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Abstract 

 

Price of oil is important for the economies of oil exporting and oil importing countries 

alike. Therefore, insight into likely future behaviour and patterns of oil prices can 

improve economic planning and reduce the impacts of oil market fluctuations. This 

paper aims to improve the application of Artificial Neural Network (ANN) techniques 

to prediction of oil price. We develop a dynamic Nonlinear Auto Regressive model 

with eXogenous input (NARX) as a form of ANN to account for the time factor. We 

estimate the model using macroeconomic data from OECD countries. In order to 

compare the results, we also develop a time series and ANN static. We also use the 

output of time series model to develop NARX model. The NARX model is trained 

with historical data from 1974 to 2004 and results are then verified with data from 

2005 to 2009. The results show that NARX model is more accurate than time series 

and static ANN models in predicting oil prices in general as well as in predicting the 

occurrence of oil price shocks. 
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1. Introduction 

 

Since 1970s, the oil markets have been subject to strong periodic fluctuations and 

shocks. Oil price, as a globally traded commodity, is sensitive to changes in economic 

conditions and political events(Adrangi et al., 2001; Panas and Ninni, 2000). Oil prices 

also affect the economic prosperity of both oil exporting and oil importing countries. In 

addition, price of oil, directly and indirectly, impacts various markets including those of 

other energy carriers. Hence, a better understanding of the likely future behaviour of oil 

prices can reduce vulnerability of the economy from fluctuations and changing 

conditions in the oil market. 

However, the inherent difficulty to predict the oil price shocks
1
 is a major challenge and 

is reflected in the diversity of the previous studies on the subject. Literature has used 

several approaches to predicting oil price (Section 2). These have led to different price 

predictions and levels of accuracy. More precisely, due to the complex interactions 

between economic and other factors which affect oil price, the traditional approaches 

for prediction of oil prices have exhibited some shortcomings (Mirirani and Li, 2004; 

Tang and Hammoudeh, 2002).  

The present study aims to improve the modelling and accuracy of predictions of oil 

prices and shocks. We address this issue mainly through using a time factor, which 

enables the models to be dynamic and better predict the prices and price shocks. We 

develop a dynamic Artificial Neural Network (ANN) approach known as Nonlinear 

Auto Regressive model with eXogenous input (NARX). To our knowledge, the present 

                                                        
1
 Sudden fluctuations in oil price as a result of factors such as political crisis, disturbance in the oil 

supply, and unilateral decisions by oil exporters (see Appendix 2). 
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studyis one of the fewtouse the Mackinnon-White-Davison (MWD) test to analyse and 

compare different models of oil price prediction. The model is optimised by identifying 

dummy variables which help the inclusion of qualitative factors
2
 and time delays. 

Additionally, we use a three-step approach (time series, ANN static and NARX) that 

allows validating the results and assessing the improvement in the accuracy of the 

model after each stage. We show that the application of the NARX model enhances the 

dynamic performance of the model and improves the ability of the ANN methodology 

to predict oil price and in particular the occurrence of price shocks. 

The next section provides a brief overview of the previous methods and studies for 

predicting the price of oil. Section 3 describes the general aspects of the methodology 

and the data used in this paper. Section 4 describes times Series, ANN and NARX 

models developed in this study and presents and compares the results obtained from 

them. Section 5 is the conclusions. 

 

2. Previous Studies  

Previous studies of oil price prediction have used a range of different approaches and 

techniques. Broadly, these approaches can be classified into:(i) Auto-Regressive 

Conditional Heteroskedasticity (ARCH), (ii) simulation, (iii) value at risk, and (iv) 

mathematical modelling. Table 1 summarizes a selection these studies. As shown in the 

table, these have used different techniques and time spans and have achieved differing 

results and degrees of accuracy, thus leaving scope for further improvements. 

In order to mitigate such deficiency, one can use dynamic models to account for 

time dependency oil price(Movagharnejad et al., 2011). ANN is a suitable technique for 

                                                        
2
 In this study, we consider the supply-side factors which affect oil price as qualitative factors. For more 

details see Section 4.1.2. 
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such a purpose (Kermanshahi, 1998) and has been applied to modelling and forecasting 

of the behaviour of nonlinear economic variables. For example, (Nakamura, 2005) has 

employed a Multi-Layer Perceptron (MLP) method for forecasting inflation and (Zhang 

and Qi, 2005) explore applicability of neural networks to forecast seasonal time series 

with a trend component.  

To our knowledge, the literature on the application of the ANN method for forecasting 

the oil price is rather limited. Ghaffari and Zare (2009) forecast the West Texas 

Intermediate (WTI) crude oil spot prices using a combination of ANNs and Fuzzy 

Logic. Movagharnejad et al. (2011) used ANN and a time variable as a constant 

variable; thus the dynamic nature of the process was not accounted for. In order to 

account for the time dependency of the variables Jammazi and Aloui (2012) applied 

mathematical models while Yu et al. (2008) used short periods of time for modelling. 
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Table 1: Previous studies and methods ofoil price predictions 

Forecasting Method 
Approach 

and Findings 

Index of 

Accuracy 

Time Span 

(years) 
Study 

Auto Regressive Conditional 

Heteroskedasticity(ARCH)
a
 

Analysis of uncertainties in the oil price R2< 0.7 4-6 

(Day and Lewis, 1993; Duffie and Gray., 

1996; Kang et al., 2009; Xu and Taylor, 

1995). 

Simulation
b
 

Monetary factors such as GDP and 

import/export rates are the determining 

factors which affects the oil price. 

0.82 <R2<0.91 2-30 

(Barsky and Kilian, 2001; Bernanke et al., 

1997; Finn, 2000; He et al., 2012; Kim and 

Loungani, 1992; Obstfeld and Rogoff, 1995; 

Rotemberg and Woodford, 1996; Shin et al., 

2012). 

Value at  

Risk
c
 

Mont Carlo simulation is used in 

combination with historical trends of factors 

such as currency value, oil supply, OECD 

oil demand etc. This approach seeks to 

identify factors with highest impact on price 

of oil. 

R2=0.95 43 
(Amano, 1987; Busch and Raschky, 2004; 

Jorion, 1999; Wahrenburg, 1995). 

