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Density scaling considerations are used to derive an exchange–correlation explicit density functional
that is appropriate for the electron deficient side of the integer and which recovers the exact r → ∞
asymptotic behaviour of the exchange–correlation potential. The functional has an unconventional
mathematical form with parameters that are system-dependent; the parameters for an N-electron
system are determined in advance from generalised gradient approximation (GGA) calculations
on the N- and (N − 1)-electron systems. Compared to GGA results, the functional yields similar
exchange–correlation energies, but HOMO energies that are an order of magnitude closer to the
negative of the vertical ionisation potential; for anions, the HOMO energies are negative, as required.
Rydberg excitation energies are also notably improved and the exchange–correlation potential is
visibly lowered towards the near-exact potential. Further development is required to improve valence
excitations, static isotropic polarisabilities, and the shape of the potential in non-asymptotic regions.
The functional is fundamentally different to conventional approximations. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4926397]

I. INTRODUCTION

A plot of the exact electronic energy as a function of elect-
ron number comprises a series of straight line segments, with
derivative discontinuities at the integers.1 Kohn–Sham den-
sity functional theory (DFT) calculations2 using approximate
exchange–correlation functionals fail to reproduce this piece-
wise linearity. This failure—termed delocalisation error3–5 or
many-electron self-interaction error6–11—leads to errors in a
wide range of computed quantities.3,4,12–16

One way to try to reduce these errors is to demand that the
exchange–correlation functional approximately reproduces
conditions associated with the exact piecewise linearity. For
explicit density functionals and orbital-dependent functionals
within the usual generalised Kohn–Sham (GKS) formalism,17

the slopes of the calculated energy vs. electron number curve
on the electron deficient and electron abundant sides of an
integer are equal to the calculated HOMO and LUMO energies
of the integer system, ε and ε, respectively.13 Note
that the terminology “electron deficient/abundant” refers to
the limiting behaviour as the electron number approaches
integer from below/above. The corresponding slopes of the
exact piecewise linear curve are the negative of the exact
vertical ionisation potential I0 and electron affinity A0 of the
integer system, respectively, and so it is desirable to satisfy the
Koopmans conditions,

ε = −I0, (1)

ε = −A0. (2)

These conditions have been widely and successfully
used18–35 to “tune” orbital-dependent, global and range-sepa-
rated hybrid functionals within the GKS formalism. The

a)Electronic mail: d.j.tozer@durham.ac.uk

HOMO and LUMO energies vary systematically with the
parameter defining the amount of (long-range) exact orbital
exchange and so this parameter is varied on a system-by-
system basis in order to approximately satisfy one or both
of the conditions. Of course, exact ionisation potentials and
electron affinities are not generally available and so these are
usually replaced with approximate values calculated from DFT
total electronic energies. See Ref. 30 for a recent assessment
of such tuning approaches.

For explicit density functionals, such as local functionals
or generalised gradient approximations (GGAs), the situation
is less straightforward. The lack of exact orbital exchange
means that there is no obvious parameter that can be varied
to adjust the HOMO and LUMO energies in a systematic
manner. Furthermore, unlike in global/range-separated hybrid
GKS calculations, where the non-multiplicative nature of
the exchange–correlation operator means Eqs. (1) and (2)
can both be approximately satisfied at the same time, the
exchange–correlation potential is now multiplicative and it is
not in general possible to satisfy both conditions. This can be
traced to the fact that the piecewise linearity of the exact energy
leads to a jump in the exact exchange–correlation potential
(by an amount ∆, which is typically several electron volts)
as the electron number increases through an integer; this is
the so-called integer discontinuity.1 The exact potential on
the electron deficient side of the integer does yield a HOMO
energy that satisfies Eq. (1); however it is the shifted potential
on the electron abundant side of the integer that yields a
LUMO energy that satisfies Eq. (2). Local functionals and
GGAs are continuum approximations, meaning they exhibit
a potential that is continuous across the integer, so there is
only one potential for the integer system, which cannot satisfy
both conditions. In fact, these functionals yield a potential
that approximately averages over the discontinuity, meaning

0021-9606/2015/143(2)/024104/7/$30.00 143, 024104-1 © 2015 AIP Publishing LLC
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HOMO energies are well above −I0 and LUMO energies are
well below −A0 (Ref. 36).

