
Computation of the infimum in the Littlewood Conjecture

Dzmitry Badziahin ∗

March 17, 2015

Abstract

The famous Littlewood Conjecture states that for any two real numbers (α, β) ∈ R2

the value
m(α, β) := inf { q · ||qα|| · ||qβ|| : q ∈ N}

is equal to zero. In this paper we provide an algorithm which for given ε > 0 checks,
if the value mLC := supα,β m(α, β) is less than ε. In particular with its help we show
that mLC < 1/19. We also provide a similar algorithm for p-adic counterpart of the
Littlewood Conjecture and show that an analogue of mLC in 2-adic case is at most 1/9.

1 introduction

Denote by || · || the distance to the nearest integer. The famous Littlewood Conjecture (LC)
states that for any two real numbers α, β,

m(α, β) := inf { q · ||qα|| · ||qβ|| : q ∈ N} = 0. (1)

In other words for any ε > 0 and any (α, β) ∈ R2 one can find a natural number q such that
q · ||qα|| · ||qβ|| < ε. Last decades it attracts an attention of many mathematicians mostly
after the landmark paper of Einsiedler, Katok and Lindenstrauss [6]. They showed that the
set of possible counterexamples to the Littlewood Conjecture is a countable union of sets of
box dimension 0. Other related results can be found in [6, 10, 1].

Recently, de Mathan & Teulié in [9] proposed the p-adic variant of LC. It states that for
any prime p and any real number α

mp(α) := inf{q · |q|p · ||qα|| : q ∈ N} = 0 (2)

where | · |p means the p-adic norm. It is generally believed that the p-adic Littlewood Con-
jecture (PLC) is easier than classical LC however it is still open as well. At least all the
major results achieved for LC have their analogues in PLC language. We refer the reader to
[7, 3, 4, 5, 2] for further developments of the problem.

In this paper we consider the following question. Define

mLC := sup
α,β∈R

m(α, β); mPLC(p) := sup
α∈R

mp(α).

Given ε > 0 is the value mLC (correspondingly mPLC(p)) smaller than ε? Surely if LC is false
then we shall get a negative answer to this question for some small value ε > 0.
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Classical Hurwitz Theorem [8, Theorem 193] together with the fact that ||α|| 6 1/2 for
all α ∈ R provides the positive answer to the question for ε = 1

2
√

5
. However it seems that

there are no any further results for smaller ε.
In this paper we provide an algorithm which enables us to answer the question for much

smaller values of ε. Unfortunately we can not guarantee that it will finish in finite time with
either positive or negative answer for an arbitrary small ε > 0. However with its help we
prove the following

Theorem 1 For any (α, β) ∈ R2 there exists a positive integer q ∈ N such that

q · ||qα|| · ||qβ|| < 1
19

.

In other words, mLC 6 1/19.

We also construct an analogous algorithm for PLC (in particular for p = 2). With its
help we prove

Theorem 2 For any α ∈ R there exists a positive integer q ∈ N such that

q · |q|2 · ||qα|| < 1
9
.

In other words, mPLC(2) 6 1/9.

2 Preliminaries

We start with some auxiliary statements. For any positive integer q define

φq : R→ R/Z; φq(α) 7→ {qα}
where {·} denotes the fractional part of a number. Also define

fq : R2 → R; fq(α, β) := q · ||qα|| · ||qβ||.
Notice that the function fq is periodic in both coordinates with period 1. So it is sufficient
to prove Theorems 1 and 2 for (α, β) ∈ I := [0, 1]2. Moreover we have the following fact:

∀(α, β) ∈ I, fq(α, β) = fq(1− α, β) = fq(α, 1− β) = fq(1− α, 1− β).

So we can finally restrict to the case (α, β) ∈ [0, 1/2]2.

Lemma 1 Let q be a natural number and R = [a, b] × [c, d] be a rectangle in R2 such that
the condition

φq(I) ⊂ [0, 1/2] or φq(I) ⊂ [1/2, 1]. (∗)
is satisfied for both intervals I = [a, b] and I = [c, d]. Then the condition

fq(a, c) < ε, fq(a, d) < ε, fq(b, c) < ε, fq(b, d) < ε

implies that
∀(α, β) ∈ R, fq(α, β) < ε.

