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Abstract. In this paper, we investigate a graph-theoretical model of
social networks. The dot product model assumes that two individuals
are connected in the social network if their attributes or opinions are
similar. In the model, a d-dimensional vector av represents the extent to
which individual v has each of a set of d attributes or opinions. Then two
individuals u and v are assumed to be friends, that is, they are connected
in the graph model, if and only if au · av ≥ t, for some fixed, positive
threshold t. The resulting graph is called a d-dot product graph.
We consider diversity and clustering in social networks by using a d-dot
product graph model for the network. Diversity is considered through the
size of the largest independent set of the graph, and clustering through
the size of the largest clique. We present both positive and negative
results on the potential of this model. We obtain a tight result for the di-
versity problem, namely that it is polynomial-time solvable for d = 2, but
NP-hard for d ≥ 3. We show that the clustering problem is polynomial-
time solvable for d = 2. To our knowledge, these results are also the first
on the computational complexity of combinatorial optimization problems
on dot product graphs. We also give new insights into the structure of
dot product graphs.
We also consider the situation when two individuals u and v are con-
nected if and only if their preferences are not antithetical, that is, if and
only if au · av ≥ 0, and the situation when two individuals u and v are
connected if and only if their preferences are neither antithetical nor “or-
thogonal”, that is, if and only if au ·av > 0. For these two cases we prove
that the diversity problem is polynomial-time solvable for any fixed d
and that the clustering problem is polynomial-time solvable for d ≤ 3.

Keywords. social network; d-dot product graph; independent set; clique.

1 Introduction

Social networks are often modeled by a graph in order to use advanced algorith-
mic (or statistical) tools. Indeed, there is a large body of literature on (random)

? An extended abstract of this paper has appeared in the Proceedings of ISAAC
2013 [19].



graph models for social networks (see, for example, the surveys by Newman [31]
and Snijders [40]). These studies have proposed many models for social networks,
offering different explanations of why connections are made in the network (see
the partial overview in Liben-Nowell and Kleinberg [27]). For example, the mod-
els of Simon [39], Price [34], and Barabási and Albert [3] famously propose that if
you have many friends, you are more likely to make further new friends. A similar
idea was recently considered from an algorithmic perspective by Bhawalkar et
al. [6].

We consider a different predictor for connections in a social network, namely
the degree of similarity of attributes and opinions of different individuals. Gen-
erally, individuals with similar attributes or opinions are more likely to be con-
nected. This is known as the homophily principle and is well-studied in sociolog-
ical research (see, for example, the survey by McPherson et al. [29]). To model
the attributes of an individual u, we can associate them with a vector au, where
an entry aui expresses the extent to which u has an attribute or opinion i [42].
For example, a positive value of aui could indicate that u likes item i, whereas a
negative value suggests that u dislikes item i. We call this a vector model.

There are many ways to measure similarity using a vector model (see, for
example, [1, 17, 23, 25, 42]). We will use the dot product as a similarity measure.
This measure is closely related to the cosine measure, which was studied be-
fore by researchers in information retrieval and social networks (see e.g. [8, 9]).
The dot product measure leads to the dot product model for social networks,
which is defined as follows. Consider a social network that consists of a set V of
individuals, together with a vector model {au | u ∈ V }. Let

sim(u, v) = au · av =

d∑
i=1

aui a
v
i .

If the similarity sim(u, v) is at least some specified threshold t > 0, then we view
the preferences of u and v to be sufficiently close together for u and v to be
connected, that is, to be friends within the network. This immediately implies a
graph G = (V,E), where (u, v) ∈ E if and only if sim(u, v) ≥ t. Such a graph is
called a dot product graph of dimension d, or a d-dot product graph. The vector
model {au | u ∈ V } together with the threshold t is called a d-dot product
representation of G.

The dot product model has a long tradition, both in the study of social
networks (see, for example, Breiger [5]) and in (algorithmic) graph theory (see,
for example, Reiterman et al. [35–37] and particularly Fiduccia et al. [12]). Below,
we survey some of the recent work and how it relates to social networks.

The dot product graph as a model for social networks was formalized by
Nickel [32], Young and Scheinerman [43, 44], Minton [30], and Scheinerman and
Tucker [38]. In particular, these works consider a randomized version of the dot
product model, where the dot product of two vectors constitutes the probability
that an edge occurs between the corresponding vertices. This randomized version
of the model fits in a long line of research on random graph models for social
networks, such as the classic Erdös-Rényi graph model [11], the Kronecker graph
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model [25] and the multiplicative attribute graphs model [23] (which generalizes
the Kronecker graph model). The random dot product graph model exhibits the
main characteristics that one would expect from a model for social networks,
such as the property that two vertices are more likely to be adjacent if they
have a common neighbour, the small-world principle, and a power-law degree
distribution [32]. Studies into the dot product model were also motivated by the
work of Papadimitriou et al. [33] and Caldarelli et al. [7]. Moreover, dot product
graphs share some ideas with low-complexity graphs [2].

Dot product graphs have been studied from the perspective of (algorithmic)
graph theory mostly with respect to the question of determining the dot product
dimension of a graph: the minimum dimension d for which a graph has a d-
dot product representation. This notion is well defined, as every graph on m
edges has a dot product representation of dimension m [12]. Observe that, in
the context of social networks, the dot product dimension can be seen as the
smallest number of preferences needed to determine all friendship relations and
non-relations between any two individuals in the network. Hence, the dot product
dimension is a measure of the social complexity of a network [30].