In the present study, we propose a method for deriving an
exchange–correlation explicit density functional for a system
with integer electron number N , which does approximately
satisfy one of the Koopmans conditions. Specifically, we
choose Eq. (1), and so it amounts to a method for deriving
a functional that is appropriate for the electron deficient side
of the integer. Our approach is based on density scaling and so
we commence by outlining the key aspects of density scaling,
paying particular attention to the influence of the integer
discontinuity. We then go on to derive, analyse, and assess
the performance of a functional. Future research directions are
then outlined and conclusions are drawn.

II. METHODOLOGY AND RESULTS

A. Density scaling and influence of the integer
discontinuity

A functional F[ρ] is homogeneous of degree k under
density scaling if it satisfies

F[ξ ρ] = ξkF[ρ] (3)

or equivalently (for k , 0),37

k =


vF(r)ρ(r) dr

F[ρ] , (4)

where vF(r) = δF[ρ]/δρ(r) and ρ(r) is the electron density.
The evaluation of the quantity k in Eq. (4) therefore provides
a simple mechanism for quantifying the behaviour of any
functional F[ρ] under density scaling. If the value of k is
system-independent, then the functional is homogeneous of
degree k. If the value of k is system-dependent, then the func-
tional is inhomogeneous and the degree of system-dependence
provides a measure of the degree of inhomogeneity.

In a recent study,38 we used Eq. (4) to study the den-
sity scaling properties of the exchange–correlation functional.
Following Zhao, Morrison, and Parr,39 we defined a system-
dependent “effective homogeneity”

k =


v(r)ρ(r) dr

E[ρ] , (5)

where E[ρ] is the exchange–correlation energy functional
and v(r) = δE[ρ]/δρ(r) is the exchange–correlation poten-
tial. We then evaluated this quantity for atoms and molecules at
equilibrium geometries using near-exact exchange–correlation
potentials, electron densities, and exchange–correlation ener-
gies, determined from experimental and correlated ab initio
data. A key aspect of the study was the influence of the integer
discontinuity in the exact exchange–correlation potential. On
the electron deficient side of the integer, the exact potential
decays to zero as−1/r and yields the HOMO energy in Eq. (1);
we denote this potential v−(r). On the electron abundant side,
the exact potential is shifted from v−(r) at all points in space
by the integer discontinuity ∆ and yields the LUMO energy
in Eq. (2); we denote this potential

v+(r) = v−(r) + ∆. (6)

We evaluated k using our best estimates for v−(r), v+(r), and
the average of two, denoted vav

(r), to give three near-exact
effective homogeneities,

k− =


v−(r)ρ(r) dr

E[ρ] , (7)

k+ =


v+(r)ρ(r) dr

E[ρ] = k− +
N∆
E[ρ] , (8)

and

kav
 =


vav
(r)ρ(r) dr
E[ρ] = k− +

N∆
2E[ρ] . (9)

Both k− and k+ are relatively system dependent, whereas kav


is close to 4/3. See Ref. 38 for full details.
The quantities k− are the effective homogeneities for a

functional that is appropriate for the electron deficient side
of the integer, i.e., for a functional that essentially (a) yields
the exact E, (b) yields the exact electron deficient potential
v−(r), and (c) yields a HOMO energy that satisfies Eq. (1).
The central idea of the current study is that we can determine
a functional appropriate for the electron deficient side of the
integer by demanding that it yields effective homogeneities, k
in Eq. (5), that are close to k−.

In addition to density scaling, it is pertinent to comment
on the more common concept of coordinate scaling.40 A func-
tional F[ρ] is homogeneous of degree m under coordinate
scaling if

F[ρλ] = λmF[ρ], (10)

where the coordinate-scaled density is

ρλ(r) = λ3ρ(λr). (11)

B. Functional derivation and implementation

We require a functional that yields effective homogene-
ities that are close to k−. One way forward would be to ex-
press E[ρ] as a linear combination of system-independent,
homogeneous functionals and optimise the parameters to best
reproduce the k− values for some training set. We used this
approach in our recent study41 of non-interacting kinetic en-
ergy functionals (although in that case, the fit was to average,
rather than electron deficient, non-interacting kinetic effective
homogeneities).

