Geology

Controls on fluvial evacuation of sediment from earthquake-triggered landslides --Manuscript Draft--

Manuscript Number:	G36157R1
Full Title:	Controls on fluvial evacuation of sediment from earthquake-triggered landslides
Short Title:	fluvial residence time of coseismic landslide
Article Type:	Article
Keywords:	Wenchuan earthquake; residence time; landslide; suspended sediment
Corresponding Author:	Zhangdong Jin Institute of Earth Environment, Chinese Academy of Sciences Xi'an, Shaanxi CHINA
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Institute of Earth Environment, Chinese Academy of Sciences
Corresponding Author's Secondary Institution:	
First Author:	Jin Wang
First Author Secondary Information:	
Order of Authors:	Jin Wang
	Zhangdong Jin
	Robert Hilton
	Fei Zhang
	Alexander Densmore
	Gen Li
	A. Joshua West
Order of Authors Secondary Information:	
Manuscript Region of Origin:	CHINA
Abstract:	Large earthquakes in active mountain belts can trigger landslides which mobilize large volumes of clastic sediment. Delivery of this material to river channels may result in aggradation and flooding, while sediment residing on hillslopes may increase the likelihood of subsequent landslides and debris flows. Despite this recognition, the controls on the residence time of coseismic landslide sediment in river catchments remain poorly understood. Here we assess the residence time of fine-grained (<0.25 mm) landslide sediment mobilized by the 2008 Mw 7.9 Wenchuan earthquake, China, using daily suspended sediment discharge measured in 16 river catchments from 2006 to 2012. Following the earthquake, suspended sediment discharge was elevated 3-7 times compared to 2006-2007. However, the total 2008-2012 export (92.5 ± 9.3 Mt from 68,719 km2) was much less than estimates of fine-grained sediment input by coseismic landslides (418+437/-302 Mt) determined by landslide area-volume scaling and deposit grain-size distributions. We estimate the residence time of fine-grained export, and find it ranges from one year to over a century. The first-order variability in fine sediment residence time is proportional to the areal extent of coseismic landsliding, and is inversely proportional to the frequency of intense runoff events (>5 mm day-1). Together with previous observations from the 1999 Chi-Chi earthquake in Taiwan, our results demonstrate the importance of landslide density and runoff intensity in setting the duration of earthquake-triggered landslide impacts on river systems.
Response to Reviewers:	

- 1 Controls on fluvial evacuation of sediment from
- 2 earthquake-triggered landslides
- 3 Jin Wang^{1,2,3}, Zhangdong Jin^{1,4}*, Robert G. Hilton², Fei Zhang¹, Alexander L. Densmore^{2,5},
- 4 Gen Li⁶, and A. Joshua West⁶
- ⁵ ¹State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese
- 6 Academy of Sciences, Xi'an 710075, China
- 7 ²Department of Geography, Durham University, Durham, DH1 3LE, UK
- 8 ³University of Chinese Academy of Sciences, Beijing 100049, China
- 9 ⁴Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- ⁵Institute of Hazard, Risk and Resilience, Durham University, Durham, DH1 3LE, UK
- ⁶Department of Earth Sciences, University of Southern California, Los Angeles, California 90089,
- 12 USA
- 13 *E-mail address: zhdjin@ieecas.cn

14 ABSTRACT

Large earthquakes in active mountain belts can trigger landslides which mobilize large volumes of clastic sediment. Delivery of this material to river channels may result in aggradation and flooding, while sediment residing on hillslopes may increase the likelihood of subsequent landslides and debris flows. Despite this recognition, the controls on the residence time of coseismic landslide sediment in river catchments remain poorly understood. Here we assess the residence time of fine-grained (<0.25 mm) landslide sediment mobilized by the 2008 M_w 7.9

21	Wenchuan earthquake, China, using daily suspended sediment discharge measured in 16 river
22	catchments from 2006 to 2012. Following the earthquake, suspended sediment discharge was
23	elevated 3–7 times compared to 2006-2007. However, the total 2008-2012 export (92.5 \pm 9.3 Mt
24	from 68,719 km ²) was much less than estimates of fine-grained sediment input by coseismic
25	landslides (418+437/-302 Mt) determined by landslide area-volume scaling and deposit grain-size
26	distributions. We estimate the residence time of fine-grained sediment in the affected river
27	catchments using the post-earthquake rate of sediment export, and find it ranges from one year to
28	over a century. The first-order variability in fine sediment residence time is proportional to the
29	areal extent of coseismic landsliding, and is inversely proportional to the frequency of intense
30	runoff events (>5 mm day ⁻¹). Together with previous observations from the 1999 Chi-Chi
31	earthquake in Taiwan, our results demonstrate the importance of landslide density and runoff
32	intensity in setting the duration of earthquake-triggered landslide impacts on river systems.
33	INTRODUCTION

Large earthquakes can trigger widespread coseismic landslides which mobilize large volumes of sediment (Keefer, 1984; 1994). Landslide sediment can cause river bed aggradation, increasing the frequency and magnitude of floods (e.g. Korup et al., 2004) and affect water resources and hydro-electric power generation (Glade and Crozier, 2005). Export of sediment mobilized by coseismic landslides also governs the role of earthquakes in landscape evolution (Hovius et al., 2011; Li et al., 2014). Despite this recognition, the timescales over which earthquake-landslide sediment impacts river catchments remain poorly constrained. Examples