The work of Fiduccia et al. [12] implies that deciding whether a graph has
dot product dimension 1 takes polynomial time. However, Kang and Müller [21]
showed the problem of deciding whether a graph has dot product dimension d is
NP-hard for all fixed d ≥ 2 (membership in NP is still open). They also proved
that an exponential number of bits is sufficient and can be necessary to store
a d-dot product representation of a dot product graph. Kang et al. [20] gave a
tight bound of 4 on the dot product dimension of a planar graph. Fiduccia et
al. [12] conjectured that any graph on n vertices has dot product dimension at
most n

2 ; Li and Chang [26] recently confirmed this conjecture for a number of
graph classes.

In this paper, we study how the complexity of computing structural prop-
erties of a social network is influenced by the complexity of the network’s dot
product model. Note that many standard structural properties, such as the graph
diameter and the clustering coefficient, are easy to compute even on general
graphs. Therefore, we consider two more advanced structural properties that
give information on diversity and clustering in the network. These properties
relate to classic graph optimization problems that are NP-hard to compute on
general graphs, but whose computational complexity on dot product graphs was
unknown. In fact, to the best of our knowledge (see also Spinrad [41, p. 309]),
no algorithmic work on graph optimization problems on d-dot product graphs
for d ≥ 2 has been done prior to this work.

The main observation from our study is that when computing information
on diversity and clustering properties of a social network, it is helpful if the net-
work has small dot product dimension. When the network has small dot product
dimension, we give positive results, in the sense of polynomial-time algorithms,
for the studied problems. When the network does not have small dot product
dimension, we observe clear barriers that prevent us from generalizing our al-
gorithms. Additionally, we give a hardness result for one of the problems. This
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furthers our understanding of the scope of this particular model for social net-
works, but more importantly suggests that future studies on dot product models
should focus on investigating approximation or fixed-parameter algorithms for
the studied problems.

This main observation is supported by the following results. First, we con-
sider diversity, by finding (the size of) a largest group of individuals in the
network that are different-minded, and thus pairwise disconnected. This cor-
responds to the well-known Independent Set problem, which is NP-hard on
general graphs [22]. On 1-dot product graphs the problem is known to be solvable
in polynomial time, since such graphs consist of at most two connected compo-
nents, each of which is a threshold graph [12], and Independent Set has a
trivial polynomial-time algorithm for threshold graphs3. However, its complex-
ity on d-dot product graphs for d ≥ 2 is open. We settle this by proving that
Independent Set is polynomial-time solvable on 2-dot product graphs, but
becomes NP-hard on 3-dot product graphs.

Second, we consider clustering, by finding (the size of) a largest group of in-
dividuals in the network that are like-minded, and thus pairwise connected. This
corresponds to the well-known Clique problem, which is NP-hard on general
graphs [22]. Again, on 1-dot product graphs a trivial polynomial-time algorithm
is known using the relation to threshold graphs [12], but its complexity has not
been analyzed on d-dot product graphs for d ≥ 2. We give initial insights into
the complexity of this problem and show that it is polynomial-time solvable on
2-dot product graphs.

We remark that our complexity results depend on a number of lemmas on
the structure of dot product graphs which are of independent interest.

To complement these results, we consider two variants of the dot product
model. For the first variant, we model the scenario in which two individuals are
connected if their preferences are not antithetical. That is, consider the graph
where two individuals u, v are connected if and only if au · av ≥ 0. We call
such a graph a d0-dot product graph. Recall that in d-dot product graphs, the
threshold t for connectivity must be greater than zero, and hence the definition
of d0-dot product graphs is different. Moreover, the structure of d0-dot product
graphs is substantially different from that of d-dot product graphs. To illustrate
this, we prove that Independent Set is polynomial-time solvable on d0-dot
product graphs for any fixed d and that Clique is polynomial-time solvable if
d ≤ 3.

For the second variant, we model the situation in which two individuals are
connected in the model if their preferences are neither antithetical nor orthog-
onal. Consider the graph that is obtained when two vertices u, v are adjacent
if and only if au · av > 0. We call this a d+-dot product graph. It follows from

3 A possible definition of a threshold graph states that G is a threshold graph if it
can be constructed from a single vertex by repeatedly adding an isolated vertex or
a dominating vertex (that is, a vertex adjacent to all other vertices) [15, 28]. Using
this definition, a polynomial-time algorithm for Independent Set (and for Clique)
can be easily derived.
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Setting Independent Set Clique

d-DPG (≥ 1) in P for d ≤ 2 in P for d ≤ 2
NP-hard for d ≥ 3 ? for d ≥ 3

d0-DPG (≥ 0) in P for d ≥ 0 in P for d ≤ 3
? for d ≥ 4

d+-DPG (> 0) in P for d ≥ 0 in P for d ≤ 3
? for d ≥ 4

Table 1. An overview of our results for the problems Independent Set and Clique
on d-dot product graphs (the first row), d0-dot product graphs (the second row), and
d+-dot product graphs (the third row), respectively, for fixed dimension d.

Fiduccia et al. [12] that the graph class where two vertices are adjacent if and
only if au ·av > t for some t > 0 is equivalent to the class of d-dot product graphs.
However, we prove that the structure of d+-dot product graphs is different from
that of d-dot product graphs and that of d0-dot product graphs. Still, we can
show that Independent Set is polynomial-time solvable on d0-dot product
graphs for any fixed d, as is Clique when d ≤ 3.

