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Artemisinin is an important antimalarial drug but, currently, the environmental and 

economic costs of its semi-synthetic production are relatively high. Most of these costs 

originate in the final chemical steps which follow a complex acid- and photo-catalysed 

route with oxygenation by both singlet and triplet oxygen. We demonstrate that 

applying the principles of green chemistry can lead to innovative strategies which avoid 

many of the problems in current photochemical processes. The first strategy combines 

the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second 

is an ambient temperature reaction in aqueous mixtures of organic solvents; the only 

inputs are dihydroartemisinic acid, O2, and light — the output is pure, crystalline 

artemisinin. Everything else — solvents, photocatalyst and aqueous acid — can be 

recycled. Some aspects developed here through green chemistry are likely to have wider 

application in photochemistry and other reactions.  

The principles of green chemistry
1,2

 are a checklist of metrics for judging the environmental 

cost and efficiency of a given chemical reaction or process. These principles include 

minimization of waste, avoidance of toxic solvents and reagents, elimination of unnecessary 

steps and minimization of energy usage. Their application has been particularly effective in 

pharmaceutical manufacture, not least because those processes often involve many steps, 

each of which may involve toxic compounds and generate waste. For example, in the case of 

Viagra, application of these principles has led to a huge reduction in solvent usage.
3
 Green 

chemistry principles often lead to simplified and cost effective strategies which, as we 

demonstrate here, can open up new processing opportunities. 

Minimizing the financial and environmental costs of manufacturing artemisinin (1) is a major 

goal for supplying this antimalarial drug at a price that would permit its even wider use in 

economically developing parts of the world.
4,5

 The current supply of 1 obtained by extraction 

from Artemisia annua does not always meet demand. Therefore, supplementing this with a 

semi-synthetic manufacturing process from more abundant biosynthetic precursors is a 

promising way forward.
6
   Photochemical generation of singlet oxygen, 

1
O2, is a key step in 

the only commercially viable route for the semi-synthetic production of 1. It begins with a 

biosynthetic step,
7
 namely the use of genetically modified yeast to convert glucose to 

artemisinic acid, 2, which is then hydrogenated diastereoselectively to 3 (Fig. 1).
8-10

 With the 

carbon skeleton already assembled, the final conversion of 3 to 1 formally requires the 

introduction of two O2 molecules. In this context, photochemically generated 
1
O2 is attractive 

from a green chemistry point of view because (a) both of the oxygen atoms are incorporated 
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into the product, avoiding waste and (b) photochemical energy is delivered selectively unlike 

thermal reactions, which require the heating of the entire reaction mixture.  

In the industrial process currently implemented at Sanofi, the oxygenation is preceded by an 

additional step, the esterification of 3 to a mixed anhydride.
10

 However, the direct Schenck 

ene oxidation of 3 with photochemically generated 
1
O2 is also possible, as first described by 

Acton and Roth
11,12

 and more recently by Seeberger and coworkers in an elegant continuous 

process.
13,14

 This can lead several possible regioisomeric hydroperoxides, only one of which, 

4, can be transformed into 1 (see ESI, Scheme S1). The only other isomer generated in any 

reasonable quantity is 5 and the ratio of 4:5 has been shown to be highly temperature 

dependent in a range of solvents,
10,13-15

 with low temperatures favoring the formation of 4. 

The resulting hydroperoxide 4 is then converted to 1 in an acid-catalyzed rearrangement 

followed by a second oxygenation, a sequence studied in some detail by Brown and co-

workers.
15,16

 

 

Fig. 1. Semi-synthetic production of the potent anti-malarial artemisinin, 1. (A) Initial production 
of artemisinic acid (2) either by extraction from Artemisia annua or by a fed-batch fermentation 
processes (Saccharomyces cerevisiae). (B) Chemical conversion of 2 to 1 by hydrogenation to 3 
followed by photo- and acid-catalysis. 5 is the predominant unwanted hydroperoxide, formed 
during reaction of 3 with 1O2. The current Sanofi process adds an extra activation step to form the 
ester of 3 (mixed anhydride) rather than the free acid.10 Hydroperoxide 4 is converted through an 
acid-catalyzed ring opening process into enol 6 (6 has been observed under oxygen free 
conditions).  This reactive intermediate is then finally oxidized into 1, a step which requires 
heating to room temperature and longer reaction times. 