41	from Papua New Guinea, New Zealand and Japan have provided estimates of the time required to
42	remove coseismic landslide sediment from catchments, termed here the 'residence time', that
43	range from <1 year to >50 years (Pain and Bowler, 1973; Pearce and Watson, 1986; Koi et al.,
44	2008; Howarth et al., 2012). In Taiwan, intense precipitation associated with tropical cyclones
45	after the 1999 $M_{\rm w}$ 7.6 Chi-Chi earthquake led to greatly enhanced sediment export and the return
46	of suspended sediment loads to pre-earthquake levels within ~6 years (Dadson et al., 2004;
47	Yanites et al., 2010; Hovius et al., 2011; Huang and Montgomery, 2012). However, we lack a
48	holistic view of what controls the residence time of earthquake-mobilized sediment across events
49	and river catchments, necessary to better manage earthquake hazards (Keefer, 1994; Huang and
50	Fan, 2013) and to understand landscape evolution (Li et al., 2014).
51	Here we examine the impact of the 2008 M_w 7.9 Wenchuan earthquake, which triggered
52	more than 57,150 landslides in the Longmen Shan, China (Li et al., 2014), on three major river
53	catchments (Min Jiang, Tuo Jiang, and Fu Jiang) (Fig. 1). The earthquake provides insight due to:
54	i) the large spatial gradients in coseismic landsliding (Li et al., 2014) and ii) the variable climate
55	and therefore the variable sediment transport conditions across the impacted area (Liu-Zeng et al.,
56	2011). These factors allow us to assess the relative importance of sediment supply and fluvial
57	transport capacity in setting the residence time of earthquake-mobilized sediment. The Wenchuan
58	earthquake occurred along the Beichuan and Pengguan faults at the eastern margin of the Tibetan
59	Plateau (Xu et al., 2009), where the regional climate is dominated by the East Asian and Indian
60	summer monscopes. Appual precipitation is $600-1,100$ mm yr ⁻¹ with $70-80\%$ of rainfall between

61	May and October (Liu-Zeng et al., 2011). Coseismic landslides mobilized ~ $2.8+0.9/-0.7$ km ³ of
62	clastic sediment in the three major river basins (Li et al., 2014). Using a data set of unprecedented
63	temporal resolution, we examine the immediate (daily to weekly) and longer-term (years to
64	decades) impacts of earthquake-triggered landslides on river suspended loads and assess the
65	controls on fine-grained sediment residence time.
66	MATERIALS AND METHODS
67	Daily water discharge (Q_w , m ³ s ⁻¹) and daily suspended sediment concentration (SSC, mg
68	L ⁻¹) were measured at 16 gauging stations of the Chinese Bureau of Hydrology from 2006 to 2012
69	(Table DR1 in the GSA Data Repository ¹). Ten stations are located downstream of heavily
70	landslide-impacted areas (Li et al., 2014), where landslide areal density ρ_{ls} (the fraction of area
71	affected by landslide scars) reach > 1%. Six stations have lower ρ_{ls} (Fig. 1). SSC samples were
72	collected up to 8 times per day, depending upon water level variations, with a depth-integrated
73	sampler along 5–10 vertical profiles (Ministry of Water Resources of China, 2007). Samples were
74	filtered through 0.7 μ m paper filters, and the sediment was dried and weighed. The grain size
75	distribution was measured on selected samples. Daily suspended sediment discharge (SSC $\times Q_w$)
76	was summed to quantify annual suspended sediment discharge, Q_{ss} (Mt yr ⁻¹). Uncertainties on
77	SSC were estimated using the standard deviation of daily repeat SSC measurements at the
78	Sangping station and were propagated into estimates of Q_{ss} (Table DR2). Before and after the
79	earthquake, 97% of suspended sediment was transported between May and October during
80	monsoonal rainfall (Fig. DR1). During winter, some rivers have very low Q_w and SSC, so 10 of 16

81	stations only measured SSC from April or May to October. Only measured samples were used to
82	quantify annual suspended discharge.
83	Estimates of landslide sediment volume (V_{ls} , m ³) in each catchment were taken from Li et
84	al. (2014), who mapped the areas (A_{ls} , m ²) of coseismic landslides. Total V_{ls} was estimated using a
85	power law relationship between A_{ls} and V_{ls} (Guzzetti et al., 2009; Larsen et al., 2010), with a
86	coefficient (α) and exponent (γ) derived from field measurements of 41 landslides within the
87	Longmen Shan (Parker et al., 2011; Li et al., 2014). The uncertainties on the total volume of the
88	57,150 landslides were determined by Monte Carlo simulation taking errors on α and γ into
89	account (Li et al., 2014). To compare landslide inputs to suspended load Q_{ss} , we used a
90	compilation of grain size measurements from 33 sites across 9 landslide deposits in the major river
91	basins (Table DR3). Across these sites, the average weight percent of material <0.25 mm in
92	diameter was $6.6 \pm 4.4\%$ ($\pm 1\sigma$), which we use to estimate fine sediment volume and its likely
93	variability in the landscape.

94 FLUVIAL RESPONSE TO THE WENCHUAN EARTHQUAKE

The three major rivers draining the impacted area experienced an increase in Q_{ss} following the earthquake (Fig. 1). At the most downstream gauging stations, post-earthquake Q_{ss} was ~3 to ~7 times higher than in 2006-2007 (Fig. 1). These increases are similar to those in Taiwan rivers impacted by the 1999 Chi-Chi earthquake (Dadson et al., 2004; Hovius et al., 2011). In contrast to the elevated post-earthquake Q_{ss} values (Fig. 1), changes in annual water discharge were relatively minor (Fig. DR2). The enhanced Q_{ss} is consistent with observations of dilution of ¹⁰Be

101	concentrations in detrital quartz in some of the studied catchments (West et al., 2014). Input of
102	¹⁰ Be-depleted landslide material is thought to be responsible for a decrease in detrital ¹⁰ Be of river
103	sediments (0.25-1 mm) and suggest that sediment discharge increased ~2 to ~9 times in the 2 years
104	following the earthquake (West et al., 2014).
105	The daily measurements also reveal the immediate fluvial response to the earthquake and
106	its aftershocks. At Sangping station on the Zagunao River (drainage area 4,600 km ² , ρ_{ls} ~0.3%;
107	Table DR1), SSC 18 h after the earthquake $(1,532 \text{ mg L}^{-1})$ was 57 times higher than that measured
108	6 h before the earthquake (27 mg L ⁻¹), while Q_w remained roughly constant (Fig. 2A). This
109	immediate response is consistent with delivery of some fine-grained coseismic landslide sediment
110	directly to rivers. SSC then decreased over ~10 days while Q_w was relatively invariant, indicating
111	removal of available sediment from the banks and bed of the active river channel (Fig. 2A).
112	Three measurements depart significantly from this pattern (Fig. 2A). First, higher SSC
113	values on 14/05/2008 (1,756 mg L^{-1}) and 15/05/2008 (2,652 mg L^{-1}) were measured within 24 h of
114	the first large aftershock occurred within 20 km of the gauging station (M_w 5.4, 10:54 on
115	14/05/2008; USGS, 2013). Then, SSC doubled (from 796 to 1,347 mg L ⁻¹) between 08:00 and
116	20:00 on 16/05/2008, coincident with an M_w 5.6 aftershock (13:26 on 16/05/2008; USGS, 2013)
117	which occurred 26 km from the station. We tentatively link these aftershocks to the further supply
118	of fine-grained sediment to the river channel, through either new landslides or remobilization of
119	loose material.