We provide an overview of our results in Table 1.

Organization. In Section 3, we prove several structural results about d-dot
product graphs. In Section 4, we consider the complexity of Independent Set
and Clique on dot product graphs. In Section 5, we study the computational
complexity of these problems on d0-dot product graphs and d+-dot product
graphs.

2 Preliminaries

All graphs that we consider are finite, undirected, and have neither loops nor
multiple edges. For undefined graph terminology we refer to Diestel [10].

Let G = (V,E) be a graph. We denote the neighbourhood of a vertex u ∈ V
by N(u) = {v | (u, v) ∈ E}. A subset U ⊆ V is independent if no two vertices
in U are joined by an edge, and U is a clique if every two vertices of U are
adjacent. Given U ⊆ V , G[U ] denotes the subgraph of G induced by U , that
is, it has vertex set U and an edge between two vertices of U if and only if G
has an edge between them. The complement of G has vertex set V and an edge
between two distinct vertices if and only if these vertices are not adjacent in G.

A graph is a comparability graph if there exists an assignment of exactly one
direction to each of its edges such that (a, c) is a directed edge whenever (a, b)
and (b, c) are directed edges. The complement of a comparability graph is called
a co-comparability graph.

A graph is p-partite if its vertex set can be partitioned into p independent
sets (some of which may be empty). If p = 2, then the graph is called bipartite.
The complement of a p-partite graph is called a co-p-partite graph. Observe that
the vertex set of a co-p-partite graph can be partitioned into at most p cliques.
The complement of a bipartite graph is called co-bipartite.
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The length of a cycle is its number of edges. The girth of a graph is the length
of its shortest induced cycle.

Throughout the paper, we assume a computational model where operations
on vectors and numbers take constant time. In particular, we assume that simple
operations such as addition, multiplication, and division take constant time.
Since we never use complex operations, such as cosines or square roots, we believe
that this is a reasonable assumption. Moreover, it enables a cleaner presentation
of the results.

3 Structure of d-Dot Product Graphs

In this section, we describe some of the structure that can be found in d-dot prod-
uct graphs and which we need in our algorithms later on. Fiduccia et al. [12,
Theorem 20] proved that 1-dot product graphs have at most two nontrivial
components, each of which are threshold graphs. We show that d-dot product
graphs, and in particular 2-dot product graphs, exhibit similar interesting struc-
tural properties.

From now we assume that d ≥ 2. The reason for doing this is that our
polynomial-time results on Independent Set and Clique in Section 4 for the
case d = 2 readily carry over to the case d = 1: we can represent a (d − 1)-dot
product graph as a d-dot product graph for all d ≥ 2 by adding a zero entry to
all vectors of any of its (d− 1)-dot product representations.

We call a d-dot product representation of a graph clean if it contains no two
vectors au and av with au = γav for some γ ≥ 0.

Lemma 1. Given a d-dot product graph G without isolated vertices and a d-dot
product representation of G, we can compute a clean d-dot product representation
of G in polynomial time.

Proof. Let G = (V,E) be a d-dot product graph, and let {au | u ∈ V } be a d-dot
product representation of G. Let t be the threshold. We consider the vertices of
G consecutively and do as follows. Let u ∈ V . If there is no vertex v 6= u such
that au = γav for some γ ≥ 0, then we do not modify au. Otherwise, let

δ =
minw |t− au · aw|

t
,

where w ranges over all vertices (except u) that do not neighbor u. Should u be
adjacent to all other vertices, we define δ = 1. Note that, in both cases, δ > 0.
Let bu = (1 + δ)au. Then for any vertex w 6= u:

bu · aw = (1 + δ)(au · aw)

By the choice of δ, observe that bu · aw > t if au · aw ≥ t, and bu · aw < t if
au · aw < t for any vertex w 6= u; in particular bu · aw 6= t for any w 6= u.

Now let ε = (minw |t−bu · aw|)/β, where w ranges over all vertices except u
and where β > 1 is a sufficiently large constant (we will explain how to choose

6



β later). Note that ε > 0, because bu · aw 6= t for all w 6= u. Let eu be such that
eui = εu/(dm), where m = maxw maxj |awj |. Note that, for all w 6= u,

(bu + eu) · aw = bu · aw + eu · aw,

and therefore, (bu+eu)·aw ≥ t if and only if au ·aw ≥ t for any w 6= u. Hence, by
setting au to bu + eu, we retain a d-dot product representation of G. Moreover,
by choosing β sufficiently large we find that there is no v 6= u with au = γav

for some γ ≥ 0. Clearly, this representation can be obtained in polynomial time.
As mentioned, we iteratively apply this procedure to all u to obtain a clean
representation in polynomial time (note that we only appropriately adjust the
vector corresponding to the vertex u that is under consideration and hence the
occurrence of a new pair of vectors in which one vector is a scalar multiple of
the other is not possible). ut

Throughout the remainder of this section, we assume that we are given a
d-dot product graph G = (V,E) for some d ≥ 2 together with a d-dot product
representation with vectors {au | u ∈ V } and threshold t. For solving Indepen-
dent Set and Clique, we can preprocess G by removing any isolated vertices.
Hence, by Lemma 1, we may assume without loss of generality that the given
representation is clean.

In the remainder of the paper, whenever we are given a representation of
a dot product graph, we do not always distinguish between a vertex and the
corresponding vector and so may, for example, speak about the length of a
vertex without confusion.