The current industrial process and all of the published work mimic the biosynthetic route to 1 

in a genuinely atom economical way. Most variations of this route give between 50% and 
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60% yield of 1 after optimization (55% for the industrial process) which appears an inherent 

limitation of the chemistry rather than a function of the particular process.  Nevertheless, 

these approaches fail to tackle a number of key green chemistry issues. These begin with the 

use chlorinated solvents such as dichloromethane (DCM) for the 
1
O2 reaction; the use of the 

relatively toxic acid, trifluoroacetic acid (TFA); the need to carry out the photo-oxidation at 

low temperature (typically -20
o
C) to increase selectivity towards 4;

13-15
 and the ultimate 

purification of 1, involving multiple washings to remove the acid, the loss of photosensitizer 

and solvent exchange to allow crystallization.
10

  In addition, all of these processes generate 1 

in the presence of free acid which is concerning because 1 is not stable under acidic 

conditions
17

 and this could ultimately reduce productivity. 

Here we outline two separate and different strategies, based on principles of green chemistry, 

which circumvent most of these problems.  These strategies are (i) the use of liquid CO2 as 

the reaction solvent, using a potentially recyclable heterogeneous photosensitizer/acid system 

as shown in Fig 2 and (ii) the use of recyclable aqueous mixtures containing water soluble 

acid- and photo-catalysts, see Fig 3.  Below, we describe these approaches in more detail and 

then compare them in terms of “green metrics” and their possible impact on the 

environmental cost of production of 1.  

 

Fig. 2. Our first strategy, the one-pot semi-synthesis of artemisinin in liquid CO2 with a dual 
function heterogeneous catalyst. (A) Schematic of the continuous flow reactor; it consists of a 
transparent sapphire tube containing the immobilized photocatalyst, surrounded by a concentric 
transparent cooling jacket and three banks of high power white light emitting diodes (LEDs, see the 
ESI for a fuller description). As 3 is a solid, a co-solvent is required to enable pumping into the 
reactor. (B) Schematic of the catalyst, consisting of porphyrin photosensitizer bound to Amberlyst-
15. While similar work has been carried out to immobilize porphyrins and phthalocyanins by a 
number of groups,27-30 using covalent linkages,29,30 electrostatics,28 and embedding,28 we believe 
that in this case it is the basicity of the porphyrin that enables anchoring through di-protonation of 
the porphyrin core.31 (C) Photograph showing the difference in color between the free and the 

supported porphyrins and Amberlyst 15. 
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Fig. 3: Our second strategy, photocatalytic oxygenation of 3 dissolved in EtOH + H2O, (A) Schematic 
of the non-optimized process illustrating how 1 can be recovered from the solution by partial 
evaporation of the EtOH to reduce the solubility of 1 in the aqueous solvent. (B) Photograph taken 
at the filtration stage, showing crystals of 1. (C) Single crystal X-ray structure obtained from a 
crystal removed directly from the crude solid without any further re-crystallization. (D) Photograph 
of the high pressure photo-reactor modified for upward flow of aqueous mixtures, showing the 
sapphire tube filled with glass balls and surrounded by LEDs. 

