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Abstract 

The electricity industry in most developed countries has been restructured over 

recent decades with the aim of improving both service quality and firm performance. 

Regulated segments (e.g. transmission) still provide the infrastructure for the 

competitive segments and represent a significant share of the total price paid by final 

customers. However there is a lack of empirical studies that analyse firms’ performance 

in the electricity transmission sector. In this paper an empirical analysis of US 

electricity transmission companies is conducted for the period 2001-2009. We use 

alternative stochastic frontier models that allow us to identify the determinants of firms’ 

inefficiency. These models also permit us to control for weather conditions, potentially 

one of the most decisive uncontrollable factors in electricity transmission. Our results 

suggest that weather conditions clearly have an influence on transmission costs and that 

there is room for improvement in the management of US electricity transmission 

systems. Regulators should also be aware that more adverse conditions generate higher 

levels of inefficiency, and that achieving long-term efficiency improvements tends to 

worsen firms’ short-term relative performance. 
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1. Introduction 

The electricity industry in most developed countries has been restructured over 

recent decades with the aim of reducing costs, improving service quality and 

encouraging electric utilities to perform efficiently. As a result, former state-owned 

utilities have been privatized and there has been vertical separation of the generation, 

transmission, distribution and retailing segments, particularly in Europe (see Jamasb 

and Pollitt, 2005). Some of these segments, such as generation and retailing, have been 

opened to competition, while other segments such as transmission and distribution are 

still regulated. However, incentive-based regulation schemes have been implemented in 

several countries (e.g. UK, Norway) in order to encourage both transmission and 

distribution utilities to perform efficiently. 

Much of the research in the electricity industry has focused on competitive 

wholesale markets, although the regulated segments provide the infrastructure for the 

competitive segments and even though networks constitute a significant share of the 

final price paid by electricity consumers (Joskow, 2014).
1
 Even though electricity 

transmission is necessary for distribution and retailing, there is a lack of empirical 

studies that analyse both the economic characteristics of the technology and firms’ 

performance in that segment. 

Statistical benchmarking methods have been largely used in the electricity 

industry to determine the relative efficiency of individual firms’ costs compared to their 

peers (see Haney and Pollitt, 2009, 2013). Obtaining reliable (and fair) measures of 

firms’ inefficiency requires controlling for the different environmental conditions under 

which each firm operates. This is especially acute in benchmarking because of the 

financial implications that this analysis can have on the firms. One of the most 

interesting issues with environmental conditions is the question of whether firms are 

using them as an excuse for poor performance. In line with this, Nillesen and Pollitt 

(2010) find that firms which operate in unfavourable conditions can be best-practice for 

the case of US electricity distribution. 

One of the most decisive uncontrollable factors in electricity transportation (i.e. 

transmission and distribution) is the weather conditions of the area in which the 

companies operate. Billinton and Wenyuan (1991), and Billinton and Acharya (2005) 

tried to explain changes in the probability of failure rate in the system using engineering 

models. Generally speaking, they pointed out that most technical interruptions occur 

when weather is adverse and, in particular, extremely adverse. They also showed that 

assessing likely failure rates while ignoring weather tends to give erroneous predictions 

which are too optimistic. 

Regarding electricity transmission, Billinton and Wu (2001) pointed out that 

overhead transmission lines are exposed to a wide range of weather conditions. 

Moreover, both failures rates and the probability of overlapping failures tend to increase 

sharply during periods of extremely adverse weather conditions. Rothstein and Halbig 

(2010) find that many atmospheric and hydrological parameters not only affect 

electricity generation and consumption, but also electricity transportation. Indeed, 

overhead lines are affected by several atmospheric influences, such as lightning, wind, 

additional weight (e.g. ice or snow), low temperatures, humidity and moisture. 

                                                 
1
 Typically distribution and transmission charges combined compose around 25% of the residential bill 

(excluding taxes and environmental charges). 
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Despite the potential role of weather conditions in electricity transportation, only 

a few papers have analysed firms’ performance in the electricity distribution sector 

controlling for environmental factors. In particular, Yu et al. (2009) showed using nine 

weather variables that severe weather conditions tend to increase service interruptions, 

and this in turn increases costs associated with replacing the damage equipment and 

restoring power. Jamasb et al. (2010 and 2012) also concluded that the lack of inclusion 

of variables related to weather conditions might downward bias the estimated 

coefficients of other relevant variables, and, in particular, those associated with the 

marginal cost of quality improvements. Using weather and geographic composites, 

Growitsch et al. (2012) predicted up to 30% lower costs than average, for utilities that 

operate in areas with extremely good environmental conditions, and up to 39% higher 

costs than average, for utilities that operate in areas with extremely bad environmental 

conditions. On average, they predicted higher costs of about 5% as a result of hostile 

weather conditions.
2
 More recently, Orea et al. (2015) advocate the use of supervised 

dimension reduction methods such as Sliced Inverse Regression (SIR) in efficiency 

analyses of electricity distribution firms. The use of this type of approach avoids 

dimensionality problems when the number of weather variables to be incorporated in 

the empirical models is large. 

On the other hand, as far as we are aware there are only five published papers 

that separately study the performance of transmission firms. None of them includes 

inefficiency determinants and only the most recent of them has controlled for 

environmental conditions. Using a sample of US firms, Pollitt (1995) analysed 

differences in efficiency between state-owned and private electricity transmission 

companies. He did not find significant differences between both types of firms using 

parametric and nonparametric specifications of the frontier model. Using also US data, 

Huettner and Landon (1978) and Dismukes et al. (1998) have examined the existence of 

returns to scale in the provision of electric transmission services. Huettner and Landon 

(1978) do not find increasing returns to scale, except for one category of sales expenses. 

By contrast, Dismukes et al. (1998) find significant economies of scale for all the 

NERC (North American Electric Reliability Corporation) reliability regions using data 

for the period 1986-1991. von Geymueller (2009) carried out a comparison of static and 

dynamic DEA (Data Envelopment Analysis) models in electricity transmission using 

data of 50 US utilities for the period 2000-2006. The author finds that static models tend 

to overestimate firms’ inefficiency because they do not take into account the existence 

of quasi-fixed inputs. Recently, Llorca et al. (2014) propose using a Latent Class Model 

(LCM) approach to control for technological (or environmental) differences when DEA 

is applied in a regulatory context of electricity networks. In addition to a simulation 

exercise, the proposed procedure is illustrated with an application to the US electricity 

transmission industry. 

Our paper contributes to the literature analysing firms’ performance in the 

electricity transmission industry with an empirical analysis of US electricity 

transmission systems for the period 2001-2009. The analysis of the economic 

characteristics of the technology and the inefficiency of each utility relies on the 

estimation of several specifications of heteroscedastic models taken from the recent 

Stochastic Frontier Analysis (SFA) literature. Unlike previous papers, our SFA models 

allow us to identify the determinants of firms’ inefficiency in this industry, and discuss 

whether the environmental factors should be treated as determinants of firms’ 

                                                 
2
 By contrast, Nillesen and Pollitt (2010) find that the best performing US electricity distribution 

companies do not correlate with unfavourable conditions. 
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performance or as part of the technology.
3
 This is not simply a semantic point within an 

incentive regulation framework because the indirect effect (through firms’ inefficiency) 

is likely less difficult to mitigate than a direct effect (through the cost frontier) that is 

independent from firms’ relative performance given the nature of the technology. To 

examine this issue we have applied a modified version of the ‘zero inefficiency 

stochastic frontier model’ recently introduced by Kumbhakar et al. (2013). To the best 

of our knowledge, this is the first time this model has been used to capture differences 

in technology instead of differences in performance. 

The estimated coefficients provide useful information about the firms’ 

performance with both policy and managerial implications. We find using more recent 

data and larger firms than in previous papers that, given network infrastructure, most 

electricity transmission networks exhibit natural monopoly characteristics. Our results 

also indicate that more adverse conditions generate higher costs, mainly through higher 

levels of inefficiency. Furthermore, we find that investing in capital is an effective 

strategy to deal with adverse weather conditions. On the other hand, we find that, as 

expected, firms’ performance improves when demand tends to be steady as firms cannot 

adjust their inputs without cost over time. The average efficiency at the beginning of the 

period is larger than in previous studies. But, using our preferred estimated model, the 

results indicate that efficiency has declined and diverged over time. This suggests that 

there is room for improvement in the performance of the US electricity transmission 

system. It should be mentioned that the use of US data to benchmark European and 

Australasian utilities is often suggested and has been undertaken by some regulators 

including the British energy regulator, Ofgem. Hence although the results obtained here 

relate to US transmission network, they are important for non-US regulators. 

This paper is organized as follows. Section 2 provides a brief review of the 

transmission and distribution literature and the most commonly used approaches to 

benchmark firm performance in incentive regulation schemes. Section 3 describes the 

theoretical cost function that we estimate as well as the empirical specifications of the 

estimated models. Section 4 presents the data and variables used in the empirical 

analysis. Section 5 reports the parameter estimates and the results obtained from those 

estimates. Section 6 presents the main conclusions. 

 

2. Benchmarking in electricity transmission 

The electricity sector is an industry with different and interrelated activities, 

which are affected by production and consumption decisions across the whole system. 

The US electricity system traditionally has been composed of large vertically integrated 

utilities. Nevertheless, in the last two decades several reforms have been implemented 

with the aim of disaggregating most utilities into differentiated segments. These reforms 

have led to different treatments of the separated activities: generation and retail are 

regarded as potentially competitive markets, while transmission and distribution 

networks are treated as natural monopolies that have to be regulated (see Joskow, 2014). 

