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ABSTRACT 

Recent paleoseismological studies question whether segment boundaries identified for 20th and 21st 

century great, >M8, earthquakes persist through multiple earthquake cycles or whether smaller 

segments with different boundaries rupture and cause significant hazards. The smaller segments 

may include some currently slipping rather than locked. In this review, we outline general principles 

regarding indicators of relative sea-level change in tidal wetlands and the conditions in which 

paleoseismic indicators must be distinct from those resulting from non-seismic processes. We 

present new evidence from sites across southcentral Alaska to illustrate different detection limits of 

paleoseismic indicators and consider alternative interpretations for marsh submergence and 

emergence. We compare predictions of coseismic uplift and subsidence derived from geophysical 

models of earthquakes with different rupture modes. The spatial patterns of agreement and misfits 

between model predictions and quantitative reconstructions of coseismic submergence and 

emergence suggest that no earthquake within the last 4000 years had a pattern of rupture the same 

as the Mw 9.2 Alaska earthquake in 1964.  From the Alaska examples and research from other 

subduction zones we suggest that If we want to understand whether a megathrust ruptures in 

segments of variable length in different earthquakes, we need to be site-specific as to what sort of 

geological-based criteria eliminate the possibility of a particular rupture mode in different 

earthquakes. We conclude that coastal paleoseismological studies benefit from a methodological 

framework that employs rigorous evaluation of five essential criteria and a sixth which may be very 

robust but only occur at some sites: 1 – lateral extent of peat-mud or mud-peat couplets with sharp 

contacts; 2 – suddenness of submergence or emergence, and replicated within each site; 3 – amount 

of vertical motion, quantified with 95% error terms and replicated within each site; 4 – syncroneity 

of submergence and emergence based on statistical age modelling; 5 – spatial pattern of 

submergence and emergence; 6 – possible additional evidence, such as evidence of a tsunami or 
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liquefaction concurrent with submergence or emergence. We suggest that it is possible to consider 

detection limits as low as 0.1 to 0.2 m coseismic vertical change. 

 

  



0. Introduction and structure of the paper

Coastal paleoseismology provides critical information that helps to improve understanding and 

modelling of seismic hazards, including associated tsunami, at all major subduction zones.  Key 

contributions to practical earthquake hazard assessment include the identification of great 

(magnitude 8 or 9) earthquakes during the Holocene where there is no historical record (Atwater, 

1987); earthquakes of substantially greater magnitude than directly observed (Minoura et al., 2001; 

Sawai et al., 2008); estimating recurrence intervals of great earthquakes (Atwater and Hemphill-

Haley, 1997; Nelson et al., 1995); and defining different patterns of rupture along a subduction zone 

(Cisternas et al., 2005; Kelsey et al., 2002; Nelson et al., 2006; Sawai et al., 2004).  Since publication 

of the seminal paper (Atwater, 1987), and widespread adoption of well-tested field and analytical 

methods (e.g. Atwater and Hemphill-Haley, 1997; Hayward et al., 2006; Kelsey, 2015; Nelson, 2015; 

Nelson et al., 1996; Witter, 2015) debate moved on to questions critical for hazard assessment, 

emergency planning and international building code design (Mueller et al., 2015; Wesson et al., 

2007). Key questions include the extent of past great earthquake ruptures (a proxy for magnitude), 

the identification of the boundaries between rupture segments, the persistence of these boundaries 

over multiple earthquake cycles, recurrence intervals of great earthquakes in each segment, the role 

of aseismic slip, and whether segments of plate boundaries that are currently creeping can generate 

great earthquakes (Briggs et al., 2014; Goldfinger et al., 2012; Hayward et al., 2015; Kelsey et al., 

2015; Mueller et al., 2015; Scholz, 2014; Witter et al., 2014). 

In order to address these questions, coastal paleoseismology continues to seek evidence to 

discriminate between alternative hypotheses. This inevitably results in returning to the field 

evidence and the quantifiable resolution of the age, the extent, and the pattern of vertical surface 

displacement of each rupture. Tidal wetlands record evidence of relative sea-level change, whether 

submergence or emergence. Such evidence may reflect coseismic displacement of the Earth’s crust, 

but this requires an evaluation of the evidence leading to one or more interpretations. Submergence 

is not a synonym for subsidence, or emergence for uplift. Typically, in areas of coseismic subsidence, 

freshwater peat rapidly submerges into the intertidal zone (Figure 1).  This results in a peat-mud 

couplet, with a sharp boundary between the units (Atwater, 1987). In areas of coseismic uplift, 

where clastic tidal flat emerges above the local high tide limit, freshwater peat starts to form. This 

results in a mud-peat couplet, also with a sharp boundary (Figure 1).  As the amount of coseismic 

surface displacement decreases, for example towards the periphery of uplift or subsidence, we 

expect to reach the point at which a line of evidence cannot distinguish between seismic and non-

seismic explanations for the field stratigraphy. This is the detection limit for that type of evidence. 



Similarly, the resolution of radiocarbon dating places an uncertainty on earthquake ages and 

correlations between sites.   

With different interpretations possible from seemingly similar stratigraphic sequences, Nelson et al. 

(1996) suggested five criteria to distinguish peat-mud couplets that result from great earthquake 

subsidence from those produced by other processes. They suggested, 1 - lateral extent of peat-mud 

couplets with sharp contacts; 2 - suddenness of submergence; 3 - amount of vertical motion; 4 - 

presence of tsunami deposited sediments directly above the peat horizon, and, 5 - synchroneity with 

other sites. While these criteria were proposed with respect to tidal marsh sequences adjacent to 

the Cascadia subduction zone, they have proved valuable for numerous studies since (e.g. Briggs et 

al., 2014; Clark et al., 2015; Dura et al., 2015; Dura et al., 2016; Dura et al., 2011; Engelhart et al., 

2013; Garrett et al., 2015b; Grand Pre et al., 2012; Hamilton and Shennan, 2005a; Hayward et al., 

2015; Kelsey et al., 2015; Leonard et al., 2004; McCalpin and Carver, 2009; Nelson et al., 2009; 

Nelson et al., 2006; Shennan et al., 2009; Witter et al., 2003).  

In this review, we first introduce general principles regarding indicators of relative sea-level change 

in tidal wetlands and the conditions in which paleoseismic indicators must be distinct from those 

resulting from non-seismic processes.  

Section 2 summarises the tectonic setting and Holocene chronology of great earthquakes in the 

region of the 1964 Alaska Mw9.2 earthquake since we use evidence from this region to revisit the 

criteria recommended by Nelson et al. (1996) for identifying coseismic subsidence and use the 

evidence to test working hypothesis of variable rupture modes during the late Holocene.  

In section 3, we consider developments over the past 20 years in popular methods of reconstructing 

relative sea-level change and their application to paleoseismic records from tidal wetlands. 

Section 4 presents evidence from sites across southcentral Alaska to illustrate different detection 

limits and how these constrain alternative interpretations for marsh submergence and emergence. 

In section 5, we evaluate the predicted surface displacement of different rupture modes against the 

reconstructions of marsh submergence and emergence based on field data.  

In the final sections, we consider the broader implications of detection limits of tidal wetland 

sequences at subduction zones around the world and suggest an expansion of the Nelson et al. 

(1996) criteria. 

1. Indicators of coseismic displacement of tidal wetlands 

The detection limits of tidal wetland sediment sequences that produce identifiable paleoseismic 

evidence depend upon two critical thresholds for each type of indicator that records relative sea-



level change: creation thresholds and preservation thresholds (McCalpin and Nelson, 2009). To 

exceed creation thresholds, paleoseismic indicators must be distinct from similar indicators that may 

result from non-seismic processes.  We can formulate this in a general equation. For each 

geographical location () the change in relative sea level (RSL) at time t, where t is the time relative 

to present (Shennan et al., 2011): 

RSL(,t) = EUS(t) + ISO(,t) + TECT(,t)  + LOCAL(,t) + UNSP(,t)   [1] 

 EUS(t) is the time-dependent eustatic sea level, derived from a model of global ice history, 

that would result by distributing any meltwater evenly across a rigid, non-rotating planet and 

neglecting self-gravitation in the surface load.  

 ISO(,t) is the total isostatic effect of the glacial rebound process including the ice load 

(glacio-isostatic), water load (hydro-isostatic) and rotational contributions to the 

redistribution of ocean mass.   

 TECT(,t), is the tectonic effect, which includes processes operating over long timescales 

such as plate motions, mountain building and dynamic topography, and short term such as 

uplift and subsidence during great earthquakes and through the interseismic period between 

great earthquakes.   

 LOCAL(,t) is the total effect of local processes within the coastal system.  Since we use 

observations from the geological record to reconstruct relative sea-level elevation we can 

express these as the sum of TIDE(,t) + SED(,t), where TIDE(,t) is the total effect of 

tidal regime changes and any other influences, such as dynamic oceanographic and 

atmospheric effects, that may change the reference water level of a sea-level index point. 

SED(,t) is the total effect of sediment consolidation since the time of deposition.  

Numerous studies show that this can be both a major process in coastal evolution and a key 

variable in reconstructing relative sea-level change from index points taken from Holocene 

sediments (Brain, 2015).  

 UNSP(,t) is the sum of other unspecified factors, either not quantified or not thought of.  

Implicitly most studies assume their total effect close to zero and random. 

In order to attribute a change in relative sea level the result of coseismic or interseismic vertical land 

motion we must demonstrate, for the relevant timescale:   

TECT(,t)  > (EUS(t) + ISO(,t) + LOCAL(,t) + UNSP(,t))  [2] 

As areas often dominated by net sediment accumulation, tidal-wetland environments provide the 

potential to preserve long records of relative sea-level change and multiple subduction earthquake 

cycles, more than 5000 years in the case of Copper River Delta, Alaska (Carver and Plafker, 2008) and 



Cascadia (Nelson et al., 2006) and 7000 years in Hawkes Bay, New Zealand (Hayward et al., 2006; 

Hayward et al., 2015). The characteristics of a subduction earthquake cycle vary spatially; dependent 

upon factors that include rates of plate motion, angle of dip, roughness of the subducting plate, 

trench sediment properties, rupture length and coseismic slip (Wang, 2007; Wang et al., 2012).  The 

idea of a cycle implies no suggestion of periodicity, with neither the time between earthquakes nor 

their magnitude deemed a constant.  Recent modelling studies using GPS data from different 

subduction zones at different stages in their current cycle suggest four processes comprise a 

subduction earthquake cycle: rupture, afterslip, mantle relaxation and relocking of the fault (Wang 

et al., 2012).  Coseismic surface deformation is limited to near the rupture zone, with maximum 

subsidence above the downdip end of the rupture (location b in figure 2). Afterslip, mantle 

relaxation and relocking all begin immediately after the earthquake but dominate at different times.  

Asiesmic afterslip occurs mostly around the rupture zone (figure 2), and earthquake-induced stress 

causes viscous relaxation of the mantle, leading to surface deformation across a wider area in the 

trench-normal direction.  These dominate for years to decades after the earthquake, often called the 

postseismic phase (Figure 2), before the fault becomes fully locked, the decades to centuries 

interseismic period.  Determining the duration of rapid, post-seismic deformation and the relative 

contributions of afterslip and viscoelastic relaxation remains a challenge (Wang, 2007; Wang et al., 

2012).  Timescales are related to along strike rupture length, and for great earthquakes the inland 

area a few hundred kilometres from the trench may continue to move seawards for decades after 

the earthquake (location d, figure 2). Where the coast lies above the rupture zone and the afterslip 

zone at the downdip end, tidal marshes at different distances from the trench have the potential to 

record vertical deformation in different parts of the earthquake cycle, including coseismic uplift and 

subsidence (locations a and b respectively, figure 2), rapid postseismic changes and slower 

interseismic changes.  Beyond the coastal zone (locations c and d, figure 2), GPS observations show 

post-seismic and interseismic changes cover a much wider area than the area that records coseismic 

motions.  

Tidal-wetland sediment sequences can register vertical land motions through changes in sediment 

lithology and biostratigraphy. Preservation of records of multiple subduction earthquake cycles, 

through stacked sequences of multiple peat-mud couplets or mud-peat couplets seen in outcrop or 

by coring, requires certain combinations of coseismic and interseismic land motions, non-seismic 

relative sea-level change, sediment accumulation and sediment compaction (Figure 2). 

In general, relative sea-level rise over multiple earthquake cycles enhances the potential 

preservation of both types of couplet (Figure 2).  For example, for the preservation of multiple peat-

mud couplets beneath a marsh surface, without any non-seismic (i.e. eustatic or glacio-isostatic) 



relative sea-level rise, interseismic uplift must be less than coseismic subsidence unless it is offset by 

sediment compaction (Scenario A, figure2).  Otherwise, if interseismic uplift plus compaction equals 

coseismic subsidence, subsequent peat layers would be super-imposed on top of one another 

(Scenario C).  Alternatively, if interseismic uplift was greater than coseismic subsidence (resulting in 

net uplift during the earthquake deformation cycle), it would lead to net emergence of marshes 

above present with potential oxidation and decay of peat.  To allow preservation of buried peat-mud 

couplets where there is non-seismic relative sea-level rise, interseismic uplift can be less than, or 

equal to coseismic subsidence (Scenario B).  Preservation of stacked mud-peat couplets, recording 

multiple earthquake cycles with coseismic uplift requires favourable combinations of sediment 

compaction and Holocene sea-level rise unless interseismic subsidence is greater than coseismic 

uplift (Scenarios D, E, F). In addition, coastal progradation can aid the preservation of sediments 

recording coseismic uplift along with net emergence over thousands of years although each outcrop 

or borehole may only record one earthquake (Plafker et al., 1982; Shennan et al., 2009). 