Strategy 1: Dual-functional heterogeneous photocatalysis in liquid CO2 

CO2 is an attractive solvent for greener chemistry because it is cheap, renewable and non-

toxic.  For reactions of 
1
O2, it has the benefit of being non-flammable and the lifetime of 

1
O2 

is relatively long,
18

 which is of key concern when selecting a suitable solvent for photo-

oxidation reactions.  In addition, supercritical CO2 (scCO2) has been shown to be a useful 

solvent for reactions involving permanent gases (e.g. H2, CO or O2) as they are completely 

miscible with scCO2.
19-21

  Our group recently demonstrated that the reactions of 
1
O2 can be 

carried out efficiently in a continuous flow reactor in scCO2 with either homogeneous or 

immobilized porphyrin photocatalysts.
22-26

  We have now applied this approach to the 

reaction of 
1
O2 with 3 at low temperature, taking CO2 into the liquid phase, with an added 

advantage for scale-up since the vapour pressure of liquid CO2 is much lower than for scCO2, 

thereby reducing the pressure requirements for future reactors.  Until now, liquid CO2 has 
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rarely been used as a solvent because most reactions carried out in CO2 have been thermally 

initiated which almost immediately raises CO2 above its critical temperature, 31 
o
C.    

As shown in Fig 2, we have used an immobilized porphyrin in order to remove the need to 

separate the photocatalyst from the product. In the past, porphyrin immobilization has most 

often been carried out through covalent bonding but this involves multiple low yielding steps 

to modify the photocatalyst and tedious work up procedures.
23

 We have developed a simple 

method that enables straightforward anchoring of meso-tetraphenylporphyrin (TPP) or meso-

tetrakis(pentafluorophenyl)porphyrin (TPFPP), both of which are commercially available, 

porphyrins onto the sulfonated cross-linked polystyrene ion-exchange resin, Amberlyst-15 

(Amb), see Fig. 2 and ESI.  This gives a dual catalyst with both the Brønsted acidic and 

photo-catalytic functions needed to convert 3 to 1.  

A number of different conditions were investigated with TPP-Amb which appears to be the 

more robust bifunctional system with negligible leaching (entry 3 and ESI Table S1); these 

results are comparable to the use of a homogeneous system, using TPFPP and 2-mesitylene 

sulfonic acid, both of which are soluble in liquid and scCO2 (see ESI).  Full conversion was 

achieved after four passes at 0.12 mL.min
-1

 (entry 3). Interestingly, doubling the length of the 

photoreactor resulted in near 100% conversion of 3 in a single pass at the same flow rate 

(entry 4).  The conditions were not fully optimized but nevertheless yields ca. 50% were 

obtained (entries 3 & 4), comparable to published routes.
9,13

  Most yields were measured 

directly from NMR of the product solution but some samples of 1 were isolated and more 

fully characterized by a variety of techniques including NMR, melting point and optical 

rotation; the data are in excellent agreement with those recorded from an authentic sample of 

1 from the commercial process (see ESI). 

As with previously reported batch reactions,
15

 it was found that acid must be present at the 

photo-oxidation step to minimise the formation of by-products arising from elimination of 

H2O2 from 4. The bifunctional nature of the TPP-Amb/CO2 system therefore has the 

advantage that 4 is no longer accumulated in the reaction medium and undergoes Hock 

rearrangement more selectively. In addition, combining the use of CO2 and these bifunctional 

heterogeneous catalysts enables 1 to be obtained directly at the outlet of the photoreactor with 

50% yield. This contrasts with previous studies, where 1 was only obtained after further 

heating of the solution under an atmosphere of O2
10,13,14

 and there remains substantial scope 

for further improvement of these parameters: a key factor being the concentration of O2, 

where we have limited ourselves to 2 mol%.  

Table 1. Continuous `one-pot’ synthesis of artemisinin from 3 using CO2 as the reaction solvent.a  

Entry 
Co-

Solvent 
Catalyst 

CO2
 

(mL min
-1

) 
3

b 

(mL min
-1

) 
Pass Conv.

c 
(%) 

Yield
c
 

(%) 