As Jamasb and Pollitt (2007) point out, from an economic perspective, the aim of 

electricity unbundling is to provide utilities with incentives to improve their operating 

                                                 
3
 An additional contribution of the present paper is that we control for weather characteristics by 

including a set of weather variables as determinants of firms’ inefficiency. The data was gathered 

specifically for the present application. In addition, as our sample period is more recent than those 

analysed in previous papers we can see whether there has been an improvement in average efficiency in 

the US electricity transmission industry. 
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and investment efficiency and to ensure that consumers benefit from the efficiency 

gains. The main methods used to achieve these objectives are incentive regulation 

mechanisms, which include financial rewards and penalties for the firms linked with 

their performance. 

Joskow (2014) notes that much of the research in the electricity sector has 

focused on the competitive segments of the system. However, the regulated segments 

provide the infrastructure for the competitive segments and represent an important 

amount of the total price paid by final consumers. Moreover, these segments have a 

significant joint effect along with competitive segments on social welfare. For these 

reasons, electricity transmission has played an important role in the success of 

liberalised power markets. Electricity reforms have led to the creation of some bodies to 

perform the coordination functions that formerly were internal to the firms. To deal with 

this issue and the stresses in the transmission system after years of underinvestment, the 

Federal Energy Regulatory Commission (FERC) pursued the implementation of a 

Standard Market Design in the US. It has also promoted the creation of the so-called 

Regional Transmission Organizations (RTO) to facilitate efficient trade over wide areas 

and transmission investment. As Greenfield and Kwoka (2011) note, the RTOs - such as 

PJM - provide transmission services but do not own transmission facilities. They are 

also not responsible for the maintenance and repair, or fixed investment costs, of the 

transmission facilities over which they direct the flow of power. Their essential role is 

as an independent service provider that administers the terms and conditions of 

transmission services and maintains the short-term reliability of the network. 

Despite the importance of RTOs in the overall performance of the electricity 

system, the transmission utilities and the structure of the network charges have a great 

effect on network use and its development. Following Brunekreeft et al. (2005, p.74-

75), the setting of the charges at an appropriate level is a key issue because it affects 

“the locational choices of new generation (and of energy intensive users), as well as 

influencing the bidding behavior of generators, and the willingness of neighboring 

electricity markets to trade and cooperate”. As a result, “ideally the structure of network 

charges should encourage: i) the efficient short-run use of the network (dispatch order 

and congestion management); ii) efficient investment in expanding the network; iii) 

efficient signals to guide investment decisions by generation and load (where and at 

what scale to locate and with what choice of technology-base-load, peaking, etc.); iv) 

fairness and political feasibility, and v) cost-recovery” (Brunekreeft et al., 2005, p.75). 

There are different regulatory practices across the world to set the total amount of 

network charges in the electricity market that are mostly based on benchmarking (see 

Haney and Pollitt, 2013). This implies that firms’ efficiency is obtained through 

comparing each firm to those with best performance. As regulators reward or punish 

firms according to their (in)efficiency level, the reliability of these scores is particularly 

crucial for regulatory credibility. Any efficiency estimate tries to measure the gap 

between actual cost (production) and the optimal point on the cost (production) frontier, 

which must be estimated from the available data. Published papers have basically 

employed parametric (e.g. SFA), nonparametric (e.g. DEA), and semi-parametric (e.g. 

StoNED, Stochastic Nonparametric Envelopment of Data)
4
 techniques to estimate cost 

(production) frontiers. As all techniques have their advantages and disadvantages,
5
 the 

                                                 
4
 These models are also labelled as semi-nonparametric. 

5
 For instance, SFA has advantages over DEA when noise is a problem, and this can arise from 

measurement errors or other sources of statistical noise such as luck, weather, equipment failure or similar 

factors that are beyond firms’ control. 
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selection of an appropriate estimation method is contentious and may influence the 

obtained results and the consequent regulatory policy implications (see, for instance, 

Coelli et al., 2005). 

Despite the relevance of transmission networks in the electric power industry it 

is very difficult to implement a statistical benchmarking for most of the countries due to 

the lack of domestic comparators (Haney and Pollitt, 2013). International benchmarking 

can be an alternative to deal with this issue, but the regulators face several problems. 

Joskow (2014, pp.54-55) notes that the layout of the transmission network depends on 

countless factors, such as “the distribution of generators and load, population density, 

geographic topography, the attributes and age of the legacy networks’ components and 

various environmental constraints affecting siting of new lines, transformers and 

substations”. Moreover, there is no standardization or homogeneity among countries 

about the voltage boundaries between transmission and distribution networks. For 

instance, in the UK the transmission network is mostly formed by elements that run at 

275 kV and above, while in other countries like the US or France transmission network 

is formed by elements that run above 60 kV, making an international comparison a 

challenging task. Regarding the inputs and outputs that should be taken into account in 

an empirical analysis on efficiency of transmission systems, Pollitt (1995) pointed out 

that it might be desirable to take every specific factor of the company into account due 

to the complexity of the network. Each transmission system is unique because of the 

different kinds of inputs that they use and the environment in which they operate. 

It should be highlighted that this paper is only focused on the US electricity 

transmission industry, which should be distinguished from electricity distribution. The 

joint objective of both industries is the transportation and delivery of electrical energy 

from electricity generation facilities to the end users. However, there are differences 

between both types of network. The electricity transmission network is composed of 

high voltage lines that carry electricity over long distances, from bulk power generation 

facilities to substations that serve sub-transmission or distributions systems (Brown, 

2002). On the other hand, distribution systems operate at lower voltages and represent 

the final stretch of the electric grid that directly connects to final consumers. As the 

technological characteristics of the transmission grid (e.g. pylons, transmission 

substations or high-voltage power lines) are different from those of the distribution 

network (e.g. distribution feeders or pole-mounted distribution transformers), regulating 

both networks does not involve the same set of inputs, outputs and environmental 

conditions. In particular transmission lines, are more vulnerable to weather effects and 

hence the particular relevance of this study. It is also the case that there have been many 

studies of electricity distribution efficiency, because there are usable national samples of 

electricity distribution firms in many countries. By contrast, there is only one electricity 

transmission company in many countries and hence US data of the type used in this 

study provides one of the few opportunities for analysing a national sample of 

transmission data globally. That said there are clearly similarities between the efficiency 

analysis of electricity distribution and transmission; both involve a number of outputs 

which seek to capture energy flow, peak demand and network size, and a similar 

conception of input costs. 

Statistical benchmarking methods have been widely used in electricity 

distribution. These methods are applied to determine the relative efficiency of individual 
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firms’ operating costs and service quality compared to their peers.
6
 Some countries such 

as Germany, Nordic countries and Switzerland have a large number of utilities. This 

provides a suitable basis for the use of advanced benchmarking techniques and without 

necessarily having to recourse to international benchmarking. It is generally desirable 

for regulators to have a large number of utilities for comparison and efficiency 

benchmarking. 

As mentioned above, obtaining reliable and fair measures of firms’ inefficiency 

requires controlling for the different environmental conditions under which each utility 

operates. This is especially acute in benchmarking because of the financial implications 

that this analysis can have over the firms and their effect over the whole network. The 

concern about the inclusion of environmental variables (also called contextual variables 

or z-variables) has generated the development of several models either using parametric, 

nonparametric or semi-parametric techniques. Although we do not pretend to provide a 

complete survey of the alternatives for including z-variables, in Figure 1 we present a 

brief summary of some of the models that can be applied.
7
 Given the wide range of 

models that have been developed, here we only mention the methods most frequently 

applied. 

[Insert Figure 1] 

The inclusion of environmental variables in DEA has been done in one, two or 

even more stages. Ruggiero (1996) and other authors have highlighted that the one-

stage model introduced in the seminal paper of Banker and Morey (1986) might lead to 

bias. To solve this problem, other models using several stages have been developed in 

the literature. Ray (1988) was the first who proposed a second stage where standard 

DEA efficiency scores were regressed on a set of contextual variables. This practice was 

widespread until Simar and Wilson (2007) demonstrated that this procedure is not 

consistent because the first-stage DEA efficiency estimates are serially correlated. 

Although the bootstrap procedure proposed by these authors to solve this problem in 

two stages became a widely used method in DEA to identify inefficiency determinants, 

three-stage models have also been developed (see, for instance, Fried et al. 2002; and 

Muñiz, 2002). 

In the recently developed semi-parametric literature, we could mention three 

types of models. The first one is the extension of the StoNED method developed by 

Johnson and Kuosmanen (2011) where the z-variables are incorporated additively to the 

parametric part of the function, which is estimated jointly with the nonparametric 

frontier. Kuosmanen (2012) has recently applied this approach for the case of the 

electricity distribution sector in Finland.
8
 Alternatively, Li et al. (2002) introduced the 

Semiparametric Smooth Coefficient Model (SPSCM) where the regression coefficients 

are unknown functions, which depend on a set of contextual variables. Sun and 

Kumbhakar (2013) extend this model by allowing the environmental variables to also 

enter through the inefficiency. Finally, the use of an LCM approach allows the 

identification of different technology parameters for different groups of firms that share 

environmental features. In an LCM the z-variables enter in non-linear form in the 

probabilities of belonging to the classes, and hence they can be viewed as a “discrete, 

                                                 
6
 Jamasb and Pollitt (2001) show the most used approaches and provide a survey of benchmarking studies 

applied mainly in OECD countries. For a more current review of applied papers on electricity distribution 

see for instance Kuosmanen (2012). 
7
 For a more detailed review of this topic in SFA and DEA, see Johnson and Kuosmanen (2011, 2012). 

8
 This method has been adopted by the Finnish regulator since 2012. 
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semi-parametric approximation to the random parameters model” (Greene, 2005b, 

p.299). The application of the LCM in efficiency analysis was first proposed by Orea 

and Kumbhakar (2004) and Greene (2005b). 