Two of the original criteria suggested by Nelson et al. (1996), lateral extent of peat-mud couplets 

with sharp contacts and suddenness of subsidence, remain widely adopted, reflecting sound 

geological practice. They also apply when considering evidence for coseismic uplift (Shennan, 2009; 

Shennan et al., 2014c; Shennan et al., 2009). For the other three criteria, amount of vertical motion, 

synchroneity with other sites, and presence of tsunami sediments, numerous studies since the 

original publication present new approaches that improve our understanding of the paleoseismic 

record.  We aim to illustrate a number of these in the following sections and then consider additions 

to the original criteria.  

2. Tectonic setting and plate segmentation 

The 1964 Alaska Mw 9.2 earthquake was the largest in a series of five earthquakes of Mw7.9 or 

greater between 1938 and 1965 along the Aleutian Peninsula and the coast of southcentral Alaska 

that helped define models of rupture segments along the Alaska – Aleutian megathrust (Davies et 

al., 1981; Nishenko and Jacob, 1990).  The 1964 earthquake ruptured ~950 km of the megathrust, 

involving two main asperities focussed on Kodiak Island and Prince William Sound (Carver and 

Plafker, 2008; Suito and Freymueller, 2009) and crossed the Kenai segment that is currently 

creeping, producing coseismic uplift towards the trench and a zone of subsidence largely to the 

north and northwest (Figure 3). 

Paleoseismic studies of coastal sediments currently provide a long record of previous large 

earthquakes only for the Prince William Sound (PWS) segment, with widespread evidence of seven 

great earthquakes in the last 4000 years (Shennan et al., 2014b; Shennan et al., 2014c) and more 



restricted evidence for three earlier ones (Carver and Plafker, 2008). Shorter and more fragmentary 

records from the Kenai Peninsula, the Yakataga coast and Kodiak Archipelago raise the hypothesis of 

different patterns of surface deformation during past great earthquakes and hence differing 

coseismic slip at the plate boundary (Briggs et al., 2014; Hamilton and Shennan, 2005b; Hutchinson 

and Crowell, 2007; Kelsey et al., 2015; Shennan et al., 2014a; Shennan et al., 2014c; Shennan et al., 

2009). 

A Bayesian modeling approach (Bronk Ramsey, 2009; Lienkaemper and Bronk Ramsey, 2009) 

determines the best-fit ages and recurrence intervals of multiple great earthquakes.  It allows us to 

combine the ages on earthquake horizons from all sites across the Prince William Sound segment, 

whether they record coseismic uplift or coseismic subsidence (Shennan et al., 2014c).  This 

constitutes a fundamental difference to previous studies that first determine the chronology at each 

site, then compare the patterns between sites (Carver and Plafker, 2008; Shennan and Hamilton, 

2006). The best-fit model gives the age of the penultimate great earthquake as 870 ± 34 BP (2σ) with 

decreasing precision for each older earthquake (Figure 4).  This is a function of both the number of 

samples available, in part reflecting the limits to coring depth, and the number of sites that record 

the earthquake.  The oldest three earthquakes are only constrained by samples from one site 

(Copper River Delta) and the precision of the estimated ages is poor, ± 180 to ± 300 years.  In the 

following section, as we assess new data we use the best-fit age model as a test of the between-site 

synchroneity criterion.  

Recent tsunami modelling studies use the results of paleoseismic studies to develop tectonic models 

for a range of credible scenarios of potential tsunamigenic earthquakes (Nicolsky et al., 2013; 

Nicolsky et al., 2014).  In addition to tectonic models of the Mw 9.2 1964 earthquake, they consider 

scenarios that range from Mw 8.7 or 8.8 single segment earthquakes to Mw 9.3 multi-segment 

earthquakes, and a variety of different slip distributions.  Here we take four of their scenarios (Figure 

5 and Table 1) as examples to consider the extent to which paleoseismological constraints may 

discriminate between different rupture modes. Their coseismic deformation model of the Mw 9.2 

1964 earthquake comes from a 3-D viscoelastic model, originally described by Suito and Freymueller 

(2009), of simultaneous rupture of the Prince Willian Sound, Kenai and Kodiak segments, and slip on 

the Patton Bay splay fault. The models for the Mw 8.8 earthquakes come from two theoretical 

scenarios for different slip distributions, distributed across 884 to 1068 sub-faults,  in the Prince 

William Sound and Kenai segments (Nicolsky et al., 2013). The final scenario is for a hypothetical Mw 

9.3 earthquake modelled as a simultaneous rupture of the Prince William Sound, Kenai and  Kodiak 

segments, the western part of the Yakutat microplate and the Patton Bay splay fault (Nicolsky et al., 

2013; Suito and Freymueller, 2009). 



 

3. Approaches to reconstructing relative sea-level change, marsh 

submergence and emergence 

Virtually all tidal-wetland paleoseismology studies use coastal morphology and sediment exposures 

or sediment cores to provide evidence of relative sea-level change, whether caused by seismic 

processes or not, and AMS radiocarbon dating of in situ herbaceous macrofossils, wood or shells to 

provide a chronology for each site. Many use microfossil evidence to provide either qualitative or 

quantitative estimates of the vertical motion, with quantitative approaches commonly based on 

transfer function methods.  

Interest in the use of microfossil analyses within coastal paleoseismology developed quickly in the 

years following Atwater’s 1987 paper, applying the approaches honed to study non-seismic relative 

sea-level change in numerous regions. At that time, such studies of relative sea-level change still 

used qualitative approaches in assessing microfossil evidence, many influenced by the meticulous 

work of Tooley (1974, 1976, 1978).  These studies typically described changes in assemblages of 

pollen, diatoms or foraminifera in stratigraphic sequences and presented qualitative interpretations 

of relative sea-level change.  In order to aid readers not familiar with taxonomy or ecology, authors 

used various types of summary classifications in microfossil diagrams to illustrate broad changes in 

microfossils.   Quantitative estimates of past sea level came primarily from radiocarbon dated index 

points at major stratigraphic boundaries, such as the change from peat to mud or vice versa, and 

their analysis through age – elevation plots.  Interpretation of changes in microfossil assemblages 

before or after dated index points comprised qualitative assessments of the trend, or tendency, of 

change, in terms of increasing or decreasing marine influence (Shennan, 1982, 1986). While this sea-

level tendency approach introduced a hypothesis-testing route applicable to studies of both seismic 

and non-seismic relative sea-level change (Long and Shennan, 1993, 1994, 1998), numerical 

techniques started to appear in sea-level studies (Atwater et al., 1995; Guilbault et al., 1996; 

Guilbault et al., 1995; Horton et al., 1999; Shennan et al., 1996; Zong and Horton, 1999), much later 

than in some other fields (Imbrie and Kipp, 1971). 

3.1 Approaches to quantitative microfossil-based reconstructions 

The term transfer function does not imply a single numerical technique, but a common approach 

that draws from a suite of techniques to choose those most appropriate for the specific study (Kemp 

and Telford, 2015).  Diatom and foraminifera based transfer functions are the most widely adopted 

approaches for quantitative reconstructions of both seismic and climate-driven relative sea level 



changes, summarised in some comprehensive recent reviews (Barlow et al., 2013; Dura et al., 2016; 

Edwards and Wright, 2015; Kemp and Telford, 2015; Zong and Sawai, 2015) . Other microfossil 

groups used include pollen (Bernhardt and Willard, 2015; Hughes et al., 2002), ostracods (Cronin, 

2015), mollusca (Pilarczyk and Barber, 2015) and testate amoebae (Charman, 2015), though these 

rarely appear in coastal paleoseismology studies with quantitative estimates of deformation.  

Two of the first applications of microfossil techniques in Alaska, studying the sedimentary record of 

the 1964 earthquake (Shennan et al., 1999; Zong et al., 2003) found that diatoms provided a better 

resolution of elevation than pollen and better preservation through complete sedimentary couplets 

than foraminifera. Most studies in the area since then predominantly use diatom-based methods.  

For the diatom analyses presented below, we illustrate quantitative methods using transfer function 

approaches based on weighted-averaging partial least squares, WA-PLS, developed and successfully 

applied at other sites in south central Alaska (Shennan et al., 2014b; Shennan et al., 2014c), the 

modern analogue technique, MAT, (Hamilton and Shennan, 2005a; Hamilton and Shennan, 2005b; 

Kemp and Telford, 2015), and qualitative approaches based on diatom summary classes.  We use a 

regional-scale modern training set of surface samples collected from a wide range of marshes across 

~1000 km of south central Alaska in order to seek the best fit between fossil and modern diatom 

assemblages (Watcham et al., 2013), with additional samples added during subsequent field 

seasons.  New tide level data from Turnagain Arm (Bender et al., 2015) provide an improved 

calibration of the modern training set (data files in Supplementary Information), therefore the 

reconstructions presented below may differ from any previously published for the same sites. We 

use three WA-PLS models, constrained by the lithology of the Holocene sediment sequence: one for 

peat sediment, a second for organic mud units and mud units with visible plant rootlets, and a third 

for mud units with no rootlets (Hamilton and Shennan, 2005a; Shennan et al., 2014b).  We assess 

goodness of fit between each fossil sample and the modern dataset with a dissimilarity coefficient, 

using the 20th percentile of the dissimilarity values for the modern samples as the cut-off between 

‘close’ and ‘poor’ modern analogues for fossil samples, and the 5th percentile as the threshold for 

defining ‘good’ modern analogues.  For reconstruction of the elevation at which the fossil sediment 

accumulated, termed paleo-marsh surface elevation, PMSE, we present sample-specific 95.4% (2σ) 

error terms.  

The addition of further samples to the modern training set available for transfer function methods, 

following each field season since the original study (Hamilton and Shennan, 2005a), raises a 

methodological debate regarding transfer function methods that we raised previously (Barlow et al., 

2013; Watcham et al., 2013).  A modern dataset dominated by modern samples from the local site, 

i.e. in the same marsh or estuary as the fossil core, will most likely provide the smallest error terms 



for the youngest samples.  In contrast, it may not provide good analogues for older samples. By 

definition, all our modern samples are from the postseismic period of the latest earthquake 

deformation cycle; therefore, we see no a priori reason to suppose that a local dataset will provide 

all modern analogues for our fossil sequences that may be thousands of years older and from 

different phases of an earthquake cycle. One effect of increasing the sample size is to increase the 

model error terms for RSL reconstructions (Table 2).  The largest increase is within the upper 

elevation range, demonstrated in model 1, and reflects better sampling since 2005 of the diverse 

peat-forming environments in the transition from upper tidal marsh to freshwater environments. 

We also consider the reduction in number of components used in the model solution an 

improvement (Kemp and Telford, 2015).  

We have always argued that model performance and their subsequent elevation predictions are 

judged not only by the size of the error term but also by an assessment of the goodness of fit 

between each fossil sample and the modern dataset (Hamilton and Shennan, 2005a), as outlined 

above.  When we apply the new transfer function models to all of our fossil data collected across 

south-central Alaska, i.e. those from our previous studies and the new sites reported below, we see 

an increase in the number of good modern analogues and consider this an important step in 

improving our confidence in the reconstructions of elevation change.  We therefore accept larger 

error terms in order to have more good and close modern analogues. 

3.2 Summarising microfossil data and sea-level reconstructions 

Microfossil-based reconstructions of relative sea level-change involve datasets that comprise 

multiple variables, species, and many samples.  In the case of diatoms, samples through a section 

typically contain more than 100 different species.  The data invariably show noise, some redundancy 

and internal correlations, and often contain outliers (Birks, 1995).  These provide a challenge to 

illustrate, both for a reader familiar with diatom taxonomy and ecology, and for a wider audience 

who know much less about diatoms, but need to see how an author reached an interpretation or 

quantitative estimate of sea-level change.  Published examples, including those within 

supplementary information files, range from all species plotted, to only a summary of species 

abundance based upon a classification scheme.   

Figure 6 illustrates an example somewhere between these two extremes.  The left hand part shows 

the changes in frequency of the most abundant species, colour coded by their classification based on 

salinity preference.  The first summary diagram includes all the diatom abundances based on salinity 

preference.  This is probably the most widely used summary classification in diatom-based studies. 

These provide a simple visual summary, with some important qualifications.  First, the assignment of 



a species to a salinity group will depend upon the database or literature source used (Atwater and 

Hemphill-Haley, 1997; Atwater et al., 1995; Beyens and Denys, 1982; Denys, 1991; Karlin and Abella, 

1996; Patrick and Reimer, 1966, 1975; Sawai, 2001b; Sawai et al., 2004; Van der Werff and Huls, 

1958-1974; Zong and Sawai, 2015) yet the modern environments may be rather different to the 

study region.   For example, a species’ classification could date back to nineteenth century 

observations in Europe.  Second, assignment to a class may take no account of the tolerance of a 

species and its distribution along an environmental gradient. Some classification schemes attempt to 

allow for this by increasing the number of classes, but too many classes may lead to a less clear 

diagram.  Finally, some sharp changes in the summary graph may result from changes of a single 

species.  Although salinity-based grouping remain popular, the relationship between elevation and 

salinity need not be linear (Thomas and Varekamp, 1991; Varekamp et al., 1992), hence the caution 

required in describing the tendency of change observed, rather than a quantitative estimate (Nelson 

et al., 1996; Shennan, 1986).  