120	The Q_{ss} at Sangping over the 10 days following the earthquake (Fig. 2A) was 0.09 ± 0.02
121	Mt, much less than the estimated fine-grained landslide inputs of 10+12/-8 Mt upstream of the
122	station. Therefore, to elucidate the longer-term pattern of sediment export, we use two sets of
123	nested gauging stations upstream and downstream of the landslide-affected area (Fig. 1). To
124	average over short-term variability (e.g. Fig. 2A), we sum Q_{ss} over half-year time intervals and
125	calculate the 'downstream sediment gain', the ratio of downstream to upstream Q_{ss} . After the
126	earthquake, downstream sediment gain increased by ~4 times in the Zagunao River along a 55 km
127	reach with ρ_{ls} ~0.3% (Fig. 2B), and increased by ~12 times in the Fu Jiang along a 105 km reach
128	with $\rho_{ls} \sim 0.6\%$ (Fig. 2C). In both locations, downstream water gain showed no change after the
129	earthquake (Fig. DR3).
130	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described
130 131	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the
130 131 132	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the suspended sediment loads would return to pre-earthquake levels in 6 ± 1 years, similar to estimates
 130 131 132 133 	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the suspended sediment loads would return to pre-earthquake levels in 6 ± 1 years, similar to estimates following the Chi-Chi earthquake in Taiwan (Hovius et al., 2011). In contrast, in the Zagunao
 130 131 132 133 134 	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the suspended sediment loads would return to pre-earthquake levels in 6 ± 1 years, similar to estimates following the Chi-Chi earthquake in Taiwan (Hovius et al., 2011). In contrast, in the Zagunao River the post-earthquake decline in downstream sediment gain within the 4 years of our data set is
 130 131 132 133 134 135 	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the suspended sediment loads would return to pre-earthquake levels in 6 ± 1 years, similar to estimates following the Chi-Chi earthquake in Taiwan (Hovius et al., 2011). In contrast, in the Zagunao River the post-earthquake decline in downstream sediment gain within the 4 years of our data set is less clear (Fig. 2B). In this case, a power-law curve does not describe the trend well ($r^2 = 0.39$), and
 130 131 132 133 134 135 136 	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the suspended sediment loads would return to pre-earthquake levels in 6 ± 1 years, similar to estimates following the Chi-Chi earthquake in Taiwan (Hovius et al., 2011). In contrast, in the Zagunao River the post-earthquake decline in downstream sediment gain within the 4 years of our data set is less clear (Fig. 2B). In this case, a power-law curve does not describe the trend well ($r^2 = 0.39$), and the data suggest that elevated suspended load may persist for longer than in the Fu Jiang. To better
 130 131 132 133 134 135 136 137 	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the suspended sediment loads would return to pre-earthquake levels in 6 ± 1 years, similar to estimates following the Chi-Chi earthquake in Taiwan (Hovius et al., 2011). In contrast, in the Zagunao River the post-earthquake decline in downstream sediment gain within the 4 years of our data set is less clear (Fig. 2B). In this case, a power-law curve does not describe the trend well ($r^2 = 0.39$), and the data suggest that elevated suspended load may persist for longer than in the Fu Jiang. To better understand the fluvial response to the earthquake, we examine all catchments in the Longmen
 130 131 132 133 134 135 136 137 138 	Post-earthquake decline in the downstream sediment gain for the Fu Jiang can be described by a power-law function of time ($r^2 = 0.94$) (Fig. 2C). This declining trend suggests that the suspended sediment loads would return to pre-earthquake levels in 6 ± 1 years, similar to estimates following the Chi-Chi earthquake in Taiwan (Hovius et al., 2011). In contrast, in the Zagunao River the post-earthquake decline in downstream sediment gain within the 4 years of our data set is less clear (Fig. 2B). In this case, a power-law curve does not describe the trend well ($r^2 = 0.39$), and the data suggest that elevated suspended load may persist for longer than in the Fu Jiang. To better understand the fluvial response to the earthquake, we examine all catchments in the Longmen Shan and consider both the coseismic landslide sediment input and the climatic setting of each

140 **RESIDENCE TIME OF EARTHQUAKE-MOBILIZED SEDIMENT**

141	Over the Longmen Shan, the mean annual Q_{ss} following the earthquake (2008–2012) was
142	18.5 ± 7.4 Mt yr ⁻¹ (±1 σ). Deducting an estimate of the background Q_{ss} (2006–2007, 4.2 ± 2.6 Mt
143	yr ⁻¹), the excess Q_{ss} attributable to the earthquake was 14.3 ± 7.8 Mt yr ⁻¹ (Table DR1). Most
144	(>95%) of this mass is fine sediment, <0.25 mm (Fig. DR4). In contrast, $2.4+1.9/-0.7$ km ³ of
145	sediment was mobilized by earthquake-triggered landslides (Li et al., 2014), equating to
146	6329+5097/-1787 Mt (assuming a solid density of 2.65×10^3 kg m ⁻³). Of this sediment, available
147	data suggests that 6.6 \pm 4.4% has a grain size of <0.25 mm (Table DR3). Acknowledging the
148	uncertainty on these estimates, we estimate a total supply of fine (<0.25 mm) landslide sediment of
149	418+437/-302 Mt.
150	Across the Longmen Shan, at the present rate of post-earthquake fluvial export, we
151	estimate that it will take 29+30/-21 years to remove all material <0.25 mm delivered by coseismic
152	landslides (Table DR1). This estimate does not consider a decline in Q_{ss} over time (Fig. 2C) and so
153	provides a lower bound on residence time. Estimates of fine sediment residence time in individual
154	catchments range from $1.0+1.6/-0.9$ to $77+109/-65$ yr, with an extreme value of $190+528/-186$ yr
155	(Table DR1). The residence time estimated from Fujiangqiao station (5+8/-4 yr) is consistent with
156	the estimate made from the decline of sediment load in this catchment of 6 ± 1 yr (Fig. 2C).
157	CONTROLS ON SEDIMENT RESIDENCE TIME