The third approach included in Figure 1 involves several parametric models 

where the contextual variables are treated as inefficiency determinants.
9
 They can be 

divided in three groups depending on how the z-variables are introduced in the model. 

As the inefficiency term in these models is defined as the truncation (over zero) of a 

normal distributed random variable, the contextual variables can be introduced in the 

model either through the pre-truncation mean as in Kumbhakar et al. (1991) and Battese 

and Coelli (1995), the pre-truncation variance as in Reifschneider and Stevenson (1991) 

or Caudill and Ford (1993), or simultaneously through the pre-truncation mean and 

variance, as in Alvarez et al. (2006) or Lai and Huang (2010). As this is the approach 

used in our paper, more details about these models can be found in the next section. 

 

3. Theoretical model and empirical specification 

In this section we introduce the theoretical cost model that allows us to analyse 

the economic characteristics of the technology, such as economies of scale or 

economies of density, of US electricity transmission firms. In general terms, the cost 

function to be estimated can be written as: 

 
 ln ln , , , ,C C y n p d t     (1) 

where C is a measure of total costs, y is a vector of outputs, n measures the network 

length, p stands for input prices, d is a set of regional dummies and t represents the time 

trend. As usual, if firms minimize cost, this function should be linearly homogeneous 

with respect to input prices, and increasing in outputs.
10

 

Economies of scale (ES) and density of electricity transmission firms can be 

computed once equation (1) is estimated. We associate economies of scale with 

horizontal system expansion, that is, increases in demand that require enlarging the 

current network to meet extra demand.
11

 These economies can be then measured by the 

sum of cost elasticities with respect to the outputs, y, and the network length, n: 

ln ln

ln ln

C C
ES

y n

 
 
 

    (2) 

On the other hand, we associate economies of density (ED) with vertical system 

expansion, i.e. expansion in transmitted electricity that do not require additional 

network. These economies can be measured by the sum of elasticity of cost with respect 

to the outputs, y: 

                                                 
9
 An interesting issue here is whether environmental variables should be included in the frontier (see later 

on the discussion in Section 4). 
10

 Our cost variable is total expenditure (i.e. operating plus capital costs) due to the presence of possible 

trade-offs between operating and capital expenditures (Giannakis et al., 2005). Regarding the set of 

output variables, we include the peak demand, transmission capacity and the energy delivered as cost 

drivers in electricity transmission (see Ofgem 2011, p.44-46). 
11

 Note that here density is held constant because both output levels and network size is expanded 

simultaneously. 
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ln

ln

C
ED

y





     (3) 

In this case, the cost elasticity of network is not taken into account, as we are 

considering an increase in output levels, given the actual length of the transmission 

network. 

We next allow for deviations with respect to the above cost function. The 

stochastic frontier literature suggests that these deviations should not be entirely 

attributed to uncontrollable or unobservable factors (i.e. random noise) but also to 

(managerial) inefficiency. To capture both sources of deviations, Aigner, Lovell and 

Schmidt (1977) proposed using an econometric specification of the cost function (1) 

that includes two random terms. This model (ALS henceforth) can be presented as 

follows: 

      
ln it it it itC X v u          (4) 

where i stands for firms, t for time, Xit is a vector of explanatory variables,  and β are 

parameters to be estimated, vit ~ N(0,v
2
) is classical symmetric random noise, and uit is 

a one-side error term which captures firms’ inefficiency. 

ALS assumed that this term follows a homoscedastic half-normal distribution, 

i.e. uit ~ N
+
(0,u

2
). As the inefficiency term in ALS has constant variance, it does not 

allow the study of the determinants of firms’ performance, which is the main issue 

examined in this paper. It might also yield biased estimates of both frontier coefficients 

and firm-specific inefficiency scores (see Caudill and Ford, 1993). To address this issue, 

we propose estimating a heteroscedastic frontier model that allows z-variables to be 

incorporated in the model as efficiency determinants. There are several options to 

achieve this using a parametric approach (see Figure 1) and the specific assumptions 

considered in these models might condition our results.
12

 We follow referees’ advice 

and explore alternative specifications of the model and carry out several model selection 

tests to choose the “best” model. In that sense Coelli et al. (2005) suggest exploring 

alternative models to assess the adequacy and robustness of the results obtained when a 

parametric approach is applied. 

The most general specification of uit that we consider in our paper is the general 

exponential model (GEM hereafter) introduced by Alvarez et al. (2006) that can be 

written as:
13

 

                                                 
12

 Similar problems might emerge when non- or semi-parametric approaches are used instead of a 

parametric approach. For instance, Martins-Filho and Yao (2013) point out that although the 

nonparametric approach considered by Kumbhakar et al. (2007) for estimating stochastic frontiers is quite 

general, the problem known as the curse of dimensionality could occur when the number of explanatory 

variables is large. This implies that one cannot be confident about the accuracy of the asymptotic 

approximation and the reliability of the efficiency estimates. Another example is the semi-parametric 

method known as StoNED presented by Kuosmanen (2012). This model allows introducing 

environmental variables in the model, but they can be interpreted either as factors that explain the 

inefficiency, or alternatively, as heterogeneity. Therefore this approach does not address whether 

environmental variables have a direct or indirect effect on the dependent variable. We discuss this issue in 

Section 4. 
13

 Here we have adopted the notation used by Alvarez et al. (2006) and Lai and Huang (2010). Moreover, 

following Alvarez et al. (2006), we will use hereinafter the exponential functional form for the functions 

that incorporate environmental variables in all the estimated models. We found convergence problems 

and failed to get parameter estimates when we tried to estimate the models introduced by Battese and 
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  2~ ,it it uitu N        (5) 

where 

 0expit itz     

 0expuit itz     

and δ0, δ, γ0 and γ are parameters to be estimated, and zit is a vector of efficiency 

determinants. The two intercepts δ0 and γ0 in (5) allow us to get the homoscedastic 

frontier models. The environmental variables enter into this model both through the pre-

truncation mean and variance of the inefficiency term, and hence the model allows for 

non-monotonic effects of the z-variables on firms’ inefficiency (see Wang and Schmidt, 

2002). Despite being a more comprehensive model than those usually presented in SFA, 

it is rarely estimated in the literature. For robustness grounds, we will also estimate 

more restricted models that are nested in the GEM and then some model selection tests 

will be performed for choosing the preferred specification. 

The second estimated model has been proposed by Kumbhakar, Ghosh and 

McGuckin (1991), Huang and Liu (1994) and Battese and Coelli (1995) (hereafter 

KGMHLBC model). All of these authors consider a specification in which only the 

mean of the pre-truncated normal variable depends on environmental variables. In other 

words, it is assumed in this model that γ=0 in (5) and thus the variance of the pre-

truncated normal variable is homoscedastic, i.e. uit ~N
+
(exp(δ0+zit'δ),u

2
), where for 

notational simplicity we have relabelled exp(γ0) as u. 

The last two models are similar to the one estimated by Reifschneider and 

Stevenson (1991), Caudill and Ford (1993) and Caudill, Ford and Gropper (1995) 

(henceforth RSCFG models). In these papers the environmental variables are treated as 

determinants of the variance of the pre-truncated normal variable. In other words, they 

assume that δ=0 in (5) and thus uit ~N
+
(µ,(exp(γ0+zit'γ))

2
), where for notational ease 

exp(δ0) has been relabelled as µ. If μ is allowed to be different from zero, we get the 

RSCFG-μ model introduced by Alvarez et al. (2006). This model nests the original 

RSCFG model in which μ=0 is imposed (i.e. δ0=- is assumed) and therefore it assumes 

that uit follows a half-normal distribution, i.e. uit ~N
+
(0,(exp(γ0+zit'γ))

2
). As a 

consequence of this assumption, the so-called scaling property is satisfied in this model 

in the sense that the inefficiency term can be written as a deterministic function of a set 

of efficiency covariates, i.e. h(·)=exp(zit'γ), times a one-sided random variable that does 

not depend on any efficiency determinant, uit
*
~N

+
(0,u

2
). 

The defining feature of models with the scaling property is that firms differ in 

their mean efficiencies, but not in the shape of the distribution of inefficiency. That is, 

the scaling property implies that changes in zit affect the scale but not the shape of uit. In 

this model uit
*
 can be viewed as a measure of “basic” or “raw” inefficiency that does not 

depend on any observable determinant of firms’ inefficiency. On the other hand, the 

scaling function h(·) can be interpreted as the portion of total estimated inefficiency that 

                                                                                                                                               
Coelli (1995) and Wang (2002) that use linear specifications of the pre-truncation mean. Lack of 

convergence is a frequent outcome when estimating SFA models due to the likelihood function being 

highly non-linear. Without opening a methodological discussion here, we feel that the lack of 

convergence in these models could be caused by the fact that µit is likely to be negative for some 

observations. In these cases, the distribution of uit tends to be more symmetric, and this does not help to 

identify a one-sided error term. We thank Peter Schmidt for his well-founded comments on this issue. 
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researchers are able to explain with the variables included in h(·). This function hence 

“adjusts” the underlying, and unexplained, inefficiency level upwards or downwards 

due to the influence of some potential inefficiency determinants. Although it has some 

features that make it attractive to some authors (see Wang and Schmidt, 2002), it is an 

empirical question whether or not the scaling property should be imposed, and not all 

commonly used models fulfil this property.
14

 

To fully justify the choice of our preferred specification we will use the standard 

Likelihood Ratio (LR) test when comparing nested models (i.e. GEM vs. RSCFG-μ, 

GEM vs. KGMHLBC, RSCFG-μ vs. RSCFG, and RSCFG vs. ALS) and the Vuong 

(1989) test when they are non-nested (i.e. RSCFG-μ vs. KGMHLBC). It should be 

mentioned here that, although the standard RSCFG model is nested in the GEM model, 

they cannot be directly compared using standard LR tests because the GEM coefficients 

of the pre-truncation mean (i.e. δ) are not identified when μ=0 (as assumed in the 

RSCFG model). For the same reason, the ALS model cannot be compared against the 

KGMHLBC model using standard tests (i.e. δ is again not identified when μ=0). To test 

if μ=0, Alvarez et al. (2006) suggest carrying out a simple LR test using the RSCFG and 

RSCFG-μ models. 