The second summary plot and the four graphs on the right hand side of figure 6 reflect additional 

information based on numerical approaches.  The summary plot is an alternative to the salinity 

classification, each diatom species is classified by their optimum elevation in the modern data set 

used for the transfer function models (Garrett et al., 2015b).  The four graphs represent two transfer 

function methods of reconstructing elevation, WA-PLS and MAT, and two methods of illustrating 

these.  Paleo-marsh surface elevation (PMSE) indicates the elevation of the sample with respect to 

the tidal frame at the time it formed, whereas RSL takes into account the depth of sediment 

accumulated since the time of formation. 

The individual diatom species, both summary classifications and the quantitative reconstructions all 

illustrate two subduction-zone earthquakes at Girdwood, pre-seismic changes and interseismic 

changes (Shennan and Hamilton, 2006) and, within the upper peat layer, Little Ice Age glacial 

isostatic effects (Barlow et al., 2012).  While the qualitative approaches, the two summary 

classifications, and the quantitative reconstructions of elevation estimated by two different transfer 

function models, show similar patterns for major changes, they differ with respect to smaller 

changes (Figure 7).  WAPLS and MAT show very similar estimates for most samples, although the 

latter shows a little more level-to-level noise in part of the sequence.  Both summary classification 

schemes also exhibit some level-to-level noise, with the salinity-based scheme seemingly 

exaggerating the degree of change compared to the other methods.   

Given the qualifications outlined above regarding summary classification schemes, and their only 

broad relationship to elevation (Figure 8), we should exercise caution in using them to interpret 

other than rapid changes in sea level greater than approximately 0.5 m, and definitely be cautious 



about level-to-level oscillations of less than 0.5 m (Figure 9).  This example (Figure 9) suggests that, 

used in isolation, a change inferred between two samples has an even chance of showing the correct 

sign for a change of less than half a metre.  Trends sustained over a number of contiguous samples 

are proportionally more likely to show the correct direction of change. 

 

4. Tidal wetlands and different detection limits for recording 

paleoseismic evidence  

The majority of the evidence for the multiple ruptures of the Prince William Sound segment (Section 

2 and Figure 4) comes from just four sites, Ocean View at Anchorage, Girdwood, Portage, and 

Copper River Delta. Girdwood and Portage lie within the region of greatest subsidence in 1964, ~1.5 

m excluding any additional subsidence due to ground shaking and sediment compaction. Copper 

River Delta lies within a broad area of uplift of a similar amount, or more, in 1964 (Plafker, 1969; 

Plafker et al., 1969). Multiple couplets spanning 4000 years or longer (Figure 4) suggest that 

subsidence and uplift of these magnitudes are clearly above the detection limit of tidal marshes to 

record earthquake induced marsh submergence and emergence. Ocean View at Anchorage provides 

a shorter record, ~2500 years, covering the period that includes three pre-1964 regional 

earthquakes (Figure 4).  Importantly, at the time of EQ3 recorded at other sites in the Prince William 

Sound segment, sediments of that age show gradual accumulation during slow relative sea-level 

change, with no abrupt changes in lithostratigraphy (Hamilton et al., 2005; Shennan and Hamilton, 

2006). This may be evidence of a different rupture mode.  Scenarios B and C (Figure 5) predict 

different trends of subsidence along Turnagain Arm, between Portage and Anchorage, and 

transitions to no subsidence at sites to the southwest, along Cook Inlet out to Kodiak Island.  In the 

following sub-sections we present additional evidence, first from sites within Turnagain Arm, then 

from Cook Inlet and Kodiak Island to evaluate whether tidal marshes can record evidence with 

sufficient resolution to illustrate spatial patterns of different amounts of subsidence or uplift, 

including the transition to zero change. Table 3 presents radiocarbon dated samples not previously 

published, with ages calibrated using OxCal 4.2 (Bronk Ramsey, 2009). 

4.1 Bird Point 

At Bird Point, approximately 10 km west of Girdwood, tidal flat and marshes occupy sheltered 

embayments between glacially eroded bedrock. Sediment outcrops and hand-driven cores reveal an 

extensive peat-mud couplet, typically 0.4 to 0.8 m below the present marsh surface, recording 

subsidence in 1964 (Witter et al., 2015). In contrast to Girdwood, the sediments beneath the marsh 



rarely extend to more than 5 m depth before reaching bedrock.  Although less widespread, three 

further peat-mud couplets occur beneath the 1964 couplet.  All three have sharp contacts and large 

changes in diatom assemblages that reconstruct marsh subsidence of 1.82±0.97, 1.29±0.96 and 

1.42±0.98 m (Figure 10). Ages for these couplets correlate well as maximum ages for regional 

earthquakes EQ1, EQ2 and EQ3.  

 

4.2 Hope 

Tidal marshes at Hope occur along fringes of the active delta of Resurrection Creek as it enters 

Turnagain Arm.  Resurrection Creek was the centre of a gold rush in the late nineteenth and early 

twentieth century, adding to sediment discharge from the catchment to the delta. Outcrops along 

the marsh front and hand-driven cores reveal a complex stratigraphy of minerogenic beds, ranging 

from mud to gravel, close to the present creek and within the eastern part of the delta. Peat-mud 

couplets correlated between cores only occur west of Resurrection Creek (Figure 11).   Sawn timber 

exposed in outcrop indicates the uppermost couplet represents marsh submergence following ~1.5 

m regional coseismic subsidence in 1964 (Plafker et al., 1969). The borehole evidence reveals 

another couplet ~3 m below the surface with lateral continuity and a sharp peat-mud contact. 

Diatom analyses indicate 1.17±0.99 m rapid submergence and the radiocarbon age supports a 

correlation with regional earthquake EQ3 (Figure 11).  Further couplets occur between 1 and 3 m 

depth but show less consistency between boreholes. 

4.3 Kasilof 

The Kasilof River drains 1,919 km2 of the Kenai Peninsula with the potential of major flooding from 

the sea, snowmelt, rainfall or outburst from lakes impounded by Tustmena Glacier (Reger et al., 

2007).   Intertidal outcrops along the river and a series of cores towards the bluff reveal three peat-

mud couplets close to the river (Figure 12). The site lies with the zone of submergence in 1964, 

although the estimate of ~0.5 m is an interpolation between points ~100 km apart (Plafker, 1969). 

For diatom analyses we classified the original counts of Hamilton (2003) from location 8 in line with 

the new transfer function models described above and undertook further analyses across the key 

sediment boundaries at location 1.  

Radiocarbon ages indicate a record covering more than 6200 years, commencing with the transition 

from intertidal mud to the base of peat C.  Peat C accumulated in close proximity to tidal 

sedimentation, indicated by the low but consistent frequencies of tidal flat and tidal marsh diatom 

species (Figure 12). Radiocarbon ages on the outer rings of tree stumps rooted within peat C and 

correlation of tephra layers (Combellick and Pinney, 1995; Combellick and Reger, 1994), from an 



outcrop close to location 8, support an interpretation of gradual accumulation of peat C in the 

absence of any visible stratigraphic hiatus. Preliminary 137Cs analysis at location 8 (Hamilton, 2003) 

indicated AD 1964 occurs within the mud unit well above the upper contact of peat A (Figure 12).  To 

check this finding we sampled the top contact of peat A at location 1 and found no above 

background 137Cs so confirm that the upper contact of peat A is not AD 1964.  

In order to evaluate each peat-mud couplet as evidence of marsh submergence caused by coseismic 

subsidence we will consider in detail the diatom evidence across each couplet from locations 1 and 8 

along with the other lines of evidence. 

The contact at the top of peat C appears to fulfil the Nelson et al. (1996) criteria as evidence of 

submergence associated with coseismic subsidence.  We can trace the contact laterally and it is 

always abrupt (Figure 12). Some diatom species show abrupt change across the contact with 

estimates of submergence as 0.56 ± 0.47 m at Site 8 and 0.62 ± 0.47 m at Site 1 (Figure 13). 

Radiocarbon ages from the contact and 1 cm below the contact correlate well as maximum ages for 

submergence indistinguishable from the age of regional earthquake EQ2.  An alternative hypothesis 

is that local processes, including river flooding, could produce a similar couplet.  The correlation with 

regional earthquake EQ2 does not prove a coseismic cause; rather it indicates that we should not 

reject the coseismic hypothesis. The gradual trend of relative sea-level fall through the mud and into 

peat B fits with a model of century-scale interseismic uplift following coseismic subsidence (Scenario 

B, figure 2) superimposed on longer-term sea-level rise illustrated in Figure 12. 

The peat B top contact shows some subtle contrasts with the peat C top contact.  It is sharp in some 

outcrop and cores, and gradual in others (Figure 12).  Combellick and Reger (1994) also recorded it 

less sharp than contact C. At location 8, the sample from mud directly above the contact shows a 

diatom assemblage different to those above and below and give a sea-level reconstruction that 

appears as an outlier on a general trend of sea-level rise (Figures 12 and 13).  In contrast, the diatom 

assemblages from the samples above and below are very similar to each other. At location 1, the 

samples across the contact indicate submergence of 0.48 ± 0.47 m.  Radiocarbon ages from the top 

of peat B, leaf fragments from within the lowest 1 cm of the mud unit, and the base of peat A, some 

0.3 m higher up-section, constrain the age of submergence to earlier than regional earthquake EQ1 

(Figure 13).   

The uppermost peat-mud couplet occurs across the whole transect of cores and is visible in outcrop 

for at least 200 m. The upper contact is sharp in all locations apart from one borehole.  Diatom 

assemblages from a few centimetres either side of the contact record a clear rise in sea level (Figure 

12), but the abrupt rise is not at the contact.  The samples from the base of the mud unit and the top 



of the peat at both location 1 and location 8 indicate no rise in sea level across the contact, with the 

rise occurring within the mud unit. Diatom species within the basal mud sample show a distinct 

change in assemblage compared to the peat sample immediately below, indicating a change in 

sedimentary environment but at a similar elevation within the tidal frame.  

In order to suggest possible mechanism for these changes we must consider the sedimentary system 

as a whole.  Aerial imagery of the ~8 km tidal section of Kasiof River shows a dynamic system with 

evidence of changes in meander patterns, undercutting of channel sides and packages of sediment 

deposited adjacent to the channel.  Away from the channel, the marsh surface is relatively flat 

(Figure 12), with small changes in topography, <0.1 m, delimiting ponds of standing water from 

vegetated marsh.  We envisage major floods, whether from snowmelt, rainfall or lake outbursts, 

may cause morphological changes that become recorded in the stratigraphy.  These include a 

temporary pulse of minerogenic sedimentation, channel erosion and channel avulsion. Lateral 

erosion could undercut waterlogged marsh and ponds, leading to lowering of the local water table 

through drainage into the tidal channel.  This would lead to peat compaction, allowing initial mud 

accumulation at a similar elevation.  Continued compaction would produce relative sea-level rise, 

recorded within the mud unit. 

The age of this episode of marsh submergence falls within a radiocarbon plateau, giving a range of 

280 to 0 BP. As noted above, 137Cs evidence shows that the couplet does not correlate with the 1964 

earthquake (Figure 12).  The coarse sampling interval for the 137Cs samples, 8 cm, prevents a precise 

determination of AD 1964 other than the envelope shown in the figure.  It is possible that the step 

change in reconstructed sea level, 0.21 ± 0.61 m, at the top of the envelope, is the record of marsh 

submergence in 1964. 

The contrasts seen in the three couplets at Kasilof may indicate a detection limit of around 0.5 m for 

coseismic submergence at the site.  This value is directly related to the scaling factor used in the 

modern training set to allow for different tidal ranges, so it is better to consider this vale as 

approximately 8% of the great diurnal range at the site (the difference between mean higher high 

water, MHHW, and mean lower low water, MLLW).  We return to this topic in sections 5 and 6. 

4.4 Homer 

The road from Homer Township to Homer Spit runs along an embankment that separates Beluga 

Lake from Beluga Slough, an intertidal marsh with tidal channels behind a sand and gravel spit 

(Figure 14). Beluga Lake once extended across what is now Beluga Slough.  During the early years of 

Homer Township a railway ran from coal mines 3 km west, along a spit across the mouth of Beluga 

Lake, and continued along Homer Spit to the east (Stone, 1906). The mines closed in 1903. Much of 



the gravel for construction of the new road and embankment 1941-45 came from the spit (Soberg, 

1991).  It no longer formed a complete barrier and the 1946 USGS topographic map shows a creek 

flowing from the embankment to the coast. The 1964 earthquake caused ~0.6 m regional 

subsidence, with sediment compaction and slumping along Homer Spit leading to localised 

subsidence up to two metres (Waller, 1966). 

Hand drilled cores from along the central axis of Beluga Wetlands (locations 8-12, figure 14) reveal 

thick, >5.5 m, freshwater peat that we could not bottom out. Near to the base, we found two thin 

mud/sand layers that we interpret as tephra.  Surface peat floating on water prevented further 

coring close to the lake. Cores to the edge of the wetland close show intercalations of organic, limnic 

and minerogenic sediments, with no sequence of units that we could trace easily between cores.  

We interpret the coarse minerogenic sediments as slope wash from the bluff.  

