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Abstract

Supply and production uncertainties can affect the scheduling and
inventory performance of final production systems. Facing such uncer-
tainties, production managers normally choose to maintain the origi-
nal production schedule, or follow the first-in-first-out policy. This pa-
per develops a new, dynamic algorithm policy that considers schedul-
ing and inventory problems, by taking advantage of real-time shipping
information enabled by today’s advanced technology. Simulation mod-
els based on the industrial example of a chemical company and the
Taguchi’s method are used to test these three policies under 81 exper-
iments with varying supply and production lead times and uncertain-
ties. Simulation results show that the proposed dynamic algorithm
outperforms the other two policies for supply chain cost. Results from
Taguchi’s method show that companies should focus their long-term
effort on the reduction of supply lead times, which positively affects
the mitigation of supply uncertainty.
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1 Introduction

Demand, production and supply uncertainties can importantly affect the
performance of final production systems (Sun et al., 2012). Operationally,
demand is stable because production requirements are defined by the master
production schedule, with supply and production constituting the primary
sources of uncertainties (Kim and Springer, 2008 and Song et al., 2014).

Their influence could be mostly measured by delays in supply and pro-
duction lead times. Operational uncertainties in supply include transport
time variability, quantity inaccuracies and supplies not meeting the specifica-
tions (Zsidisin, 2003 and Ghadge et al., 2012)). The two latter uncertainties
require the supplier to redeliver the items, causing further disruptions to sup-
ply lead times. Natural hazards could also disrupt supply operations (Pawar
and Rogers, 2013): because of the 2011 Thailand floods the global magnetic-
hard-drive supply was delayed by several weeks (Arthur, 2011). Operational
uncertainties in production include glitches, malfunctions, congestions and
lack of control (Tomlin, 2006 and Micheli et al., 2014). The two latter uncer-
tainties directly disrupt production lead times. The two former uncertainties
require reworks. Those in turn delay production operations.

In particular, the effects of supply-side transport disruptions could be
severe in just-in-time settings, for example, the supply of automotive com-
ponents or perishable food or chemical raw materials. Although disruptions
and delays in production could be timely identified, it was not so for trans-
port operations until recently, thanks to technology developments such as
GPS-based vehicle tracking (Gaukler et al., 2008). Allowing real-time gath-
ering of shipment status, these technologies have attracted some attention
from practitioners as they could be used to dynamically reschedule produc-
tion if supply-side transport disruptions occur (GIS Park, 2011). However,
it is unclear how such applications would work and what is the entity of the
benefits ensuing from their introduction.

To address this relevant practical problem we propose a GPS-based tech-
nology application and develop a heuristic algorithm, called ‘Dynamic algo-
rithm’ to re-schedule production according to real-time transport information
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that we compare by a simulation study against commonly used scheduling
policies.

The setting, the assumptions and the data of the simulation study are
based on a chemical plant producing calcium carbonate.The plant is man-
aged by a Swiss-based chemical company with worldwide presence, spe-
cialised in the production and distribution of industrial minerals. We use
the pseudonym ‘Carb.Co.’ when we refer to the company to preserve its
anonymity.

This paper could be classified among those academic studies consider-
ing demand, supply or production uncertainties in final production systems.
We contribute to filling the gaps in that academic literature in the follow-
ing ways. First, our study considers supply and production uncertainties,
although previous literature seldom considers these uncertainties simultane-
ously. Second, to mitigate delays and congestions in the production system,
our algorithm considers scheduling and inventory decisions. Again, although
these decisions are strongly inter-related, previous literature rarely consider
scheduling and inventory policies together.

A more theoretical contribution of this work is related to how to cal-
culate inventories between known demand and uncertain supply lead times
when these are lognormally distributed. The choice of such distribution is
motivated by empirical evidence collected from the industrial example and
confirmed by its suitability to capture lead time variability (Bakshi et al.,
2011).