 

4. Data and sample 

We use a panel data set of 59 US electricity transmission companies for the 

period 2001-2009. Most of these data were collected by various members of the EPRG 

(Energy Policy Research Group) at the University of Cambridge. That information was 

requested by Ofgem, in order to carry out an international benchmarking of electric 

utilities. Where the transmission operations are part of a larger utility - also involved in 

generation or distribution - shared costs are allocated on pro-rata basis. As can be seen 

in the data Appendix an allocation key - based on the ratio between wages and salaries 

specific from transmission and the total labour expenses of the utility - was used for the 

assignment of shared costs to transmission. The main source of the electricity 

transmission data was the FERC Form 1, an annual report of major electric utilities. The 

variables collected included the quantity of assets, voltage levels by asset, maximum 

demand, load density, demand growth, maturity of service area, age/condition of 

network, network density and flow patterns.
15

 

Although the choice of input and output variables is an important issue, there is 

no clear consensus about the variables that should be included to describe the 

                                                 
14

 Another model that also satisfies this property is the so-called scaled Stevenson (SS) model introduced 

by Alvarez et al. (2006). In this model, both the mean and the variance of the pre-truncated normal 

depend on the environmental variables but the coefficients of the environmental variables in the pre-

truncation mean and variance of u in (5) are the same, i.e. δ=γ. We will not provide the parameter 

estimates of this model in Section 5 because it collapsed to the KGMHLBC. 
15

 The original dataset includes information of electricity and gas utilities in the US from 1994 to 2009 

and also contains information on non-US firms from other countries for a shorter period. Following 

Ofgem’s (2011, p.20) report, non-US transmission firms were not included in the analysis due to data 

limitations. Despite the initial proposal to undertake international benchmarking in that report, so far, 

these data have not been used. In our paper the sample was reduced to the last 9 years because labour 

costs in the electric power transmission industry are only available from 2001 to 2009. We have removed 

observations with missing and implausible values. We have also dropped a few isolated observations and 

maintained firms with (at least three) consecutive observations in order to minimize changes in our 

estimates when we change the specification of our model. It should be noted that this procedure does not 

give us a balanced panel, as we do not have the same number of observations per firm. Our final sample 

is an unbalanced panel data set of 402 observations without discontinuities across time. 
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performance of transmission and distribution companies. Jamasb and Pollitt (2001) 

show the wide range of variables that have been used in benchmarking analysis of 

electric utilities. They find that the most commonly used inputs in studies of electric 

utilities are operating costs, number of employees, transformer capacity, and network 

length. Regarding the outputs, the most included variables are units of energy delivered, 

number of customers, and the size of service area. 

As we have mentioned in Section 3, our cost variable is Totex. This variable is 

the sum of Opex, which includes operation and maintenance expenses incurred by the 

company over one year, and Capex, which is the sum of annual depreciation on capital 

assets and the annual return on the balance of capital. Both Opex and Capex (and hence 

also Totex) are measured in year 2000 US dollars.
16

 

Following the basic economic theory of production and the literature on 

electricity networks, we use as explanatory variables of total cost: three types of 

outputs, a variable that measures the system size, labour and capital price, a set of 

regional dummies and a time trend. Our output variables are: Peak Load (PL), 

Electricity Delivered (DE) and Total Capacity of Substations (CS). The first one is the 

maximum peak load of the year during 60 minutes and it might reflect transmission 

investment requirements given a fixed transmission capacity. The second one is the total 

annual energy delivered by the system which may imply an incremental effect in 

operating cost due to a greater use of electricity transmission assets. Due to a large 

amount of missing values in the data about voltage levels, we have introduced the CS as 

a proxy for the transmission capacity of the system. It is calculated as the sum of the 

total capacity of all substations in the transmission network. 

In Figure 2 we show the evolution over time of the output variables divided by 

Totex, which can be interpreted as partial and observable productivity (efficiency) 

measures.
17

 We can see in this figure a clear negative trend of the peak loads and the 

total capacity of substations given the total expenditure of each firm. In the case of 

electricity delivered, the temporal pattern of this variable is not so clear. These graphs 

give us a first idea about the negative evolution of the efficiency in our sample as the 

output level per dollar of cost, decreases, or in other words, the total unit cost per 

output, increases over time. 

[Insert Figure 2] 

Network length (NL) is usually viewed as one of the most important cost drivers 

of an electricity network (Jamasb and Pollitt, 2001). To measure the network length we 

have used pole miles. This variable measures the total sum of all transmission lines in 

miles regardless of the number of power cables on each power line. It is essentially a 

measure of the geographic spread of each company. We thought about using circuit 

miles instead pole miles, but the problem of circuit miles is that this variable refers to 

the number of power cables on each line multiplied by the distance between two points. 

Therefore it does not take into account the capacity of the cable so it is an unreliable 

measure of the physical infrastructure. 

                                                 
16

 RTO costs are included in the total costs. For more information about the calculation of Totex and the 

rest of variables, see the Appendix. 
17

 As we have an unbalanced panel of 59 firms, to depict this figure we have selected those firms that are 

observed during the whole sample period, i.e. 28 firms. This avoids comparing different sets of firms in 

different periods. 
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Regarding input prices, we include in the cost function a Labour Price variable 

(LPR) defined as the average annual wage for the electric power transmission and 

distribution industry by state. As in the case of Totex, this variable is also measured in 

2000 US dollars.
18

 Regarding the Capital Price variable (KPR), we have used a 

producer price index for power transmission as a proxy for capital price. The source of 

these two variables is the Quarterly Census of Employment and Wages from the Bureau 

of Labor Statistics. 

Taking into account the importance of controlling for differences in business 

environment from the perspective of corporate structures after US market liberalization, 

we have also included seven regional dummies that represent the regional reliability 

councils of the NERC in which the transmission utilities of our sample are located: 

SERC Reliability Corporation (SERC), Southwest Power Pool (SPP), Western 

Electricity Coordinating Council (WECC), Northeast Power Coordinating Council 

(NPCC), ReliabilityFirst Corporation (RFC), Midwest Reliability Organization (MRO) 

and Electric Reliability Council of Texas (ERCOT). We expect that these regional 

dummy variables are capturing (jointly with the other variables included in the model) 

most of the unobserved differences in the transmission companies’ tasks, around the 

transportation of electricity, scheduling and dispatching of the plants, investment and 

maintenance of transmission assets, etc.
19

 

Regardless of the introduction of these variables, we believe that there are three 

issues that should be mentioned related to the business environment as they might make 

a difference to transmission system efficiency in theory. The first is the presence or 

absence of incentive regulation in transmission. We have not included information 

about incentive regulation in our cost function because we do not have data on it. This is 

partly because each state is different and indeed each firm may have a different 

arrangement with its regulator. Identifying the arrangement for the transmission 

business as separate from the distribution business would be hard and a time series of 

the regimes would be needed for analysing this point. However we believe this issue 

should not affect the soundness of our results as it is not altogether clear what difference 

these things might actually make. Furthermore a detailed investigation of incentive 

regulation on efficiency is clearly out of the scope of this paper. 

The second issue is the introduction of nodal pricing into the RTO, which might 

sharpen the pressure on transmission businesses to make lines available. However we 

have estimated a model including dummy variables that reflect the belonging to a 

certain RTO and this model is rejected in favour of our preferred model, which 

incorporates regional dummies for the NERC regions. Therefore our estimates suggest 

that once heterogeneity is controlled for, belonging to a certain RTO has a negligible 

impact on firms’ efficiency. This may be because transmission systems have 99%+ 

availability, and hence the introduction of nodal prices may not have affected firms’ 

performance. Furthermore RTOs do not ‘regulate’ total transmission revenue, so it is 

                                                 
18

 Unfortunately this information is not available at firm-level. Although it would be preferable to use 

firm-specific prices instead of state-level prices, as firm-level price data are not available in our 

application for both labour and capital, we have used the information that we found from statistical 

agencies. Clearly input prices do vary significantly across the US and it would be wrong not to adjust for 

them. In addition, we do not think there is much of a multi-state issue as the interesting thing is that 

transmission lines in the US are in fact mainly within one state. 
19

 Another option to deal with this issue is using a model with fixed effects (see Greene, 2005a, 2005b, 

and more recently Wang and Ho, 2010). However, this estimation strategy does not easily deal with rarely 

changing variables, i.e. variables with little within or temporal variation such as network length or energy 

delivered. For a discussion on this issue, see Greene et al. (2011). 
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not clear why RTO membership should affect cost efficiency. This is because often it is 

the overall revenue of a transmission business that is regulated and poor revenue 

performance due to low availability on one line may lead to increased charges 

elsewhere. 

Lastly, the third issue is the degree of vertical integration. Vertical integration 

might be independently significant, simply because of cost allocation issues and fixed 

costs being spread. Our preferred model does not contain any vertical integration 

variables (in particular backward integration into generation and the forward integration 

into distribution), because they were only significant for the 3% of the observations in 

our sample.
20

 

Regarding the stochastic part of our cost function, we use 9 variables that are 

expected to affect firms’ performance and, hence, they are included as efficiency 

determinants. In particular, we include the following variables: another time trend, three 

weather variables (minimum temperature, wind and precipitation), the Capex/Opex ratio 

and two variables that measure the growth of the demand. 