Cores from the marsh and tidal flats of Beluga Slough (locations 1-7, figure 14) reveal multiple peat-

mud alternations, usually with a sharp upper contact of the peat, and quite often with a sharp lower 

contact too.  We find it difficult to correlate these thin, multiple couplets between boreholes.  Figure 

14 shows our best interpretation of the field data, suggesting five couplets, A to E, which we feel we 

have some confidence in their continuity, based on the lithology of the organic and minerogenic 

layers that form the couplet and their stratigraphic position.  Radiocarbon ages indicate a 4000-year 

record and therefore potential evidence of multiple 1964-style earthquakes. 

Sawn timber within outcrops along the intertidal channel of Beluga Slough, adjacent to cores 1 and 

2, indicate a twentieth century age for couplet A. Absence of 137Cs for samples across the contact 

suggest a pre-1964 age. The abundance of Fragilaria construens var. venter and Fragilariforma 

virescens, planktonic diatom species indicative of standing water (Denys, 1991; Patrick and Reimer, 

1966), suggest a change in hydrological conditions and sediment input.  Transfer function 

reconstructions show no change in relative sea level (Figure 15). We suggest that couplet A likely 

formed as the result of changes to the gravel spit across the mouth of wetland. Extraction of gravel 

from the spit for road construction and lowering the water table for the building of the Beluga Lake 

embankment in 1941-45 is a possible explanation. 

Couplet B comprises a thin peat, with a sharp upper contact, traceable across all cores from Beluga 

Slough.  At core 4 the diatoms include the standing water species mentioned above, marsh species, 

no abrupt changes across the contact and no change in reconstructed sea level.  At core 5, diatom 

assemblages show no abrupt changes at the contact, but trends below and above.  The sea-level 

reconstructions indicate a rise commencing within peat B and continuing across the contact.  The 

radiocarbon ages at the two cores differ. 



The radiocarbon ages from couplet C suggest reworking of an older peat at core 4. At core 5 the 

diatom assemblages in both the peat and mud units suggest standing water throughout, with a 

change in depositional environment across the contact and an increase in species reflecting lower 

elevations or higher salinity.  The reconstructions estimate a rise in sea level of 0.22 ± 0.58 m.  The 

radiocarbon age from core 5 matches the age of regional earthquake EQ3. 

Couplet D has differences in both age and diatom assemblages between cores 4 and 5.  If both cores 

record synchronous submergence the older age at core 4 would imply some erosion of peat.  The 

age from core 4 does not correlate with a regional earthquake, whereas that from core 5 fits with 

EQ4.  The diatom assemblages and sea-level reconstructions indicate gradual changes and sea-level 

rise within the peat and a more abrupt change across the contact, estimating a slight fall in sea level, 

0.18 ± 0.55 m. 

Couplet E also has differences in age and diatom assemblages between cores 4 and 5.  Core 4 shows 

the older age, slight sea-level fall across the contact, and then a more abrupt sea-level rise within the 

mud unit.  Core 5 records sea-level rise across the contact, 0.27 ± 0.58 m.  The age could indicate a 

maximum age for marsh submergence correlated with regional earthquake EQ6. 

Diatom species reflecting standing water, especially Fragilaria construens var. venter and 

Fragilariforma virescens, occur in each couplet (Figure 15).  In our modern data, their optima and 

tolerances are 0.40 ± 0.25 and 0.68 ± 0.22 m MHHW respectively, although they never account for 

more than 10% in any sample.  We have a poor analogue for many of the fossil samples containing 

much higher abundances.  High abundances of these species suggest standing water, such as a 

lagoon or lake behind a gravel spit or barrier, such as that described pre-1903 to carry a railroad 

(Stone, 1906). The present tidal regime shows low water behind the spit just below MHHW level in 

the open water of Cook Inlet (Figure 16).  The elevation of low water and ponding behind the barrier 

will vary according to the dynamics of the barrier, as will the supply of sediment into the tidal 

system.   The diatom assemblages suggest that peat-mud couplets indicate sedimentation above 

MHHW.  We suggest that non-seismic, dynamic changes in the spit across the mouth of Beluga 

Slough offer an alternative explanation to coseismic subsidence for abrupt changes in lithology and 

diatom biostratigraphy.  We return to the evaluation of these alternatives in the discussion of testing 

models of different rupture modes, section 5, and in section 6, regarding the wider implications with 

respect to detection limits of different sedimentary environments. 

 

4.5 Kalsin Bay 



A recent study of tidal marshes in the northeast of Kodiak Island reports evidence of marsh 

submergence and deposition of sediments by tsunami in AD 1964 and 1788, the latter including 

correlation of Bayesian age modelling of radiocarbon ages with historical accounts, and an earlier 

earthquake ~500 BP (Shennan et al., 2014a). Observations from 1964 indicate 1.4 ± 0.3 m 

subsidence (Plafker, 1969; Plafker and Kachadoorian, 1966) and diatom-based reconstructions 

estimate submergence of 0.41 ± 0.26 m in 1788. The marshes used for that study also provide 

evidence of tidal flat and marsh sediments that extend further back in time. We summarise these 

older data to illustrate the short, fragmentary records available from the Kodiak segment, and how 

they constrain analyses of rupture modes. 

While the evidence for the 1788 earthquake extends across much of the marsh area at Kalsin Bay, 

sediment sequences extending back more than 2000 years occur in isolated patches.  The most 

coherent of these, in that they show some lateral continuity of peat-mud couplets and sand layers at 

the contact, occur within a small depression behind a fossil beach ridge, ~700 m from the coast and 

close to the main river into the bay.  

In addition to peat-mud couplet A, attributed to the 1788 earthquake, two earlier couplets occur at 

location 5 and some of the adjacent ones (Figure 17).  Couplet B includes a sand layer on the top of 

the peat unit.  Diatoms show a slight increase in sea level across the couplet.  The age does not 

correlate with the earthquake ~500 BP elsewhere in Kodiak.  At least three possible hypotheses 

remain: a small amount of coseismic subsidence during an earthquake not yet recorded beyond the 

site; a tsunami from a distant source and gradual non-seismic sea-level rise; sand deposition during a 

flood from the tidal reach of the river between ~500 BP and AD 1788.  

Peat-mud couplet C further illustrates the difficulty of assessing paleoseimic evidence where the 

amount of submergence appears to be less than ~0.5 m. First, it is difficult to trace the lateral extent 

of the couplet, even with cores only 10 m apart.  Second, the change in diatoms, and therefore the 

reconstructed sea level, comes from primarily two species, Fragilaria construens var. venter and 

Fragilariformis virescens, the same two species discussed above at Homer.  These illustrate a 

temporary change in sedimentation, and given the diatom species, may be a local change in 

hydrology behind the active spit at that time. Alternatively, we can hypothesise that a seismic 

process drove this local change.  These alternatives can be assessed when evaluating different 

modes of rupture and their proposed spatial patterns of surface displacement. 

Finally, we should note that the base of the sequence at this part of Kalsin Bay is ~2500 BP, but 

contains no more peat-mud couplets traced across multiple cores. 

4.6 Anton Larson Bay 



Mashes at the head of Anton Larson Bay, on the northeast peninsula of Kodiak Island, provide 

limited evidence of Late Holocene fluvial, deltaic, tidal flat and marsh sedimentation.  The Katmai 

tephra, AD 1912, is up to 0.8 m thick in some cores and tidal channel outcrops.  Coarse gravel from 

rivers form deltas at the mouths of streams and rivers, and limit total depth of hand-driven cores.  

The field stratigraphy reveals three couplets, all with limited lateral extent (Figure 18).  Above the 

Katmai tephra, a number of cores show a coarse sand layer directly above the tephra, while a small 

area at the head of the marsh has a thin peat, <0.01 m, with an eroded upper contact, between the 

tephra and coarse sand with gravel. We interpret this as record of the 1964 earthquake and tsunami.  

Diatom changes between the peat and the organic mud above the coarse sand indicate a rise in sea 

level of 0.74 ± 0.33 m.  

A second peat-mud couplet occurs a few decimetres below the Katmai tephra along transect B-B’ 

and isolated cores on transect A-A’ (Figure 18).  Ages from two cores, 4 and 9, correlate the couplet 

with the 1788 earthquake (Shennan et al., 2014a), on the assumption that both contacts provide 

maximum ages for the same event.  Both cores estimate submergence, 0.38 ± 0.32 m at core 4 

(figure 18) and 0.07 ± 40 m at core 9. [ 

A third peat-mud couplet, recorded at only two cores, is significant in that it reveals gradual sea-level 

rise over at least 2000 years.  Although there are abrupt changes in diatoms and lithology, there are 

no abrupt changes in sea level.  Unless there are hiatuses in the sequence, this record of gradual, 

uninterrupted sea-level rise covers the time in which three regional earthquakes occurred in the 

Prince William Sound segment (Figure 18). 

5. Testing displacement predictions for different rupture modes 

Eighteen locations provide records of pre-1964 tidal wetland submergence or emergence for testing 

model predictions of cosesimic displacement for different rupture scenarios (Figure 19).  Other 

locations record episodes of marsh submergence (Hutchinson and Crowell, 2007) but we exclude 

them from this analysis as they either show insufficient evidence of lateral continuity of the local 

stratigraphy, such as the large delta of Fox River (Combellick and Reger, 1994) or their age control 

relies on radiocarbon dating of bulk peat samples. Initial attempts to correlate possible paleoseismic 

evidence around Cook Inlet reported significant differences in the ages of peat-mud couplets 

between sites (Combellick, 1991, 1994; Combellick and Reger, 1994). Subsequent studies from Cook 

Inlet demonstrated the potential of contamination of bulk peat samples by older carbon, such as 

coal deposits in the catchment (Hamilton et al., 2005; Shennan et al., 2014c).  In the following 

sections, we compare the evidence of coseismic displacements with predictions for different 



earthquake ruptures (Section 2), first for 1964-type ruptures, second, ruptures extending beyond the 

1964 eastern limit, and third, smaller ruptures within the 1964 limits.  

5.1 Evaluating 1964-type rupture modes  

One interpretation of the paleoseismic evidence from the eighteen sites (Figure 19) is that no 

earthquake in the last 6000 years caused a spatial pattern of uplift and subsidence earthquake the 

same as 1964 (Scenario A in figure 5). The validity of this interpretation lies on three lines of 

argument: 

  the length of records available at each site,  

  the continuity of each record,  

 the extent to which alternative explanations of the evidence remain possible, i.e. the 

evidence available does not reject a number of working hypotheses.  

The reasoning requires close consideration of the evidence for absence of rapid submergence or 

emergence, along with consideration of the absence of evidence.  All of the sites bar two in the 1964 

rupture (involving the Kodiak, Kenai and Prince William Sound segments, Figure 19) provide 

stratigraphic evidence of relative subsidence or uplift in 1964 in terms of peat-mud couplets or mud-

peat couplets respectively.  The spatial extent of the evidence varies within each site, with only part 

of the intertidal environment falling within the elevation zone that will record the amount of 

coseismic subsidence or uplift as a change in lithology.  Outside of this elevation zone, the change 

may still be recorded, without a change in sediment lithology and therefore much harder to detect.  

In the part of the Kasilof River studied (section 4.3), any record of the 1964 earthquake falls within a 

predominantly mud unit.  137Cs and diatom reconstructions of relative sea-level change record an 

abrupt change around this time, but they come from the only profile analysed in sufficient detail. At 

Homer, the sedimentary setting was disturbed by road construction and gravel extraction from the 

spit in the decades prior to 1964 (section 4.4), and the pre-20th sediments indicate a quite different 

sedimentary setting compared to 1964 and since. In this situation, we have a poor modern 

equivalent at the site itself and need to consider the relationship between past environmental 

changes using possible modern equivalents from elsewhere.  

In considering the evidence of absence of abrupt elevation change during previous earthquakes, we 

first evaluate the continuity of each record, and then the alternative explanations for observed 

changes.  At Hope, deltaic processes mask much of the record, with coarse-grained sedimentation 

and channel migration raising the creation and preservation thresholds such that a fragmentary 

record remains.  At Puffy Slough the field investigation was exploratory (Shennan et al., 2014c) and 

the absence of a record for EQ2 may reflect the small number of boreholes made.  In contrast, from 



~6200 to ~1500 BP both Kenai River (Hamilton and Shennan, 2005b) and Kasilof River (Section 4.3), 

20 km apart, record a single peat horizon, with no mud layers and no visible breaks in 

sedimentation.  Both sites have tephra layers within the peat unit, correlated with an eruption of 

Mount Hayes ~3600 BP (Combellick and Pinney, 1995). All the age determinations, radiocarbon ages 

from in situ herbaceous macrofossils at the upper and lower boundaries, from two locations at Kenai 

and two at Kasilof, and further radiocarbon ages on tree stumps rooted within the peat layer at each 

site (Combellick and Reger, 1994), and the Hayes tephra, fall in chronological order. In the absence 

of any evidence for any hiatuses in peat accumulation, we next ask whether peat accumulation took 

place at an elevation within the zone susceptible for recording abrupt relative sea-level rise resulting 

from coseismic subsidence with EQ3 to EQ9. Diatom-based reconstructions indicate peat 

accumulation below the level of Highest Astronomical Tides (HAT) throughout at Kasilof (Figure 20).  

At Kenai the mean estimates are just below HAT.  On the present marsh at Kenai, intertidal mud 

accumulation occurs up to ~1.2 m MHHW at which point high marsh grades to bog communities.  