Mathematical Modelling
d
 

Different Mathematical Modelling 

Approaches 

0.87<R2<0.9 

MAE
e
=12.04% 

RMSE
f
=8.513 

1-22 
(Mirirani and Li, 2004; Tang and 

Hammoudeh, 2002). 

a
ARCH usesOrdinary Least Squares (OLS) technique and assumes that the errors’ variances are constant; this technique is widely applied for predicting oil 

price. 
b
Simulation is based on specific time models and therefore shows static behaviour. It cannot be applied for different time spans. 

c
Value at Risk (VAT) operates based on value, risk and reliability of the predictions and results of other models. 

d
These models predict the results based on the price change patterns using pure mathematical theories.  

e
Mean Absolute Error. 

f
Root Mean Square Error. 
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3. Methodology and Data 

 

The methodology used in this paper consists of three distinct but complementary stages 

namely: time series, ANN static, and ANN dynamic (NARX). While each stage 

(method) could be used to obtain some results (i.e. oil price prediction), applying the 

chain analysis (to improve the results of previous stage) makes it possible to increase 

the overall accuracy of the analysis. Details of the procedure applied in this paperare as 

follows: 

 Stage 1:Time series: A time series model is used to identify the meaningful 

factors affecting oil price and to calculate the number of lags of independent 

and dependent variables (inputs for ANN static and NARX). The time series 

model itself will be further developed to obtain the final results (time series oil 

price prediction). 

 Stage 2: ANN static: In order to validate the applicability of the result of the 

time series (inputs for the NARX model) we develop an ANN static model to 

verify the data and to prevent possible errors in the NARX model. The static 

ANN model is developed following the methodology described in 

(Movagharnejad et al., 2011) and based on the results of time series analysis in 

Stage 1 (i.e. the factors with the biggest impacts on the oil price). The results of 

this stage are comparable to those previously reported in(Movagharnejad et al., 

2011).  
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 Stage 3: Using the time series results (i.e. main factors affecting oil price and 

the number of lags), the NARX model is used to include the factor of time in 

the analysis. 

In each of the stages above, the R-squared was compared to the previous stage to ensure 

improvement in the accuracy of the results. A description of alternative methodologies 

is presented in the following subsections. A detailed application of these methods for 

predicting the oil prices is discussed in Section 4. 

 

3.1.Time Series(TS) 

 

A time series is a stretch of values (observations on the values) that a variable takes at 

successive points in time. Times series data is usually spaced at uniform time intervals 

(Brillinger, 2001; Greene, 2003; Gujarati and Madsen, 1998). Time series forecasts the 

future based on past data. In other words, time series analysis models use previously 

observed values in a trend to predict the future values (Greene, 2003). A critical step in 

the time series modelling is to verify the credibility of variables that are considered in 

the analysis and discover the relations between them. In order to do this, we used Auto 

Regressive Moving Average (ARMA) and Auto Regressive Integrated Moving Average 

(ARIMA) approaches. This will improve the accuracy of prediction thorough (1) 

identifying the most relevant variables and the most accurate models (2) optimising and 

estimating the selected model and (3) improving the model performance (e.g. through 

identifying the interconnections between variables, including dummy variables etc.) 

(Gujarati and Madsen, 1998). 
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3.2.Artificial Neural Network (ANN) 

ANN imitates the learning process in human brain. The fundamental processing element 

of a neural network is a neuron. A biological neuron receives inputs from external 

sources, combines them with a nonlinear operation and then produces the final results. 

The network usually consists of an input layer, some hidden layers, and an output layer 

(Kalogirou, 2000). These types of networks are generally known as Multi-Layer 

Perceptron (MLP) neural networks. 

An important step in the neural network is to train the model to learn the relationship 

between input and output parameters (i.e. the interconnecting weights between 

neurons). In MLP, weights are determined by Error Back-Propagation (EBP) algorithms 

which minimize a quadratic cost function by a gradient descent method. The 

interconnecting weights between the neurons are adjusted based on the inputs and 

desired output during the training phase (Boroushaki et al., 2003). Figure 1 illustrates 

the main features of an MLP network. 

 

Inputs
Outputs

Input 

layer
Hidden 

layer

Output 

layer  

Figure 1: Multi-Layer Perceptron (MLP) Neural Network 

Source: (Boroushaki et al., 2003) 
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At the initial step, the inputs are inserted in the MLP network and propagated forward in 

order to determine the resulting signal at the output neurons. Desired output targets are 

actual outputs; and ANN tries to eliminate the difference between them and the 

computed outputs (Boroushaki et al., 2003). The difference between the computed 

output vectors and the desired output represents an error that is back propagated through 

the network in order to adjust the weights. This process is then repeated and the learning 

continues until the desired degree of accuracy is achieved (Haykin, 1999).  

 

3.3.Nonlinear Auto Regressive Model with eXogenous Input (NARX) 

Nonlinear Auto Regressive model with eXogenousinput inputs (NARX) is a specific 

form of ANN which is dynamic and considers the factor of time. The dynamic part (i.e. 

the signal vector applied to the input layer of the MLP) contains the past and present 

inputs. These represent the exogenous as well as the model generated outputs on which 

the model in regressed. The dynamic behaviour of the NARX model is described by 

Equation 1. 

 

 (   )   ( ( )    (     )  ( )    (     ))   Equation 1 

 

Where F represents a nonlinear function of its constituent arguments and “n” is the time 

factor which denotes the present value of the model input (i.e. u (n)) and the future 

value of  the model output (i.e. y(n+1)).”(Boroushaki et al., 2003).  

In the present study, the training of the NARX model is carried out by batch learning 

method in which the entire plant data sets (1, …,T), during a transient are then used for 
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learning, until the total transient output error reaches a certain value
3
( ) where 

t denotes the number of entire data sets in a transient.
4
 

 

3.4.Data 

Both supply- and demand-side factors will affect the market price of oil. Considering 

the interactions between economic growth, energy demand, and oil price, we use 

macroeconomic indices of OECD countries (as the largest importers of oil) as inputs for 

the models.  

Table 2 summarizes the demand-side factors with potential impacts on oil price. The 

applied macroeconomic variables such as Gross Domestic Product (GDP) and Final 

Consumption Expenditure (FCE) directly or indirectly cover indexes such as 

population, number of cars, development of energy sector etc. In subsequent stages, 

depending on the effects of these variables on the oil price, some variables will be 

excluded from the models.  

 

In order to include the impact of supply side factors (e.g., political crisis, disturbance in 

the oil supply, and unilateral decisions on the amount of oil export, etc.) on oil price 

dummy variablesare included in the analysis (see Section 4.1). 

 

 

                                                        
3
This value determines the maximum accepted error value of the NARX and was selected to be 10

-3
. 