We choose to use a different approach in the present study,
which hinges on the fact that we can actually approximate k−
for an arbitrary system and so can incorporate it directly into
a system-dependent functional. Consider the functional

E = −
J
N
+ αG, (12)

where we drop the “[ρ]” throughout for notational simplicity.
Here, J is the classical Coulomb (Hartree) energy functional,
α is a parameter, and

G =


ρ
3k

3k−m (r)dr
 3k−m

3

. (13)

The first term in Eq. (12) is the Fermi–Amaldi functional,42

which is homogeneous of degree 2 under density scaling
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and which yields a potential that asymptotically behaves as
−1/r . The inclusion of this term provides a simple mecha-
nism for introducing the exact asymptotic behaviour into the
exchange–correlation potential and has been advocated by Parr
and Ghosh.43 Note that we have treated N as a fixed parameter
in the functional differentiation in order to obtain an asymp-
totically vanishing potential; see Refs. 43 and 44 for further
discussion. The quantity G in Eq. (13) is a local functional of
the form considered by Liu and Parr,45 which is homogeneous
of degree k under density scaling and homogeneous of degree
m under coordinate scaling; note the possibility of a non-unity
power. Evaluation of Eq. (5) for the functional in Eq. (12)
yields effective homogeneities of

k =
(−2J/N) + kαG

E
. (14)

Setting k equal to k− and rearranging using Eq. (12) then
gives

k =
k−E + (2J/N)

E + (J/N) . (15)

The functional in Eqs. (12) and (13), with the system-depen-
dent k defined in Eq. (15), yields effective homogeneities of
k−, as desired, for any α and m.

To turn this into a practical functional, we need to be able
to evaluate k for an arbitrary system, which poses an obvious
challenge given the form of Eq. (15). However, we observe that
all the components on the right hand side of this equation can
be estimated from conventional GGA calculations, meaning an
approximate k can be calculated in advance and then used in
the functional. We do this as follows. The quantities E and J
are trivially approximated from a GGA calculation; we denote
them as E and J. For k−, we first rearrange Eq. (9) to give

k− = kav
 −

N∆
2E

, (16)

noting from Ref. 38 that kav
 ≈ 4/3. We also note that ∆ can

be approximated by

∆ ≈ 2(ε + I), (17)

where ε and I are the HOMO energy and ionisation
potential (computed from total electronic energies) determined
using a GGA functional. Eq. (17) is central to the asymptotic
correction approach of Ref. 46; see Refs. 36 and 47 for further
discussion. Substituting these two results into Eq. (16), and
estimating E using the GGA value, gives

k− ≈
4
3
−

N(ε + I)
E

. (18)

Returning to Eq. (15), we therefore obtain the following
expression for the approximate, system-dependent k:

k =

(
4
3 −

N (ε+I)
E

)
E + (2J/N)

E + (J/N) . (19)

The calculation of this quantity requires GGA calculations on
the N- and (N − 1)-electron systems. The latter is required
solely to compute the total electronic energy of the (N − 1)-
electron system, for the computation of I. The need to

compute the ionisation potential is not only found in the cur-
rent approach but is also central to conventional global/range
separated hybrid tuning approaches involving the HOMO
Koopmans condition.

Next, we need to specify values of α and m in Eqs. (12)
and (13). In our preliminary investigations, we considered a
system-independent α value, obtained from a least-squares
fit to a training set using near-exact quantities, for a given
m value. However, exchange–correlation energies from the
resulting functionals were found to be unsatisfactory, leading
us to conclude that system-dependence was also required in α.
Given that GGA calculations are already required in advance
for the computation of k, it is natural to use these GGA calcu-
lations to also compute a system-dependent α. Specifically, we
demand that the exchange–correlation energy in Eq. (12) equals
the GGA value when the GGA density is used, which requires

α =
E + (J/N)

G
. (20)