1 EtOAc TPFPP-Amb
d 

0.53 0.05
e
 1 92

 
50 

2 Toluene TPFPP-Amb
d 

0.53 0.12 1 50 33 
3

 
Toluene TPP-Amb 0.53 0.12 1 63 25 

  2 82 39 
  3 93 48 
  4 98 51

g
 

4
 

Toluene
f
  TPP-Amb 0.53 0.12 1 >98 48

g
 

a Operation at 5 °C, 18 MPa, 2 mol.% O2. 
b Concentration of 3 is 0.5M (see ESI) c Reaction conversion and yield were 

calculated based on the integration of the relevant peaks in the 1H-NMR spectrum according to internal standard 
(mesitylene); some material is lost via formation of 5 in the initial Schenck ene reaction, and more is lost via formation of 
oligomers, see Fig. 5; d Some leaching of TPFPP from Amberlyst-15 support was observed.  eThis experiment used a higher 
CO2:3 ratio to avoid system blockage.  f Using a double-length reactor with double residence time in photoreactor, see ESI 
for details.  All reactions were run at a reactor temperature of 5 oC (corresponding to a total residence time of ca. 10 min) 
to increase the formation of 4 over its regioisomers. g Although this strategy was not fully optimized, these conditions gave 
the highest yields and are those that have been used in the calculation of the E-factors in Table 3 and ESI. 
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Strategy 2: Reactions in aqueous mixtures of organic solvents 

This strategy arose from control experiments in conventional solvents carried out in parallel 

to our work on liquid CO2. When photo-oxidation of 3 was carried out as a batch reaction in 

conventional glassware, in carefully dried tetrahydrofuran (THF), surprisingly not a trace of 1 

was obtained, just a complex mixture of byproducts.  By contrast, with wet, non-distilled 

THF, the yields of 1 were relatively high (>60%), indicating that the reaction requires a 

minimum amount of water to proceed. This suggested that the reaction might perhaps be run 

in aqueous solvent mixtures, with corresponding benefits in the context of green chemistry. 

Even though reactions involving photochemically generated 
1
O2 in the presence of H2O have 

occasionally been reported,
32-34

 the use of aqueous solutions in preparative photochemistry 

has been largely overlooked, probably because water and other protic solvents are excellent 

quenchers which reduce the lifetime of 
1
O2.

35,36
 

With these facts in mind, the effect of the presence of 3 on the emission lifetimes of 
1
O2 was 

investigated in DCM, pure EtOH and a 1:1 (v/v) mixture of EtOH + H2O. The results are 

summarized in Fig. 4. Mono-exponential decays provided good fits for all acquired traces. 

Plotting of reciprocal lifetimes versus the concentration of 3 yielded linear relationships for 

all three solvent systems, giving values for the photo-physical quenching constant (kq) of 4.1 

x 10
5
, 1.6 x 10

5
, and 9.6 x 10

5
 Lmol

-1
s

-1
 for DCM, EtOH, and EtOH + H2O, respectively. 

Surprisingly the addition of H2O to EtOH increases the value of kq — that is the rate at which 
1
O2 reacts with 3.  This effect contrasts with the efficient quenching of 

1
O2 in H2O. Clearly, 

the addition of H2O is less detrimental to the photo-oxidation reaction than one might 

anticipate by solely considering the reduced excited state lifetimes of 
1
O2 in an aqueous 

system. 

 

Fig. 4. 1O2 emission following photo-excitation with a 355 nm pulse. (A) Emission trace for [3] = 5 
mmolL-1, in DCM, data fitted with a single exponential. (B) Stern-Volmer plots showing the 
quenching of 1O2 emission by 3 in different solvent systems. The increased value of kq indicates that 
1O2 can react with 3 at these concentrations, even in the presence of H2O. 

Conducting the photo-oxidation of 3 with O2 (0.1 MPa) in mixtures of THF or EtOH with 

H2O and water-soluble photosensitizers confirmed this finding; indeed, the yields of 1 were 

similar to those obtained in DCM and in one case higher (see Table 2, entry 2).  In addition, 

the presence of water meant that TFA could be replaced by H3PO4 (entry 4), or H2SO4 

(entries 7 - 10) which is insoluble in DCM and has been reported to promote dehydration of 

intermediate 6.
14

 Surprisingly, unlike many of the solvent systems previously studied,
13

 the 

aqueous mixtures gave a high ratio of 4:5 that was essentially unchanged between – 30 
o
C 
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and + 30 
o
C, thereby eliminating the need for energy-hungry refrigeration. The reaction also 

gave good yields of 1 with two different water-soluble ionic photosensitizers, [Ru(bpy)3]
2+

 or 

TMPyP (see Table 2).  