Additionally the condition

fq(a, c) > ε, fq(a, d) > ε, fq(b, c) > ε, fq(b, d) > ε

implies that
∀(α, β) ∈ R, fq(α, β) > ε.
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Proof. Since the function ||x|| is monotonic on intervals [0, 1/2] and [1/2, 1] then for α ∈ [a, b]
the maximal value (and minimal value as well) of ||φq(α)|| = ||qα|| is achieved at one of the
endpoints α = a ar α = b. The same condition is true for the maximal (and minimal) value
of ||qβ|| where β ∈ [c, d]. Therefore the maximal value of fq(α, β) restricted to R is achieved
at one of the vertices of R. This implies the statement of the lemma.

£.
Lemma 1 provides an idea of the algorithm. We can choose some large value Q and

split [0, 1/2]2 into a large number of small rectangles such that for any such rectangle R =
[a, b]× [c, d] and any natural 1 6 q 6 Q intervals [a, b] and [c, d] satisfy (∗). Then if we check
that for some q ∈ {1, . . . , Q}, fq(α, β) < ε for each vertex of R then by Lemma 1 the same
inequality is true for all (α, β) ∈ R. Finally if we are able to find such a value q for each
small rectangle then we prove that m(α, β) < ε for all (α, β) ∈ [0, 1/2]2 and therefore for all
(α, β) ∈ R2. The detailed description of the algorithm will be provided in the next section.

We shall need some basic facts about Farey fractions. For Q ∈ N the Farey fractions of
order Q are defined as

FQ :=
{

a

q
∈ Q : 1 6 q 6 Q, 0 6 a 6 q, (a, q) = 1

}
.

where (a, q) denotes the greatest common divisor of a and q. Usually all the elements in FQ

are sorted in ascending order. Let p1

q1
and p2

q2
be two consecutive Farey fractions from FQ.

Then they satisfy the following properties:

• (A)
p2

q2
− p1

q1
=

1
q1q2

;

• (B) The rational number p/q with the smallest possible denominator such that

p1

q1
<

p

q
<

p2

q2
is

p

q
=

p1 + p2

q1 + q2
.

Moreover rational numbers
p1

q1
,
p1 + p2

q1 + q2
,
p2

q2
are consecutive Farey fractions in Fq1+q2 .

For these and other properties of Farey fractions we refer reader to [8, Chapter III].

Lemma 2 Let p1

q1
and p2

q2
be two consecutive Farey fractions. Then the interval [p1/q1, p2/q2]

satisfies (∗) for all q < q1+q2

2 .

Proof. The condition (∗) is equivalent to the following: interval (q · p1

q1
, q · p2

q2
) does not

contain any integer point and any rational point with the denominator 2. However latter is
true since there is no rational number of the form p/q and p/2q between p1/q1 and p2/q2

with q < 1
2(q1 + q2).

£

3 Description of the algorithm

Fix ε > 0. In this section we provide an algorithm which checks whether mLC < ε. On each
iteration of the algorithm we shall have a list RList of potential rectangles R for which we
still don’t find the value q such that fq(α, β) < ε for all (α, β) ∈ R. We will prove by induction
that the endpoints of both intervals which form the sides of any rectangle R ∈ RList are
indeed consecutive Farey fractions of some orders q1 and q2 correspondingly.

3



Step 1. Initialization. We start with the list of just one rectangle RList :=
{[0, 1/2]2}.
Note that 0/1 and 1/2 are consecutive Farey fractions of order 2. This forms the base
of the induction.

Step 2. While the list RList is nonempty we do the iterations.

Step 3. For each rectangle R ∈ RList we do the procedure

Step 4. Check the rectangle. Let

R =
[
p1x

q1x
,
p2x

q2x

]
×

[
p1y

q1y
,
p2y

q2y

]
.

By inductional assumption p1x

q1x
and p2x

q2x
are consecutive Farey fractions in

Fmax{q1x,q2x} and p1y

q1y
and p2y

q2y
are consecutive Farey fractions in Fmax{q1y ,q2y}.

For each q between 1 and min{q1x, q1y, q2x, q2y} we calculate the values

fq

(
p1x

q1x
,
p1y

q1y

)
, fq

(
p2x

q2x
,
p1y

q1y

)
, fq

(
p1x

q1x
,
p2y

q2y

)
and fq

(
p2x

q2x
,
p2y

q2y

)
.

Step 5. If for some q we find that all these 4 values are less than ε then by
Lemmata 1 and 2 the same will be true for all (α, β) ∈ R. If this happens the
rectangle R fails the check.
Step 6. Split the rectangle. If R passes the checks for all values q, we split
it into two smaller rectangles and add both of them to the new list NRList.
Splitting procedure is performed as follows:
If q1x + q2x 6 q1y + q2y then R splits into the rectangles

[
p1x

q1x
,
p1x + p2x

q1x + q2x

]
×

[
p1y

q1y
,
p2y

q2y

]
and

[
p1x + p2x

q1x + q2x
,
p2x

q2x

]
×

[
p1y

q1y
,
p2y

q2y

]
.