Here, G is the value of G obtained by evaluating Eq. (13)
using the GGA density, for the value of k in Eq. (19). This can
be obtained from a trivial modification of a GGA code. The
only remaining parameter to be specified is m. Test calcula-
tions revealed that a value of m = 1 led to near-optimal HOMO
energies and so we use this value throughout. A value of unity
means that G is homogeneous of degree one under coordinate
scaling and this is not unexpected given that, from Eq. (12),
G involves the difference between the exchange–correlation
and Fermi–Amaldi functionals; both exact exchange (which
usually dominates exchange–correlation) and Fermi–Amaldi
are homogeneous of degree one under coordinate scaling.

Our scheme for an N-electron system can therefore be
summarised as follows: First, we perform GGA calculations
on the N- and (N − 1)-electron systems and use the data to
calculate k using Eq. (19). Next, we determine G by evalu-
ating Eq. (13) using the GGA density of the N-electron system,
for that calculated value of k, with m = 1, and use this quantity
in the calculation of α using Eq. (20). Finally, we perform a
self-consistent calculation on the N-electron system using the
functional in Eqs. (12) and (13) with the calculated values of k
and α, and m = 1. We denote this functional ED, for “electron
deficient.”

We have implemented the ED functional in the CAD-
PAC program.48 The exchange–correlation potential (for the
Kohn–Sham equations) and kernel (for linear-response) were
obtained by functionally differentiating both terms in Eq. (12)
for constant k, α, m, and N . Special care is required to ac-
count for the external power in Eq. (13), particularly for the
kernel evaluation. The usual Hellmann–Feynman tests (ana-
lytic dipole moment/polarisability vs. finite difference value
from energies/dipole moments in an electric field) were used
to confirm the validity of our implementation. Note that the
parameters defining the ED functional are treated as indepen-
dent of electric field throughout.

C. Analysis and performance

All ED calculations use the Perdew–Burke–Ernzerhof
(PBE) functional49 for the initial GGA calculations; we have
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confirmed that the results are not sensitive to the choice of
GGA. The same basis set is used for each of the three stages of
the ED calculations. Given that this is a preliminary, proof-of-
concept investigation, we choose not to compare the ED results
with those from a plethora of other functionals. We instead
focus our comparison against the PBE results, since this is
the functional that provides the key ingredients for ED. We
also compare with experimental/near-exact reference values,
quoting mean absolute errors (MAEs) relative to these values.

We commence by considering results for 8 representative
molecules: CH4, CO, Cl2, F2, H2O, HCl, HF, and N2, deter-
mined at experimental geometries50 using the aug-cc-pVTZ
basis set. Table I lists the calculated values of k and α from
Eqs. (19) and (20), for each molecule, together with the values
of 3k/(3k − m) and (3k − m)/3, which define G in Eq. (13).
For all 8 systems, the density exponent 3k/(3k − m) is greater
than unity and so the potential associated with G asymptot-
ically vanishes. It follows that the ED exchange-correlation
potential in asymptotic regions reduces to the potential of
the Fermi-Amaldi functional, which exhibits the exact −1/r
form. The ED functional therefore yields the exact asymptotic
exchange–correlation potential for each of the 8 systems and
we have confirmed that this is the case for all systems consid-
ered in this study.

The effective homogeneities of the ED functional are
given by Eq. (14) and the central idea behind the functional is
that these values should be close to k−. For the 8 molecules, the
values of k−were calculated in Ref. 38 and so we can quantify
how well this is achieved in practice. Figure 1 compares the
ED k values, obtained by evaluating Eq. (14) using data from
self-consistent calculations with the k and α values in Table I,
with the k− values of Ref. 38. The average discrepancy is
less than 2% and the system-dependence of k− is successfully
reproduced.

Table II presents exchange–correlation energies for the 8
molecules, compared to the near-exact values from Ref. 38.
The ED values are very close to those of PBE. The discrepancy
between the energies is a measure of the difference between
the PBE and ED densities; recall the derivation of Eq. (20).
The mean absolute percentage difference between PBE and
ED exchange–correlation energies is 0.8%. The discrepancy
between total electronic energies (not shown) is just 0.02%.