Table 2. Solvent, photosensitizer and acid conditions screening.a 

Entry Solvent Ratio 
[2] mol.L

-

1 Photosensitizer T(°C) Acid Eq. 
Yield

b 

(%) 

1 DCM  2.1 x10
-2

 TPP 10°C TFA 0.5 54 
2 THF:H2O 60:40 5.3 x10

-2
 [Ru(bpy)3]Cl2 10°C TFA 0.5  66

c 

3 THF:H2O 60:40 5.3 x10
-2

 [Ru(bpy)3]Cl2 30°C TFA 0.5 59 
4 THF:H2O 60:40 5.3 x10

-2
 [Ru(bpy)3]Cl2 0°C H3PO4 0.5 52 

5 THF:EtOH:H2O 5:75:20 2.1 x10
-2

 [Ru(bpy)3]Cl2 10°C TFA 0.5 62 
6 EtOH:H2O 50:50 2.1 x10

-2
 [Ru(bpy)3]Cl2 10°C TFA 1.0 43 

7 EtOH:H2O 50:50 2.1 x10
-2

 [Ru(bpy)3]Cl2 10°C H2SO4 1.0 40 
 8

d
 EtOH:H2O 80:20 1.7 x10

-1
 [Ru(bpy)3]Cl2 0°C H2SO4 0.5 50

 

9 EtOH:H2O 80:20 5.3 x10
-2

 [Ru(bpy)3]Cl2 30°C H2SO4 0.5 39
 

10 EtOH:H2O 60:40 2.1 x10
-2

 TMPyP
e 

10°C H2SO4 0.5 53 
11 

i
PrOH:H2O 60:40 5.3 x10

-2
 [Ru(bpy)3]Cl2 0°C TFA 0.5 59 

a Unless otherwise stated,  the reactions were conducted on 250 mg scale using 1 mg of photosensitizer in a solvent volume 
of 20 mL. Photo-irradiation was carried out for 5 hours. b The yield was measured by 1H NMR using mesitylene as an internal 
standard, added after work up. In each experiments, conversion was higher than 98%. c This is the highyest yield opbtained 
so far and was used in the calculation of E-factors in Table 3, entry 8. d This reaction was conducted on 6 g scale using 10 mg 
of photosensitizer in 150 mL solvent volume. Photo-irradiation was carried out for 8 hours. e 5,10,15,20-tetrakis(N-
methylpyridinium-4-yl)porphyrin tetra(p-toluenesulfonate). 

The overall yield of 1 was found to be higher in solutions containing THF (up to 66% yield, 

Table 2 entries 3-5) than in EtOH/H2O (entries 6-10), even if only small quantities of THF 

were present (entry 5).  THF, which is not itself a nucleophile, may well have a “protective 

effect” against acid-catalysed degradation, see Fig. 5.   

 

Fig. 5. Proposed acid catalyzed degradation pathways, which occur during or after the reaction and 
suggest why H2O reduces the extent of degradation.  Evidence for these pathways includes polar 
oligomeric materials (ca. 30-40% yield), isolated by column chromatography of the mother liquors 
left after crystallization of 1; these side products were amenable to MALDI analysis (see ESI), and 

their presence may explain the observed yield limitations for 1.  
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It seems likely that the presence of H2O also reduces the extent of degradation by reversing 

the equilibrium and inhibiting radical polymerization (see Fig. 5). H2O does, however, reduce 

the rate of conversion of 6 to 1 and the reaction has to be kept agitated at room temperature 

and under an oxygen atmosphere for an additional period of time. We therefore attempted to 

deconstruct the cascade leading to 1 and found that 6 is formed with ca. 50% selectivity, 

determined by NMR using biphenyl as an internal standard (see ESI, Fig. S10). It is perhaps 

not surprising that the selectivity drops at that stage considering that the reaction 

intermediates leading to 6 are highly prone to undergoing intermolecular aldol condensation, 

dehydration or radical side reactions that can lead to the formation of complex oligomers, as 

shown by MALDI analysis (see ESI). 

