining science knowledge 
and science processes  

Promotion of science 
methods as a useful tool 
for problem solving  

Explains science, but rests 
on a false premise that 
scientists use a specific 
method 

APU 
PISA 
2000/2003 

Science competency ‘Science Competency’  
Successful 
performance of 
scientific task or 
activity 

Modelling science competency 
in concept map 
 

Managerial ‘job analysis’ 
to identify core 
competencies in scientific 
literacy  

Takes a ‘task-focus’ that 
reduces the emphasis on 
explaining science 
principles  

PISA 2006 and 
current 

Science practice ‘Science Practice’   
Behaviour within the 
science community, 
regulated by social 
and epistemic criteria 
 

Combining content and practice 
to explain performance 
expectations 

‘Practice turn’, redefining 
science as social and 
naturalistic (rather than 
logical-normative) 
phenomenon 

Adapts conceptualisation 
to the practice turn, but 
in need of better 
organising principle 

NAEP 2009 
and current 

 
Table 2: Key types of conceptualisations identified in the assessment frameworks 
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Kind, Osborne and Szu (in review) has proposed a rationale elaborating this 

alternative. It relates science practices to purposes of doing science. Philosophical (Giere, 

Bickle, &Mauldin, 2006) and psychological (Klahr, Fay, & Dunbar, 1993) accounts of science 

suggest there are three main purposes: developing scientific ideas and explaining 

phenomena (theorising), gathering data and testing theories (experimentation) and 

evaluating scientific claims and evidence and coordinating these in scientific argumentation 

(evidence evaluation). These purposes and practices are necessary to make a complete 

scientific argument. Two more purposes are technological problem solving, which leads to 

engineering as a practice, and communication.  These practices, however, have a different 

status, because they exceed the science principles of explaining nature. The rationale 

further suggests parallels exist between how the purposes define practices in science 

research, society and science classroom. Scientists, for example, do “theorising” to develop 

new understanding of scientific phenomena, but students engage in a similar practice when 

learning science knowledge at school. This is important, because it makes the five science 

practices meaningful categories in a conceptualisation of the behaviour dimension in a 

school curriculum, not just in “real science”. It also makes a common ground for defining 

categories in the knowledge dimension: students should understand science conceptual 

knowledge, which describes the shared understanding of science phenomena; procedural 

knowledge, which describes norms and criteria for gathering data and testing theories; and 

epistemic knowledge, which describes norms and criteria for evaluating and coordinating 

scientific claims and evidence. Behaving “scientifically” at school, when engaging in a socio-

scientific debate or when doing scientific research, all mean applying and committing to this 

knowledge. Figure 4 expresses this conceptualisation using a similar concept map as in 

PISA 2006, but redefining dimensions and their relationship.  

Two important elements are missing from the conceptualisation in Figure 4. The first 

is cognitive demand, which TIMSS has related to categories in the revised version of 

Bloom’s taxonomy (Anderson et al., 2001). PISA and NAEP, however, have both made the 
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point that demand relates also to the knowledge involved, and further, not just to science 

conceptual knowledge but all three types of knowledge in Figure 4. The current 

conceptualisation takes a similar view when suggesting that science practice is defined by 

knowledge. Higher cognitive demand then means using conceptual, procedural and/or 

epistemic ideas that are more complex and elaborated.  Importantly, this complexity is seen 

from a students’ point of view and aligns therefore with “developmental progression” 

(Berland & McNeill, 2010). When identifying cognitive demand,  it is therefore  necessary to 

look, first, to the science community to identify what ideas students should learn (i.e. what 

are the accepted knowledge and norms in the science community), and thereafter, to how 

the understanding of these ideas typically develops in students’ learning. Kind (2013) has 

demonstrated that a rich source of research literature is available to identify progression in 

students’ understanding of epistemic and procedural knowledge, in the same way as 

learning progression research already exist in understanding many areas of conceptual 

knowledge, and that this knowledge is useful to develop assessment scales. Progression in 

complexity of knowledge, of course, combines with, rather than replace, the cognitive 

demand identified in Bloom’s taxonomy. 

The second element missing in Figure 4 is attitudes. On one hand, this is as a natural 

dimension to include. Siegel (1989), for example, argues convincingly that evidence 

evaluation is based upon a willingness to conform to criteria and not simply understanding 

them. From his view, attitude could be place in Figure 4 parallel to knowledge as a 

dimension that defines science practice, which would mean following a similar principle as 

the current PISA framework (Figure 3). This attitude dimension would link also to knowledge, 

because knowledge makes the attitude object (Ajzen, 2001). This means, for example, that 

commitment to scientific behaviour requires having a positive attitude towards scientific 

explanations, scientific data and scientific criteria. Hodson (1998), however, in contrast to 

Siegel, denies this and places scientific attitudes as a “myth of science education”. His 

argument is that good scientific practice exists independently of the persons’ attitude. 

Besides, it is impossible to tell if a person behave scientifically due to scientific attitudes or 
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not. Clarifying the meaning and role of scientific attitudes is therefore necessary before this 

variable can be included meaningfully in framework conceptualisation.  

Even without being complete, the conceptualisation in Figure 4 suggests important 

implications for assessment. Test items, for example, have to include both dimensions. 

Making an item testing a scientific practice but not knowledge is impossible, because 

engaging in a scientific practice means applying science conceptual, procedural and/or 

epistemic knowledge. Testing knowledge without engagement in a scientific practice may be 

possible in principle, but would mean having an item not including a scientific problem and 

therefore has little value. For these reasons, the conceptualisation supports Allchin’s (2011) 

claim that knowledge about science, that is procedural and epistemic knowledge, should be 

tested implicitly through science practices, but suggests the same applies also to science 

conceptual knowledge. Besides, the conceptualisation adds another perspective that even if 

knowledge is tested implicitly through engagement in practices, explicit definition of the 

knowledge categories is necessary for meaningful operationalisation into assessment items. 

A more open question is how the three types of knowledge combined with the five types of 

practices allow development of subscales. This is a matter about what type of knowledge 

category is included in the different practices and the degree to which each category can be 

separated out. Although not answering this, the conceptualisation makes a starting point for 

closer examination of practices and their related need for use of knowledge.  

 

Concluding remarks 

Au (2007) warns that high-stake testing undermines education by narrowing and 

fragmenting the curriculum. From reviewing TIMSS, NAEP and PISA, this study suggests 

these problems are caused in part by assessment frameworks’ conceptualisation of the 

domain. A framework identifying dimensions without sufficiently explaining their inter-

relationships may support a wide curriculum, but invites fragmentation because assessors 

make items and scales measuring dimensions separately. Establishing a rationale and 
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organising principle explaining the relationship between domains may prevent this 

fragmentation, but also contribute to narrowing the curriculum if the principle is too simple. 

The requirement for a functional conceptual framework is therefore to establish a rationale 

that accounts for the whole science curriculum. The study has demonstrated that this is not a 

straightforward task. The large-scale assessments have been working on their frameworks 

for more than forty years and have yet to reach accomplished solutions. The study, however, 

suggests improvement is being made and that frameworks have become better rationales 

for teaching and assessment in science education.  
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