Our weather variables have been obtained from the surface daily weather 

information collected by the National Climatic Data Center for the 2001-2009 period. 

The files are available for around 3,000 weather stations located in the US and contain 

information about: mean, maximum and minimum temperatures, precipitation amount, 

wind speed, number of days with snow, hail, tornadoes, etc. Given the high correlation 

among several weather variables, we decided to include one variable for each one of 

these categories: Temperature (TMIN), Precipitation (PRCP) and Wind (WIND). The 

temperature variable is the annual minimum temperature in Fahrenheit degrees, wind 

speed is the average of the daily mean wind speeds in knots, and precipitation is the 

average of the daily precipitation in inches. These weather variables are measured at the 

state-level, not at the firm-level. In order to obtain a unique value of each variable per 

state and year, we have taken the average among the weather stations within a particular 

state except for the case of the temperature variable which is the minimum value 

measured by any of the above stations along the year. Then, each utility was associated 

with the weather of the state where its principal office is located.
21

 We hereafter assume 

that more adverse conditions appear when wind speed and precipitation are high and 

minimum temperature is low. These weather variables have also been introduced in the 

cost function as determinants of the technology, i.e. of the frontier cost function, in 

some of our estimated models. 

As utilities may adapt their operating and investment practices over time to 

prevent power interruptions and to reduce the effect of adverse weather conditions, we 

interact our weather variables with the mean of the ratio of Capex and Opex (COR) for 

each firm i over the Ti available observations. We expect a negative coefficient if 

investing in Capex is an effective strategy in dealing with adverse weather conditions. 

Finally we have included two variables that measure the average Growth in 

Demand for each firm over time. We distinguish between positive growth (POSGR) and 

negative growth (NEGR). The coefficients of these two variables should not be 

statistically significant if there are no adjustment costs and all inputs can be adjusted 

(without cost) from one year to the next. However, as the electricity industry is highly 

                                                 
20

 To examine this issue we have applied a modified version of the ‘zero inefficiency stochastic frontier 

model’ recently introduced by Kumbhakar et al. (2013). 
21

 We recognise that this is a limitation especially when transmission companies may cover more than one 

state. 



15 

 

capital intensive with much of the assets becoming sunk cost upon investment, we 

expect significant coefficients for POSGR and NEGR. In particular, we expect a 

positive effect of POSGR on inefficiency indicating that utilities tend to anticipate 

future increases in their demand by investing in capital that is expected to be efficiently 

used in the future, but not in the present.
22

 We expect a negative coefficient for NEGR if 

there is a negative trend in demand and reducing quasi-fixed input levels is expensive 

due to the existence of adjustment costs. 

The descriptive statistics of all monetary, physical and environmental variables 

used in the stochastic cost frontiers are shown in Table 1. 

[Insert Table 1] 

 

5. Empirical results 

We estimate a translog cost function that can be interpreted as a second-order 

approximation to the companies’ underlying cost function.
23

 All the variables included 

in the model are in logarithms, except the regional dummies and the time trend. Each 

explanatory variable is measured in deviations with respect to its mean, so the first-

order coefficients can be interpreted as the cost elasticities evaluated at the sample 

mean. As usual homogeneity of degree one in prices is imposed, in this case by 

normalizing cost and labour price with capital price. Thus, the estimated equation can 

be written as follows: 
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  (6) 

where for notational ease, the vector y stands for outputs and network length, i.e. y=(PL, 

DE, CS and NL). 

As our results about firms’ efficiency might depend on the empirical strategy 

followed to allow for inefficiency determinants, we first carry out several model 

selection tests to select the best specification supported by the data. Table 2 shows the 

LR tests for nested models, where the second model presented in each line is nested in 

the first model. Firstly we can see that the ALS model is rejected in favour of the 

RSCFG model due to the inclusion of environmental variables in the variance of the 

heteroscedastic inefficiency term. This latter model is in turn rejected in favour of the 

RSCFG-μ, indicating that the inefficiency term does not follow a half normal 

distribution. Table 2 also displays the Vuong test for the non-nested RSCFG-μ and 

KGMHLBC models. A positive value indicates that the first model is preferred to the 

                                                 
22

 As Jamasb and Pollitt (2007) and Poudineh and Jamasb (2015) note, achieving long-term efficiency 

improvements can involve short-term increases in Capex or Opex that may not generate immediate 

efficiency improvements. In fact, increases in short-term expenditure can deteriorate the firms’ short-term 

relative performance. This might in turn discourage firms from efficiency-improving investments that 

have long-term gains. 
23

 The more restricted Cobb-Douglas specification was always rejected in favour of the translog 

specification. 
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second one. In this case we can see that the preferred model is the RSCFG-μ model. 

Lastly, the LR tests in Table 2 again indicate that GEM clearly outperforms both 

RSCFG-μ and KGMHLBC models. Based on these comparisons, we will use the GEM 

model to examine in detail the estimated levels of cost efficiency. 

[Insert Table 2] 

Moreover it can be debated whether the exponential specification of the pre-

truncation mean in the presented models could be an unnecessary restriction in our 

application as it imposes positive values for µ.
24

 In order to examine this issue, we have 

also estimated a linear RSCFG-µ model (not shown here) that does not use an 

exponential specification of µ, so now the estimated µ could be either positive or 

negative. The estimated µ was positive and statistically different from zero. Moreover, 

the estimated value (0.86) coincides with the exponent of the estimated intercept (-0.16) 

in our exponential specification of the RSCFG-µ model. Therefore, this result suggests 

that restricting µ to be positive is likely not to be a binding restriction in our application. 

In addition to the frontier parameters that are discussed later on, Table 3 displays 

the coefficients of the inefficiency term that have been estimated using the standard 

homoscedastic ALS model, and the heteroscedastic models presented before: RSCFG, 

RSCFG-μ, KGMHLBC and GEM. Although the environmental variables in the GEM 

model are included both in the pre-truncation mean and the variance of the inefficiency 

term, their main effect is through the variance. Indeed, whereas most of the coefficients 

of the variables included as determinants of the variance of the inefficiency term are 

statistically significant, the estimated coefficients for the pre-truncation mean are not 

significant (except for the time trend which is negative and significant at a 90% 

confidence level). This is in line with our finding that the coefficients of these variables 

in the RSCFG and RSCFG-μ models are also significant, but not in the KGMHLBC 

model. The latter model clearly shows that the mean of the inefficiency is not able to 

capture the effect of the environmental variables on firms’ inefficiency. Thus, we will 

focus our comments on the variance of the inefficiency term. 

[Insert Table 3] 

Regarding the inefficiency variance, our results indicate that weather is an 

important issue in this industry.
25

 Wind speed and precipitation have a positive and 

significant coefficient indicating that more adverse conditions generate higher levels of 

inefficiency. The negative sign for the minimum temperature also suggests (although it 

is not significant) that a lower minimum temperature slightly increases cost due to 

higher levels of firms’ inefficiency. 

Overall, the above discussion suggests the existence of a significant effect of 

weather conditions on firms’ inefficiency. Our results thus seem to indicate that 

unfavourable weather conditions are a real hurdle in managing electricity transmission 

firms. As the environment is not controlled by the firms, they should not be blamed for 

their environment-induced inefficiency. This implies that regulators should purge the 

data when environmental conditions are part of the technology and/or have an indirect 

effect through inefficiency. 

The introduction of the average ratio of Capex and Opex (COR) interacting with 

the weather variables allows us to catch an idea about the best strategy for the 

                                                 
24

 We thanks one of the referees for pointing out this issue.  
25

 Note also that the coefficient of the time trend is positive, showing that the effect of time is different in 

both parts of the inefficiency. 
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companies to deal with adverse weather conditions. The estimated coefficients have the 

opposite sign to those obtained for the isolated weather variables, indicating that, as 

expected, more capital-intensive utilities (e.g. with higher capital-to-opex ratios) are 

able to better mitigate the effect of unfavourable weather conditions. They are, ceteris 

paribus, more efficient than those utilities using a higher proportion of operating inputs. 

This result suggests therefore that investing in equipment is an effective strategy in 

mitigating the effects of unfavourable weather conditions. 

The last set of efficiency determinants has to do with growth in demand. We 

obtain a positive, and significant, coefficient for POSGR, indicating that utilities are 

more efficient when the demand is constant as they do not need to anticipate 

investments to meet future demand. However, the coefficient of NEGR is not 

significant in most of the models, indicating perhaps that reducing quasi-fixed inputs is 

not expensive for the companies or that maintaining the underused network is not very 

costly when there is a negative trend in the demand growth. 

In Figure 3 we depict the histogram of estimated levels of cost efficiency. The 

average efficiency in our sample is 88% using our preferred model. Pollitt (1995) using 

1990 data found an average efficiency of 80% for the total of the companies in his 

sample and 88.3% for larger firms. The latter value is very similar to the one that we 

have found with our preferred model. This seems to indicate that the relative 

performance of the electricity transmission utilities has not experienced a significant 

improvement from one period to the next. 

[Insert Figure 3] 

We show in Figure 4 the temporal evolution of our efficiency scores using the 

GEM model.
26

 The graph shows that the average efficiency score decreases over time, 

starting at 93.9% and finishing at 82.2%. Consequently, the negative sign of the 

coefficient for the time trend through the pre-truncation mean of u in our model seems 

not to offset its positive value through the variance. Our preferred model also indicates 

an increasing divergence in firms’ performance over time. Overall, the estimated 

evolution in performance and the lack of convergence in firms’ inefficiency scores seem 

to suggest that there is scope for improvements in the performance of the US electricity 

transmission system. 