Given the recognized advantages of continuous processing, a flow system was implemented 

using EtOH/H2O and THF/H2O as the reaction solvents and H2SO4 as the acid. The reactions 

were carried out in the same tubular photoreactor as used with CO2, but modified for upflow 

and filled with 6 mm diameter glass beads to promote mixing and reduce the optical 

pathlength to prevent inner filter effects, see Fig. 3D. The glass beads reduced the free 

volume of the reactor. Therefore, in order to maintain reasonable productivity, the conversion 

of 3 to 4 in THF/H2O and EtOH/H2O (80:20) was accelerated by using higher pressures of 

O2; at a pressure of 1 MPa, the photo-conversion is largely completed at a residence time of 

ca. 20 min, (see ESI for experimental details) but as before, the final formation of 1 takes 

considerably longer. This is less of a problem then it might appear because it occurs in the 

presence of air in the product collection flask. 

Perhaps, the most striking aspect of using H2O as a reaction solvent is seen during product 

work up because partial evaporation of EtOH or THF from the aqueous mixtures results in 

the spontaneous crystallization of pure 1, see Fig. 3B/C and ESI. At the same time, the H2O-

soluble photosensitizer and the acid remain in solution, available for continued use. 

Therefore, we have demonstrated the recycling of not only the aqueous solution of 

photosensitizer and acid catalyst but also of the evaporated EtOH for three cycles with no 

loss in yield of 1. As shown in Fig. 3A, the result is a simple process where the only inputs 

are 3, light, O2 and heat; the sole output is 1.  

How do these strategies compare? 

Both strategies presented above involve flow chemistry.  Therefore the amount of product 

obtained depends on how long the reactors are run. 1 has relatively low solubility in our 

solvent systems [toluene + CO2] (strategy 1) and [EtOH + H2O] (strategy 2) and the solutions 

are more dilute than in published work.
10,13

  However, this dilution is compensated by the 

efficiency of our reactors so that the space time yields in strategies 1 & 2 are 2.5 g/mL/day 

and 3.4 g/mL/day respectively, comparable to literature data for producing 1 by flow 

chemistry.
13

 The reaction in aqueous solvent (strategy 2) can be operated indefinitely as 

reactants and catalysts are in homogeneous solution. By contrast, with liquid CO2 (strategy 1) 

there is a heterogeneous catalyst and the running time will eventually be limited by bleaching 

of the supported porphyrin. The main differences from the literature lie in the overall 

processing time, temperatures and greatly reduced workup necessary to recover the product.  

Strategy 1 delivers 1 directly at the outflow while the aqueous chemistry in strategy 2 

requires additional time for the formation of 1.  On the other hand, the aqueous strategy 2 can 

be used in either flow or batch processes and could easily be implemented on the existing 

industrial-scale plant;
10

 strategy 1 would require new higher pressure equipment; however, it 

has already been demonstrated
21 

that lab-scale tubular  reactors for thermal chemistry can be 
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successfully scaled out into parallel reactors for commercial scale production while still only 

using the same number of pumps and compressors as in the laboratory. 