4
Each time period or transient is concerned to implementing a set of training data to the neural network 

between years 1974 to 2004. 


T

tnE ),(
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Table 2: Variables used inthe estimated models 

Variable Abbr. Description 

Min. 
(during the 

time period 

of study) 

Max. 
(during the 

time period of 

study) 

Unit Reference 

Gross Domestic 

Product 
GDP 

Sum of gross value added by all resident producers in the 

economy plus any product taxes minus any subsidies not included 

in the value of the products. 

4.04E12 4.38E13 US$ (WDI, 2007) 

GDP Growth GG 

Annual percentage growth rate of GDP at market prices based on 

constant local currency. Aggregates are based on constant 2000 

$US. 

-4.04 6.32 % 
a
 (WDI, 2007) 

Net Energy Import NEI 
NEI is considered in both absolute (kilo tons of oil equivalent) 

and relative (% of energy use) forms. 
20.96 34.5 % 

a
 (WDI, 2007) 

Final Consumption 

Expenditure 
FCE 

FCE is the annual change in the sum of household final 

consumption expenditure and general government final 

consumption expenditure. FCE includes any statistical 

discrepancy in the use of resources relative to the supply of 

resources and is proportional to the oil price. 

-0.723 6.576 % 
a
 (WDI, 2007) 

Gold Price GP 
Gold price is used to avoid inconsistencies caused by minor 

economic crises in the model. 
124.74 972.35 US$ 

(Kitco, 1995; 

NMA, 2011) 

Energy Production EP 

EP accounts for different forms of primary energy (i.e. petroleum, 

natural gas, solid fuels and combustible renewable and waste) as 

well as primary electricity. 

2.44 3.87 
mill. kt. of oil 

equivalent 
(IEA, 2011) 

Energy Use EU 

EU refers to primary energy prior to transformation to other end-

use products. EU equals to indigenous production plus imports 

and stock changes, minus exports and fuels supplied to ships and 

aircraft engaged in international transport. 

3.63 5.55 
mill. kt. of oil 

equivalent 
(IEA, 2011) 

Oil Rent OIR 

OR is the difference between the value of crude oil in 

international markets and the total costs of production. OR is 

estimated based on sources and methods described in (Day and 

Lewis, 1993). 

42112.88 415634.96 mill. US$ 
(Day and 

Lewis, 1993) 

a
 Annual growth (%).
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4. Model Development and Results 

4.1.Time Series Model 

The parameters introduced in Table 2 are used as initial inputs for modelling. As the 

first step, we develop four models: Linear-Linear (Lin-Lin), Linear–Logarithm (Lin–

Log), Logarithm-Linear (Log-Lin) and Logarithm-Logarithm (Log-Log). A time series 

model is used to (i) identify the variables with highest impact on oil price and (ii) 

optimise the model. The models’ output and the results are presented in Appendix (1-a). 

It should be noted that at this stage, the results (Appendix 1-a) are not yet optimized and 

the optimization will be undertaken when the most accurate model is selected (Section 

4.1.1). 

 

4.1.1 Model Selection - Using Primary Input Variables 

In order to compare the models with linear and logarithmic outputs and in order to 

choose the most accurate model, a two steps comparison methodology is applied: 

i) R-squared: Is used to compare models with similar outputs (i.e. linear output or 

logarithmic output). When comparing two models, the larger the R-squared is 

the more accurate is the model. As shown in Appendix (1-a),R-squared for Lin-

Lin, Lin-Log, Log-Lin and Log-Log is 0.9478, 0.7447, 0.9031, and 0.9204 

respectively. Therefore, Lin-Lin is chosen when comparing Lin-Log and Lin-

Lin. Similarly, Log-Log is identified as the most accurate model between Log-

Log and Log-Lin. 

ii) MWD test: In order to compare Lin-Lin and Log-Log models, MDW test is 

applied. For this we used H0 and H1 theories which indicates that Lin-Lin and 
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Log-Log as the better models respectively. The MWD test consists of the 

following steps: 

 Estimation of Lin-Lin model and the values of Crude Oil price (COP) 

 Estimation of Log-Log model and the values of Log (COP) 

 Calculating MLN
5
:        (   ̂)     (   )̂  

 Calculating MLG
6
:              (   )̂      ̂ 

 Estimating COP using MLN; if the t-Statistic of MLN coefficient is less than 

0.05 (i.e. probability < 0.05) then H0 theory is not valid. 

 Estimating Log (COP) using MLG; if the t-Statistic of MLG coefficient is 

less than 0.05 (i.e. probability < 0.05) then H1 is not valid. 

 

As shown in Appendix (1-b) for Lin-Lin model, the probability of the MLN is smaller 

than 5%. Therefore, the Lin-Lin estimation is not meaningful. Conversely, in the Log-

Log model, since the probability of MLG is more than 5%, the Log-Log estimation is 

found to be meaningful. Therefore, Log-Log is chosen as the optimum model for time 

series modelling. In the next stage, we optimise the results of the Log-Log model. 

 

4.1.2 Optimization of the Log-Log Model 

In order to improve the accuracy of the chosen model (Log-Log), the input variables 

with negligible impacts will be identified and excluded from the analysis. In addition, 

dummy variables are used in order to account for the supply-side factors and actions of 

                                                        
5
  MLN is the verification factor for the model with linear outputs. 

6
  MLG is the verification factor for the model with logarithmic outputs. 
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oil suppliers on oil prices. Initially, for each and all of the years in the time period of the 

study, a dummy variable is included in the Log-Log model. In other words, at the first 

step, it was considered that the effects of dummy variables exist in every year. In the 

next step, based on the t-statistic the most non-relevant (meaningless) dummy variables 

were omitted from the analysis and only the variables with the probability of less than 

0.05 remained in the model. The results indicate that only dummy variables for years 

1978, 1982, and 1985 are meaningful and therefore remain in the model. The step-by-

step analysis is provided in Appendix 4. 

These results are compatible with the historical data which show fluctuations in oil price 

in the same years (see Appendix 2). Therefore, we modify the model to incorporate 

these dummies as shown in Equation 2. 