[Insert Figure 4] 

We next focus our discussion on the estimated frontier parameters, also shown in 

Table 3. In general, all models perform quite well as most of the first-order coefficients 

have the expected sign and their magnitudes are quite reasonable from a theoretical 

point of view. Certainly, the coefficients of the three outputs and network length are 

always positive and mostly statistically different from zero when measuring the 

incremental costs associated with either higher maintenance and operational costs or the 

need for new capital. A similar statement can be made about the coefficients on input 

prices, which are also positive and statistically significant. The coefficients on many of 

the dummy variables for the NERC regions are also significant indicating that, 

regardless of the rest of firms’ features, regional differences exist. The coefficient on the 

                                                 
26

 Except for the RSCFG and the RSCFG-μ models, which exhibit a similar evolution of the efficiency 

(not shown), the rest of the estimated models present clear differences with respect to the GEM, our 

preferred model. These differences might be taken as an anecdotal evidence of the biases that might 

appear in an empirical application when inefficiency determinants are not taken into account or are 

misplaced in the specification of the model. 
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time trend is negative (nonetheless it is not significant in some of the models), which 

indicates that costs decrease over time, i.e. there is positive technical change. 

As the selection of the output set is often quite contentious, we have carried out 

several LR tests to fully justify the explanatory variables that were included in our cost 

frontier function. Table 4 shows several tests where our specification of the GEM model 

is compared to more restricted specifications where one of the outputs is excluded from 

the output set. As can be seen, all the output variables that were introduced in the 

model, and primarily peak load (PL) and network length (NL), are relevant cost drivers 

and should be taken into account in any analysis. We also test - in this table - for the 

inclusion of dummy variables that reflect the belonging to a certain RTO or 

alternatively to a certain NERC region. In both cases the LR test values indicate that the 

model that is rejected is the one that does not include any regional dummy.
27

 

[Insert Table 4] 

Next, we use our preferred model, GEM, to examine some characteristics of the 

estimated technology. As in previous papers, the estimated elasticities allow us to 

measure economies of scale and density, but in this case using more recent data. Figure 

5 depicts the elasticity of total cost with respect to peak load, delivered electricity, total 

capacity of substations and network length estimated for each observation, sorted in 

increasing order. Peak load seems to be the most important cost driver with an average 

elasticity equal to 0.54. This figure also allows us to examine the reliability of our 

estimated elasticities when we move away from the sample mean. The first derivative of 

our cost function provides a first-order approximation to the underlying elasticity at the 

sample mean. However, most observation-specific elasticities have a reasonable order 

of magnitude, except for the negative values on the left in three of the curves. In these 

cases, our estimates should be viewed with caution as they correspond to some 

observations which are far away from the sample mean.
28

 

[Insert Figure 5] 

Adding the first-order coefficients of the three outputs we find that the elasticity 

of density evaluated at the sample mean is quite similar in all models, varying from 0.70 

to 0.75. These values suggest the existence of important economies of density in the 

electricity transmission industry. That is, given network infrastructure, electricity 

transmission networks exhibit natural monopoly characteristics. 

To analyse the economies of scale, which involve expansions in both output and 

network, we need to add the cost elasticity of the network length to the elasticity of 

density. The elasticity of scale evaluated at the sample mean in the GEM model is 0.89. 

Figure 6 compares both elasticities. More than half of the firms in our sample exhibit 

increasing returns to scale. These results suggest that electricity transmission networks 

                                                 
27

 Moreover, a Vuong test not shown in Table 4 indicates that the model which includes RTO dummies is 

rejected in favour of our preferred model, which incorporates regional dummies for the NERC regions. 
28

 For most functional forms (e.g. the translog function) there is a fundamental trade-off between 

flexibility and theoretical consistency. For instance, maintaining global monotonicity (e.g. positive 

elasticities and marginal costs) is impossible without losing second order flexibility. Barnett et al. (1996) 

show that the monotonicity requirement is by no means automatically satisfied for most functional forms, 

and that violations are frequent. However to show the robustness of our estimates we have tested the 

monotonicity conditions using the well-known Wald test. We only find statistically negative values for 

0.25% of the observations in the case of electricity delivered, 4.98% for the network length and zero for 

the other outputs. The small number of negative elasticities found gives us confidence about the 

fulfilment of the monotonicity conditions on outputs and hence about the suitable properties of the 

estimated cost function. 
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still exhibit natural monopoly characteristics when a network is expanded to meet the 

extra demand. Using data for 1990, Pollitt (1995) finds different degrees of economies 

of scale depending on firms’ size for the US transmission utilities. In particular, he finds 

that decreasing returns to scale are more common in small utilities while increasing 

returns to scale are more common in medium and large companies. This seems to be 

consistent with the results obtained here, as in our sample we mainly have large firms. 

Dismukes et al. (1998) also show that all the NERC reliability regions in the US exhibit 

significant economies of scale for the transmission companies, while Huettner and 

Landon (1978) find that of six expenses categories, only sales expenses exhibits 

increasing returns to scale over the whole of the observed output range. 

[Insert Figure 6] 

Next we focus our discussion on weather issues. Our models only include the 

weather variables as inefficiency determinants because we have not been able to find a 

direct cost effect associated with different weather conditions.
29

 This does not preclude 

however a significant direct effect for some observations. An observation-by-

observation analysis of this issue can be carried out if we estimate our models using a 

LCM structure.
30

 In particular, we propose estimating a modified version of the so-

called zero inefficiency stochastic frontier model introduced by Kumbhakar et al. 

(2013) to examine differences in performance (i.e. inefficiency). Here we have adapted 

this framework to capture the differences in technology. Our LCM allows estimating 

two different cost frontiers: with and without weather variables. As in the zero-

inefficiency model, the other parameters of our model are assumed to be the same in 

both groups (classes).
31

 If most firms belong to the class with no weather variables as 

determinants of the cost frontier, we then can conclude that our original cost frontier is 

already capturing their direct effect on firms’ costs. The assigning of the firms to a 

particular group is performed by the model using class-membership probabilities, 

without any prior assumption by the researcher about the classification of the firms. 

Table 5 shows the proportion of observations that are located in either the group 

with or without weather variables as relevant cost frontier drivers. In both cases, we 

have used our preferred GEM model specification. It should be first pointed out that the 

discriminatory capacity of the LCM to allocate firms in different classes is quite robust 

as the posterior class probabilities are very large. The numbers in this table show that 

only 1% of the observations would be assigned to the class that includes weather 

variables in the frontier (class 2).
32

 A similar percentage is also obtained when we add 

the interactions of the weather variables with the variable measuring firms’ cost 

                                                 
29

 This result is conditional on our set of regional dummies. 
30

 We have carried out additional model selection tests to choose the proper model specification in the 

LCM framework. The values of the performed Chi-squared tests (with 9 degrees of freedom) were 65.9 

and 21.7 for the LCM specification of KGMHLBC and RSCFG-µ, respectively. These values allow us to 

reject the restrictions imposed by these two models, and therefore the LCM specification of the GEM 

model is again the preferred one. 
31

 In particular, while the cost frontier of one group is simply lnC=lnC(X, ), the cost frontier of the 

second group includes weather (i.e. z) variables and can be written as lnC=lnC(X, )+z´ψ. Moreover, the 

frontier parameters associated to non-weather variables (), and the parameters describing the distribution 

of v and u(z) are imposed to be the same in both classes. Therefore, the issue here is to identify the set of 

firms with ψ=0 or not. As the value of ψ is not available to the econometrician, class membership 

probabilities should be estimated simultaneously alongside the other parameters of the model. See Orea 

and Kumbhakar (2004) for more details about these models. 
32

 These five observations come from 4 different firms and all of them, except one, show large posterior 

probabilities (higher than 90%) of belonging to class 2. 
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structure. These results suggest that only the costs of a small number of firms could be 

“fully” adjusted downwards due to the direct negative influence of the bad weather. 

[Insert Table 5] 

The lack of a direct (or frontier) cost effect attributable to different weather 

conditions may appear somewhat counterintuitive. However, this result is to be 

expected if other explanatory variables, especially the regional dummy variables, are 

actually capturing the frontier effect of weather on firms’ costs. We have checked this 

and have found (using a multinomial logit model) that our set of NERC regional 

dummies is jointly correlated with the set of weather variables. Moreover, some of the 

output variables (such as PL) and technological variables included in the cost frontier 

are also correlated with the weather variables. These correlation analyses indicate that 

any frontier effect of weather on firms’ costs is already captured by the model, a result 

which indicates that the environmental factors are already taken into account in the 

design of networks, as pointed out by Jamasb et al. (2012). Therefore, it seems that 

advance planning has reduced the need to undertake corrective expenditure in response 

to outages caused by adverse weather conditions. 

We have been able to take advantage of both the estimated GEM and 

multinomial logit models to provide some information on the direct effect of weather on 

firms’ cost. The estimated coefficients of the multinomial logit model first allow us to 

compute for each firm/observation the probability of belonging to a particular NERC 

region, given the values of the weather variables. We then can predict the cost 

associated to the actual weather conditions if we multiply the computed probabilities 

(evaluated at the actual weather values) by the estimated coefficients of our regional 

dummies in the GEM model. We find a correlation of 70% between these values and 

those obtained by actually being located in a specific NERC region. This indicates that 

most of the cost effect of our regional dummies has to do with weather conditions.
33

 We 

also find that the direct cost effect of being located in a region with bad (rather than 

good) weather conditions is on average about 8%.
34

 

Finally, we provide information on the weather effect on firms’ efficiency. For 

this purpose we consider the above hypothetical weather scenarios: good and bad. The 

efficiency score of a company operating under ‘standard’ weather conditions is 94%. 