We suggest that these reconstructions and the stratigraphy indicate that any rapid submergence in 

the order of 0.1 m at Kasilof and 0.3 m at Kenai should have been recorded by diatom assemblage 

changes and probably mud accumulation.  This interpretation would imply that Kenai and Kasilof 

only indicate rapid submergence associated with earthquakes in AD 1964 and EQ2, ~1500 BP and 

that the patterns of deformation in the other earthquakes recorded in the Prince William Sound 

segment differ.  This interpretation also assumes no localised uplift on upper plate structures during 

great earthquakes to offset regional subsidence.  Movement along splay faults caused additional 

localised uplift in 1964 and other Holocene earthquakes (Chapman et al., 2014; Chapman et al., 

2011; Plafker, 1969; Shennan et al., 2014c), but none of these is near to Kenai or Kasilof. Koehler et 

al. (2012) record the most recent surface deformation from faults near these sites as more than 1.6 

million years ago.  An alternative interpretation of the Kenai and Kasilof evidence is that all of the 

regional earthquakes produced subsidence below the creation threshold for recording rapid 

submergence at those river estuary sites.  The creation threshold would be in the order of 0.1 to 0.3 

m. 

In order to support a 1964-type rupture the data from Homer should indicate submergence (Figure 

21 – scenario A), whereas the stratigraphy, radiocarbon results and diatom reconstructions offer 

little support for interpretations involving coseismic subsidence (section 4.4).  For Homer, the 

alternative interpretation is that the spit, prior to human interference, provided a barrier and lagoon 

environment that was insensitive to small coseismic ground motions.  Changes in the hydrology of 

the lagoon and sediment input vary through time but the causes could equally be non-seismic, such 

as major storms superimposed on Late Holocene net sea-level rise. 



The record for 1964-type deformation in Kodiak is patchy.  At both Kalsin Bay and Anton Larson Bay 

sediments older than 800 BP occur across only small areas, <50 m radius.  Neither offer supporting 

evidence for rapid submergence coincident with EQ1, EQ2 or EQ3, even though they have sediments 

of similar ages and diatoms indicating inter-tidal environments that should be sensitive to relative 

sea-level change. An alternative interpretation is that the field evidence fails to show sufficient 

evidence of the lateral continuity of different units.  Without lateral continuity we may not 

distinguish between the absence of rapid change and the absence of evidence due to sediment 

erosion and hiatuses. Evidence from Sitkinak indicates uplift around the time of EQ1, in contrast to 

subsidence in 1964 at the same site, but, as noted by Briggs et al. (2014), present uncertainties are 

too large to correlate this uplift with simultaneous rupture of the Prince William Sound segment. 

5.2 Evaluating rupture modes extending to the east 

Paleoseismic evidence from the coast of the Gulf of Alaska, beyond the eastern limit of deformation 

in 1964, record coseismic uplift that correlates in age with EQ1 and EQ2 (Shennan et al., 2009). The 

greater extent eastwards and amounts of deformation compared to those observed in AD 1899 

(Plafker and Thatcher, 2008) and 1964 support the hypothesis of simultaneous rupture of adjacent 

segments of the megathrust and the Yakutat microplate.  The alternative hypothesis is that the 

segments ruptured separately, during a time interval within the radiocarbon age error terms, a few 

decades or less.  This alternative hypothesis, however, less easily explains the patterns of uplift at 

Cape Suckling and along the Yakataga coast (Shennan, 2009; Shennan et al., 2009).  Bayesian age 

modelling produces a strong correlation with EQ1 and EQ2 (Shennan et al., 2014c).  Comparisons of 

the estimates of submergence and emergence with model predictions of coseismic subsidence and 

uplift show good agreement for the Prince William Sound segment and Yakataga (Figure 21 – 

scenario D), but not for the Kenai and Kodiak segments, subject to the alternative interpretations 

discussed in the preceding section. The palaeoseismic evidence suggest a rupture mode not 

presently modelled, comprising the western Yakutat and Prince William Sound segments, and 

possibly part of the Kenai segment. 

5.3 Evaluating smaller ruptures within the 1964 limits 

Interpretations of zero coseismic subsidence in Kodiak, Homer, Kasilof and Kenai (section 5.1) imply 

a different pattern of rupture to 1964, such as scenarios B and C (Figure 5 and Nicolsky et al., 2013; 

Nicolsky et al., 2014).  Both scenarios illustrate Mw 8.8 earthquakes, with a deeper slip distribution 

in Scenario C (Table 1) producing subsidence further to the west (Figure 21).  

Relative sea-level reconstructions of marsh submergence and emergence across the region broadly 

show good fits with rupture modes that comprise the Prince William Sound segment and part of the 



Kenai segment.  The pattern of marsh submergence and emergence for EQ1 matches closest with 

Scenario B, but indicates a rupture that extend further east (section 5.2). The pattern for EQ3 

broadly matches closest with scenario B, but also with the extension east, and for EQ2 with scenario 

C (Figure 21).  In detail, however, certain aspects suggest further work is required to match better 

the model predictions and reconstructions.  For example, the models predict an axis of maximum 

subsidence along Turnagain Arm around Hope, not seen in the reconstructions of marsh 

submergence (Figure 22), although localised sediment compaction will potentially influence each 

marsh differently and possibly obscure such trends in the reconstruction data. More important is the 

trend to zero submergence at Anchorage in EQ3 (Hamilton et al., 2005). The evidence of increasing 

submergence from Hope to Portage and the lack of any evidence of emergence, contrasts with the 

transition from subsidence to uplift suggested by Scenario C.  To attribute the model-to-

reconstruction differences as simply a result of sediment compaction requires greater amounts of 

compaction than those interpreted for 1964 (Plafker, 1969; Plafker and Kachadoorian, 1966; Plafker 

et al., 1969).   

5.4 Variable rupture modes and seismic hazard assessment 

On the balance of evidence, we infer that the reconstructions of marsh submergence and 

emergence reflect different patterns of rupture mode in great earthquakes.  EQ1 and EQ2, ~850 and 

~1500 BP respectively probably ruptured the Prince William Sound segment, at least part of the 

Kenai segment, and the western part of the Yakutat microplate.   The western extent of 

submergence with EQ2 would indicate a deeper slip distribution.   

The pattern of submergence and emergence for EQ3, ~2100 BP, is consistent with a modelled 

rupture of just the Prince William Sound and part of the Kenai segment (Figure 21).  Although 

restricted to fewer sites (figure 19), the evidence of no submergence at Kenai, Kasilof and Homer 

would indicate Scenario B or C-type ruptures of the Prince William Sound and Kenai segments.  

For the southwestern part of the 1964 rupture area, a number of studies conclude that the Kodiak 

segment of the megathrust ruptures independently of the Prince William Sound segment (Briggs et 

al., 2014; Carver and Plafker, 2008; Gilpin, 1995; Sauber et al., 2006; Shennan et al., 2014a). These 

include the AD 1788 earthquake, described in historical documents (Soloviev, 1990) and recorded in 

tidal marsh stratigraphy on Kodiak Island and Sitkinak Island, and another one ~500 BP (Briggs et al., 

2014; Shennan et al., 2014a).  Tsunami sediments on Chirikof Island, only 125 km further west of 

Sitkinak record the AD 1788 earthquake but show no correlation with those ~500 BP on Kodiak 

Island and EQ1 in the Prince William Sound segment (Nelson et al., 2015).   



Current hazard assessment studies model a single segment rupture of the Kodiak segment, Mw ~8.8 

(Suleimani et al., 2002; Wesson et al., 2007; Wesson et al., 2008), although paleoseismic evidence 

also suggest a possible rupture scenario of the Kodiak segment and at least part of the Kenai 

segment (Kelsey et al., 2015). Some of the alternative interpretations of the sedimentary evidence 

from Kasilof, Homer and Kalsin Bay (Sections 4.3 to 4.5) could support a hypothesis of a co-rupture 

of the Kodiak segment and a western part of the Kenai segment.  The most abundant evidence 

relates to marsh submergence ~1100 BP recorded at Kasilof (figure 13), that could correlate with 

maximum ages of submergence recorded at Homer (Figure 14) and Kalsin Bay (Figure 17) and a 

minimum age for uplift at Sitkinak (Briggs et al., 2014).  In contrast, Anton Larson Bay records 

gradual sea-level rise at that time. 

The growing body of evidence of variable rupture modes provides considerable challenges in 

revising and updating the hazard model for the megathrust (Mueller et al., 2015; Wesson et al., 

2008). Briggs et al. (2014) argue for a re-evaluation of 2007 segmented megathrust model (Wesson 

et al., 2007), with fixed segment boundaries.  The analyses presented above support this call, to 

include both variable rupture modes and variable recurrence times. Creation and preservation 

thresholds limit the resolution of displacement recorded at each site.  Rather than focus on this limit 

at each site, say ~0.3 m, we judge the fit between model predictions and paleoseismic 

reconstructions based on the spatial differences across numerous sites, ranging from the areas of 

large change, greater than say ~0.3 m, to areas with evidence of no change. If we see a spatial 

pattern of misfits that cannot be resolved, either we focus on the local site processes, which may 

explain the absence of evidence for coseismic uplift or subsidence across those sites, or infer that 

the model parameters need reassessing. 

6. Identifying coseismic subsidence and uplift in tidal-wetland 

stratigraphic sequences  

Considering the number of twenty-first century megathrust ruptures of unexpected magnitude and 

location (e.g., 2004 Mw 9.2 Sumatra-Andaman; 2010 Mw 8.8 Maule, Chile; 2011 Mw 9.0 Tohoku-Oki, 

Japan) it is time for new thinking on megathrust earthquake recurrence, segmentation and geometry 

(Mueller et al., 2015). This is potentially significant for practical reasons, earthquake and tsunami 

hazard assessment, and scientific understanding, of how megathrust earthquakes vary in time and 

location. Even in Japan, where written accounts extend back more than a thousand years, 

paleoseismic studies of coastal wetland provide information which, with hindsight, could have better 

informed hazard assessments (Goto et al., 2011; Minoura et al., 2001; Sawai et al., 2008). The most 



comprehensive assessments of hazards are likely to be based on records that span multiple cycles of 

strain accumulation and release on the megathrust.  

Both underestimates and overestimates of the number of paleoearthquakes are critical issues and 

may arise from incorrectly interpreting field evidence (McCalpin and Nelson, 2009; Nelson et al., 

2015).  Since peat-mud and mud-peat couplets are not uniquely a product of great earthquakes, 

there must be criteria to distinguish couplets that result from great earthquakes from those resulting 

from other processes. In quantitative terms, this equates to equation [2] described in section 1. With 

the geographical expansion of coastal paleoseismology studies, particularly since the 2004 Mw 9.2 

Sumatra-Andaman earthquake and tsunami, much has been written about different types of 

evidence, the use of new methods, and their interpretation.  These developments should lead to 

modifications, improved quantification and additions to the original criteria to identify coseismic 

subsidence (Nelson et al., 1996).   

We see no dramatic paradigm shift, rather evolutions in the cutting-edge research literature, which 

we use to amend the criteria and to reflect usage in identifying coseismic uplift as well as subsidence 

(Table 4). We add additional criteria that may be present at some sites: liquefaction sediments 

(Atwater et al., 2001; Malik et al., 2011; Martin and Bourgeois, 2012; Obermeier and Dickenson, 

2000; Walsh et al., 1995) and tree ring analysis (Yamaguchi et al., 1997). Newly applied analytical 

methods include stable carbon isotope and geochemical proxies (Bender et al., 2015; Dura et al., 

2011; Engelhart et al., 2013; Hawkes et al., 2011; Witter et al., 2016).  The last decade has also seen 

a lot written on identifying sediments deposited by tsunami (Alam et al., 2012; Chagué-Goff et al., 

2011; Dura et al., 2015; Engel and Brückner, 2011; Garrett et al., 2013; Goff et al., 2011a; Goff et al., 

2011b; Goto et al., 2011; Grand Pre et al., 2012; Kortekaas and Dawson, 2007; Morton et al., 2007; 

Nelson et al., 2015; Okal et al., 2011; Pilarczyk et al., 2014; Shanmugam, 2012; Witter et al., 2016). 

In applying the criteria to address the questions outlined in the introduction, especially the extent of 

past great earthquake ruptures (a proxy for magnitude), the identification of the boundaries 

between rupture segments and the persistence of these boundaries over multiple earthquake 

cycles, three significant advances emerge. First, in assessing the amount of submergence or 

emergence; second, assessing the age of past earthquakes, including their correlation between sites; 

and third, analysis of the spatial patterns of submergence and emergence against model predictions. 

 

6.1 Assessing the amount of vertical motion 

Approaches to quantifying coseismic submergence and emergence are probably the most noticeable 

and widely adopted advance in the last 20 years.  The original criteria promoted the accepted and 



robust methods of geological practice and these remain the standard. Since then, advances in 

numerical techniques and the development of new proxy methods provide additional opportunities 

to quantify estimates of coseismic submergence and emergence. The most widely used of these 

advances relate to quantitative reconstructions based on microfossil approaches (section 3.1), 

although other approaches, such as geochemical proxies, also provide quantitative estimates 

(Bender et al., 2015).  