 

   (   )

        (   )       (   )       (   )       (    )       (    )       (  )

      (   )       (   )        (    )        (   )                       

Equation 2 

 

In Equation (2), V78, V82 and V85 are dummy variables for years 1978, 1982, and 

1985 respectively. In addition, as suggested by the preliminary results and due to high 

probability, “GDP” and “Net Energy Import” (NEI) are excluded from the input factors 

as shown in Equation (3).Credibility of this assumption is justified by reviewing the 

initial input variables. More precisely, given that the NEI index is equal to the 

difference between Energy Use and Energy Production, the effects of NEI are implicitly 

reflected in the analysis. Similarly for GDP, simultaneous consideration of factors such 

as Energy Use, Final Consumption Expenditure and GDP Growth will cover those 
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aspects of GDP that potentially impact oil prices.The estimation results of the model are 

shown Table 3. 

 

    (   )

         (   )        (   )        (   )        (     )        (    )

       (   )        (    )        (   )                        

Equation 3 

 

Table 3: Results - Optimized Log-Log Model 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -9.596844 9.852510 -0.974051 0.3384 

LGP1 0.805901 0.144913 5.561296 0.0000 

LEP1 -9.652807 1.523072 -6.337721 0.0000 

LEU1 9.613340 1.092572 8.798816 0.0000 

LOILR1 0.176623 0.087535 2.017740 0.0533 

LGG1 -0.165291 0.076320 -2.165749 0.0390 

LFC1 0.554790 0.155645 3.564447 0.0013 

V78 0.520849 0.189832 2.743736 0.0105 

V82 0.872693 0.197329 4.422532 0.0001 

V85 -0.483639 0.166255 -2.909022 0.0070 

     
     R-squared 0.960691     Mean dependent var 3.081422 

Adjusted R-squared 0.948056     S.D. dependent var 0.718824 

S.E. of regression 0.163828     Akaike info criterion -0.559063 

Sum squared resid 0.751511     Schwarz criterion -0.128119 

Log likelihood 20.62219     F-statistic 76.03452 

Durbin-Watson stat 2.244913     Prob(F-statistic) 0.000000 
     
     

 

4.1.3 Autoregressive Integrated Moving Average (ARIMA)Model 

Stochastic processes are powerful tools for analysing the interactions between different 

variables. These can be represented by time series models such as Auto-Regressive 

(AR) models, Integrated (I) models, and Moving Average (MA) models. Combinations 

of these processes produce Auto-Regressive Moving Average (ARMA) and Auto-

Regressive Integrated Moving Average (ARIMA) models. The ARIMA model is used 

to analyse self-dependency and interdependency of variables. We use the data for the 
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period 1974-2008 in the selected model (i.e. Log-Log model) and then test the model 

against the ARIMA. The results show zero interrelations for the ARI and 2 

interrelations ofthe MA model (Equation 4). 

   (   )

        (   )        (   )        (   )        (    )       (    )        (   )

       (    )       (   )                         ( )                     

Equation 4 

As mentioned, the starting year of the analysis is 1974 whereas the first data used in the 

modelling is 1972. This means that we have two years of delay and the backcast 

parameter is inserted in Equation 4 to account for this. Table 4 presents the estimated 

coefficients and results for the ARIMA model in Equation 4. This test uses two time 

lags for the oil price as a result of price shocks. Note that the shocks represent the value 

of the variables in each year and the previous year (i.e. COP (t, t-1)). 

 

Table 4: Result of ARIMA test in Log-Log model 

 

 

    
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -9.599679 9.320089 -1.029999 0.3121 

LGP1 0.808139 0.150905 5.355270 0.0000 

LEP1 -9.652997 1.557649 -6.197158 0.0000 

LEU1 9.613194 1.140825 8.426530 0.0000 

LOILR1 0.176683 0.090320 1.956186 0.0609 

LGG1 -0.166765 0.079207 -2.105422 0.0447 

LFC1 0.554926 0.154254 3.597472 0.0013 

V78 0.505121 0.195011 2.590224 0.0153 

V82 0.892030 0.205952 4.331249 0.0002 

V85 -0.492409 0.164913 -2.985878 0.0059 

MA(2) -0.191796 0.011817 -16.23033 0.0000 

     
     R-squared 0.962227     Mean dependent var 3.081422 

Adjusted R-squared 0.948237     S.D. dependent var 0.718824 

S.E. of regression 0.163542     Akaike info criterion -0.546290 

Sum squared resid 0.722146     Schwarz criterion -0.072252 

Log likelihood 21.37951     F-statistic 68.78019 

Durbin-Watson stat 2.309223     Prob(F-statistic) 0.000000 

     
     Inverted MA Roots       .44          -.44  
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4.1.4 Independent Variables Lags 

Having established the relations between the dependent and independent variables, we 

use Interdependent Variable Lags (IVL) to identify the interdependency of independent 

variable lags on the dependent variable. A lag of 3 units is used for each independent 

variable used in the previous section. Next, we exclude variables with probabilities 

deviating largely from 0.5%. Then, we examine new data in the model (using the same 

procedure) and the next lag is excluded. In other words, in order to identify the inter-

dependencies between the variables, we exclude one lag at a time. The estimated model 

is shown in Equation (5) and Table 5 shows the estimation for the Log-Log model. 

   (   )          (  ( ))        (  ( ))        (  (  ))        (  ( ))  

      (    ( ))        (    (  ))        (  (  ))        (   )                

          ( )                         Equation 5 

 

Table 5: Result - Number of Lags in Log-Log Model 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -3.190548 5.346005 -0.596810 0.5565 

LGP1 0.405229 0.115146 3.519264 0.0018 

LEP1 -14.26699 1.557940 -9.157599 0.0000 

LEP1(-2) 5.709769 1.470018 3.884149 0.0007 

LEU1 7.854597 0.829963 9.463790 0.0000 

LOILR1 0.217904 0.051963 4.193450 0.0003 

LOILR1(-1) 0.219698 0.076914 2.856420 0.0089 

LGG1(-1) 0.144494 0.032759 4.410850 0.0002 

LFC1 0.256250 0.049747 5.151060 0.0000 

V78 0.727590 0.143993 5.052948 0.0000 

V82 0.615448 0.175614 3.504557 0.0019 

V85 -0.412285 0.109819 -3.754223 0.0010 

MA(2) -0.948895 0.019937 -47.59421 0.0000 

     
     R-squared 0.977194     Mean dependent var 3.194302 

Adjusted R-squared 0.965295     S.D. dependent var 0.544130 

S.E. of regression 0.101367     Akaike info criterion -1.465943 

Sum squared resid 0.236331     Schwarz criterion -0.894116 

Log likelihood 39.38697     F-statistic 82.12609 

Durbin-Watson stat 2.176109     Prob(F-statistic) 0.000000 

     
     Inverted MA Roots       .97          -.97  
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In order to evaluate the importance of the constant term “C” of the final time series 

model, we applied adjusted R-squaredto compare Equation (5) with and without C. 