We introduce several notations for vertices u and v to measure the angle
between au and av in the plane defined by au and av. We assume a fixed direction
of rotation, so that we can speak of the angle from au to av. This angle, denoted
by φuv, thus is always positive. Then we define θuv so that θuv = φuv if φuv ≤ π
and θuv = φuv − 2π otherwise. Note that this implies that −π < θuv ≤ π and
θuv = −θvu (unless θuv = θvu = π).

We say that a vertex u is short if ||au|| ≤
√
t; otherwise, it is long. Note

that we can decide whether u is short in polynomial time by checking whether
||au||2 ≤ t. We first provide two lemmas about short vertices.

Lemma 2. Let v be a short vertex. Then G[N(v)] is co-2d−1-partite.

Proof. We may assume that the representation is rotated such that av1 = z
for some 0 < z ≤

√
t and that avi = 0 for all i = 2, . . . , d, i.e., that av is the d-

dimensional unit vector scaled by some z > 0. Observe that u ∈ N(v) if and only
if au1 ≥ t/z ≥

√
t. Associate with each vertex u ∈ N(v) a (d−1)-dimensional sign

vector su, where sui = 1 if aui+1 ≥ 0 and sui = −1 otherwise for i = 1, . . . , d− 1.
Observe that the sign-vectors naturally partition the vertices of N(v) into 2d−1

equivalence classes. Moreover, any two vertices u,w in an equivalence class are
adjacent, because au · aw =

∑d
i=1 a

u
i a

w
i ≥ t +

∑d
i=2 a

u
i a

w
i ≥ t, as aui ≥ 0 if and

only if awi ≥ 0 for any i = 2, . . . , d. Therefore, each equivalence class induces a
clique, and thus G[N(v)] is co-2d−1-partite. ut
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Lemma 2 shows in particular that G[N(v)] is co-bipartite if d = 2.

Lemma 3. The set of short vertices is an independent set.

Proof. For any two vertices v and w, we have av · aw = ‖av‖ ‖aw‖ cos θvw. As-
sume that v and w are short. As we assume that our d-dot product representation
of G is clean, cos θvw < 1 which, combined with the definition of short, implies
that av · aw < t, and hence the vertices are not adjacent. ut

We say that a vertex v is between vertices u and w if av can be written as
a nonnegative linear combination of au and aw. In other words, v is between u
and w if av lies in the plane defined by au and aw and av lies within the smaller
of the two angles defined by au and av in this plane.

We require a result that in the case that t = 1 is implied by Lemma 28 of
Fiduccia et al. [12]. The generalization to all t can easily be obtained by copying
their proof, so here we will state it without proof.

Lemma 4. Suppose d = 2. Let u, v, and w be vertices such that v is between u
and w. If u is adjacent to w, and v is adjacent to neither u nor w, then v is short.

We now present two lemmas about the neighbourhoods of vertices.

Lemma 5. Let L = {u ∈ V | ‖au‖ >
√
t}. If d = 2, then G[N(v) ∩ L] is a

co-comparability graph for all v ∈ V .

Proof. Number the vertices u ∈ N(v)∩L by increasing value of θvu. Let ui denote
the ith vertex in the order. Consider some i < j < k such that (ui, uk) ∈ E.
Note that auj is between aui and auk . Since uj ∈ L, it follows from Lemma 4
that one of (ui, uj), (uk, uj) ∈ E. The existence of such an ordering implies that
G[N(v) ∩ L] is a co-comparability graph, due to Kratsch and Stewart [24]. ut

Lemma 6. Let u, v, w ∈ V be such that v is between u and w. If u is adjacent
to w and ‖av‖ ≥ ‖aw‖, then u is adjacent to v.

Proof. Without loss of generality θuw is positive. Notice that θuv < θuw, because
v is between u and w, and thus cos θuv > cos θuw. Hence,

au · av = ‖au‖ ‖av‖ cos θuv

> ‖au‖ ‖aw‖ cos θuw

= au · aw

≥ t,

and so u and v are adjacent. ut
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4 Diversity and Clustering in Social Networks

In this section, we consider the complexity of computing diversity and clustering
in social networks through Independent Set and Clique, respectively, on a
dot product graph model of the network. We first prove that Independent Set
is polynomial-time solvable if d ≤ 2 and NP-hard if d ≥ 3. We then prove that
Clique is polynomial-time solvable if d ≤ 2.

As before, throughout we have a d-dot product graph G = (V,E) and a clean
d-dot product representation with vectors {au | u ∈ V } and threshold t.

We first consider Independent Set in the case d ≤ 2. Recall that we may
assume without loss of generality that d = 2. Armed with the structural results
of the previous section, we can prove the following theorem.

Theorem 1. Independent Set is solvable in O(n3) time on 2-dot product
graphs on n vertices, when a representation of the graph is known.

Proof. Let G be a 2-dot product graph. We describe how to find a maximum-size
independent set of G. In fact, we will describe how to find, for each long vertex u
of G, an independent set of G that has largest size over all independent sets of G
that contain u. This is sufficient as the maximum-size independent set of G is
either the largest of these O(n) sets or the set of all short vertices which is also
independent by Lemma 3; we use this latter fact repeatedly in the proof.

So let u be a fixed long vertex ofG. LetGu be the graph obtained by removing
all vertices that neighbour u and their incident edges. Note that u is in every
maximum-size independent set of Gu. Hence, if we can find a maximum-size
independent set of Gu, then we will have found an independent set of G that
has largest size over all independent sets of G that contain u.