Nelson et al. (1996) noted that combinations of sediment stratigraphy, plant macrofossils and 

microfossil analyses had a detection threshold of approximately 0.5 m, below which it was difficult 

to distinguish between coseismic and non-seismic marsh submergence, recorded by evidence of 

relative sea-level rise.  Quantitative estimates for abrupt submergence at the sites discussed in 

section 4 range from ~0.25 to 1.00 m, which could be taken as a lack of progress.  On the contrary, 

these estimates reflect a 95% probability range, although this is difficult to represent in graphs of 

relative sea-level change. A reader can judge the sample-to-sample changes in the microfossil 

assemblages and associated quantitative estimates in the peat and mud units below and above a 

stratigraphic contact, and contrast these with the changes directly across the contact.  We suggest 

that multiple estimates across the same stratigraphic contact improves confidence in being able to 

infer that a change is abrupt and its possible coseismic cause (Shennan and Hamilton, 2006), and not 

only where the estimated change is less than the 95% uncertainty range (Shennan et al., 2014c). At 

Kalsin Bay, Kodiak Island, estimates for marsh submergence during the AD 1788 earthquake from six 

different cores range from 0.18 ± 0.26 to 0.67 ± 0.29 m, an average of 0.41 ± 0.26 m (Shennan et al., 

2014c).  All six estimates indicated submergence rather than a random distribution of mean values 

either side of zero.   

While these separate estimates of less than 0.5 m elevation change from Kalsin Bay, and others of 

less than 0.5 m discussed in section 4, suggest a modest reduction in the detection limit of abrupt 

submergence or emergence as a result of scientific advances, it is important first to make the 

comparison with respect to tidal range.  For comparison, 0.5 m vertical change in Cascadia, where 

the Nelson et al. (1996) framework was established, is ~17-22% of the Great Diurnal Range (NOAA, 

2016).  The examples in section 4 and those previously reported (Shennan et al., 2014a; Shennan et 

al., 2014b; Shennan et al., 2014c) suggest an achievable detection limit in the region of 10-15% of 

the Great Diurnal Range or better. While the 95% error term for reconstructing paleomarsh surface 

elevations for individual samples may be 10-15% of the Great Diurnal Range, a combination of 

multiple lines of evidence provides a more robust test of smaller magnitude coseismic submergence 

or emergence.  If a site shows all the following features, the effective detection limit may be as low 

as perhaps 0.1 to 0.2 m: 



 laterally extensive peat-mud or mud-peat couplet with a sharp contact at each outcrop or 

core, 

 for multiple locations along the couplet, sudden elevation change determined by assessing 

the change across the contact in comparison with the changes below and above the contact,  

 for multiple locations along the couplet, quantitative estimates of elevation change across 

the contact all indicating the same sign (emergence or submergence) rather than a random 

distribution of mean values either side of zero. 

Coseismic motions below the detection limit should fail to meet the combination of these three 

criteria. 

6.2 Additions to assessing the age of the earthquake and synchroneity between sites 

Advances in numerical modelling of sediment-sample ages provide new approaches to evaluate 

contrasting interpretations and hypotheses of between-site correlations of paleoseismic evidence. 

While the careful consideration of what constraint each sample age places on an inferred 

earthquake, such as a minimum limiting age above a contact or a maximum limiting age from below 

a contact, remains unaltered, Bayesian age modelling provides a range of options by which to assess 

age correlation and intervals between inferred earthquakes (Berryman et al., 2012; Bronk Ramsey, 

2008, 2009; Clark et al., 2015; DuRoss et al., 2011; Kelsey et al., 2015; Lienkaemper and Bronk 

Ramsey, 2009; Nelson et al., 2015; Shennan et al., 2014a; Shennan et al., 2014c; Witter et al., 2016). 

Integrating samples from areas of uplift, samples from areas of subsidence, samples for maximum 

ages of earthquakes, and samples for minimum ages of earthquakes into a Bayesian age model 

provides an age estimate for each hypothesised earthquake based on the correlation of 

palaeoseismic evidence at different sites across the proposed rupture segment or segments. The 

likelihood distribution and probability density functions (e.g. Figure 19) provide a good visual 

summary of the confidence we have in different events.  There will likely be tighter constraints on 

more recent events, not least because we have more data.  These model outputs also provide a 

framework in which to target material to help constrain the less well-known events. 

Application of such age-modelling approaches also requires caution.  Correlation of stratigraphic 

evidence between sites and correlation of sample ages does not always mean they are of the same 

event and careful consideration of the geological evidence alongside models of earthquake rupture 

should be taken into account rather than drawing simple chronological correlation.  An example of 

this would be radiocarbon dating the 1899 Yakutat Bay earthquakes (Plafker and Thatcher, 2008), 

where two earthquakes six days apart may appear as the same event in a palaeoseismic record.  



Though very likely related, grouping these two earthquakes into one may have differing implications 

for seismic hazard assessment. 

6.3 Spatial constraints 

In the early phase of coastal paleoseismology many studies were implicitly inductive, depending on 

inferences and reasoning. As research progresses and more data from more sites become available, 

it becomes easier to frame the research to test multiple working hypotheses, which may include 

predictions of surface displacement derived from geophysical models (e.g. Figure 21).  Although 

described as geological-based criteria for identifying regional coseismic subsidence (Nelson et al., 

1996), in testing geophysical models of surface displacement we use these criteria to refute one or 

more models.  The emphasis on the importance of different criteria may change as our knowledge of 

a tectonic region increases. As we test models for subduction zone ruptures in segments of variable 

length in different earthquakes we anticipate that sites close together within a segment ought to 

show the same coseismic inference.  If one site has a buried peat with the age tightly constrained by 

radiocarbon dated samples but with weak criteria (e.g. amount of vertical change across the 

contact), the lack of a correlation in age to nearby buried peats with strong coseismic criteria is a 

good indication that the dated peat with weak criteria may be of non-coseismic origin. By 

comparison, in a less well-studied region, in a setting far removed from an established earthquake 

chronology  the same sort of peat, buried peat of well-constrained age but with weak criteria, the 

criterion of age correlation well established earthquakes elsewhere on the margin is no longer a 

justifiable criterion to evaluate whether coseismic submergence formed the peat.  This criterion 

increases in importance as the number of sites studied increases, alongside the geographical context 

of hypothesised rupture length and spatial pattern of associated coseismic surface deformation.   

The spatial attributes of the field-based evidence of coseismic submergence and emergence provide 

evidence for testing, calibrating and refining tectonic models, in an iterative process similar to those 

followed at tectonically stable locations with models of glacial isostatic adjustment.  Geological 

estimates of coseismic change can constrain the modelled boundaries or transitions between 

regions of uplift, subsidence and no vertical change.  We must, however, be aware of the discussed 

detection thresholds, including creation thresholds that may be ~10-15% of the tidal range and for 

different preservation thresholds that vary according to site location with respect to rupture location 

and dimensions (Figure 2). These must be considered before rejecting a particular hypothesis.    

Notable residuals between the geophysical model predictions and field-based reconstructions can 

define a framework to target sites for further work to explore for evidence of coseismic change. 

Analysis of the spatial pattern of residuals should also include an investigation of site-specific 



reasons for coseismic evidence not being evident; and alongside this, there should be further efforts 

to quantify the rates of background non-seismic RSL change that may provide an explanation for the 

lack of coseismic change (Barlow et al., 2012; Garrett et al., 2015a).  In all cases, uncertainties in the 

reconstructions should be clearly stated and ideally given at the 2-sigma range so that modelling 

efforts know the range in which they should attempt to work. 

7. Conclusions  

The original criteria for identifying coseismic subsidence in tidal-wetland stratigraphic sequences at 

the Cascadia subduction zone have stood the test of time very well in two different respects.  On the 

one hand, the detailed range of evidence and inferences summarised in the original paper (Table 2 in 

Nelson et al., 1996) provided a guide for the types of evidence assessed in later studies. We have 

expanded this to reflect numerous new techniques, observations and inferences used over the 

intervening time (Table 4). On the other hand, the five criteria neatly summarised, 1 - lateral extent 

of peat-mud couplets with sharp contacts; 2 - suddenness of submergence; 3 - amount of vertical 

motion; 4 - presence of tsunami deposited sediments directly above the peat horizon, and, 5 - 

synchroneity with other sites, provided a valuable means to frame the research in a number of later 

studies (e.g. Briggs et al., 2014; Clark et al., 2015; Dura et al., 2015; Dura et al., 2016; Dura et al., 

2011; Engelhart et al., 2013; Garrett et al., 2015b; Grand Pre et al., 2012; Hamilton and Shennan, 

2005a; Hayward et al., 2015; Kelsey et al., 2015; Leonard et al., 2004; Nelson et al., 2009; Nelson et 

al., 2006; Shennan et al., 2009; Witter et al., 2003).  In order to reflect developments in research 

over the past twenty years, for paleoseismological studies of tidal wetland sediment sequences an 

approach framed around such are criteria is better summarised as assessing the following: 

1 – lateral extent of peat-mud or mud-peat couplets with sharp contacts 

2 – suddenness of submergence or emergence, replicated a multiple locations within a site 

3 – amount of vertical motion, quantified with 95% error terms, replicated at multiple locations 

within a site 

4 – syncroneity of submergence and emergence based on statistical age modelling 

5 – spatial pattern of submergence and emergence 

6 – possible additional evidence of coseismic motions, including tsunami or liquefaction concurrent 

with submergence or emergence. 

Application of these criteria to tidal wetland evidence across a range of palaeo-seismic locations has 

the potential to improve understanding of how megathrust earthquakes vary in time and space, and 



the growing body of evidence of variable rupture modes provides considerable challenges in revising 

and updating seismic and tsunami hazard models. 

  



FIGURE CAPTIONS 

Figure 1: a) Peat-mud couplet representing the AD 1964 earthquake at Girdwood, Alaska, and ~0.5 

m sediment accumulation since (Photograph September 2006).  The peat layer represents the 

freshwater marsh that subsided at least 1.5 m in AD 1964, regional subsidence 1.5 m and locally up 

to an additional 0.9 m from sediment compaction (Plafker et al., 1969). b) Mud-peat couplet at 

Katalla, represent coseismic uplift of unvegetated tidal flat ~870 BP and colonisation by freshwater 

peat-forming communities (Shennan et al., 2014c).  c) Ghost forest at Girdwood, with trees killed 

following subsidence in AD 1964 and subsequent tidal sedimentation. Tree stump from the 

penultimate great earthquake in the region, ~870 BP, is rooted in a peat-mud couplet a few 

decimetres below the surface and its top extends to the peat unit of the AD 1964 peat-mud couplet 

(Photograph May 2006). 

Figure 2: Schematic summary of a subduction earthquake cycle, showing the three primary 

processes (in italics) following a subduction earthquake (after Wang et al., 2012), the key features of 

observed deformation (after Wang, 2007) and six scenarios to illustrate preservation thresholds for 

records of multiple earthquake cycles. Here postseismic indicates a few years to a few decades after 

a great earthquake and interseismic is a few decades to centuries after the earthquake.  The 

distance from the trench to the volcano is ~400 km.  Arrows at the top show the sense of vertical 

and horizontal motions of the Earth’s surface, the latter relative to distant parts of the upper plate. 

Length of arrow indicates relative magnitude at coastal locations, a and b, and locations more 

distant from the trench, c and d. 

Figure 3: Figure 3: Zones of coseismic uplift and subsidence in AD 1964 (after Plafker, 1969), present-

day velocities (http://www.gps.alaska.edu/jeff/Chapman_GPS_velocities.html accessed 13 July, 

2015) and location of coastal marsh sites providing paleoseismic records (circles). 

Figure 4: Probability density functions for earthquake ages from sites in the Prince William Sound 

segment (data from Shennan et al., 2014b; 2014c). 

Figure 5: Vertical deformation of ocean floor and adjacent coastal regions for earthquake scenarios 

summarised in Table 1 and location of sites with paleoseismic evidence.  Deformation estimates 

redrawn from Nicolsky et al. (2013). 

Figure 6: Summary microfossil data from Girdwood, original data Shennan & Hamilton (2006), and 

reconstructions of paleo marsh surface elevations (PMSE) and relative sea level (RSL) from two 

transfer function model methods, weighted-averaging partial least squares (WAPLS) and modern 

analogue technique (MAT). Salinity classes are based on the halobian scheme (Karlin and Abella, 

http://www.gps.alaska.edu/jeff/Chapman_GPS_velocities.html


1996). Environment classes determined by their mean elevation (defined by the bootstrap species 

coefficient from the WAPLS transfer function model) in the modern data set.  

Figure 7: Comparison of quantitative and qualitative representations of sample elevations for the 

data from the Girdwood core shown in figure 6. 

Figure 8: Comparison of qualitative diatom classification schemes against elevation. Data from the 

modern training set from south-central Alaska (2015, Table 2). 

Figure 9: Comparison of change in summary salinity classification against elevation. We should 

expect a rise in surface elevation reflected by a fall in the percentage of marine and brackish water 

diatoms. The shaded quadrants indicate the regions where the diatom changes show the opposite 

change to that expected.  Samples for elevation changes greater than 0.5 m not shown; they all plot 

in the unshaded quadrants, reflecting the expected direction of change. Data from the modern 

training set from south-central Alaska (2015, Table 2) based on stratified sampling, measuring 

change between random pairs stratified by site. 

Figure 10: Paleoseismic evidence from Bird Point. A) borehole locations (Google Earth image). B) 

borehole stratigraphy. C) summary diatom data from borehole 09/1, showing only those species 

>10% of the assemblage. Species and summary groups, classified by environment (classes 

determined by their mean elevation (defined by the bootstrap species coefficient from the WAPLS 

transfer function model: dark blue = ~tidal flat elevations; mid blue = tidal marsh; light blue = upper 

marsh to freshwater; white = insufficient abundance of species sent in modern data set.  The right-

hand graph shows the changes in relative sea level (RSL), with 95% confidence limits. D) Probability 

density functions for earthquake ages (black) from sites in the Prince William Sound segment (Figure 

4) and radiocarbon ages (red) from the tops of peat layers (details in Table 3). 