Given that the adjusted R-squared is higher for the case without C, we exclude the 

constant parameter and the modified model is shown in Equation (6).  

 

   (   )       (  ( ))       (  ( ))       (  (  ))       (  ( ))  

     (    ( ))       (    (  ))       (  (  ))       (   )               

          ( )                         Equation 6 

 

Using independent input data for the time period between 1974 and 2008 in Equation 6, 

time series model predicts the oil price. Figure 2 shows the estimated prices against the 

historical prices. As shown in the figure, the estimated prices match the actual prices 

with high accuracy both when they move slowly as well as when they exhibit shocks 

and sharp changes. 

 

Figure 2: Oil price - Actual data vs. time seriesresults 
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4.2.The Nonlinear Auto Regressive Model with Exogenous Input (NARX) 

In order to develop the NARX model we use feedbacks from time series.  Before using 

these feedbacks, they are verified in ANN static model (see Sections 3 and 4.3). The 

algorithm is shown in Figure 3 where COP, GP, EP, GG, EU, OIR, FC, V, , and q 

denote Crude Oil price, Gold Price, Energy Production, GDP Growth, Energy Use, Oil 

Rent, Final Consumption expenditure, dummy Variable (effects of supply side factors), 

the number of lags of input i and the number of lags of output (crude oil price) 

respectively. Figure 3 schematically shows how input factors are inserted in the NARX 

model and in the delaying factors (shown by Z
-1

 in the Figure).The dynamic behaviour 

of the NARX network in Figure 3 is presented in Equation 7. 

 

   (   )

      ( )      (   )   ( )     (    )   ( )     (    )   ( )     ( 

   )   ( )     (    )    ( )      (    )   ( )     (    )      

Equation 7 

 

For the analysis, we classify the historical data in two categories. More precisely, we 

use the data for the 1974-2004 period to train the network. In the next instance, the data 

for the 2005-2009 are used for testing the model (see Appendix 3). In order to obtain 

more accurate results while reducing the required computing time, weuse Equations 8 

and 9 to normalize all the input and output data in [-10, 10] and [-1, 1] intervals 

respectively (NMA, 2011). 

 

      
       

       
          Equation 8 

ip
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         Equation 9 

 

Where Pold and Pscal denote oil price before and after normalization respectively. Pmin 

and Pmax represent the minimum and maximum of the parameters respectively and “a” is 

a binary parameter which takes a value between 1 and 10.  
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Figure 3: Schematic structure of the NARX model 

 

In this exercise GP, EP, GG, EU, OIR and FC variables were used in the NARX model 

after 0, 2, 1, 0, 1, and 0 lags respectively; and the oil price in the output is inserted as the 

feedback to input after 1 lag. The lags for the NARX model are chosen based on the 

final equation of time series model (i.e. Equation 6), which is one of the unique 

characteristics of this study as discussed in Section 3. Equation (10) shows the dynamic 

behaviour of the model. 

 

   (   )

      ( )    (   )   ( )   ( )   (   )   (   )   ( )    (   )   ( )      

Equation 10 

 

Using a small number of hidden neurons results in inaccuracy of the correlation 

between inputs and outputs, whereas an increase in the number of neurons in hidden 

layer will saturate the neural network which could result in local optimums (rather than 

the global optimum). In this case increase in the number of epochs will not necessarily 

decrease ∑ (     )
 

 . In other words, the run time of the programme increases and 

the final result will not necessarily change. Therefore, the number of neurons selected 

should reflect this trade-off. Optimum number of hidden neurons are found by trial and 

error. 

Figure 4 shows the total number of required epochs versus the number of hidden 

neurons to determine the data for training the NARX model, where in each epoch all 

inputs are applied to the ANN model. Variations of the required epoch versus number of 

hidden neurons are used as index for finding the optimum number of hidden neurons. 
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More precisely, the optimum value of hidden neurons is reached when the value of the 

index falls below 0.02%. As shown in the figure, the optimum number of hidden 

neurons in the first NARX model is reached at 25. 

 

 

Figure 4: Value of epochs versus number of hidden neurons  

to train the data forfirst NARX model 

 

Figure 5 shows the results of training, testing and forecasting phases in the NARX 

model. As shown in the figure, the estimated prices by the NARX model for the training 

period 1974-2004 closely match the observed prices. The model also estimates accurate 

prices for the testing period 2005-2009, which includes both a rather sharp rise as well 

as decline in oil prices. It predicts the marked oil price rise in 2008 and the subsequent 

sharp decline in 2009. In addition, the NARX model predicts an oil price of $80/barrel 
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for 2010 (which is not part of the model testing period) while the actual market price in 

that year was $80.5/barrel.  

 

 

Figure 5: Comparison of NARX predicted oil price vs. Actual price 

 

It is noteworthy that the2005-2009 period includes both pre and post 2007 worldwide 

financial and economic crisis which led to a marked decline in economic output and 

thus the global demand for oil. Although the NARX model appears to produce rather 

accurate price predictions, we also compare and test the accuracy and performance of 

the model against those of other approaches. 
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static ANN model following the methodology described in(Movagharnejad et al., 

2011)and as presented in Equation (11). 

We use a similar approach to that of the NARX model in order to determine the number 

of the neurons in the hidden layer; and this is calculated to be 15 for the static ANN 

model. 

 

   ( )      ( )   ( )   ( )   ( )    ( )   ( )       Equation 11 

As Equation 11suggests, there is no time lag between the input and the output and the 

time parameter is not considered in ANN Static. The results of the ANN static model 

are used as the base for comparison with the results of the NARX model. Moreover, the 

ANN static is used to verify the validity of inputs of the NARX model that were 

initially suggested in time series. 

We use the Mean Absolute Error (MAE)and R-squared for comparing the results from 

time series, NARX, and ANN models (Table 6). Equation (12) shows the formula for 

calculating MAE. In Equation (12) N is the number of outputs obtained from each of 

the three models. A lower MAE value indicates more accurate results and is preferred to 

a high value.| 

        (
|   (         )    (      )|

|   (      )|
)|

        
Equation 12 

 

Table 6: Comparison of accuracy ofthe different models 

Model Phase MAE (%) R
2
(%) 

NARX 
Training 3.28 98 

Testing 4.96 97 

Time series - 6.47 96 

ANN static 
Training 6.5 90 

Testing 8 87 
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Table 6 compares the MAE and R-squared of the results obtained from the three 

models. As shown in the table, the results from the NARX model shows both the lowest 

MAE and the highest R-squared and is, therefore, by these measures more accurate than 

both ANN static and Time series. More precisely, the accuracy of the results from the 

NARX model is clearly higher than the ANN static model. This is because the NARX 

model takes into account the “time factor” in the estimations. In addition, the NARX 

model modifies the output from time series model and, therefore, improves its 

prediction accuracy. 