Our study primarily contributes to that body of academic work that
focus on assessing the benefits of tracking technologies, including RFID and
GPS. In this respect, we show that the ‘Dynamic algorithm’ outperforms
the supply chain cost, the first-in-first-out scheduling rule, or FIFO, and the
no changes policy, namely, to follow the original production schedule. The
supply chain cost includes the cost of inventory, overtime, non-completion
and changeover. A further analysis based on the Taguchi’s method shows
that companies should invest in supply lead time reduction initiatives, as
the results show that the length of lead times is the most relevant factor in
decreasing the supply chain cost.
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2 Related work

This study is related to those academic contributions trying to assess the
benefits of tracking technologies, for example, RFID and GPS. The contri-
butions of Gaukler et al. (2008) and Sari (2010) are among the studies in this
area using the same methodology employed in this work, simulation. These
papers aim at assessing the benefits of RFID tracking in supply chains, with
Gaukler et al. (2008) focusing on the process of expediting late orders and
Sari (2010) conducting his study in a multi-echelon setting. Both studies
show that the benefits ensuing from tracking technologies are often intangi-
ble, for supply chain visibility, and, therefore, difficult to evaluate. Ballest́ın
et al., 2013 looked at the role of RFID in sequencing warehouse operations.
They compare, as we do, static policies and technology-based dynamic po-
lices.

Although the setting of the problem studied here is new, we can still
relate our work to previous papers in the scheduling and inventory manage-
ment literature, especially to those studies considering uncertainties in final
production systems. These can be divided into four categories: (1) papers cal-
culating safety lead times, (2) papers analysing the economic lot-scheduling
problem, (3) papers modelling the restoration of a disrupted schedule and
(4) papers identifying and testing dynamic scheduling rules.

The first category of papers studies re-ordering policies for single-product
assembly systems with deterministic demand and independent and identically
distributed component lead times. Cost-minimising policies are usually for-
mulated for safety lead times, defined as the difference between the planned
and expected lead times. Tang and Grubbström (2003) obtain results for
the continuous time setting. Louly et al. (2008) extended the model of
Tang and Grubbström (2003) to a discrete time environment, by also al-
lowing more components. Louly et al. (2008) further allowed the values of
component lead times to be generated by various probability distributions.
These papers connect to our study because they also assume deterministic
demand and try to identify inventory policies to hedge against supply lead
times uncertainty. They study a more complicated inventory setting than
us in which each product is assembled from several components. On the
other side, their study is simpler in other dimensions: they do not consider
production uncertainty and scheduling policies.

The second group of papers aims at finding cyclic schedules for manufac-
turing various products with the goal of minimising holding and setup costs.
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These studies are similar to the present work in their objective to consider
inventory and scheduling decisions when managing final production systems.
Contrary to the present paper, these studies analyse inventory and scheduling
decisions jointly and not sequentially as we do here. However, they do not
consider production and supply uncertainties, with only few studies consid-
ering demand variability (Leachman and Gascon, 1988 and Gallego, 1990).
More recently, Wang et al., 2012 analysed the extension of this problem to a
dynamic control setting.

The third category of papers assumes that processing times are stochastic
variables and concerns the restoration of an initial schedule disrupted by
rework or machine breakdown (Bernier and Frein, 2004 and Ding and Sun,
2004). Their studies follow the traditional stochastic scheduling approach
considering job-specific attributes of available work, for example, job release
times, processing times and due dates, to form the shortest expected flow
time of the schedule (Conway et al., 1967). These papers connect to our
study as they try to mitigate delays and congestions in production systems.
Compared with our study, they use analytical approaches. However, they
impose the distributional independence of lead times, an assumption hardly
verified in practice, because some products may share a set of resources.
Moreover, they do not consider inventory decisions and supply uncertainties.

The final group of papers proposes and tests dynamic scheduling rules in
final production systems. All these contributions consider processing time
uncertainty but not supply lead time variability. This category of papers is
related to our study because they propose heuristic dynamic scheduling rules
as we do here. Dynamic rules require the knowledge of many events occur-
ring in the production system leading to large state spaces. Additionally,
decisions in dynamic rules are made in discrete time. For these reasons, ana-
lytical approaches are often difficult to accomplish and the studies in this last
group rely on simulation to test the rules proposed. Hausman and Scudder
(1982) proposed a model in which dynamic policies provided an important
reduction in spare parts inventory compared with static policies for an as-
sembly job-shop processing various jobs on several machines. Wein and Ou
(1991) tested how the adoption of various scheduling policies affects the flow
time of an assembly system similar to the one described by Hausman and
Scudder (1982). More recently, Gong et al. (2011) tested the effectiveness
of a dynamic rule called ‘distributed arrival time control’ to schedule jobs
in assembly lines and assembly cells. The results indicated assembly cells
outperform assembly lines with specific reference to an indicator associated
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with the due-date variation of jobs.