We define a total (or linear) ordering ≺ of the vertices of Gu by ordering the
vertices by increasing angle φuv of their vector representation from au. Using
the square of the cosine formula, ≺ can be computed in quadratic time using
just dot-products.

Claim 1 : Let v and w be adjacent vertices in Gu such that θvw is positive. Then
v ≺ w.

Proof. Any vertex between v and w is, by Lemma 4, either short or adjacent to
one of them. Since we have removed all neighbours of u from G to obtain Gu,
we find that v and w are not neighbours of u in G. Moreover, u is long. Hence, u
cannot be between v and w, and thus φuv < φuw. Therefore, v ≺ w. This proves
Claim 1.

An intuitive understanding of the statement of Claim 1 would be that no
edge can ‘jump over’ au. This gives Gu a linear structure, instead of the circular
structure of G. Our algorithm exploits this linear structure to find a maximum-
size independent set.

We now relate the ordering ≺ to betweenness.

Claim 2 : Let v, w, x be vertices in Gu where v and w are adjacent. Then x is
between v and w and θvw is positive if and only if v ≺ x ≺ w.
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Proof. One direction is an extension of Claim 1 and the other is trivially true.

For a long vertex v in Gu, let J(v) be a largest independent set in the sub-
graph of Gu that contains all vertices up to and including v in the ordering ≺
such that v ∈ J(v). Let j(v) = |J(v)|. For a pair of long vertices v and w in Gu

with w ≺ v, let S(w, v) be the set of vertices x such that x is short, w ≺ x ≺ v
and x is not adjacent to either v or w. Let s(w, v) = |S(w, v)|.

Claim 3 : For each pair of non-adjacent long vertices v and w with w ≺ v in Gu,
j(v) ≥ j(w) + s(w, v) + 1.

Proof. Note that the claim will follow if we can show that J(w) ∪ S(w, v) ∪ {v}
is an independent set. All we need to show is that no vertex in S(w, v) ∪ {v} is
adjacent to a vertex in J(w).

Suppose that v is adjacent to a vertex x in J(w). We know v and w are not
adjacent so x 6= w and x ≺ w ≺ v. Hence, w is between x and v (by Claim 2), and
the adjacency of x and v implies, by Lemma 4, that w is short; a contradiction.

If a vertex y ∈ S(w, v) is adjacent to any vertex x in J(w), then x 6= w by the
definition of S(w, v). But x is adjacent to w using Lemma 6 and noting that w
is long, y is short and w is between x and y. This contradiction proves Claim 3.

Claim 4 : For each long vertex v 6= u in Gu, j(v) is the maximum, over all long
vertices w with w ≺ v and v and w non-adjacent, of j(w) + s(w, v) + 1.

Proof. Note that the set of long vertices that precede v includes the isolated
vertex u so the maximum is well-defined, and the previous claim tells us that
j(v) is no less than this maximum. We must show that it is no larger. Let w be the
long vertex that is last in the ordering amongst all long vertices in J(v)\{v} (as
J(v) contains u we can always find such a vertex). The subset of J(v) containing
only w and preceding vertices is independent and contains at most j(w) vertices.
The only other vertices in J(v) are short vertices between w and v and v itself.
Thus j(v) ≤ j(w) + s(w, v) + 1, and Claim 4 is proved.

Note that j can easily be computed since j(u) = 1, and Claim 4 tells us that
if we consider the vertices in order we can find the remaining values.

For each long vertex v in Gu, let S+(v) contain each vertex w such that w
is short, v ≺ w and v is not adjacent to w. Let s+(v) = |S+(v)|. Let m be the
maximum, over all long vertices v in Gu, of j(v) + s+(v).

Claim 5 : Let J be a maximum-size independent set in Gu. Then |J | = m.

Proof. Let v be a long vertex in Gu. We shall show that J(v) ∪ S+(v) is an
independent set. Let w be a vertex in S+(v) and suppose that x is a vertex in
J(v) adjacent to w. By the definition of S+(v), we have x 6= v, so x ≺ v ≺ w. By
Claim 2, v is between x and w and, by Lemma 4, v is either short or adjacent
to x or w. This contradiction shows that J(v)∪S+(v) is an independent set. So
|J | ≥ j(v) + s+(v) for all long vertices v and hence |J | is at least m.
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Now let z be the long vertex in J that is latest in the ordering. Let J1 be the
subset of J containing z and preceding vertices. Hence, |J1| ≤ j(z). The vertices
of J \ J1 are short vertices later than z in the ordering, so there are at most
s+(z) of them. Thus |J | ≤ j(z) + s+(z) ≤ m, and Claim 5 is proved.

We omit the details but it is straightforward to show that j and s+, and so
also m, can be computed in O(n2) time. The corresponding sets of vertices, and
thus a maximum-size independent set of Gu, can also be found. By repeating for
each u, a maximum-size independent set of G is found in time O(n3). ut

We contrast this positive result with the following result.

Theorem 2. For any d ≥ 3, Independent Set is NP-hard on d-dot product
graphs, when a representation of the graph is not known.

Proof. Recall that an s-subdivision of an edge is the operation in which the edge
is replaced by an (s+ 1)-edge path (implying that s new vertices are created).

Claim: If Independent Set is NP-hard on some graph class G, it is NP-hard
on the graph class obtained by 2-subdividing each edge of each graph of G.