But how green are these strategies?  Qualitatively, one can rate them using the Twelve 

Principles.
1
 Although some of our experiments used TFA, both strategies can operate without 

TFA, thereby avoiding toxic reagents (Principle 3).  Unlike the literature
13

 or industrial
10

 

processes, neither strategy requires a separate solvent for workup, thereby minimizing solvent 

usage (Principle 5).  The use of CO2 in strategy 1 does contravene Principle 6, namely that 

reactions should be run as close as possible to ambient temperature and pressure to minimize 

consumption of energy. However, both strategies run at higher temperatures than other 

processes and cooling is energy intensive; indeed, one paper by Seeberger’s group reported 

that cooling their photoreactor consumed 70% of the total energy budget.
13 

Apart from 

toluene, all of the solvents used here (i.e. THF, EtOAc, EtOH, iPrOH, H2O and CO2) are 

environmentally benign
37

 and preferable to the halogenated solvents currently used
10

 to 

produce 1. In addition, EtOH, EtOAc, CO2 and H2O can be obtained from renewable sources 

(Principle 7).  Both strategies avoid the derivatization required in the industrial process, as 

recommended by Principle 8.  Finally, our strategies involve the use of organic solvents in 

the presence of O2 which, without due care, could increase the chance of accidents, in 

contravention of Principle 12, though we mitigate the risk by adding CO2 or H2O. 

More quantitatively, one can apply a number of metrics,
37,38

 albeit only approximately as our 

strategies are not fully optimized and some of the required data are not available for the 

existing industrial process.  The simplest concept is the E Factor (kgwaste/kgproduct) based on 

the stoichiometry of the reaction, but ignoring water.
39

 Although the underlying chemistry is 

the same, the theoretical E Factors for our strategies is slightly lower than for the commercial 

process
10

 which involves the additional esterification. The actual E factors are all higher 

because the isolated yield is considerably less than 100%, (see Table 3, entries 1 & 2).  We 

now assess the data on the strategies in terms of two factors, E1 and E2.  E1, is defined as the 

weight of all waste per unit weight of 1; that is including all reagents, catalysts, and solvents 

used for the reaction and the work up (but excluding water, and O2).  E2 is the same as E1 but 

excluding all of the solvents.  In addition for strategy 1, we calculate E1 with and without 

including CO2. All values are summarized in Table 3. 

Bearing in mind that all values are necessarily approximate, Table 3 (entries 3-5) indicates 

that strategy 1 with an assumed 90% recycle of CO2 has an unoptimized value of E1 similar to 

that of the industrial process.
10

 It has a somewhat higher E2 value largely because we have 

assumed a single use of the Amberlyst.  By contrast, strategy 2 (entries 6-8) has higher values 

of E1 than either the industrial process or strategy 1, largely because of the lower solubility of 

1 in aqueous mixtures; E1 drops, substantially on recycle (see entry 8, and Fig 3A).  Of 

course, solvent could be recycled in any of the processes but the beauty of strategy 2 is that 

the solvent, acid and photocatalyst can all be recycled directly without purification.  

Obviously, such recycling will be limited by the build-up of side products and could not be 

carried out indefinitely but the impact of recycling on E1 is large.  E2 factors for Strategy 2 

are substantially lower than for the other processes and the solvent, EtOH, is one of the 

highest rated in terms of its Renewability Index.
37

 Sheldon
40

 has suggested that one should 

introduce and Environmental Quotient, Q to reflect the relative toxicity of the various wastes.  

In this context, it is particularly important that both strategies eliminate the need for DCM as 

a solvent and that strategy 2 provides an opportunity to eliminate TFA (entries 6 & 7).   

Entry 8 shows that one could reduce the E factors dramatically by increasing the yield of 1 

and our strategies do have features which suggest that some increase may be possible 
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following further optimization, namely the reduction in acid-induced decomposition of 1 

(either by use of a solid acid resin or by the presence of H2O), and secondly the observation 

that even small amounts of THF have a positive effect on yield of 1 Table 2.  