Figure 11: Paleoseismic evidence from Hope. A) borehole locations (Google Earth image). B) 

borehole stratigraphy. C) summary diatom data from borehole 09/1, showing only those species 

>10% of the assemblage. Species and summary groups, classified by environment (classes 

determined by their mean elevation (defined by the bootstrap species coefficient from the WAPLS 

transfer function model: dark blue = ~tidal flat elevations; mid blue = tidal marsh; light blue = upper 

marsh to freshwater; white = insufficient abundance of species sent in modern data set.  The right-

hand graph shows the changes in relative sea level (RSL), with 95% confidence limits. D) Probability 

density functions for earthquake ages (black) from sites in the Prince William Sound segment (Figure 

4) and radiocarbon age (red) from the top of the peat layer in C (details in Table 3). 

Figure 12: Paleoseismic evidence from Kasilof. A) outcrop and borehole locations (Google Earth 

image). B) outcrop (upper sections at 1 and 8) and borehole stratigraphy. C) outcrop at 8, summary 



diatom changes based on salinity (Ʃ marine and brackish species) and environment (Ʃ tidal flat and 

tidal marsh species), changes in relative sea level (RSL), with 95% confidence limits, stratigraphic 

position of radiocarbon samples (Table 3), and 137Cs concentrations in upper mud unit. 

Figure 13: Paleoseismic evidence from Kasilof. Summary diatom data and RSL change, (A) upper 

section, and (B) lower section. Species and summary groups, classified by environment (classes 

determined by their mean elevation (defined by the bootstrap species coefficient from the WAPLS 

transfer function model: dark blue = ~tidal flat elevations; mid blue = tidal marsh; light blue = upper 

marsh to freshwater; white = insufficient abundance of species sent in modern data set.  The right-

hand graph shows the changes in relative sea level (RSL), with 95% confidence limits. C) Probability 

density functions for earthquake ages (black) from sites in the Prince William Sound segment (Figure 

4) and radiocarbon age (red) from the top of the peat C (details in Table 3). C) Probability density 

functions for earthquake ages (black) from sites in the Prince William Sound segment (Figure 4) and 

radiocarbon ages from peat A and B and the mud unit between (details in Table 3). 

Figure 14: Paleoseismic evidence from Homer. A) borehole locations (Google Earth image). B) 

borehole stratigraphy. C) Probability density functions for earthquake ages (black) from sites in the 

Prince William Sound segment (Figure 4) and radiocarbon ages (red and blue) from the tops of the 

peat layers in boreholes 4 and 5 (details in Table 3). 

Figure 15: Homer diatom data and relative sea-level change. Summary diatom data, showing only 

those species >10% of the assemblage. Species and summary groups, classified by environment 

(classes determined by their mean elevation (defined by the bootstrap species coefficient from the 

WAPLS transfer function model: dark blue = ~tidal flat elevations; mid blue = tidal marsh; light blue = 

upper marsh to freshwater; white = insufficient abundance of species sent in modern data set.  The 

right-hand graph shows the changes in relative sea level (RSL), with 95% confidence limits.  

Figure 16: Water levels in Cook Inlet (NOAA tide station at Seldovia) and Homer (waterlogger in 

Beluga Slough, data from Steve Baird, Kachemak Research Reserve, Homer) for May and June 2011; 

mean and ranges of paleo marsh surface elevation reconstructions for fossil peat and mud samples 

in figure 15. 

Figure 17: Paleoseismic evidence from Kalsin Bay. A) borehole locations (Google Earth image) and 

surface transect. B) borehole stratigraphy. C) summary diatom data from borehole 5, showing only 

those species >10% of the assemblage. Species and summary groups, classified by environment 

(classes determined by their mean elevation (defined by the bootstrap species coefficient from the 

WAPLS transfer function model: dark blue = ~tidal flat elevations; mid blue = tidal marsh; light blue = 

upper marsh to freshwater; white = insufficient abundance of species sent in modern data set.  The 



right-hand graph shows the changes in relative sea level (RSL), with 95% confidence limits. D) 

Probability density functions for earthquake ages (black) from sites in the Prince William Sound 

segment (Figure 4) and radiocarbon age (red) from the tops of peat layers and the base of the 

sequence (details in Table 3). 

Figure 18: Paleoseismic evidence from Anton Larson Bay. A) borehole locations (Google Earth 

image). B) borehole stratigraphy. C) summary diatom data from borehole 4, showing only those 

species >10% of the assemblage. Species and summary groups, classified by environment (classes 

determined by their mean elevation (defined by the bootstrap species coefficient from the WAPLS 

transfer function model: dark blue = ~tidal flat elevations; mid blue = tidal marsh; light blue = upper 

marsh to freshwater; white = insufficient abundance of species sent in modern data set.  The right-

hand graph shows the changes in relative sea level (RSL), with 95% confidence limits. D) Probability 

density functions for earthquake ages (black) from sites in the Prince William Sound segment (Figure 

4) and radiocarbon ages (red) from peat A (78-117 cm) and peat B (146-170 cm, details in Table 3). 

Figure 19: Probability density functions for earthquake ages from sites in the Prince William Sound 

(PWS) segment, 1964 and EQ1 to EQ9 (black lines and blue shading), length of sedimentary record at 

18 sites (brown) in four segments of the megathrust, and presence of evidence of coseismic 

submergence or emergence (black) that correlates with the PWS ages. Grey shading, Homer and 

Kasilof: see discussion in the text. 

Figure 20: Reconstructed paleo-marsh surface elevations 6500-1500 BP at Kenai and Kasilof, m 

Mean Higher High Water (MHHW), and Highest Astronomical Tide (HAT). 

Figure 21: Comparisons of paleoseismic evidence (circles) for three late Holocene earthquakes (EQ1, 

~850 BP; EQ2, ~1500 BP; EQ3, ~2100 BP) with estimates of coseismic displacement from models of 

four modes of rupture (Scenarios A – D, Table 1 and figure 5).  Estimates of displacement derived 

from (Nicolsky et al., 2013); paleoseismic evidence interpreted as coseismic submergence (blue), 

coseismic emergence (red) and no coseismic change is relative land/sea level (white). 

Figure 22: Predicted coseismic displacement at sites along Turnagain Arm, approximately 

perpendicular to the megathrust, for three modes of rupture, compared with reconstructed 

coseismic relative land-level change at five sites during EQ3, ~2100 BP.  At Anchorage there is 

evidence for no rapid change, inferred from sediment stratigraphy and diatom assemblages within 

the tidal flat sediments of that were accumulating at that time. Colours and site locations as shown 

in Figure 21.  Horizontal scale: Anchorage to Portage = 65 km. 

 

  



TABLE CAPTIONS 

Table 1: Summary of tectonic models used to predict coseismic surface deformation.  Model 

parameters and deformation estimates from Nicolsky et al. (2013); their figures 10, 14 and 15. 

Table 2: Summary statistics for weighted-averaging partial least squares transfer function models 

used to reconstruct paleo marsh surface elevations.  The 2005 models use modern samples only 

from upper Cook Inlet, 2013 and 2015 use modern samples from sites across south-central Alaska. 

Table 3: Radiocarbon dated samples, not previously published. All samples less than 0.01 m. 

Table 4: Stratigraphic, sedimentologic, paleontologic, and age evidence from tidal-marsh 

stratigraphic sequences for coastal subsidence or uplift during great earthquakes at subduction 

zones   

Table Footnote: Inferences are made from evidence and comments are about evidence. Papers 

evaluated include those cited in the original version (Nelson et al., 1996) and these additional ones 

(Alam et al., 2012; Atwater et al., 2005; Atwater et al., 2001; Bender et al., 2015; Carver and Plafker, 

2008; Chagué-Goff et al., 2011; Dura et al., 2015; Dura et al., 2016; Dura et al., 2011; Engel and 

Brückner, 2011; Engelhart et al., 2013; Garrett et al., 2013; Goff et al., 2011a; Grand Pre et al., 2012; 

Kelsey et al., 2002; Martin and Bourgeois, 2012; McCalpin and Carver, 2009; Morton et al., 2007; 

Nelson et al., 2015; Nelson et al., 2006; Obermeier and Dickenson, 2000; Pilarczyk et al., 2014; 

Shennan, 2009; Shennan et al., 2014a; Shennan et al., 2014c; Walsh et al., 1995; Witter et al., 2003; 

Yamaguchi et al., 1997) 
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Table 1: Summary of tectonic models used to predict co-seismic surface deformation.  Model 

parameters and deformation estimates from Nicolsky et al. (2013, which includes full descriptions of 

the slip partitioningfor each model); their figures 10, 14 and 15.  

Scenario Earthquake magnitude Segmentation 

Scenario A Mw 9.2 1964 rupture, Prince William Sound, Kenai and 

Kodiak segments 

Scenario B Mw 8.8 Prince William Sound and Kenai segments; slip 

distribution 15-25 km depth  

Scenario C Mw 8.8 Prince William Sound and Kenai segments; slip 

distribution 17-30 km depth 

Scenario D Mw 9.3 Multi-segment rupture, 1964 segments and the 

western part of the Yakutat microplate 
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Table 2: Summary statistics for weighted average partial-least squares transfer function models used 

to reconstruct paleo marsh surface elevations.  The 2005 models use modern samples only from 

upper Cook Inlet, 2013 and 2015 use modern samples from sites across south-central Alaska. 

  Model 1 Model 2 Model 3 

Lithology of fossil 

sample to which the 

model can be applied 

Peat 
Mud with herbaceous 

rootlets OR peat 

Any, including mud, no 

visible rootlets or 

laminated mud & fine 

sand 

Year 2005 2013 2015 2005 2013 2015 2005 2013 2015 

Number of samples in 

modern training set 
72 100 103 129 206 256 154 255 304 

Number of components 

in weighted averaging 

partial least squares 

model
1
 

2 2 1 3 2 2 2 2 2 

Squared correlation 

between bootstrap 

predicted and observed 

values (r
2
) 

0.74 0.75 0.56 0.81 0.68 0.66 0.68 0.76 0.77 

Root mean squared 

error of prediction 

(bootstrap RMSEP) 

2.95 6.31 4.74 7.79 11.27 10.66 21.98 17.48 15.23 

Improvement in RMSEP 

over next lower 

component model 

7.17% 14.70% - 6.70% 11.40% 7.87% 8.56% 10.50% 10.33% 

RMSEP scaled to tidal 

range at Girdwood (m) 
0.10 0.21 0.16 0.26 0.38 0.36 0.75 0.59 0.52 

RMSEP scaled to tidal 

range at Kasilof (m) 
0.09 0.18 0.14 0.23 0.33 0.31 0.64 0.51 0.44 

RMSEP scaled to tidal 

range at Homer (m) 
0.07 0.16 0.12 0.19 0.28 0.26 0.54 0.43 0.38 

1 We assess model performance using boot-strapped r2, scatterplots of observed and predicted 

values, and RMSEP, with the best models being those with the highest r2 value, a linear distribution 
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of observed plotted against predicted values, and the lowest RMSEP, but only if the RMSEP was 

improved by at least 5% with the addition of an extra component.   

 



Table 3: Radiocarbon dated samples, not previously published. All samples less than 0.01 m. 

 

Code 
Core / 
outcrop 

Stratigraphic context Material 

depth 
(cm) 

below 
surface 

14
C age and 1σ 

 

Calibrated 
age: 

median, 
years BP 

95% age 
range 

 

Anton Larson Bay         

Beta - 295547 ALB10/9  Top of peat Herbaceous macrofossil leaves/stems 57 180 30 181 1 297 

Beta - 287205 ALB10/4  Top of peat Herbaceous macrofossil leaves/stems 78.5 370 40 426 315 504 

Beta - 295546 ALB10/4  Base of peat Herbaceous macrofossil leaves/stems 117 1320 30 1264 1183 1297 

Beta - 287206 ALB10/4  Top of peat Herbaceous macrofossil leaves/stems 146 2260 40 2239 2154 2348 

Bird Point         

SUERC-22673 BP08/6 Top of peat Herbaceous macrofossil leaves/stems 191 991 35 909 796 964 

SUERC-22676 BP08/6 1 cm below top of peat  Herbaceous macrofossil leaves/stems 192 1060 37 969 924 1056 

Beta-266420 BP09/1 Top of peat Herbaceous macrofossil leaves/stems 338 1580 20 1467 1412 1528 

Beta-266421 BP09/1 Top of peat Herbaceous macrofossil leaves/stems 429 2170 20 2252 2116 2305 

Homer         

OS-112093   BS13/4 Top of peat Stem and probable root material 171.5 1230 20 1174 1072 1257 

OS-112094   BS13/4  Top of peat Small twig 382.5 2680 25 2778 2751 2844 

OS-112095   BS13/4 Top of peat Woody stem fragments 412.5 2880 20 3003 2945 3072 

OS-112096   BS13/4 Top of peat Small intact leaves 423.5 2740 25 2825 2772 2915 

OS-112097   BS13/4 Top of peat Triglochin stem bases 452.5 3540 20 3837 3724 3891 

OS-112098   BS13/4 Base of peat Triglochin stem bases 460.5 3830 20 4214 4151 4346 

OS-109768   BS13/5 Top of peat Stem fragments and 1 seed 169.5 1120 20 1018 970 1062 

OS-109769   BS13/5 Top of peat Stem fragments and 9 seeds 372.5 2130 20 2116 2011 2293 