The efficiency score would be 98% under good weather conditions, while the expected 

score under bad weather conditions would be 80%.
35

 Therefore, the extra costs caused 

by this deterioration in firms’ performance due to unfavourable weather conditions are 

about 19%. We have also found that the computed extra costs tend to be larger for those 

more inefficient companies, so they may deserve a more generous treatment when 

adjusting their costs. 

In summary, from the empirical analysis performed in this paper we can make 

three suggestions for carrying out the benchmarking of electricity transmission utilities. 

First, the effect of weather conditions on firms’ costs is a material issue that should not 

be overlooked by the regulator. For this reason, it would be advisable to adjust the cost 

data of the companies prior to undertaking a benchmarking. Some regulators, such as 

Ofgem in Great Britain, are at least partly doing this by excluding extreme weather 

                                                 
33

 In addition, as this correlation is not 100%, this confirms that the regional dummies are capturing 

additional issues. 
34

 The good and bad weather scenarios have been computed using the average weather conditions of those 

observations that are above or below the sample mean. 
35

 These percentages have been computed using the Wang’s (2002) formula for E(u|z). 
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costs. Otherwise, capturing their effect during the benchmarking exercise is not an easy 

task.
36

 Second, if the cost data have not been previously adjusted or this has not been 

properly done, we recommend the use of heteroscedastic SFA models that allow the 

inclusion of efficiency determinants.
37

 If not, we could be both ignoring much of the 

weather effects on firms’ costs and biasing our estimates of firms’ efficiency. The use of 

heteroscedastic SFA models is more important in a regulatory framework where the 

incentives are significantly based on firms’ relative performance. Finally, although the 

decision about the location of the environmental variables should be based on statistical 

grounds, we also recommend including these variables in the cost frontier in order to 

capture any direct effect on firms’ costs that has not already been captured by other 

explanatory variables. 

 

6. Conclusions 

The electricity industry in most developed countries has been restructured in 

recent decades with the aim of reducing costs, improving service quality and 

encouraging electric utilities to perform efficiently. The remaining regulated segments 

(i.e. transmission and distribution) provide the infrastructure for the competitive 

segments and represent an important share of the total price paid by final customers. 

Despite the fact that electricity transmission is an essential part of the electricity supply 

sector there is a lack of empirical studies that analyse both economic characteristics of 

the technology and firms’ performance in electricity transmission. 

To fill this gap in the literature we have analysed firms’ efficiency in the US 

electricity transmission industry for the period 2001-2009. The analysis of the economic 

characteristics of the technology and inefficiency of US utilities relies on the estimation 

of several stochastic cost frontiers. The estimated coefficients provide useful 

information about firm’s performance with both policy and managerial implications. 

For instance, we have found that, given network infrastructure, electricity transmission 

networks exhibit natural monopoly characteristics in most cases. This result provides 

support for the continuing regulation of electricity transmission. Moreover, our results 

indicate that average efficiency in the US electricity transmission industry has declined 

(and diverged) over the period 2001-2009, suggesting that there is room for 

improvement in performance of the US electricity transmission system. 

Our stochastic frontier models also allow us to identify the determinants of 

firms’ inefficiency in this industry. In particular, as determinants of firms’ inefficiency, 

we have included several variables capturing weather conditions, companies’ cost 

structure, and energy demand growth. The results indicate that more adverse conditions 

generate higher levels of inefficiency and hence our findings confirm that it is indeed 

more difficult to manage a firm operating in a region with bad weather. 

We have also found that investing in capital is an effective strategy to deal with 

adverse weather conditions to avoid incurring additional operating costs. This might 

suggest a regulatory framework that favours capital investments to deal with 

unfavourable weather conditions. Finally we have found that, as expected, firms' 

performance gets better when demand tends to be steady as firms cannot adjust their 

                                                 
36

 Indeed, the weather conditions might have a direct effect, an indirect effect, or both. We have found 

that it could be difficult to identify the direct effect due to collinearity problems. The effect through the 

inefficiency term is also a challenge, as it might have non-linear effects on firms’ inefficiency. 
37

 Obviously, this suggestion can be extended to a nonparametric context. 
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inputs without cost over time. This result, combined with the previous finding on the 

importance of capital expenditure to deal with weather conditions, suggests that 

regulators should acknowledge that achieving long-term efficiency improvements can 

involve short-term increases in both capital and operational costs and, hence, a 

deterioration in firms’ short-term relative performance. 
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Table 1.Descriptive statistics 

 

  Variable Units Mean Max. Min. Std. Dev. 

Totex Cost US$ 145,111,000 667,127,000 20,713,600 120,627,000 

Peak Load Output MW 6,208 23,111 380 5,539 

Electricity Delivered Output MWh 6,279,730 74,584,700 56,730 8,872,920 

Total Capacity of Substations Output MVA 27,821 120,115 1,327 22,720 

Network Length Network Miles 4,073 16,292 1,087 3,263 

Annual Salary Input Price US$ 62,144 94,005 34,024 10,531 

Producer Price Index Input Price Index 179.21 222.40 155.00 21.35 

SERC Dummy - 0.40 1 0 0.49 

SPP Dummy - 0.22 1 0 0.41 

WECC Dummy - 0.26 1 0 0.44 

NPCC Dummy - 0.04 1 0 0.21 

RFC Dummy - 0.25 1 0 0.43 

MRO Dummy - 0.14 1 0 0.35 

ERCOT Dummy - 0.04 1 0 0.21 

Minimum Temperature Weather °F -10.35 19.90 -59.80 16.57 

Wind Speed Weather Knots 6.83 9.60 4.63 1.01 

Precipitation Weather Inches 0.07 0.16 0.01 0.03 

Capex/Opex Other Ratio 1.18 5.90 0.13 0.70 

Growth in Demand Other % 0.03 244.11 -74.96 17.77 
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Table 2. Model selection tests 

 

Comparison of nested models 

(LR test) 
Test value D.o.f. 

Preferred 

model 

 

RSCFG vs. ALS 74.052 *** 9 RSCFG 

RSCFG-μ vs. RSCFG 37.137 *** 1 RSCFG-μ 

GEM vs. RSCFG-μ 18.163 ** 9 GEM 

GEM vs. KGMHLBC 101.802 *** 9 GEM 

 
  

 
 

Comparison of non-nested models 

 (Vuong test) 
Test value 

 
Preferred 

model 

 

RSCFG-μ vs. KGMHLBC 1.830 *  RSCFG-μ 

 
 

  
 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
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Table 3. Parameter estimates of the translog cost function 

 
    ALS   RSCFG   RSCFG-μ   KGMHLBC   GEM 

  Parameters Est.   Est./s.e.   Est.   Est./s.e.   Est.   Est./s.e.   Est.   Est./s.e.   Est.   Est./s.e. 

                      