5. Conclusions 

 

The price of oil is important for the economies of oil-importing- as well as oil-exporting 

countries. . Therefore, insight into likely future behaviour and patterns of oil prices can 

improve economic planning and help reduce the impacts of oil price movements and 

sudden market fluctuations. 

While the ANN-Static is a well-established methodology for predicting oil price (e.g., 

see (Ghaffari and Zare, 2009; Movagharnejad et al., 2011)the main purpose of the 

current study is to further improve the accuracy of ANN-Static by including the factor 

of time in the analysis. Therefore, we developed a NARX model in which the parameter 

of time is included by using the feedbacks from time series model.  

We use a set of high-level key economic variables of OECD countries to develop a 

model for predicting oil prices. In order to assess and compare the accuracy of the 

NARX results, we also develop a time series model and an ANN static model. We use 

data for the 1974-2004 period to train the model. The training step was used to calculate 
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the optimized structure and the MAE of the model. NARX model shows the lowest 

MAE (3.28 and 4.96% in the training and testing phases respectively) and was, 

therefore, more accurate than those of time series and ANN static models (MAE values 

equal to 6.47 and8% respectively). In other words, as indicated by the results, including 

the time lags in the analysis by simultaneous application of time series and NARX, has 

improved the accuracy of the predictions. For example, the NARX model predicts the 

oil price in 2010 to be $80/barrel. The actual market price in 2010 was $80.5/barrel, 

which represents an increase of$18 in relation to the previous year. 

As an advanced type of recurrent neural network, NARX is used for the first time in this 

study for oil price prediction. The present study has several advantages compared to the 

previous works. It is the first study to use the MWD test to develop a basic model for 

predicting the oil price. The model is optimized by identifying the dummy variables 

which helps to include qualitative factors such as political events and time delays. 

Moreover, in another innovative approach, we use the results of time series model in 

order to determine the time lags and optimise them. Real world data are used for the 

modelling purpose, and the prediction error of less than 5% (MAE) is obtained in the 

testing step. In addition, the model produces accurate predictions of the shocks in the oil 

market. 

Results of the NARX model from this study are encouraging. Further studies are needed 

to determine whether such dynamic models consistently produce more accurate 

predictions than the alternative methods. Moreover, this approach can be used to predict 

the effect of oil price changes on the price of other energy carriers such those of coal 

and natural gas. 

 

 



 

 

27 

Nomenclature 

 

C  Total consumption (US$) 

COP  Crude oil price (US$) 

  Actual value of unit k 

E  Error 

EP  Energy production (kt of oil equivalent) 

EU  Energy use (kt of oil equivalent) 

FC  Final consumption expenditure (% Annual) 

GDP  Gross domestic product (US$) 

GG  GDP growth (%)  

GP  Gold price (US$) 

OIR  Oil rent (US$) 

  Activation of unit i 

  Number of delay input i 

q  Number of delay output unit 

R
2
  Adjusted R-squared 

r  GDP growth (%) 

RSME  Root square mean error 

T  Number of entire data 

T  Time 

  Weight from unit j to unit i 

  Activation function of unit i 

 

Subscripts 

H  Hidden unit 

I  Input unit 

j  Hidden unit 

k  Output unit 

 

  

kd

iO

ip

ijw

iy
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Appendix 1-a: Output of Initial Time series Models 

 Lin Log 

Lin 

Lin-Lin Model:  

COP=C+c2GP1+c3EP1+c4EU1+c5OILR1+c6ORP1+c7G1+c8GG1+c9

EI1+c10EIP1+c11FC1   Equation a 

Lin-Log Model:  

COP=C+c2Log(GP1)+c3 Log(EP1)+c4 Log(EU1)+c5 Log(OILR1)+c6 

Log(ORP1)+c7 Log(G1)+c8 Log(GG1)+c9 Log(EI1)+c10 

Log(EIP1)+c11 Log(FC1)  Equation b 

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
C 709.2709 130.6077 5.430542 0.0000 

GP1 0.037188 0.016605 2.239600 0.0336 

EP1 -0.000532 0.001715 -0.310342 0.7587 

EU1 0.000348 0.001728 0.201102 0.8421 

OILR1 -1.09E-10 5.64E-11 -1.927719 0.0645 

ORP1 11.87473 6.247918 1.900589 0.0681 

G1 1.98E-12 1.05E-12 1.887238 0.0699 

GG1 1.184493 1.525486 0.776469 0.4442 

EI1 -24.11135 4.624622 -5.213691 0.0000 

EIP1 8.72E-05 0.001777 0.049091 0.9612 

FC1 0.049547 2.034018 0.024359 0.9807 

     
R-squared 0.947881     Mean dependent var 27.32158 

Adjusted R-squared 0.928578     S.D. dependent var 19.63238 

S.E. of regression 5.246740     Akaike info criterion 6.390289 

Sum squared resid 743.2637     Schwarz criterion 6.864327 

Log likelihood -110.4155     F-statistic 49.10464 

Durbin-Watson stat 2.109243     Prob(F-statistic) 0.000000 

     
      

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
C 251.4460 1102.967 0.227972 0.8213 

LGP1 5.685332 10.91158 0.521036 0.6063 

LEP1 -100.5400 466.2706 -0.215626 0.8308 

LEU1 -0.656703 468.4009 -0.001402 0.9989 

LG1 27.53941 25.90453 1.063112 0.2965 

LOILR1 11.06004 5.307718 2.083767 0.0461 

LGG1 -0.983260 5.274191 -0.186429 0.8534 

LEI1 43.38493 173.0072 0.250769 0.8038 

LFC1 8.347130 10.51422 0.793890 0.4337 

     

R-squared 0.744781     Mean dependent var 27.32158 

Adjusted R-squared 0.674376     S.D. dependent var 19.63238 

S.E. of regression 11.20292     Akaike info criterion 7.873620 

Sum squared resid 3639.657     Schwarz criterion 8.261469 

Log likelihood -140.5988     F-statistic 10.57850 

Durbin-Watson stat 0.904723     Prob(F-statistic) 0.000001 

      