Table III presents the HOMO energies for the 8 mole-
cules, compared to −I0, the negative of the exact vertical

TABLE I. Parameters defining the ED functional.

Molecule ka αb 3k
3k−m

3k−m
3

CH4 1.18 −0.590 1.39 0.851
CO 1.19 −0.696 1.39 0.861
Cl2 1.22 −0.851 1.37 0.890
F2 1.27 −0.643 1.36 0.934
H2O 1.10 −0.639 1.44 0.766
HCl 1.05 −0.913 1.46 0.718
HF 1.09 −0.630 1.44 0.758
N2 1.22 −0.661 1.38 0.886

aFrom Eq. (19).
bFrom Eq. (20).

FIG. 1. Comparison of ED effective homogeneities from Eq. (14) with k−
values from Ref. 38.

ionisation potential, from Ref. 36. As is well known, the PBE
HOMO energies are significantly above −I0, with a MAE of
0.194 a.u. In moving to ED, all HOMO energies are lowered
and the MAE reduces to just 0.016 a.u., an order of magnitude
improvement.

The importance of the system-dependent, second term in
Eq. (12) is illustrated by additional test calculations on the 8
molecules. Removing this term from the functional, leaving
only the Fermi-Amaldi term, leads to MAEs in exchange-
correlation energies and HOMO energies of 13.007 a.u. and
0.145 a.u., respectively. Reinstating the term, but eliminating
its system-dependence by simply using the average values of k
and α from Table I, leads to MAEs of 2.501 a.u. and 0.040 a.u.
Both sets of errors are significantly larger than the ED errors
in Tables II and III.

We now go on to consider the performance of the ED
functional for other systems and properties. First, we consider
the HOMO energies of bound anions. Most of the molecules in
Tables I–III do not vertically bind an excess electron and so we
consider a different set. Table IV presents HOMO energies for
11 bound anions, determined at MP2/6-31G* anion geometries
using the aug-cc-pVTZ basis set. For reference, we list the
negative of the vertical ionisation potential of the anion deter-
mined using restricted MP2 (RMP251) with the same basis

TABLE II. Exchange–correlation energies (in a.u.), compared to near-exact
values from Ref. 38.

Molecule PBE ED Near-exact

CH4 −6.836 −6.922 −6.865
CO −13.756 −13.835 −13.816
Cl2 −56.039 −56.165 −56.303
F2 −20.553 −20.665 −20.579
H2O −9.238 −9.373 −9.270
HCl −28.377 −28.491 −28.526
HF −10.713 −10.868 −10.759
N2 −13.572 −13.652 −13.607

MAE 0.080 0.074
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TABLE III. HOMO energies (in a.u.), compared to the negative of the exact
vertical ionisation potential from Ref. 36.

Molecule PBE ED −I 0

CH4 −0.347 −0.506 −0.526
CO −0.332 −0.515 −0.515
Cl2 −0.268 −0.414 −0.422
F2 −0.347 −0.611 −0.577
H2O −0.266 −0.466 −0.464
HCl −0.296 −0.425 −0.469
HF −0.355 −0.593 −0.592
N2 −0.377 −0.593 −0.573

MAE 0.194 0.016

set. For PBE, the values are essentially all positive and this
issue has been the subject of much discussion;52,53 the MAE
is 0.136 a.u. In moving to ED, all the HOMO values become
negative, as required, with a MAE of just 0.016 a.u. (the same
as that obtained for the neutral systems in Table III).

Next, we consider TDDFT vertical excitation energies.
Table V presents singlet excitation energies for CO, N2, and
H2CO, determined at experimental geometries50 using an
augmented Sadlej basis set,46,54,55 compared to experimental
values.46 MAEs are presented for Rydberg, valence, and both
categories of excitations combined. Accurate Rydberg excita-
tions require46 the exchange–correlation potential to asymp-
totically behave as −1/r + ε + I0, which reduces to −1/r
when Eq. (1) is exactly satisfied. PBE completely fails to
exhibit this form and so the Rydberg excitation energies are
much too low, as is well known. The ED potential asymp-
totically behaves as −1/r and approximately satisfies Eq. (1);
hence, the potential closely resembles the required form and
the Rydberg excitations are significantly improved. The
improvement is approximately an order of magnitude for
CO and H2CO, but is less pronounced for N2, which can
be traced to the fact that Eq. (1) is less well satisfied for this
system.