Proof. Let G be a graph and let G′ be the graph obtained by 2-subdividing
some edge (u, v) of G. Let x, y be the new vertices, where y is adjacent to v.
Then any independent set I of G can be turned into an independent set of G′

of size |I| + 1 by adding either x or y (depending on whether v ∈ I or not,
respectively). Conversely, any (non-empty) independent set I ′ of G′ corresponds
to an independent set of G of size |I ′| − 1 by restriction; observe that if both u
and v are in I ′ then neither x nor y belongs to I ′, so we can remove one of u, v
to obtain an independent set of size |I ′| − 1.

Applying the above idea iteratively shows that a graph G has an independent
set of size k if and only if the graph obtained by 2-subdividing each edge of G
has an independent set of size k+ |E(G)|. This yields the required NP-hardness
reduction, and proves the claim.

Since Independent Set is NP-hard on planar graphs [13], the claim implies
that it remains NP-hard on 2-subdivisions of planar graphs. Note that such
graphs are planar and have girth at least 9. Kang et al. [20] observed that
planar graphs of girth at least 5 are 3-dot product graphs. So Independent
Set is NP-hard on the class of 3-dot product graphs, which is a subclass of
d-dot product graphs for all d > 3. ut

The structural results of the previous section provide enough structure to
solve Clique in polynomial time on 2-dot product graphs.

Theorem 3. Clique is solvable in O(n4) time on 2-dot product graphs on n
vertices, even when no representation of the graph is known.

Proof. Call a vertex v weak if N(v) is co-bipartite. Note that we can deter-
mine whether a vertex v is weak in quadratic time by attempting to 2-color the
complement. We first find a largest clique that contains a weak vertex.

Claim: Clique can be solved in O(n2.5) time on co-bipartite graphs.
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Proof. To solve Clique on co-bipartite graphs, it suffices to solve Indepen-
dent Set on bipartite graphs, because any clique in a graph corresponds to an
independent set in the complement of the graph. To solve Independent Set
on bipartite graphs, it suffices to solve Vertex Cover4 on bipartite graphs,
because the complement of an independent set of a graph is a vertex cover and
vice versa. To solve Vertex Cover on bipartite graphs, it suffices to solve
Matching5 on bipartite graphs, because of König’s Theorem (see, for example,
[10]). Solving Matching on bipartite graphs takes O(n2.5) time [18]. The claim
follows.

Following the claim, we can find a largest clique containing a weak vertex in
O(n3.5) time.

We now find a largest clique that only contains vertices that are not weak.
Let L be the set of vertices that are not weak. By Lemma 2, each vertex of L
must be long in each 2-dot product representation of the graph. Hence, for any
v ∈ L, G[N(v) ∩ L] is a co-comparability graph by Lemma 5. We now observe
that Clique on co-comparability graphs is Independent Set on comparability
graphs. The latter problem can be reduced to a maximum-flow computation [14],
which takes O(n3) time. Hence, we can find this largest clique in O(n4) time.

Finally, we return the largest of the two cliques that we found. Observe that
the algorithm only uses the graph and does not require a representation to be
given. ut

5 Structure and Complexity for Variants of the Model

In this section, we consider two variants of the dot product graph model, which
model that two individuals are connected if and only if their preferences are not
antithetical, or are neither antithetical nor orthogonal. In the introduction, we
defined the d0-dot product graph and the d+-dot product graph model for these
cases. Recall that if {au | u ∈ V } is a representation of G = (V,E), then

– (u, v) ∈ E if and only if au · av ≥ 0 when G is a d0-dot product graph, and
– (u, v) ∈ E if and only if au · av > 0 when G is a d+-dot product graph.

We study the complexity of computing the diversity and clustering on these
models, that is, of Independent Set and Clique, on d0-dot product graphs
and d+-dot product graphs.

Throughout this section, we assume without loss of generality that all vec-
tors in a representation have non-zero length. Observe that vertices whose cor-
responding vectors have length 0 are adjacent to all other vertices in a d0-dot
product graph and are isolated in a d+-dot product graph. Hence, for solving

4 A vertex cover of a graph G is a subset of its vertices such that at least one endpoint
of each edge is in the subset. Then Vertex Cover asks to find a vertex cover of
smallest size.

5 A matching of a graph is a subset of its edges such that no two edges in the subset
share an endpoint. Then Matching asks to find a matching of largest size.
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Independent Set and Clique, we can preprocess the instance by removing
any such vertices.

First, we describe the structure of independent sets in d0-dot product graph.
The following lemma is equivalent to Lemma 18 of Fiduccia et al. [12].

Lemma 7. For all d ≥ 1, every independent set in a d0-dot product graph has
size at most d+ 1.

Independent sets in d+-dot product graphs have a different structure.

Lemma 8. For all d ≥ 1, every independent set in a d+-dot product graph has
size at most 2d.

Proof. Recall that we assume that at all vectors in a representation have non-
zero length. Observe that the statement of the lemma is equivalent to stating
that the maximum number of (non-zero) vectors in Rd with pairwise non-positive
dot products is at most 2d.

We apply induction on d. Let G = (V,E) be a d+-dot product graph with
representation {au | u ∈ V }. The lemma is readily seen to hold for d = 1.

Let d ≥ 2 and suppose that the claim holds for dimension d − 1. Let
I = {u1, . . . , up} for some p ≥ 1 be an independent set of G. Without loss of gen-
erality, au1 = (1, 0, . . . , 0). Consider the (d−1)+-dot product graph G′ = (V ′, E′)
obtained from G by removing all first coordinates from the vectors a and then
removing vectors of zero length. We claim that I∩V ′ is an independent set in G′.
To see this, let v, w ∈ I ∩ V ′. Since v, w are independent of u1, av1,a

w
1 ≤ 0, and

thus av1a
w
1 ≥ 0. As v, w ∈ I, av · aw ≤ 0 and thus

∑d
i=2 a

v
i a

w
i ≤ −(av1a

w
1 ) ≤ 0.