Otherwise it splits into the rectangles
[
p1x

q1x
,
p2x

q2x

]
×

[
p1y

q1y
,
p1y + p2y

q1y + q2y

]
and

[
p1x

q1x
,
p2x

q2x

]
×

[
p1y + p2y

q1y + q2y
,
p2y

q2y

]
.

Note that by property (B) of Farey fractions the endpoints of both intervals
which form the sides of new rectangles are still consecutive Farey fractions.

Step 7. End of the procedure.

Step 8. RList := NRList; NRList is emptied.
On step 6 we showed that for each R ∈ NRList the endpoints of both intervals
which form the sides of R are consecutive Farey fractions. This completes the step
of the induction.

Step 9. End of the iteration.

To make the algorithm clearer let’s manually run it for relatively big value ε, for example
ε = 0.23.

• (Step 1) We start the first iteration with RList consisting of one rectangle: RList =
{[0/1, 1/2]× [0/1, 1/2]}.
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• (Steps 4 and 5) We perform the check for R = [0/1, 1/2]2 and q = 1. The rectangle
passes it because f1(1/2, 1/2) = 1/4 > ε.

• (Step 6) So we split R into two parts

R1 := [0/1, 1/3]× [0/1, 1/2], R2 := [1/3, 1/2]× [0/1, 1/2]

and add both of them to the list NRList.

• (Steps 7 – 9) There are no more rectangles in RList, so we end the first iteration with
the new set RList = {R1, R2}.

• (Steps 4,5 for R1). In the second iteration the rectangle R1 fails the check. Indeed,

f1(0, 0) = f1(0, 1/2) = f1(1/3, 0) = 0 < ε; f1(1/3, 1/2) = 1/6 < ε.

• (Steps 4 – 6) On the other hand, R2 passes the check since we still have
f1(1/2, 1/2) = 1/4 > ε. So we split R2 into two parts

R3 := [1/3, 1/2]× [0/1, 1/3], R2 := [1/3, 1/2]× [1/3, 1/2].

• (Steps 7 – 9) We end this iteration with the set RList = {R3, R4}.
• (Iteration 3) Rectangle R3 fails the check for q = 1:

f1(1/3, 0) = f1(1/2, 0) = 0 < ε; f1(1/3, 1/3) = 1/9 < ε; f1(1/2, 1/3) = 1/6 < ε.

But R4 also fails the check for q = 2:

f2(1/3, 1/3) = 2/9 < ε, f2(1/2, 1/3) = f2(1/3, 1/2) = f2(1/2, 1/2) = 0 < ε.

Therefore we end the third iteration with the empty set RList! This ends the
algorithm with the conclusion that mLC < ε = 0.23.

4 Some modifications

Firstly note that Step 4 of the algorithm can be made more efficient. If for some R ∈ RList
and q ∈ N we prove that ∀(α, β) ∈ R the value fq(α, β) > ε then in future iterations we do
not need to check that q for all rectangles sitting inside R. The condition mentioned above
is easy to check. By Lemma 1 it is sufficient to check that all four values fq in Step 4 are
bigger than ε.

So additionally in Step 4 we can store in RList the information about values of q which
do not need to be checked in the next iterations. In our implementation of the algorithm
we just store the minimal value n which should be checked in the next iteration. Then on
Step 6 we send this information together with both rectangles that are sent to NRList.
This improvement dramatically decreases the number of operations in Step 4 (in practise it
increases the speed of algorithm approximately two times).

Secondly one can be interested in finding the minimal value Q(ε) ∈ N such that

∀(α, β) ∈ R2, inf { q · ||qα|| · ||qβ|| : 1 6 q 6 Q(ε)} < ε.

Unfortunately our algorithm can not give a precise answer to this questions. However it can
provide us with lower and upper bounds for Q(ε). At least it may give us some understanding
about the rate of growth of Q(ε) as ε → 0.

Indeed if for a given R ∈ RList and qmax(R) ∈ N all the values fq in Step 5 are less
than ε then for all (α, β) ∈ R,

inf { q · ||qα|| · ||qβ|| : 1 6 q 6 qmax(R)} < ε.
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Therefore the final value Q(ε) is not bigger than qmax, which is defined as the maximum of
qmax(R) over all rectangles R considered in the algorithm.