For the valence excitations in Table V, the performance of
ED is notably less accurate than PBE. A related deficiency is
evident in Table VI, which lists static isotropic polarisabilities,
determined at experimental geometries50 using the Sadlej basis

TABLE IV. HOMO energies (in a.u.), compared to the negative of the RMP2
ionisation potential I .

Anion PBE ED −I

CH3S− 0.047 −0.060 −0.070
CN− −0.001 −0.148 −0.146
Cl− 0.009 −0.103 −0.132
F− 0.057 −0.122 −0.134
HOO− 0.101 −0.069 −0.066
NH−2 0.094 −0.028 −0.033
NO−2 0.040 −0.138 −0.096
OH− 0.080 −0.064 −0.076
PH−2 0.056 −0.028 −0.043
SH− 0.035 −0.061 −0.084
SiH−3 0.034 −0.043 −0.065

MAE 0.136 0.016

TABLE V. Vertical excitation energies (in eV), compared to experimental
values from Ref. 46. Rydberg and valence excitations are labeled R and V,
respectively.

State Transition Type PBE ED Expt.

CO
1Σ+ σ→ 3dσ R 9.62 12.33 12.40
1Π σ→ 3pπ R 9.56 11.32 11.53
1Σ+ σ→ 3pσ R 9.47 11.59 11.40
1Σ+ σ→ 3sσ R 8.99 10.56 10.78
1∆ π→ π∗ V 10.18 11.11 10.23
1Σ− π→ π∗ V 9.84 10.39 9.88
1Π σ→ π∗ V 8.25 8.04 8.51

MAE (R) 2.12 0.17
MAE (V) 0.12 0.62
MAE (all) 1.26 0.36

N2
1Πu πu→ 3sσg R 11.54 14.52 13.24
1Σ+u σg → 3pσu R 10.47 13.51 12.98
1Πu σg → 3pπu R 10.48 13.29 12.90
1Σ+g σg → 3sσg R 10.23 12.65 12.20
1∆u πu→ πg V 10.08 10.85 10.27
1Σ−u πu→ πg V 9.66 9.98 9.92
1Πg σg → πg V 9.08 9.01 9.31

MAE (R) 2.15 0.66
MAE (V) 0.23 0.32
MAE (all) 1.33 0.51

H2CO
1A2 n→ 3db1 R 7.14 9.64 9.22
1A2 n→ 3pb1 R 6.59 8.46 8.38
1B1 σ→ π∗ V 8.85 8.94 8.68
1B2 n→ 3pa1 R 6.38 8.04 8.12
1A1 n→ 3pb2 R 6.40 8.25 7.97
1B2 n→ 3sa1 R 5.73 7.24 7.09
1A2 n→ π∗ V 3.80 3.48 3.94

MAE (R) 1.71 0.20
MAE (V) 0.16 0.36
MAE (all) 1.26 0.25

set, compared to reference BD(T) values determined using the
same basis set.56 The PBE values are too high. ED does reduce
the values, but by significantly too much.

Finally, Figure 2 plots the exchange–correlation potentials
along the bond axis of two representative systems, CO and
PN, compared to the near-exact v−(r) of Ref. 57, determined
using the procedure of Zhao, Morrison, and Parr (ZMP).39

The present calculations use the same Huzinaga basis set as
was used in Ref. 57. The PBE potentials are well above the
near-exact potentials and do not exhibit a −1/r asymptotic
behaviour; they rapidly decay to zero with increasing distance
from the molecule. In moving to ED, the potentials lower
towards the near-exact potential (and it is this lowering in
energetically important regions that causes ε to reduce
towards −I0) and the exact −1/r behaviour is attained. There
is, however, clear room for improvement in non-asymptotic
regions. In particular, the ED potentials do not exhibit the
intershell structure evident in both PBE and the near-exact
potential and this is a consequence of the fact that G is a local,
rather than gradient corrected, functional.
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TABLE VI. Static isotropic polarisabilities (in a.u.), compared to reference
BD(T) values from Ref. 56.