158 The estimated residence times of fine-grained coseismic landslide sediment in the

159 Longmen Shan span the range estimated from previous earthquakes (Pain and Bowler, 1973;

160	Pearce and Watson, 1986; Koi et al., 2008, Hovius et al., 2011; Howarth et al., 2012). Here we
161	assess the controls on this variability. For a given catchment hydrological regime and transport
162	capacity, an increase in sediment supply should increase the residence time of that sediment
163	(Pearce and Watson, 1986; Benda and Dunne, 1997; Yanites et al., 2010). The data from the
164	Longmen Shan are broadly consistent with this hypothesis: catchments with low coseismic
165	landslide density ($\rho_{ls} < 0.2\%$) generally have shorter fine sediment residence times than those with
166	$\rho_{ls} > 0.6\%$ (Fig. 3), assuming that V_{ls} scales with A_{ls} . However, this only partly explains the
167	variability between catchments.
168	In the Longmen Shan, the contribution of intense runoff events (daily Q_w normalized by
169	catchment area) varies between catchments (Fig. DR5). The proportion of total catchment runoff
170	delivered by daily flows >5 mm day ⁻¹ varies from 0 to 66% across the study area (Table DR1). For
171	a given landslide density, a higher proportion of intense runoff leads to a shorter fine sediment
172	residence time (Fig. 3), likely due to a combination of increased river transport capacity and
173	enhanced mobilization of sediment from existing deposits (Benda and Dunne, 1997; Dadson et al.,
174	2004). In addition, heavy rainfall can trigger landslides on earthquake-weakened slopes (Dadson
175	et al., 2004). The very long fine residence time in Santai (187+510/-153 yr) is more than double
176	any other catchment and cannot be well explained by runoff intensity and ρ_{ls} alone. There, the very
177	long residence time may reflect large individual landslides that contribute significant volumes of
178	sediment but limited total landslide area (Fig. DR6). The additional variability (Fig. 3) may be due
179	to secondary factors (e.g. spatial variability in landslide connectivity, channel order, channel

180	gradients, channel length, and anthropogenic activities) which can moderate Q_{ss} (Benda and
181	Dunne, 1997). The scatter also reflects the uncertainty in the quantification of residence time,
182	derived mainly from uncertainty in the volume of fine sediment from landslides and its grain size.
183	Nevertheless, our data suggest that runoff intensity plays a crucial role in regulating the residence
184	time of fine sediment mobilized by a major earthquake (Fig. 3).
185	WIDER IMPLICATIONS
186	Our analysis can explain the relatively short residence time of fine sediment after the 1999
187	$M_{\rm w}$ 7.6 Chi-Chi earthquake in Taiwan (Hovius et al., 2011) as compared with the range of
188	responses in the Longmen Shan catchments (Fig. 3). In Taiwan, 11 large tropical cyclones in
189	1999-2007 each delivered the annual runoff of the Longmen Shan (~0.4–0.7 m, ~1–2 km ³ of
190	water) over a period of 10–30 days (Hovius et al., 2011). This intense runoff delivery is reflected in
191	the Chenyoulan catchment, where $\sim 60\%$ of the annual runoff is delivered by events with >5 mm
192	day ⁻¹ , higher than any catchment impacted by Wenchuan earthquake (Figs. 3 and DR5). These
193	cyclones triggered additional post-seismic landslides (Dadson et al., 2004). Despite this additional
194	sediment input, suspended sediment loads returned to pre-earthquake levels in ~6 yr. The
195	short-lived fluvial influence of Chi-Chi landslide sediment can thus be attributed to intense
196	precipitation during tropical cyclones, which enables the rapid erosion, transport and export of
197	landslide-mobilized sediment. These observations are also consistent with lake records of fine
198	sediment accumulation driven by earthquakes on the Alpine Fault, New Zealand. There, enhanced
199	sediment export from catchments appears to last for ~50 yr following earthquakes (Howarth et al.,

200	2012). While total runoff is high in the western Southern Alps, it is delivered at a lower intensity
201	than in Taiwan (Dadson et al., 2004; Hovius et al., 2011).
202	Our results suggest that the combination of coseismic landslide density and the frequency
203	of intense runoff events appears to govern, to first order, the residence time of fine-grained
204	sediment (Fig. 3). This may also be the case for coarser sediment, but it is not straightforward to
205	extend our analysis to coarse-grained landslide material transported as bed load (Pearce and
206	Watson, 1986; Korup et al., 2004) which can reside in catchments for much longer periods of time
207	(Benda and Dunne, 1997; Yanites et al., 2010; Huang and Montgomery, 2012). Nevertheless, river
208	catchments with high coseismic landslide density and infrequent high runoff events may have long
209	memories of large earthquakes (Fig. 3), posing a significant challenge to hazard management
210	(Huang and Fan, 2013).
211	ACKNOWLEDGMENTS
212	This research was funded by the 973 program (2013CB956402) to Z.J., NSFC grants
213	and CAS YIS Fellowships to A.J.W. and R.G.H., a U.S. NSF Grant (EAR/GLD 1053504) to
214	A.J.W., and a Royal Society Grant (RG110569) to R.G.H. We thank Y. Peng, F. Li, and Q.
215	Zhang for assistance in the data collection and A. Galy, P. Molnar, R. Parker and J. Yu for
216	discussions during manuscript preparation. J. Spotila, D. Lague, I. Larsen and three
217	anonymous referees are thanked for their insightful comments which improved the manuscript.
218	REFERENCES CITED