Analogously given R ∈ RList if for all 1 6 q 6 qmin(R) all four inequalities in Step 5 are
false then for all (α, β) ∈ R,

inf { q · ||qα|| · ||qβ|| : 1 6 q 6 qmin(R)} > ε.

So the final value Q(ε) is not smaller than qmin, which is defined as the maximum of qmin(R)
over all rectangles R considered in the algorithm. Finally notice that qmin and qmax can be
easily calculated within the cycle (Steps 4 and 5).

The last observation is that the algorithm can be easily parallelized. if instead of [0, 1/2]2

we start with any other rectangle R such that the endpoints of both of its sides form the
consecutive Farey fractions of some order then the algorithm will finally prove that m(α, β) <
ε for all (α, β) ∈ R.

So we can proceed as follows. Firstly start the algorithm with the rectangle [0, 1/2]2.
However after some number of iterations we stop. Then we divide the list RList into some
number of parts (equal to the number of parallel processes) working with each part in parallel.
Each process will perform the same algorithm but will be initialized by its own part of RList.

5 Numerical results

The algorithm was implemented on C++ with use of NTL library. It was launched on Intel
Core Q6600 CPU with parameters ε = 1/n where n ∈ N, 8 6 n 6 20. The results are
presented in the table 1 below. We can see from the table that as the function of 1/ε, Q(ε)
grows exponentially. This result heuristically supports the following conjecture introduced
in [2]:

Conjecture A For each λ > 0 define the set

Madλ := {(α, β) ∈ R2 : inf{fq(α, β) · (log q)λ : q ∈ N} > 0}.

Then Mad1 6= ∅ and for any λ < 1 the set Madλ is empty.

Table 1. Results for LC.
ε Qmin Qmax Number of iterations Time spent

1/8 2 7 9 0
1/9 5 7 12 0
1/10 7 18 19 0
1/11 22 49 20 0
1/12 75 107 27 0.016 s
1/13 285 285 32 0.046 s
1/14 695 1268 39 0.312 s
1/15 5551 5551 50 4.38 s
1/16 12398 12398 58 38.5 s
1/17 29863 29863 63 4 m 40 s
1/18 377503 377503 77 2 h 2 m
1/19 1272121 1526726 79+23 29 h 11 m+7 h 3 m∗

1/20 >3162586 >3533493 > 31 + 63 >2 m+110 h∗
∗ The computation was made in two stages. The first stage was proceeded on one core of CPU. Then RList

was splitted into four equal parts and the computation continued on four cores.
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6 Algorithm for 2-adic PLC

The algorithm for PLC is analogous to that for original LC. It is even simpler to implement
since here we work with intervals instead of rectangles. We will present the algorithm here
without too much discussion.

Step 1. Initialization. Start with the list of one interval Ilist := {[0, 1/2]}.
Step 2. While the list IList is nonempty do the iterations.

Step 3. For each interval I ∈ IList do the procedure

Step 4. Check the interval. Let

I =
[
p1

q1
,
p2

q2

]
.

For each q between 1 and min{q1, q2} calculate values

gq

(
p1

q1

)
and gq

(
p2

q2

)

where gq(α) := q · |q|2 · ||qα||.
Step 5. If for some q we find that both these values are less than ε then by
Lemma 2 and analogue of Lemma 1 the same will be true for all α ∈ I. If this
happens the interval I fails the check.
Step 6. Split the interval. If I passes the checks for all values q, we split
it into two smaller intervals

[
p1

q1
,
p1 + p2

q1 + q2

]
and

[
p1 + p2

q1 + q2
,
p2

q2

]
.

Then add both of them to the new list NIList.
Step 7. End of the procedure.

Step 8. IList := NIList; NIList is emptied.

Step 9. End of the iteration.

This algorithm was also implemented on C++ with help of NTL library. For Intel Core
Q6600 CPU it shows the following results:

Table 2. Results for 2-adic LC.
ε Qmin Qmax Number of iterations Time spent

1/4 8 8 6 0
1/5 16 16 11 0
1/6 128 128 18 0
1/7 1024 1024 23 0
1/8 10240 10240 34 0.234 s
1/9 65536 65536 39 3.02 s
1/10 >446431232 >446431232 >54 >60 h

For ε = 1/10 we see a big “jump” of the value Q(ε). It raises some doubts whether the
2-adic analogue of Conjecture A is actually true.
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