OS-109770   BS13/5 Top of peat Stem fragments 389 2250 20 2229 2159 2339 

OS-109771   BS13/5 Top of peat  2 stem fragments 406 2550 20 2726 2519 2748 

OS-109772   BS13/5 Top of peat 1cm long wood fragment 441.5 3390 25 3633 3576 3693 

OS-109773   BS13/5 Base of peat Grass and stem fragments 452.5 3670 25 4007 3920 4086 

Hope         

Beta-266423 HP09/8 Top of peat Herbaceous macrofossil leaves/stems 326 2040 20 1992 1929 2100 
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Kalsin Bay          

Beta - 357771 KB13/5 Base of peat below Katmai tephra Herbaceous macrofossil leaves/stems 77 180 40 177 1 301 

Beta - 356266 KB13/5 Top of peat Herbaceous macrofossil leaves/stems 92 10 30 0 0 0 

Beta - 357408 KB13/5 Top of peat Herbaceous macrofossil leaves/stems 116 200 30 180 1 303 

Beta - 356268 KB13/5 Top of peat Herbaceous macrofossil leaves/stems 131.5 1070 30 974 929 1054 

Beta - 356269 KB13/5 Base of organic sequence Herbaceous macrofossil leaves/stems 184 2460 30 2564 2365 2707 

Kasilof         

OS-110179   KS13/1 Top of peat Stem and leaf fragments 45.5 150 20 180 3 282 

OS-110178   KS13/1 Base of peat Stem and leaf fragments 55 925 30 852 769 924 

OS-110177   KS13/1 Silt - 1 cm above contact to peat  Herbaceous leaf fragments 99 1120 25 1019 960 1166 

OS-110175   KS13/1 Top of peat Single round stem 100 1050 20 952 927 1041 

OS-110176   KS13/1 1cm below top of peat Sphagnum stem and leaf fragments 100.5 1240 20 1211 1082 1263 

OS-110042   KS13/1 Base of peat Stem and leaf fragments 104 1270 20 1229 1180 1270 

OS-110041   KS13/1 Top of peat Stem 112 1540 20 1462 1376 1522 

OS-110040   KS13/1 1cm below top of peat Seeds, stem and leaf fragments 112.5 1630 25 1535 1416 1602 

OS-110039   KS13/1 Base of peat Stem and leaf fragments 190 5430 30 6240 6192 6290 

CAMS-93965 KS01/8 Top of peat Sphagnum stem and leaf fragments 95 1150 30 1061 979 1174 

CAMS-93966 KS01/8 Top of peat Herbaceous macrofossil leaves/stems 109 1570 35 1467 1386 1540 

 



Table 4: Stratigraphic, sedimentologic, paleontologic, and age evidence from tidal-marsh stratigraphic 
sequences for coastal subsidence or uplift during great earthquakes at subduction zones.   
 

Type of Evidence Inference or Comment 

Suddenness of Submergence Suddenness of Emergence  

Sequence of interbedded peat-
mud couplets rather than thick 
peat 

Sequence of interbedded mud-
peat couplets rather than thick 
peat 

Attributed to repeated, sudden 
changes in land level  

More than half a meter of mud 
separating peat beds inferred to 
be tidal-wetland soils   

 Mud deposited over a period of 
many years and/or subsidence > 
thickness of mud 

Peat-mud contacts are distinct 
above shallow bedrock at valley 
sides  

 Separation of peat beds suggests 
tectonic subsidence rather than 
local sediment compaction 

Abrupt mud-over-peat contacts 
indicate sudden rises in sea level  

Abrupt peat-over-mud contacts 
indicate sudden falls in sea level  

Definitions of abrupt differ  
(Nelson et al., 1996) 

Gradual mud-over-peat contacts 
indicate gradual rise in sea level 

Gradual peat-over-mud contacts 
indicate slow rise or fall in sea 
level  

Inferred to indicate a marked 
asymmetry in the rate of RSL 
change 

Lamination or massive bedding of 
sediment directly overlying peat-
mud contacts  

Lamination or massive bedding of 
sediment directly underlying 
mud-peat contacts  

Lack of sedimentary structures in 
massive beds attributed to high 
sedimentation rates, bioturbation 
or winter freezing processes  

Soft mud overlying peat-mud 
contacts  

 Attributed to rapid deposition 
and minimal subaerial exposure,  

Healthy outer rings in trees 
rooted in upper parts of buried 
wetland soils 

 Attributed to rapid tree death 
(less than a few years) from 
submergence 

Plant stems rooted at tops of peat 
beds extend upward into mud or 
sand or flattened along top 
surface of peat 

 Attributed to rapid submergence 
and burial of wetland soil  

Dramatic change in species 
composition of microfossil 
assemblages across peat-mud 
contacts  

Dramatic change in species 
composition of microfossil 
assemblages across mud-peat 
contacts  

Attributed to rapid submergence 
and burial of wetland soil, or 
rapid emergence of tidal flat and 
development of upper intertidal 
to supratidal wetland 

Amount of Submergence Amount of Emergence  

Peat overlain by mud   Attributed to change from higher 
to lower intertidal environment  

 Mud overlain by peat Attributed to change from lower 
to higher intertidal or supratidal 
environment  

Peaty soil with remains of high-
marsh plants buried by mud with 
plants typical of low marsh 

Mud with plants typical of low 
marsh overlain by peaty soil with 
remains of high-marsh plants 

Attributed to change in RSL of 
decimeters to a meter  

Peaty soil with rooted tree 
stumps buried by mud with plants 
typical of low marsh  

 Attributed to rise in RSL of many 
decimeters to more than two 
meters  

 Mud with plants typical of low 
marsh or laminations overlain by 
peat with macrofossils of 
freshwater plants including 
mosses 

Attributed to fall in RSL of many 
decimeters to more than two 
meters  

Qualitative diatom analysis (mud 
with brackish water or low 

Qualitative diatom analysis (peat 
with freshwater or high intertidal  

Attributed to change in RSL of 
decimeters to more than two 
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intertidal species over peat with 
freshwater or high intertidal 
species)  

species over mud with brackish 
water or low intertidal species)  

meters  

Quantitative diatom, 
foraminifera, and/or pollen 
analysis (assemblages calibrated 
against modern environments)  

Quantitative diatom, 
foraminifera, and/or pollen 
analysis (assemblages calibrated 
against modern environments)  

May allow amount of RSL change 
to be estimated to within 0.5 m or 
less and give 95% error terms 

Organic-rich sediment overlain by 
organic-poor sediment  

 Attributed to change from higher 
to lower intertidal environment  

 Organic-poor sediment overlain 
by organic rich sediment 

Attributed to change from lower 
to higher intertidal environment 

Qualitative or quantitative 
analysis of geochemical proxies 
(C:N, TOC, δ

13
C, δ

15
N) 

 Attributed to change in RSL of 
decimeters to two meters 

Sediment with low percentage of 
sand overlain by sediment with 
high percentage of sand 

 Applicability highly dependent on 
distance to and character of sand 
source  

Lateral Extent of Peat-Mud 
Contacts 

Lateral Extent of Mud-Peat 
Contacts 

 

Contacts mapped in outcrop for 
hundreds of meters 

Contacts mapped in outcrop for 
hundreds of meters 

Except in southern Washington, 
Copper River Delta and south 
central Chile, largely limited to 
youngest 1-2  buried soils 

Contacts correlated between 
cores spaced 10-50 m apart for 
hundreds of meters 

Contacts correlated between 
cores spaced 10-50 m apart for 
hundreds of meters 

Cores with this spacing initially 
limited to a few sites, now typical 
of most studies 

Contacts correlated between 
cores spaced >50 m apart  

Contacts correlated between 
cores spaced >50 m apart  

Core spacing typical of most 
studies pre 1996 

Distinctive peat and mud 
stratigraphy correlated over 
several sites in the same estuary  

Distinctive peat and mud 
stratigraphy correlated over 
several sites in the same estuary  

Correlation within an estuary 
described by almost all studies  

Distinctive peat and mud 
stratigraphy correlated between 
estuaries > 30 km apart  

 Correlations most convincing in 
northern Oregon and southern 
Washington 

Synchroneity of Submergence Synchroneity of Emergence  

Peat 
14

C ages suggest peat-mud 
contacts formed within a few 
hundred years of one another 

Peat 
14

C ages suggest mud-peat 
contacts formed within a few 
hundred years of one another 

Total errors on calibrated 
conventional ages typically > 300 
years 

Multiple AMS 
14

C ages suggest 
peat-mud contacts formed within 
200 years of one another  

Multiple AMS 
14

C ages suggest 
mud-peat contacts formed within 
200 years of one another  

Total errors on calibrated means 
of 6-8 ages typically < 200 years  

Age modelling to calculate 
probability density functions for 
hypothesised earthquakes 

Age modelling to calculate 
probability density functions for 
hypothesised earthquakes 

Probability density function 95% 
ranges may be <100 years 

Tree ring analysis suggests 
multiple trees rooted in a buried 
soil died within 10 years of each 
other. 

 Death attributed to submergence 
during regional coseismic 
subsidence. May be supported by 
high precision 

14
C dating of tree 

rings. 

Tsunami Concurrent With 
Submergence  

Tsunami Concurrent With 
Emergence  

 

Laterally extensive sandy beds 
immediately overlie buried 
wetland soils and below intertidal 
mud  

Laterally extensive sandy 
immediately overlie intertidal 
mud and lie below buried wetland 
soils 

Attributed to surge of sandy 
water concurrent with 
submergence or emergence 

Sandy beds not found within mud Sandy beds not found within mud Lack of other sand beds within 



units units couplets suggests unusual 
depositional event   

Sandy beds on buried wetland 
soils are sheets that thin and fine 
landward 

Sandy beds on buried wetland 
soils are sheets that thin and fine 
landward 

Bed geometry and grain-size 
changes indicate a marine source 
for sand 

Sandy beds display erosive lower 
contacts and contain rip-up clasts 

Sandy beds display erosive lower 
contacts and contain rip-up clasts 

Attributed to high energy flow 
conditions 

Sandy beds fine upward or are 
massive   

Sandy beds fine upward or are 
massive   

Attributed to deposition from 
suspension rather than currents 

Sandy beds have discrete units, 
including lamination or 
interbedding  

Sandy beds have discrete units, 
including lamination or 
interbedding 

Attributed to closely spaced 
pulses of deposition, multiple 
tsunami waves or uprush and 
backflow 

Sandy beds are separated by 
internal mud drapes and overlain 
by a mud cap 

Sandy beds are separated by 
internal mud drapes and overlain 
by a mud cap 

Attributed to quiescent periods 
between successive waves or 
after the final inundation 

Rounding and mineralogy of 
heavy minerals in sandy beds is 
typical of marine sand 

Rounding and mineralogy of 
heavy minerals in sandy beds is 
typical of marine sand 

Attributed to deposition from a 
marine rather than a fluvial 
source  

Sand layers contain elevated Na, 
S, Cl, Ca and Mg concentrations 

Sand layers contain elevated Na, 
S, Cl, Ca and Mg concentrations 

Attributed to inundation by saline 
water 

Distribution and thickness of sand 
sheets along tidal channels 
suggests upchannel flow  

Distribution and thickness of sand 
sheets along tidal channels 
suggests upchannel flow 

Attributed to landward-directed 
surge  

Sandy beds contain microfossils 
and macrofossils characteristic of 
marine or subtidal estuarine 
environments 

Sandy beds contain microfossils 
and macrofossils characteristic of 
marine or subtidal estuarine 
environments 

Attributed to deposition from a 
marine or deep estuarine source  

Sandy beds contain mixed 
assemblages of microfossils 
characteristic of a range of 
different environments 

Sandy beds contain mixed 
assemblages of microfossils 
characteristic of a range of 
different environments 

Attributed to erosion and 
deposition of sediments from a 
range of different sub-, inter- and 
supratidal areas  

Microfossils and macrofossils 
display elevated levels of 
abrasion, crushing and fracturing 

Microfossils and macrofossils 
display elevated levels of 
abrasion, crushing and fracturing 

Attributed to turbulent flow 

Liquefaction Concurrent with 
Submergence 

Liquefaction Concurrent with 
Emergence 

 

Sand dikes and sills seen in 
outcrop or subsurface sampling 
using pits or a sediment slicer 

Sand dikes and sills seen in 
outcrop or subsurface sampling 
using pits or a sediment slicer 

In cores, difficult to differentiate 
from possible tsunami deposit 

 

 

Table Footnote: Inferences are made from evidence and comments are about evidence. Papers evaluated 

include those cited in the original version (Nelson et al., 1996) and these additional ones (Alam et al., 2012; 

Atwater et al., 2005; Atwater et al., 2001; Bender et al., 2015; Carver and Plafker, 2008; Chagué-Goff et al., 

2011; Dura et al., 2015; Dura et al., 2016; Dura et al., 2011; Engel and Brückner, 2011; Engelhart et al., 2013; 

Garrett et al., 2013; Goff et al., 2011a; Grand Pre et al., 2012; Kelsey et al., 2002; Martin and Bourgeois, 2012; 

McCalpin and Carver, 2009; Morton et al., 2007; Nelson et al., 2015; Nelson et al., 2006; Obermeier and 

Dickenson, 2000; Pilarczyk et al., 2014; Shennan, 2009; Shennan et al., 2014a; Shennan et al., 2014c; Walsh et 

al., 1995; Witter et al., 2003; Yamaguchi et al., 1997) 
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