219	Benda, L., and Dunne, T., 1997, Stochastic forcing of sediment supply to channel networks from
220	landsliding and debris flow: Water Resources Research, v. 33, p. 2849–2863,
221	doi:10.1029/97WR02388.
222	Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, JC., Hsu, ML., Lin, CW., Horng, MJ.,
223	Chen, TC., Milliman, J., and Stark, C.P., 2004, Earthquake-triggered increase in sediment
224	delivery from an active mountain belt: Geology, v. 32, p. 733–736, doi:10.1130/G20639.1.
225	Glade, T., and Crozier, M.J., 2005, The nature of landslide hazard impact, in Glade, T., Anderson,
226	M., and Crozier, M.J., eds., Landslide Hazard and Risk: Chichester, John Wiley & Sons, Ltd,
227	p. 41–74.
228	Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D., 2009, Landslide volumes and
229	landslide mobilization rates in Umbria, central Italy: Earth and Planetary Science Letters,
230	v. 279, p. 222–229, doi:10.1016/j.epsl.2009.01.005.
231	Hovius, N., Meunier, P., Lin, CW., Chen, H., Chen, YG., Dadson, S., Horng, MJ., and Lines,
232	M., 2011, Prolonged seismically induced erosion and the mass balance of a large earthquake:
233	Earth and Planetary Science Letters, v. 304, p. 347–355, doi:10.1016/j.epsl.2011.02.005.
234	Howarth, J.D., Fitzsimons, S.J., Norris, R.J., and Jacobsen, G.E., 2012, Lake sediments record
235	cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand:
236	Geology, v. 40, p. 1091-1094, doi:10.1130/G33486.1.

- Huang, M.Y.-F., and Montgomery, D.R., 2012, Fluvial response to rapid episodic erosion by
- 238 earthquake and typhoons, Tachia River, central Taiwan: Geomorphology, v. 175–176, p.
- 239 126-138, doi:10.1016/j.geomorph.2012.07.004.
- Huang, R., and Fan, X., 2013, The landslide story: Nature Geoscience, v. 6, p. 325–326,
- 241 doi:10.1038/ngeo1806.
- 242 Keefer, D.K., 1984, Landslides caused by earthquakes: Geological Society of America Bulletin,
- 243 v. 95, p. 406–421, doi:10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2.
- 244 Keefer, D.K., 1994, The importance of earthquake-induced landslides to long-term slope erosion
- and slope-failure hazards in seismically active regions: Geomorphology, v. 10, p. 265–284,
- 246 doi:10.1016/0169-555X(94)90021-3.
- 247 Koi, T., Hotta, N., Ishigaki, I., Matuzaki, N., Uchiyama, Y., and Suzuki, M., 2008, Prolonged
- 248 impact of earthquake-induced landslides on sediment yield in a mountain watershed: The
- 249 Tanzawa region, Japan: Geomorphology, v. 101, p. 692–702,
- doi:10.1016/j.geomorph.2008.03.007.
- 251 Korup, O., McSaveney, M.J., and Davies, T.R.H., 2004, Sediment generation and delivery from
- large historic landslides in the Southern Alps, New Zealand: Geomorphology, v. 61, p. 189–
- 253 207, doi:10.1016/j.geomorph.2004.01.001.
- Larsen, I.J., Montgomery, D.R., and Korup, O., 2010, Landslide erosion controlled by hillslope
- 255 material: Nature Geoscience, v. 3, p. 247–251, doi:10.1038/ngeo776.

- Li, G., West, A.J., Densmore, A.L., Jin, Z., Parker, R.N., and Hilton, R.G., 2014, Seismic
- 257 mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context
- 258 of a generalized model for earthquake volume balance: Geochemistry Geophysics
- 259 Geosystems, v. 15, p. 833–844, doi:10.1002/2013GC005067.
- 260 Liu-Zeng, J., Wen, L., Oskin, M., and Zeng, L., 2011, Focused modern denudation of the
- 261 Longmen Shan margin, eastern Tibetan Plateau: Geochemistry Geophysics Geosystems,
- 262 v. 12, Q11007, doi:10.1029/2011GC003652.
- 263 Ministry of Water Resources of China, 2007, Code for Measurements of Suspended Sediment in
- 264 Open Channels (GB50159–92): Beijing, China Planning Press (in Chinese).
- 265 Pain, C., and Bowler, J., 1973, Denudation following the November 1970 earthquake at Madang,
- 266 Papua New Guinea: Zeitschrift fur Geomorphologie, v. 18, supplement, p. 92–104.
- 267 Parker, R.N., Densmore, A.L., Rosser, N.J., de Michele, M., Li, Y., Huang, R., Whadcoat, S., and
- 268 Petley, D.N., 2011, Mass wasting triggered by the 2008 Wenchuan earthquake is greater than
- 269 orogenic growth: Nature Geoscience, v. 4, p. 449–452, doi:10.1038/ngeo1154.
- 270 Pearce, A.J., and Watson, A.J., 1986, Effects of earthquake-induced landslides on sediment budget
- and transport over a 50-yr period: Geology, v. 14, p. 52–55,
- 272 doi:10.1130/0091-7613(1986)14<52:EOELOS>2.0.CO;2.
- 273 USGS, U.S. Geological Survey Earthquake Hazards Program:
- http://earthquake.usgs.gov/earthquakes/map/, (accessed August 2013).

275	West, A.J., Hetzel, R., Li, G., Jin, Z., Zhang, F., Hilton, R.G., and Densmore, A.L., 2014, Dilution
276	of Be-10 in detrital quartz by earthquake-induced landslides: Implications for determining
277	denudation rates and potential to provide insights into landslide sediment dynamics: Earth and
278	Planetary Science Letters, v. 396, p. 143–153, doi:10.1016/j.epsl.2014.03.058.
279	Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., and Shaw, J., 2009, Coseismic
280	reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan
281	earthquake, China: Geology, v. 37, p. 515–518, doi:10.1130/G25462A.1.
282	Yanites, B.J., Tucker, G.E., Mueller, K.J., and Chen, Y.G., 2010, How rivers react to large
283	earthquakes: Evidence from central Taiwan: Geology, v. 38, p. 639-642,
284	doi:10.1130/G30883.1.
285	FIGURE CAPTIONS
286	Figure 1. Major rivers impacted by the 2008 $M_{\rm w}$ 7.9 Wenchuan earthquake in the Longmen Shan,
287	China (Min Jiang, Fu Jiang, and Tuo Jiang). River gauging stations used in this study are shown as
288	circles. Nested gauging stations shown in Figure 2B and 2C are highlighted in yellow. Catchment
289	color reflects the ratio of mean annual suspended sediment discharge (Q_{ss} , Mt yr ⁻¹) after the
290	earthquake to that prior to the earthquake. Contours show landslide areal density $\rho_{ls}\left(\%\right)$ calculated
291	as the proportion of total area mapped as landslides (Li et al., 2014). Columns show the
292	background Q_{ss} (white) and post-earthquake Q_{ss} (red).