Molecule PBE ED BD(T)

C2H4 28.30 24.97 26.91
CH4 17.40 15.79 16.43
Cl2 31.54 28.70 30.71
CO 13.53 11.73 13.03
CO2 17.72 15.72 17.56
F2 8.87 7.68 8.45
H2O 10.49 8.53 9.71
H2S 25.70 24.18 24.67
HCl 18.26 16.64 17.43
HF 6.18 4.86 5.64
N2 12.13 10.28 11.75
NH3 15.37 12.96 14.33
PH3 31.85 31.57 30.44
SO2 26.44 24.26 26.06

MAE 0.76 1.25

FIG. 2. Exchange–correlation potentials along the bond axis for CO and PN,
compared to the near-exact ZMP potential from Ref. 57.

We have therefore achieved our aim. Our method does
yield a functional that is appropriate for the electron deficient
side of the integer, as illustrated by the effective homogeneities
in Figure 1, the HOMO energies in Tables III and IV, and
the exchange–correlation potentials in Figure 2. The ability
to recover the exact asymptotic potential is an added bonus,
yielding the improved Rydberg excitations in Table V. The
functional is less successful for the valence excitations in
Table V and static isotropic polarisabilities in Table VI, which
is consistent with the lack of quantitative accuracy in the shape
of the exchange–correlation potentials in non-asymptotic re-
gions (Figure 2). We should not be surprised by deficiencies.
The functional form is extremely simple, with a purely local
G term. It is also instructive to consider precisely what our
functional development procedure imposes. We constrain k
to be close to k− and E to be close to the (reasonably
accurate) GGA value. It therefore follows from Eqs. (5) and
(7) that the ED functional must yield a reasonably accurate
v(r)ρ(r) dr. This is clearly desirable, but is not a sufficient

condition to ensure that the potential itself has the correct
shape (consistent with our observations for Figure 2). An
additional factor that may affect the accuracy of excited states
and polarisabilities is the neglect of electric field dependence
of the functional parameters.

Looking ahead, an obvious next step is to introduce
gradient dependence into G, although particular care will be
required to avoid divergence of the potential in asymptotic or
zero density gradient regions. One might also be tempted to
use ED data to calculate new k and α values and then iterate
the approach. We emphasise that Eq. (19) relies on the use of
a GGA HOMO energy; if the ED HOMO energy is instead
used, then the overall effective homogeneity will be close to
4/3 for all systems. It is also important to note that the ED
functional form is not size-extensive. Regarding the shape of
the potential, it may prove fruitful to explicitly enforce the
correct shape in the spirit of Ref. 56. Finally, the dependence of
the parameters k and α on perturbations, such as electric fields
and nuclear coordinates, must be investigated. Again, this
latter issue is not only found in the current approach but also
arises in conventional global/range separated hybrid tuning
approaches, where the tuning parameter has a perturbation
dependence.29 Investigations are underway.

III. CONCLUSIONS

We have used density scaling considerations to derive
an exchange–correlation explicit density functional that is
appropriate for the electron deficient side of the integer and
which recovers the exact r → ∞ asymptotic behaviour of
the exchange–correlation potential. The functional has an
unconventional mathematical form with parameters that are
system-dependent; the parameters for an N-electron system
are determined in advance from GGA calculations on the
N- and (N − 1)-electron systems. Compared to GGA results,
the functional yields similar exchange–correlation energies,
but HOMO energies that are an order of magnitude closer
to the negative of the vertical ionisation potential; for an-
ions, the HOMO energies are negative, as required. Ryd-
berg excitation energies are also notably improved and the
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exchange–correlation potential is visibly lowered towards
the near-exact potential. Further development is required to
improve valence excitations, static isotropic polarisabilities,
and the shape of the potential in non-asymptotic regions.

The ED functional is fundamentally different to conven-
tional approximations. We hope that the ideas used in its
derivation and the insight they provide may prove useful in
future functional development studies.
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