Hence,
∑d

i=2 a
v
i a

w
i ≤ 0. Therefore, I ∩ V ′ is indeed an independent set.

By induction, we find that |I ∩ V ′| ≤ 2d− 2. Notice that the only vertices w
that are in G but not in G′ are those for which awi = 0 for i = 2, . . . , d. Suppose
that I \ {u1} contains two such vertices, say v, w. They must satisfy av1,a

w
1 < 0

in order to be independent from u1. It follows that av · aw > 0 and thus that v
and w are adjacent, a contradiction. Therefore I \ {u1} can contain at most one
vertex that is in G but not in G′. Hence |I| ≤ |I ∩ V ′|+ 2 ≤ 2d. ut

The proofs of Lemmas 7 and 8 can be turned into constructions to show that
the given bounds are tight. The lemmas show that d0-dot product graphs and
d+-dot product graphs have different structure, which is also different from the
structure of d-dot product graphs. Moreover, using exhaustive enumeration, the
two lemmas immediately imply the following.

Theorem 4. For all d ≥ 1, Independent Set is solvable in O(nd+1) time on
d0-dot product graphs and in O(n2d) time on d+-dot product graphs on n vertices,
even when no representation of the graph is known.

We now consider Clique on d0-dot product graphs and d+-dot product
graphs. For d = 2, it suffices to observe that a set of vertices forms a clique if
and only if their corresponding vectors lie in the nonnegative quadrant (after an
appropriate rotation). However, this structural observation does not generalize to
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higher dimensions, as evident from the counterexamples by Gray and Wilson [16]
for d = 3 and d ≥ 5; see Appendix A for a counterexample for the case d =
4. Instead, we follow a different approach, which leads to a polynomial-time
algorithm for all d ≤ 3.

For any hyperplane h with normal n, let h+ be the half-space {p | p · n ≥ 0}
and let h− be the half-space {p | p · n ≤ 0}. Note that any two vectors a,b
induce a hyperplane with normal a×b, where × is the cross product operation.
We refer to the monograph by Barvinok [4] for any undefined terminology on
cones.

Theorem 5. For all d ≤ 3, Clique can be solved in O(n4.5) time on d0-dot
product graphs and d+-dot product graphs on n vertices, when a representation
of the graph is known.

Proof. We assume that d = 3 (fewer dimensions are a special case). Let G =
(V,E) be a 30-dot product graph or a 3+-dot product graph with representation
{av | v ∈ V }. We note that if a basis change is applied, then the resulting vectors
are still a representation of the same kind (30-dot product or 3+-dot product)
for G. We first give a structural result, where we essentially show that any clique
C of G induces a basis such that the vectors of C lie in two octants with respect
to this basis. Then, we give an algorithm that finds this basis for a maximum
clique by guessing limited information about the clique, and use the basis to
obtain a maximum clique of G.

We start with the structural result. Let C be any clique of G. Let K denote
the conic hull of av for all vertices v ∈ C, that is, K = {

∑
v∈C λva

v | λv ≥ 0}.
We call K the cone corresponding to C. The structural result considers the case
that K is not a ray. Since K is generated by a finite set, its extreme rays are
vectors that correspond to vertices of C. Let u be any vertex such that au spans
an extreme ray of K, and let hu denote the hyperplane with normal au. Because
K is the conic hull of vectors corresponding to a clique, p · au ≥ 0 for any p ∈ K
(this is true both when G is a 30-dot product graph or a 3+-dot product graph).
Hence, K ⊆ h+u .

Let w be any vertex such that aw spans an extreme ray of K that is not
spanned by u and such that the hyperplane huw induced by au and aw contains
a facet of K. Since huw contains a facet of K, either K ⊆ h+uw or K ⊆ h−uw.
Assume without loss of generality that K ⊆ h+uw, and let t denote the normal
of huw that lies in h+uw. Finally, let w′ denote the projection of aw onto hu. By
definition, t, au, w′ are pairwise orthogonal. Moreover, as K ⊆ h+u ∩ h+uw and
h+u ∩ h+uw is the union of two octants in the basis induced by t, au, w′, we find
that K is a subset of two octants in the basis induced by t, au, w′.

We now turn the insight of the structural result into an algorithm. The
algorithm consists of two phases.

In the first phase of the algorithm, we ensure that we find a maximum clique
if the cone corresponding to some maximum clique is a ray. Therefore, we iterate
over all v ∈ V (G) and find the set X of vertices u for which au spans the same ray
as av. The set X is a clique irrespective of whether G is a 30-dot product graph or
a 3+-dot product graph. We keep a maximum clique found over all choices of v.
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In the second phase of the algorithm, we ensure that we find a maximum
clique if the cone corresponding to some maximum clique is not a ray. Iterate
over all n2 ordered pairs (u,w) of the vertices of G such that au and aw do not
span the same ray. Define hu as the plane with normal au, and define huw as the
plane induced by au and aw. Consider h+u ∩h+uw (we also consider h+u ∩h−uw in a
similar way). Let t denote the normal of huw that lies in h+uw and let w′ denote
the projection of aw onto hw. Note that h+u ∩ h+uw is the union of two octants in
the basis induced by t, au, w′. As any octant induces a clique, h+u ∩h+uw induces
a co-bipartite graph H. We can find H in linear time as the graph induced by
the vertices whose corresponding vectors have positive or strictly positive dot
product with both av and t. Since H is co-bipartite, we can find a maximum
clique of H in O(n2.5) time, as it reduces to finding a maximum matching in a
bipartite graph, which takes O(n2.5) time [18]. We then keep a maximum clique
over all choices of u,w. The output of the algorithm is a largest of the two cliques
kept in the first and second phase.