- 293 Figure 2. Fluvial response to the 2008 Wenchuan earthquake. A. Suspended sediment
- 294 concentration (SSC) measurements from the Zagunao River (Sangping station) in May 2008

295	before (gray circles) and after (red circles) the earthquake (red dashed line) and those taken shortly
296	after aftershocks (blue dashed lines) within ~20 km of the gauging station (blue circles). Solid red
297	line ($r^2 = 0.51$) is linear least-square best fit to the SSC data from 13 to 22 May. Daily water
298	discharge normalized to the 2006-2011 average (Q_w/Q_{mean}) is shown as thicker solid line (gray). B.
299	Downstream sediment gain on the Zagunao River - the ratio of downstream (Sangping station) to
300	upstream (Zagunao station) Q_{ss} (Fig. 1). C. Downstream sediment gain on the Fu Jiang – the ratio
301	of downstream (Fujiangqiao) to upstream (Pingwu) Q_{ss} . The dashed line is the best-fit power-law
302	fit with 95% confidence intervals shown by dotted lines. On all panels whiskers show uncertainties
303	(1σ) if larger than the point size.
304	Figure 3. Estimates of fine (<0.25 mm) coseismic landslide sediment residence time in river
305	catchments impacted by the Wenchuan earthquake (circles), plotted as a function of the proportion
306	of catchment runoff delivered by intense flows (> 5 mm day ⁻¹) from May 2008 to Dec 2012.
307	Shading of points reflects the upstream landslide areal density (%). Whiskers show propagated
308	uncertainties of residence time of fine grained sediment. Star indicates comparable estimate from
309	the 1999 Chi-Chi earthquake, Taiwan (Hovius et al., 2011).
310	¹ GSA Data Repository item 2014xxx, Figures DR1-6, Tables DR1-3 and Supplementary
311	Information, is available online at www.geosociety.org/pubs/ft2014.htm, or on request from
312	editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

1	GSA DATA REPOSITORY

- ² Controls on fluvial evacuation of sediment from
- ³ earthquake-triggered landslides
- 4 Jin Wang^{1,2,3}, Zhangdong Jin^{1,4}*, Robert G. Hilton², Fei Zhang¹, Alexander L.
- 5 Densmore^{2,5}, Gen Li⁶, and A. Joshua West⁶
- ⁶ State Key Laboratory of Loess and Quaternary Geology, Institute of Earth
- 7 Environment, Chinese Academy of Sciences, Xi'an 710075, China
- 8 ² Department of Geography, Durham University, Durham, DH1 3LE, UK
- ³ University of Chinese Academy of Sciences, Beijing 100049, China
- ⁴ Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049,
- 11 China
- ⁵ Institute of Hazard, Risk and Resilience, Durham University, Durham, DH1 3LE,
- 13 *UK*
- ⁶ Department of Earth Sciences, University of Southern California, Los Angeles, CA
- 15 *90089, USA*
- 16
- 17
- 18
- 19
- 20
- 21
- 22

23 Grain Size Distribution of Landslide Deposits

In this study, we use published measurements of the grain size distribution of 24 25 landslide deposits formed during the 2008 Wenchuan earthquake (Table DR3) (Wang et al., 2011; Chen et al., 2012; Wang et al., 2012; Zhuang et al., 2012; Wang et al., 26 27 2013; Yu et al., 2013). Full details of methods can be found in these publications. Here, for summary, the procedure described by Wang et al. (2013) is provided. The 28 grain size distribution of landslide sediment was analyzed by sieving and photography 29 at 11 locations on the Tianchi landslide dam deposit. The area ratio of large grains 30 31 with φ >40 mm was measured by means of particle digital image analysis, using vertical photographs that were taken from a height of approximately 1.5 m above the 32 ground surface. All visible individual grains >4.75 mm were outlined on the 33 34 photographs, with the intermediate (b-axis) diameter and the cross-sectional area determined for each grain. For grains <4.75 mm, a 10 kg sample of \leq 50 mm sediment 35 was collected from each site and was sieved upon return to the laboratory. ASTM 36 37 standards sieve series were utilized for this task. Assuming that the sediment has the same density, the weight percentages of grains with different grain sizes were 38 calculated. 39

40 Grain Size Distribution of Suspended Sediments

The grain size distributions of suspended sediments were determined from samples collected from the three main rivers in the study area on the Min Jiang (Zhenjiangguan station), Tuo Jiang (Dengyingyan station) and Fu Jiang (Fujiangqiao station) (Fig. 1). The analyses were undertaken by the methods described in detail by

45	Guy (1969) and the Ministry of Water Resources of China (2005) and a summary is
46	provided here. A depth-integrated and channel averaged suspended sediment sample
47	was collected. Calgon solution was added to disperse and disaggregate clay particles
48	and the sample was sieved at 0.063 mm. The >0.063 mm fraction was oven-dried at
49	100°C and the grain size distribution was determined by dry sieving at 2 mm, 1 mm,
50	0.5 mm, 0.25 mm and 0.125 mm. The <0.063 mm fraction was transferred to a 1 L $$
51	graduated cylinder and was mixed for one minute until homogenized. Immediately
52	after, 25 mL water was pipetted from the middle of cylinder to determine the total
53	suspended load. Based on the predictable relationship between particle grain size and
54	settling velocity in a fluid medium, the time and depth of subsequent pipette aliquots
55	was determined on the basis of the Stokes law (e.g. for 25° C, time = 1'43", D = 0.031
56	mm; time = 6'26", D = 0.016 mm; time = 25'45", D = 0.008 mm; time = 1h 43', D = $\frac{1}{2}$
57	0.004 mm). The pipetted samples were dried and weighed.