Frontier Intercept 13.208 *** 169.471  13.391 *** 231.108 
 

12.573 *** 83.435  13.394 *** 65.985  13.294 *** 202.786 

  ln PLit 0.508 *** 8.148  0.523 *** 11.160 
 

0.452 *** 11.161  0.616 *** 11.249  0.545 *** 12.233 

  ln DEit 0.057 *** 2.808  0.060 *** 3.527 
 

0.024 ** 2.002  0.040 * 1.853  0.061 *** 3.945 

  ln CSit 0.138 ** 2.034  0.164 *** 2.896 
 

0.349 *** 6.917  0.056  0.884  0.140 ** 2.517 

  ln NLit 0.145 *** 3.918  0.135 *** 4.296 
 

0.016 
 

0.583  0.064 * 1.776  0.145 *** 4.841 

  ln (LPRit/KPRit) 0.582 *** 3.722  0.528 *** 4.399 
 

0.448 *** 4.398  0.422 ** 2.502  0.497 *** 4.113 

  ½ (ln PLit)
2
 -0.057  -0.288  -0.037  -0.223 

 
-0.248 ** -1.999  0.271  1.308  0.044  0.292 

  ½ (ln DEit)
2
 0.038  1.415  0.040 ** 2.198 

 
0.032 ** 2.021  0.017  0.639  0.044 ** 2.338 

  ½ (ln CSit)
2
 0.167  0.526  0.109  0.422 

 
0.077  0.372  0.304  0.825  0.119  0.536 

  ½ (ln NLit)
2
 0.270 ** 2.077  0.247 *** 2.962 

 
0.380 *** 6.213  0.196 * 1.677  0.253 *** 3.278 

  ½ (ln (LPRit/KPRit))
2
 0.121  0.183  -0.139  -0.278 

 
-0.319  -0.852  -0.159  -0.235  -0.012  -0.026 

  ln PLit · ln DEit -0.005  -0.085  -0.032  -0.764 
 

0.009  0.273  0.037  0.619  -0.021  -0.540 

  ln PLit · ln CSit 0.015  0.060  0.077  0.368 
 

0.240  1.507  -0.346  -1.220  -0.002  -0.013 

  ln PLit · ln NLit 0.061  0.482  0.182 ** 2.098 
 

0.182 *** 2.837  0.002  0.019  0.155 * 1.800 

 ln PLit · ln (LPRit/KPRit) -0.152  -0.500  -0.085  -0.323 
 

0.084  0.401  -0.277  -0.978  -0.160  -0.697 

  ln DEit · ln CSit -0.028  -0.455  0.013  0.258 
 

-0.030  -0.827  0.004  0.077  -0.001  -0.020 

  ln DEit · ln NLit -0.042  -1.114  -0.082 *** -2.818 
 

-0.046 * -1.941  -0.052  -1.159  -0.093 *** -3.549 

 ln DEit · ln (LPRit/KPRit) 0.100  1.239  0.084  1.279 
 

0.086  1.396  0.162 ** 2.035  0.091  1.394 

  ln CSit · ln NLit -0.050  -0.313  -0.165  -1.528 
 

-0.313 *** -3.947  0.167  1.045  -0.091  -0.781 

 ln CSit · ln (LPRit/KPRit) 0.056  0.165  0.051  0.182 
 

-0.263  -1.127  0.013  0.038  -0.004  -0.013 

 ln NLit · ln (LPRit/KPRit) 0.057  0.295  -0.212  -1.274 
 

-0.013  -0.099  0.194  0.956  -0.168  -1.050 

  SERC -0.372 *** -5.889  -0.367 *** -7.050 
 

-0.392 *** -9.280  -0.488 *** -7.050  -0.372 *** -7.291 

  SPP 0.154 ** 2.206  0.152 *** 3.101 
 

0.190 *** 4.367  0.193 ** 2.246  0.213 *** 4.049 

  WECC -0.185 *** -2.584  -0.060 
 

-1.071 
 

-0.031  -0.554  -0.178 ** -2.021  0.013  0.202 

  NPCC 0.130  0.923  0.106  0.870 
 

0.251 *** 3.014  0.163  1.103  0.153  1.299 

  RFC -0.127 * -1.848  -0.161 *** -2.901 
 

-0.151 *** -4.123  -0.068  -0.783  -0.081  -1.298 

  MRO 0.051  0.585  0.060  0.778 
 

0.040  0.680  0.046  0.446  0.145 * 1.909 

  ERCOT 0.242 ** 2.277  0.235 *** 2.849 
 

0.248 *** 3.306  0.377 *** 3.467  0.236 *** 3.081 

  t 0.000  -0.033  -0.029 *** -4.097 
 

-0.014 ** -2.533  0.004  0.534  -0.025 *** -3.731 
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                    Noise term ln (σv

2
) -1.946 *** -19.879  -1.825 *** -35.791 

 
-2.185 *** -25.317  -1.558 *** -22.185  -1.918 *** -35.928 

                                          

  
                    

Inefficiency Intercept         -0.165  -0.966  -4.420  -0.946  -5.525 * -1.732 

term t             -0.338  -1.256  -0.310 * -1.735 

(mean) TMINit             0.125  0.911  0.141  1.353 

  WINDit             -0.936  -1.080  -1.510  -1.357 

  PRCPit             7.659  0.425  0.725  0.045 

  TMINit · CORi             -0.117  -0.626  -0.188  -1.086 

  WINDit · CORi             0.560  0.414  -1.405  -0.716 

  PRCPit · CORi             7.852  0.214  19.679  0.517 

  POSGRi             0.077  1.011  0.033  0.069 

  NEGRi             0.166  0.363  0.104  0.269 

                                          

  
                    

Inefficiency Intercept -1.261 *** -12.217  -3.871 *** -7.650 
 

-2.767 *** -12.197  -3.984  -0.312  -3.965 *** -8.248 

term t     0.285 *** 5.860 
 

0.097 *** 3.341      0.285 *** 6.006 

(variance) TMINit     -0.015  -1.245 
 

-0.001  -0.067      -0.013  -1.114 

  WINDit     0.286  1.618 
 

0.340 ** 2.546      0.502 *** 2.733 

  PRCPit     27.643 *** 4.001 
 

15.809 *** 3.680      29.302 *** 4.251 

  TMINit · CORi     0.062 ** 2.362 
 

0.037 * 1.868      0.078 *** 2.955 

  WINDit · CORi     -0.323  -0.831 
 

-0.678 ** -2.238      -0.139  -0.386 

  PRCPit · CORi     -23.963 ** -2.178 
 

-38.825 *** -4.227      -30.327 *** -2.682 

  POSGRi     0.042 *** 3.601 
 

0.071 *** 8.647      0.038 *** 3.212 

  NEGRi     0.029  0.626 
 

0.091 * 1.710      0.025  0.600 

                                          

                      

  Obs. 402  402 
 

402  402  402 

  Log-likelihood 41.179   78.204   96.772   54.953   105.854 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
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Table 4. Significance of variables in the frontier 

 

 Variables Log LF D.o.f. LR Test 

  GEM 105.854 - - 

Output PL 7.666 6 196.376 *** 

Excluded DE 78.116 6 55.476 *** 

 CS 98.580 6 14.548 ** 

  NL 91.307 6 29.094 *** 

 GEM (w/o Reg. Dum.) 54.151 - - 

Regional NERC 105.854 7 103.406 *** 

Dummies RTO 79.782 6 51.261 *** 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
 

 

 

 

Table 5. Modified LCM 

 

Basic LCM (Weather) 

 

Sample allocation 

Class 1 

(No weather variables) 

Class 2 

(With weather variables) 

Number of observations 397 5 

Percentage of observations 98.76% 1.24% 

Posterior class probability 99.55%  87.81% 

   

Extended LCM (Weather + Weather · COR) 

 

Sample allocation 

Class 1 

(No weather variables) 

Class 2 

(With weather variables) 

Number of observations 397 5 

Percentage of observations 98.76% 1.24% 

Posterior class probability 98.95%  90.97% 
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Figure 1. Approaches that allow including environmental variables in efficiency analysis (with key papers) 

 

 

   Frontier analysis 

including z-variables 
   

      

      

 

            

 

 

  

 

  

  

  

 
Nonparametric 

 
Semi-parametric 

 
Parametric 

    

 
  

 
  

1-stage DEA 

 
StoNED 

 
Mean oriented 

- Banker and Morey (1986) 

 

- Johnson and Kuosmanen (2011) 

 

- Kumbhakar et al. (1991) 

- Ruggiero (1996) 

 

- Kuosmanen (2012) 

 

- Battese and Coelli (1995) 

  

  

  2-stage DEA 

 
SPSCM 

 
Variance oriented 

- Ray (1988) 

 

- Li et al. (2002) 

 

- Reifschneider and Stevenson (1991) 

- Simar and Wilson (2007) 

 

- Sun and Kumbhakar (2013) 

 

- Caudill and Ford (1993) 

     3-stage DEA 

 
LCM 

 
Mean and variance oriented 

- Fried et al. (2002) 

 

- Orea and Kumbhakar (2004) 

 

- Alvarez et al. (2006) 

- Muñiz (2002) 

 

- Greene (2005b) 

 

- Lai and Huang (2010) 
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Figure 2. Annual evolution of outputs divided by Totex 
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Figure 3. Histogram of efficiency scores for the firms using the GEM 

 

 

 

 

 

 

Figure 4. Annual evolution of the efficiency in electric power transmission 
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Figure 5. Elasticities of cost for outputs and network 

 

 

 

 

 

 

Figure 6. Elasticities of scale and density 
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APPENDIX 

 

Data Appendix A: Variables and definitions from FERC FORM No. 1 

 

Variable   Definition FERC pages FERC account names/notes 

 AK Allocation key (wages) SWTR / (SWTT-SWAG)  

 SWTR  354-21b Salaries and wages (transmission) 

 SWTT  354-28b Salaries and wages (total) 

  SWAG   354-27b Salaries and wages (admin. and general) 

OPEX   Operational expenditure 100 * (TTE + AK * (TAGE - EPB - RCE - GAE)) / CPI   

 TTE  321-112b Total transmission (op. and main.) expenses 

 TAGE  323-197b Total administrative and general expenses 

 EPB  323-187b Employee pensions and benefits 

 RCE  323-189b Regulatory commission expenses 

  GAE   323-191b General advertising expenses 

CAPEX   Capital expenditure 100 * (DEP + IR * KBAL) / CPI   

 DEP Depreciation DETP + AK * (DEPGP + DEPCP)  

 DEPTP 336-7b Depreciation (transmission plant) 

 DEPGP 336-10b Depreciation (general plant) 

 DEPCP 336-11b Depreciation (common plant) 

 KBAL Capital balance OCK - ADEP  

 OCK Original cost of capital BTP + AK * BGP  

 BTP  207-58g Balance end of year (total transmission plant) 

 BGP  207-99g Balance end of year (total general plant) 

 ADEP Accumulated depreciation ADTTP + ADTRP + AK * ADTGP  

 ADTTP 219-25c Accumulated depreciation total (transmission plant) 

 ADTRP 219-27c Accumulated depreciation total (regional plant) 

  ADTGP 219-28c Accumulated depreciation total (general plant) 
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TOTEX   Totex OPEX + CAPEX   

PL   Peak Load 401b (d) Peak load (MW) 

DE   Electricity Delivered 401a-17 (b) MWh (total) 

CS  Total Capacity of Substations 427 (f) Capacity of substation in service (MVA) 

NL   Network Length 422 (f) + (g) Length of transmission lines (miles) 

COR   Capex / Opex CAPEX / OPEX (average over time for each firm)   

GROWTH   Growth in Demand [(TE current year - TE previous year ) / TE previous year] * 100   

 

 

Data Appendix B: Variables from other sources 

 

Variable  Definition Source 

LPR  Annual Salary Data Quarterly Census of Employment and Wages 

   (from the US Bureau of Labor Statistics) 

KPR  Producer Price Index US Bureau of Labor Statistics 

NERC dummies  Regional dummy variables North American Electric Reliability Corporation (NERC) 

TMIN  Minimum Temperature National Climatic Data Center (NCDC) 

WIND  Average Wind Speed National Climatic Data Center (NCDC) 

PRCP  Average Precipitation National Climatic Data Center (NCDC) 

CPI  Consumer Price Index International Labour Organisation - LABORSTA (Base Year = 2000) 

IR  Interest rate (6%) Nillesen and Pollitt (2010), p.63 

 