Table 3: Comparison of E factors for Strategies 1 & 2 and the commercial process 
for making 1 (details of the calculations are presented in the ESI) 

Entry Process 
Photocatalyst/ 
Acid Catalyst 

Solvent(s) Yield 
E1

  

(no water)
 

E2  
(no solvent) 

1 Theoretical
a 

− − 100% 0 (0.45)
b 

0 (0.45)
b 

2  − − 50% 0.84 0.84 

3 Sanofi
c
  TFA, TPP DCM, Heptane

d 
55% 36 4.8 

4 Strategy 1 
(Table 1 
entry 3) 

Amberlyst/TPP
e 

Toluene/liq CO2  
(4 passes) 

39% 
23

 f
 

(97)
g
 (31)

h 

8 

5 Strategy 1 
(Table 1, 
entry 4) 

Amberlyst/TPP
e 

Toluene/liq CO2 
(long reactor, 
single pass) 

39% 
30

f
  

(104)
g
 (37)

h 

15 

6 Strategy 2 
(Table S4, 
entry 15) 

H2SO4, 
Ru(bpy)3

2+ 
EtOH/H2O

i 
38% 210 1.8 

7 Strategy 2 
(Table S4, 
entry 15 & 

Scheme S6) 

H2SO4, 
Ru(bpy)3

2+
 

EtOH/H2O
i
  

(3 cycles) 
37% 101 1.5 

8 Strategy 2 
(Table 2, 
entry 2) 

TFA, Ru(bpy)3
2+

 THF/H2O
j 

(50%)
k 

73 1.3 

a Based on the stoichiometric equation for 2  1; b Numbers in parentheses for the Sanofi process10 including the waste from 

the esterification step; c
 see ref 10, for this and other processes, the amount of O2 has been ignored as insufficient data are 

available; d Requires additional solvents, EtOH and H2O for purification; e Assuming that the Amberlyst TPP is damaged and 

cannot be used for further reactions; f Ignoring the CO2; 
g including mass of CO2; 

h Assuming a recycle of CO2 with a 10% loss 

in each cycle as found in industrial hydrogenation in scCO2, see Ref 21; i EtOH:H2O 80:20; j THF:H2O 60:40; k In this 

experiment, 1 was obtained in solution with 66% yield but not isolated – therefore 50% isolated yield has been assumed. 

Conclusions 

The conversion of 3 to 1 is intriguingly complex. We have shown that application of the 

principles of green chemistry has opened up a wider range of options for carrying out this 

transformation. Liquid CO2 offers interesting possibilities, especially in process safety 

because of the inertness of CO2 towards oxidation and in the possibility of implementing a 

continuous process. However, the more immediate impact is likely to come from 

conventional solvents.  The use of aqueous mixtures offers the opportunity for solvent 

manipulations, particularly in the work up of the product, that are not possible with the 

solvents currently used in this process.  In addition, the reaction can be carried out at near 

ambient temperatures in the presence of water, thereby eliminating the need for energy 

demanding refrigeration. Some of the approaches described here hold promise for rapid 

implementation on a larger scale, thereby taking us a step closer to more affordable 

artemisinin with benefits not only to malaria sufferers across the world but also to the 

producers of Artemisia annua by giving added value to their crop which, apart from 1, can 

additionally yield 2, the starting material for the semi-synthetic route. 

As pointed out over a century ago,
41

 photochemistry has great potential for chemical 

manufacture. However, it is only quite recently that the need for cleaner processes to make 

complex molecules has reawakened interest in process photochemistry, and the strategies 

introduced here are applicable to chemistry beyond transforming 2 into 1.  Liquid CO2 

probably has the lowest cost of any solvent obtainable in high purity which is important in 
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processing pharmaceutical chemicals.  Ion exchange resins such as Amberlyst could be used 

to immobilize a wider range of homogeneous catalysts, in addition to photocatalysts, to 

generate dual- or multi-functional immobilized catalysts.  Our use of aqueous mixtures of 

common solvents is a timely reminder that mixing solvents can generate a tunability of 

properties reminiscent of more expensive ‘designer’ solvents.
42

  Finally, we have 

demonstrated that applying the principles of green chemistry to even well-studied reactions 

can lead to new and unexpected approaches which have potential processing benefits beyond 

being greener.   
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