Station	River	Area	Runoff	Proportion >5	$Q_{ m ss-pre}$	$Q_{ m ss-post}$	Landslide	Landslide	Landslide input	$M_{ m fines}$	T_{fines}
		(km ²)	(mm yr ⁻¹)	mm day $^{-1}$ (%)	(Mt yr ⁻¹)	(Mt yr ⁻¹)	area (km ²)	density (%)	(Mt)	(Mt)	(yr)
Zhenjiangguan	Min J.	4,486	350±76	1.3	0.46 ± 0.05	0.64 ± 0.06	*	*	*	*	-
Heishui	Min J.	1,720	773±84	21.0	0.30±0.03	0.30±0.03	0.05	< 0.01	0.5+0.7/-0.3	0.03+0.05/-0.03	11+16/-10
Shaba	Min J.	7,231	543±81	5.4	1.55±0.16	0.77 ± 0.08	0.23	< 0.01	2.1+2.0/-0.9	0.14+0.16/-0.11	-
Zagunao	Min J.	2,404	808±83	17.5	0.65 ± 0.07	0.53±0.05	5.53	0.22	69+97/-40	5+7/-4	-
Sangping	Min J.	4,629	673±74	8.9	0.83 ± 0.08	1.06±0.11	12.3	0.27	153+150/-63	10+12/-8	44+52/-34
Guojiaba	Min J.	555	663±184	48.7	0.10 ± 0.01	0.57±0.06	9.71	1.71	84+101/-46	5+8/-5	12+16/-10
Dujiang	Min J.	22,947	349±32	0	$0.39{\pm}0.04$	2.12±0.21	163	0.71	2018+2529/-1039	133+189/-112	77+109/-65
Pingwu	Fu J.	4,310	764±121	13.7	1.38±0.14	2.60±0.26	5.02	0.12	85+147/-53	6+10/-5	5+9/-4
Jiangyou	Fu J.	5,915	515±93	17.2	1.59±0.16	2.27±0.23	8.37	0.14	125+158/-58	8+12/-7	12+17/-10
Ganxi	Fu J.	1,067	509±102	29.6	0.28±0.03	1.36±0.14	1.44	0.14	17+23/-10	1.1+1.7/-1.0	1.0+1.6/-0.9
Fujiangqiao	Fu J.	11,903	644±105	23.3	3.10±0.31	14.50±1.45	52.5	0.45	800+1282/-486	53+92/-48	5+8/-4
Zitong	Fu J.	1,547	512±196	66.0	0.27±0.03	0.73±0.07	*	*	*	*	-
Santai	Fu J.	2,343	442±114	33.2	0.07 ± 0.01	0.47 ± 0.05	20.2	0.79	1131+3056/-816	75+208/-73	190+528/-186
Pengshan	Min J.	30,661	372±82	8.9	1.09±0.11	4.14±0.41	172	0.56	2125+2534/-1040	140+192/-116	46+63/-38
Dengyingyan	Tuo J.	14,484	583±113	25.3	1.61±0.16	4.58±0.46	109	0.74	1789+2933/-1096	118+209/-107	40+70/-36
Shehong	Fu J.	23,574	480±87	25.0	1.46±0.15	9.78±0.98	109	0.47	2415+3386/-991	159+247/-125	19+30/-15
Total	-	68,719	478±126	-	4.56±0.46	18.50±1.85	390	0.57	6329+5097/-1787	418+437/-302	29+30/-21

Table DR1. Landslide input and suspended sediment discharge of sixteen gauging stations along the Longmen Shan.

59 *Negligible landslide coverage.

60 The runoff is based on the time period of 2006-2012 except Sangping station (2006-2011). Q_{ss-pre} and $Q_{ss-post}$ are the average annual suspended sediment discharges before (2006-2007) and after (2008-2012) the

61 earthquake, respectively. *M*_{fines} (Mt) is the estimated mass of landslide material with a grain size < 0.25 mm, which accounts for 4-9% of the total landslide mass. *T*_{fines} (yr) is the estimated time necessary for rivers to

62 remove all M_{fines} based on the post-earthquake removal rates.

_	Year	n	Standard Deviation (%)	Standard Error (%)		
	2006	113	12.6	5.1		
	2007	112	12.3	5.8		
	2008	158	6.1	3.3		
	2009	117	8.1	4.6		
	total	500	10.1	4.9		
64	n is th	e num	ber of days with more	than one SSC measurement	. The standard	deviation and
65	standar	d error	are reported as a percent	tage of the mean SSC.		
66						
67						
68						
69						
70						
71						
72						
73						
74						
75						
76						
77						
78						
79						
80						
81						
82						
83						
84						
85						
86						
87						
88						
89						
90						
91						
92						
93						
94						
95						
96						
97						
98						
99						
100						

Table DR2. Uncertainty of suspended-sediment discharge at the Sangping station. 63

101 7	Table DR3.	Proportion	of grains	<0.25 mm	n from	deposits	of landslides	triggered	l by the	Wenchuan
-------	------------	------------	-----------	----------	--------	----------	---------------	-----------	----------	----------

102

Site	Catchment	Weight % <0.25 mm	Reference
Xiaojiagou, Yingxiu S1	Min Jiang	3.0%	1
Xiaojiagou, Yingxiu S2	Min Jiang	6.0%	1
Xiaojiagou, Yingxiu S3	Min Jiang	3.0%	1
Xiaojiagou, Yingxiu S4	Min Jiang	3.0%	1
Xiaojiagou, Yingxiu S5	Min Jiang	3.0%	1
Xiaojiagou, Yingxiu S6	Min Jiang	3.0%	1
Xiaojiagou, Yingxiu S7	Min Jiang	3.0%	1
Xiaojiagou, Yingxiu S8	Min Jiang	5.0%	1
Niuquangou - a	Min Jiang	8.2%	2
Niuquangou - b	Min Jiang	7.0%	2
Niuquangou - c	Min Jiang	10.3%	2
Xiejiadianzi - a	Tuo Jiang	6.4%	2
Xiejiadianzi - b	Tuo Jiang	5.1%	2
Xiejiadianzi - c	Tuo Jiang	6.0%	2
Xiejiadianzi - d	Tuo Jiang	1.2%	2
Wenjiagou - a	Tuo Jiang	5.3%	2
Wenjiagou - b	Tuo Jiang	2.8%	2
Wenjiagou - c	Tuo Jiang	8.8%	2
Wenjiagou - d	Tuo Jiang	2.6%	2
Mianyuan River, p6	Tuo Jiang	3.8%	3
Mianyuan River, p9	Tuo Jiang	5.2%	3
Mianyuan River, p7	Tuo Jiang	7.4%	3
Mianyuan River, p11	Tuo Jiang	9.6%	3
Mianyuan River, p5	Tuo Jiang	10.8%	3
Mianyuan River, p10	Tuo Jiang	13.4%	3
Wenjiagou, site 1	Tuo Jiang	2.0%	4
Wenjiagou, site 2	Tuo Jiang	22.9%	4
Shiting River	Tuo Jiang	6.1%	5
Qingzhu River	Fu Jiang	4.3%	5
Weijiagou, site 1	Fu Jiang	6.1%	6
Weijiagou, site 2	Fu Jiang	6.7%	6
Weijiagou, site 3	Fu Jiang	8.7%	6
Weijiagou, site 4	Fu Jiang	16.8%	6
Average (n=33)		6.6±4.4%	