Log 

Log-Lin Model:  

Log(COP)=C+c2GP1+c3EP1+c4EU1+c5OILR1+c6ORP1+c7G1+c8G

G1+c9EI1+c10EIP1+c11FC1  Equation c 

Log-Log Model:  

Log(COP)=C+c2Log(GP1)+c3 Log(EP1)+c4 Log(EU1)+c5 

Log(OILR1)+c6 Log(ORP1)+c7 Log(G1)+c8 Log(GG1)+c9 

Log(EI1)+c10 Log(EIP1)+c11 Log(FC1)  Equation d 

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
C 18.50403 6.517623 2.839076 0.0085 

GP1 0.002419 0.000829 2.919121 0.0070 

EP1 -1.87E-05 8.56E-05 -0.218637 0.8286 

EU1 1.45E-05 8.62E-05 0.167939 0.8679 

OILR1 -5.53E-12 2.81E-12 -1.963863 0.0599 

ORP1 0.690450 0.311785 2.214504 0.0354 

G1 -5.07E-15 5.23E-14 -0.096824 0.9236 

GG1 -0.005049 0.076125 -0.066323 0.9476 

EI1 -0.728564 0.230779 -3.156974 0.0039 

EIP1 -1.20E-07 8.87E-05 -0.001357 0.9989 

FC1 0.007958 0.101502 0.078403 0.9381 

     
R-squared 0.903186     Mean dependent var 3.081422 

Adjusted R-squared 0.867329     S.D. dependent var 0.718824 

S.E. of regression 0.261824     Akaike info criterion 0.394912 

Sum squared resid 1.850903     Schwarz criterion 0.868950 

Log likelihood 3.496678     F-statistic 25.18862 

Durbin-Watson stat 1.728260     Prob(F-statistic) 0.000000 

      

     

Variable 

Coefficien

t Std. Error t-Statistic Prob.   

     
C -14.63419 22.55075 -0.648945 0.5215 

LGP1 0.677819 0.223093 3.038279 0.0050 

LEP1 -15.29233 9.533151 -1.604121 0.1195 

LEU1 16.00969 9.576706 1.671732 0.1053 

LG1 0.068672 0.529632 0.129659 0.8977 

LOILR1 0.348052 0.108519 3.207292 0.0033 

LGG1 -0.166653 0.107834 -1.545464 0.1331 

LEI1 -4.015548 3.537225 -1.135226 0.2656 

LFC1 0.511396 0.214969 2.378931 0.0242 

     
R-squared 0.920419     Mean dependent var 3.081422 

Adjusted R-squared 0.898465     S.D. dependent var 0.718824 

S.E. of regression 0.229050     Akaike info criterion 0.093638 

Sum squared resid 1.521449     Schwarz criterion 0.481487 

Log likelihood 7.220876     F-statistic 41.92596 

Durbin-Watson stat 2.095799     Prob(F-statistic) 0.000000 

      

 

Note: The number “1” in EP1, GP1 etc., show the time lag between the input and output (oil 

price) variables which is considered to account for time dependency of variables. 
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Appendix 1-b: Results of MWD Test 

 

Log-Log model Lin-Lin model 

     

Variable Coefficient Std. Error t-Statistic Prob.   

     
C -13.99515 23.17579 -0.603869 0.5508 

LGP1 0.682410 0.228153 2.991019 0.0057 

LEP1 -15.52261 9.769643 -1.588861 0.1233 

LEU1 16.14495 9.765344 1.653290 0.1094 

LG1 0.093539 0.554049 0.168829 0.8671 

LOILR1 0.350372 0.111029 3.155688 0.0038 

LGG1 -0.170611 0.111597 -1.528819 0.1375 

LEI1 -4.042917 3.600306 -1.122937 0.2710 

LFC1 0.517300 0.220788 2.342966 0.0265 

MLG -1.85E-06 9.67E-06 -0.191727 0.8493 

     
R-squared 0.920523     Mean dependent var 3.081422 

Adjusted R-

squared 0.894977     S.D. dependent var 0.718824 

S.E. of regression 0.232951 

    Akaike info 

criterion 0.144958 

Sum squared resid 1.519454     Schwarz criterion 0.575901 

Log likelihood 7.245804     F-statistic 36.03375 

Durbin-Watson 

stat 2.088678     Prob(F-statistic) 0.000000 

      

     

Variable Coefficient Std. Error t-Statistic Prob.   

     
C 968.9389 148.3565 6.531153 0.0000 

GP1 0.038018 0.013240 2.871358 0.0077 

EP1 -0.000853 0.000120 -7.116823 0.0000 

EU1 0.000612 8.49E-05 7.207601 0.0000 

OILR1 -6.24E-11 3.56E-11 -1.754452 0.0903 

G1 8.63E-13 4.11E-13 2.098831 0.0450 

GG1 1.004463 1.418551 0.708091 0.4847 

EI1 -33.85960 4.926072 -6.873549 0.0000 

FC1 -0.387600 1.926443 -0.201200 0.8420 

MLN -13.44937 4.941616 -2.721655 0.0110 

     
R-squared 0.951831     Mean dependent var 27.32158 

Adjusted R-

squared 0.936348     S.D. dependent var 19.63238 

S.E. of regression 4.953121 

    Akaike info 

criterion 6.258847 

Sum squared resid 686.9354     Schwarz criterion 6.689791 

Log likelihood -108.9181     F-statistic 61.47623 

Durbin-Watson 

stat 2.038922     Prob(F-statistic) 0.000000 

      

 

 

 

Appendix 2: Main geopolitical events affecting oil prices in 1978, 1982, and 1985 

Source: (HIBPOP, 2011; Williams, 2011; World-Bank, 2011) 

 

 

  

Year Events 

1978 

V78 

From 1974 to 1978, the world crude oil price was relatively flat ranging from $12.52 to 

$14.57 per barrel. When adjusted for inflation world oil prices were in a period of moderate 

decline.During that period OPEC capacity and production was relatively flat near 30 million 

barrels per day. In contrast, non-OPEC production increased from 25 million barrels per day 

to 31 million barrels per day. The resulting excess supply had reduced the prices. 

1982 

V82 

The Iran-Iraq war had led to another round of crude oil price increases in 1979and 1980. The 

Iranian revolution resulted in the loss of 2to 2.5million barrels of oil per day between 

November 1978and June of 1979. In 1980Iraq's and Iran’s crude oil production fell 2.7 

million and 600,000 barrels of oil per day respectively. The combination of these two events 

resulted in the increase in the crude oil prices from $14in 1978to $35per barrel in 1981. 