Note that the algorithm runs in O(n4.5) time, as claimed. To see correctness,
let C be a maximum clique. If the cone corresponding to C is a ray, then the
algorithm considers C in the first phase, and thus outputs a clique of size |C|.
If the cone corresponding to C is not a ray, then by our structural result there
will be a choice of u,w for which u,w ∈ C and huw contains a facet of K, where
K is the cone corresponding to C. For this choice of u,w, the algorithm finds a
clique of size |C|. Hence, our algorithm outputs a maximum clique of G. ut

6 Conclusions

This paper provided the first study of algorithms that compute diversity and
clustering in social networks that are modeled as dot product graphs by solving
Independent Set and Clique on these graphs. We focussed on classical com-
plexity only, and both approximability and parameterized complexity remain
largely unexplored.

Our exploration of the complexity of Clique on d-dot product graphs leaves
further open problems. The current approach for d = 2 does not seem to extend
to d-dot product graphs for d ≥ 3, as our structural results (e.g., Lemma 2)
seem to indicate that we need to solve Clique on co-p-partite graphs for p ≥
3. However, this problem is NP-hard, as Independent Set is NP-hard on 2-
subdivisions of planar graphs (as shown in the proof of Theorem 2). Hence,
further structural insight into d-dot product graphs is needed to resolve the
complexity of Clique on these graphs.

We observe that our polynomial-time algorithms for Independent Set and
Clique on 2-dot product graphs generalize well-known polynomial-time algo-
rithms for these problems on interval graphs, because interval graphs have a
2-dot product representation [12, Theorem 21]. At the same time, we are un-
aware of any nontrivial superclasses of 2-dot product graphs, in particular for
which Independent Set and Clique are polynomial-time solvable.
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Another line of research that should be pursued is to find algorithms for
Independent Set and Clique on d-dot product graph that do not require a
representation to be given. Although for social networks the necessary data to
obtain a representation should be readily available, this is not true in general.
Given the difficulty in building a representation from the graph (see [21]), such
representation-less algorithms could prove useful, and would be interesting from
a theoretical point of view. We note that our algorithms for Clique on 2-dot
product graphs and for Independent Set on d0-dot product graphs and on
d+-dot product graphs already do not require a representation to be given.

Finally, we note that the dot product graph model of social networks might
be able to capture more problems for social networks as graph optimization
problems.
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A Counterexample for the Case d = 4

Gray and Wilson [16] showed there exist sets of four vectors in R3 and sets
of bd/2c + 3 vectors in Rd for any d ≥ 5 such that all vectors in the set have
pairwise nonnegative dot product and that no orthogonal transformation can
map all vectors of the set to the nonnegative orthant. Moreover, they showed
that for any three vectors in R3 and any four vectors in R4 that have pairwise
nonnegative dot product, there exists an orthogonal transformation that maps
all vectors to the nonnegative orthant. Note that this gives a tight upper and
lower bound for R3. We now give a tight upper bound for R4.

Proposition 1. There is a set of five vectors in R4 with pairwise nonnegative
dot product such that no orthogonal transformation can map all vectors in the
nonnegative orthant.

Proof. The idea of the proof is similar to the construction of Gray and Wilson [16]
for d ≥ 5. Consider the following five vectors:

v1 = ( 1, 1, 0, 0 )
v2 = ( 0, 0, 1, 0 )
v3 = ( 0, 0, 0, 1 )
w1 = ( −1, 2, 1, 3 )
w2 = ( 2, −1, 1, 1 )

Note that the five vectors indeed have pairwise nonnegative dot product. More-
over, v1, v2, v3 are pairwise orthogonal and w1 and w2 are orthogonal. It is crucial
to observe, however, that both w1 and w2 have positive dot product with each
of v1, v2, v3.

Suppose there is an orthogonal transformation T that maps v1, v2, v3, w1, w2

to the nonnegative orthant. Recall that orthogonal transformations preserve the
dot product between any two vectors. Hence, in particular, T (v1), T (v2), T (v3)
are pairwise orthogonal, and T (w1) and T (w2) are orthogonal. Also note that
all coordinates of T (v1), T (v2), T (v3), T (w1), T (w2) are nonnegative. If T (vi) and
T (vj) are strictly positive in the same coordinate for i, j ∈ {1, 2, 3}, i 6= j, then
their dot product is strictly positive, contradicting their orthogonality. There-
fore, at least two of T (v1), T (v2), T (v3) span a coordinate axis. Without loss of
generality, these are the third and fourth coordinate axes. Since T preserves the
value of the dot product between any two vectors, it follows from the crucial
observation above that T (w1) and T (w2) are both strictly positive in the third
and fourth coordinate. As all coordinates of both T (w1) and T (w2) are nonnega-
tive, the dot product of T (w1) and T (w2) is strictly positive, contradicting their
orthogonality. Hence, T cannot exist. ut
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