103 References: 1, Chen et al., 2012; 2, Wang et al., 2012; 3, Wang et al., 2013; 4, Yu et al., 2013; 5,
104 Wang et al., 2011; 6, Zhuang et al., 2012.

105

Figure DR1: Monthly variations of water discharge (m³ month⁻¹) and suspended
sediment discharge (kg month⁻¹) at three typical stations across the Longmen
Shan from 2006 to 2012. (A and D) Pengshan station, (B and E) Dengyingyan station,
and (C and F) Fujiangqiao station. Water discharge during April to October accounts
for ~81% of total annual discharge, whereas suspended sediment discharge accounts
for ~97% at these stations.

112

Figure DR2: Water discharge enhancement in rivers of the Longmen Shan 113 following the Wenchuan earthquake. Catchment shadings reflect the ratios of mean 114 annual water discharge $(Q_{water}, m^3 yr^{-1})$ after the Wenchuan earthquake to that prior to 115 the earthquake for available gauging stations (circles). In order to compare with the 116 ratios of suspended sediment enhancement in Fig. 1, we use the same class ranges for 117 colour shadings. The large discrepancy between the water discharge enhancement 118 (shown here) and the suspended sediment enhancement (Fig. 1) demonstrates that the 119 changes of sediment load are not caused by variation in water discharge. 120

121

122

Figure DR3: A. Downstream water gain for nested gauging stations on the Zagunao River. B. Downstream water gain for nested gauging stations on the Fu

Jiang. Downstream water gain is the ratio of downstream to upstream water discharge.

126 In order to compare with the downstream sediment gain in Fig. 2B and 2C, we use the 127 same ranges of axes.

128

129

Figure DR4: Grain size distribution of suspended sediment in our studied rivers 130 during 2007 to 2012. Over 95% of suspended sediment grain size is smaller than 0.25 131 mm. The blue line with open circles is grain size distribution of suspended sediment 132 collected from Zhenjiangguan station on the Min Jiang; black line with squares is 133 from Dengyingyan station on the Tuo Jiang; and the red line with triangles is from 134 Fujiangqiao station on the Fu Jiang. The method for determining the grain size 135 136 distribution followed the standard of the Ministry of Water Resources of China (2005). 137

138

Figure DR5: The cumulative runoff (A) and sediment discharge (B) in Longmen
Shan and in the Chenyoulan River, Taiwan after the Wenchuan and Chi-Chi
earthquakes. Comparing to the rivers in the Longmen Shan, the Chenyoulan River
has higher runoff, with higher frequency of high runoff events. Most of suspended
sediment is mobilized during high runoff events.

146

Figure DR6: Estimates of residence time of fine grained sediment mobilized by 147 earthquake-triggered landslides in river catchments impacted by Wenchuan 148 earthquake, plotted as a function of proportion of catchment intense runoff (>5 149 **mm day**⁻¹). Compared to Fig. 3, the symbols reflect the landslide volume per unit area 150 caused by coseismic landslide. The residence time of Santai station (square, landslide 151 density = 0.79%) is not well explained by the control of landslide density in Fig. 3. 152 153 This is because there are some individual landslides with large volume, which contribute significant volumes of sediment, but this is not reflected in landslide area in 154 this small $(2,300 \text{ km}^2)$ catchment. 155

156	References cited:
157	Chen, H.X., Zhang, L.M., Chang, D.S., and Zhang, S., 2012, Mechanisms and runout characteristics of
158	the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China: Natural Hazards,
159	v. 62, p. 1037-1057, doi: 10.1007/s11069-012-0133-5.
160	Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey
161	Techniques of Water Resources Investigations, book 5, chap. C1, p. 23-28.
162	Ministry of Water Resources of China, 2005, Technical Standard for Determination of Sediment
163	Particle Size in Open Channels (SL 42-2010): Beijing, China Water and Power Press (in
164	Chinese).
165	Wang, G., Huang, R., Kamai, T., and Zhang, F., 2013, The internal structure of a rockslide dam induced
166	by the 2008 Wenchuan (Mw7.9) earthquake, China: Engineering Geology, v. 156, p. 28-36, doi:
167	10.1016/j.enggeo.2013.01.004.
168	Wang, Y., Cheng, Q., and Zhu, Q., 2012, Inverse grading analysis of deposit from rock avalanches
169	triggered by wenchuan earthquake: Chinese Journal of Rock Mechanics and Engineering, v.
170	31, p. 1089-1106 (in Chinese).
171	Wang, Z., Shi, W., and Liu, D., 2011, Continual erosion of bare rocks after the Wenchuan earthquake
172	and control strategies: Journal of Asian Earth Sciences, v. 40, p. 915-925, doi:
173	10.1016/j.jseaes.2010.07.004.
174	Yu, B., Ma, Y., and Wu, Y., 2013, Case study of a giant debris flow in the Wenjia Gully, Sichuan
175	Province, China: Natural Hazards, v. 65, p. 835-849, doi: 10.1007/s11069-012-0395-y.
176	Zhuang, J., You, Y., Chen, X., and Pei, L., 2012, Effect of infiltration and anti-scourability of
177	mixed-grain-sized, unconsolidated soil on debris flow initiation: Bulletin of Soil and Water
178	Conservation, v. 32, p. 43-47 (in Chinese).
179	