1985 

V85 

From 1982to 1985, OPEC attempted to set production quotas low enough to stabilize the 

prices. Repeated failures occurred because various members of OPEC would produce beyond 

their quotas. Saudi Arabia acted as the swing producer cutting its production to stem the free 

falling prices. In August of 1985they tired this role and linked their oil prices to the spot 

market and in early 1986increased production from 2 to 5 million barrels per day. 
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Appendix 3: Variations of NARX inputs- 1974 to 2009 
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Appendix 4: Initial dummy variables considered in the analysis 
Dummy Variables for time period between 1972-1979 Dummy Variables for time period between 1980-1990 Dummy Variables for time period between 1990-2008 

     
     

Variable Coefficient Std. Error t-Statistic Prob.   

     
     

C 26.36817 31.20053 0.845119 0.4076 

LGP1 0.292648 0.301197 0.971615 0.3423 

LEP1 -29.61218 16.40107 -1.805502 0.0854 

LEU1 27.05636 15.98533 1.692574 0.1053 

LG1 0.702153 0.625294 1.122917 0.2741 

LOILR1 0.364323 0.136690 2.665326 0.0145 

LGG1 -0.177576 0.129558 -1.370632 0.1850 

LEI1 -8.064361 5.582177 -1.444662 0.1633 

LFC1 0.475752 0.268364 1.772783 0.0908 

V72 -0.190310 0.351455 -0.541491 0.5939 

V73 0.452871 0.369844 1.224492 0.2343 

V74 -0.352023 0.390099 -0.902395 0.3771 

V75 0.029283 0.420728 0.069601 0.9452 

V76 -0.261524 0.416865 -0.627358 0.5372 

V77 0.097066 0.332968 0.291519 0.7735 

V78 0.583035 0.326091 1.787955 0.0882 

V79 0.359725 0.485999 0.740177 0.4674 
     
     

R-squared 0.944907     Mean dependent var 3.081422 

Adjusted R-
squared 0.902931     S.D. dependent var 0.718824 

S.E. of 

regression 0.223956     Akaike info criterion 0.146943 
Sum squared 

resid 1.053287     Schwarz criterion 0.879548 

Log likelihood 14.20808     F-statistic 22.51067 

Durbin-Watson 
stat 2.198348     Prob(F-statistic) 0.000000 

     
      

7     

Variable Coefficient Std. Error t-Statistic Prob.   

     

C -56.75656 39.65521 -1.431251 0.1760 

LGP1 0.855216 0.381120 2.243952 0.0429 

LEP1 2.726179 17.85680 0.152669 0.8810 

LEU1 -1.207902 17.53962 -0.068867 0.9461 

LG1 0.633913 0.949301 0.667768 0.5160 

LOILR1 -0.034898 0.186783 -0.186837 0.8547 

LGG1 -0.081860 0.132019 -0.620066 0.5459 

LEI1 4.321173 7.177459 0.602048 0.5575 

LFC1 0.427209 0.311036 1.373503 0.1928 

V80 0.063200 0.421829 0.149825 0.8832 

V81 0.045237 0.447636 0.101057 0.9210 

V82 1.004473 0.528408 1.900941 0.0797 

V83 -0.358781 0.350425 -1.023845 0.3246 

V84 0.214065 0.346211 0.618309 0.5471 

V85 -0.613459 0.303477 -2.021437 0.0643 

V86 -0.138188 0.401214 -0.344425 0.7360 

V87 -0.524762 0.293179 -1.789905 0.0968 

V88 -0.196956 0.340063 -0.579175 0.5724 

V89 0.200166 0.299143 0.669132 0.5151 

V90 -0.099150 0.313687 -0.316079 0.7570 

V91 0.136927 0.335616 0.407987 0.6899 

V92 -0.336640 0.298168 -1.129028 0.2793 

V93 -0.169481 0.319837 -0.529897 0.6051 

V94 -0.054809 0.298330 -0.183720 0.8571 

V95 -0.029263 0.263448 -0.111075 0.9133 

     

R-squared 0.972420     Mean dependent var 3.081422 

Adjusted R-squared 0.921504     S.D. dependent var 0.718824 

S.E. of regression 0.201394     Akaike info criterion -0.123954 

Sum squared resid 0.527274     Schwarz criterion 0.953405 

Log likelihood 27.35513     F-statistic 19.09838 

Durbin-Watson stat 2.139479     Prob(F-statistic) 0.000001 

     
      

     

     
Variable Coefficient Std. Error t-Statistic Prob.   

     

     
C -4.806597 51.92701 -0.092564 0.9274 

LGP1 0.772536 0.254494 3.035575 0.0079 

LEP1 -15.59575 11.18665 -1.394139 0.1823 

LEU1 15.89602 10.03337 1.584315 0.1327 

LG1 0.014133 0.860223 0.016430 0.9871 

LOILR1 0.294422 0.136462 2.157545 0.0465 

LGG1 -0.138084 0.166845 -0.827615 0.4201 

LEI1 -4.320831 3.898157 -1.108429 0.2841 

LFC1 0.361110 0.274166 1.317119 0.2064 

V96 -0.139567 0.319736 -0.436509 0.6683 

V97 -0.216817 0.333971 -0.649210 0.5254 

V98 0.551738 0.345990 1.594663 0.1303 

V99 0.226519 0.342929 0.660542 0.5183 

V00 -0.375816 0.349118 -1.076472 0.2977 

V01 0.169405 0.350621 0.483157 0.6355 

V02 0.001084 0.333290 0.003252 0.9974 

V03 0.089070 0.351082 0.253703 0.8030 

V04 0.115511 0.333547 0.346311 0.7336 

V05 -0.059729 0.331567 -0.180143 0.8593 

V06 -0.124872 0.337879 -0.369576 0.7165 

V07 0.123147 0.333853 0.368867 0.7171 

V08 -0.595821 0.390611 -1.525356 0.1467 

     

     
R-squared 0.954782     Mean dependent var 3.081422 

Adjusted R-squared 0.895433     S.D. dependent var 0.718824 

S.E. of regression 0.232444     Akaike info criterion 0.212566 

Sum squared resid 0.864486     Schwarz criterion 1.160642 

Log likelihood 17.96125     F-statistic 16.08768 

Durbin-Watson stat 2.359641     Prob(F-statistic) 0.000000 
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