2.1 Problem description

The supply chain studied and the assumptions of the model are based on the
industrial example of Carb.Co., a producer of calcium carbonate interested in
synchronising its production process with information about inbound supply
shipments. Drivers could already use smartphones to update the company
about inbound shipments’ status. However, Carb.Co. was interested in au-
tomating the tracking to make updates more frequent and regular. Based on
this need, we propose the innovative application described in ¶2.2.

The plant under consideration entails a single multi-product production
line receiving chemical raw materials from various suppliers. The production
line makes various products from raw materials according to a predetermined
and fixed daily production plan, which follows the expected raw-material
arrival times. Each raw material is sent to the production line independently
by road and is transported by a third-party logistics provider. We assume
the supply shipment ready-time to be reliable but the transport lead time
can be variable. Moreover, we assume production lead times to be random
as they directly depend on the variable raw-material quality.

Inventory holding costs are charged per raw material and per time unit,
also for those goods in transit. When a raw material necessary to make the
product scheduled next for assembly has not yet arrived or is not in stock,
it is necessary to decide whether to wait for the raw material to arrive or to
schedule a later production.

The decision horizon is constituted by a single working day. If everything
goes smoothly, the production is completed in the regular time. However,
with delays, managers can recur to an overtime shift at a cost to ensure that
all the products are manufactured. If some products cannot be produced even
in the time slot allotted to overtime, a penalty cost per product is charged.

A changeover cost is charged every time the sequence of production is
changed. This includes all the extra costs of changing the schedule in the
middle of the work. Changeovers also have an indirect influence on the supply
chain variable cost through changeover time. Changeover times imply delays
in the production schedule that may require using overtime at additional
cost, or may even result in the non-completion of the production of raw ma-
terials in the given horizon. Note that changeover times are only associated
with schedule changes, and are not related to setup times, included in the
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processing times. We assume changeover times and costs to be independent
from the sequence.

Managers define the original production schedule based on structured
techniques, which consider constraints such as the capacity of the plant and
the product due dates. To mitigate supply and production uncertainties
in the short time horizon, the managers may choose to follow the original
production schedule, named ‘No changes’, or always produce the first raw
material arrived, called FIFO. ‘No changes’ and FIFO policies do not in-
clude inventory decisions. These two policies are commonly used in practice,
primarily because of the lack of real-time information.

2.2 Innovative application and ‘Dynamic algorithm’

We propose a technological application that can be introduced in the setting
described in ¶2.1 to trace shipment status and to allow the manufacturer
to make dynamic informed decisions about its production schedule (Figure
1). Lorries are traced real-time by the 3PL through automated GPS/GPRS
units. The route leading from each supplier to the manufacturer is divided
into road-segments, each taking the same average lead time. Through a
technique called geo-fencing, the GPS technology tracks when a lorry enters
or exits a specific road segment. This information is in turn transmitted
to the 3PL’s information systems through GPRS cellular technologies. An
e-commerce B2b application, such as a traditional EDI connection or a web-
EDI connection, is used to send shipment information from the 3PL to the
company’s ERP system, which makes a dynamic schedule update possible.
Given the updated location information of each lorry, it is possible for the
company to forecast the arrival of each raw material in real-time. Combined
with the availability information of stocks of raw materials on hand, the
company may decide to dynamically change the schedule of the products
after our proposed algorithm.

Our ‘Dynamic algorithm’ uses a static policy to determine the initial in-
ventory levels of raw materials to safeguard the company from supply lead
time variability. The static policy assumes the lead time to cover each route
leading from a supplier to the manufacturer can be adequately represented by
K independent and identically distributed (iid) lognormal variables, where
K is the number of road segments in the route. We choose this distribution
based on empirical evidence collected from the industrial example. Moreover,
the lognormal distribution seems suitable to capture lead time variability, be-
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Figure 1: The proposed technological application.

cause it has a modal response strictly above zero and a long tail representing
infrequent cases of long lead times (Bakshi et al., 2011). The stock allocation
rule of our static policy is encapsulated in Proposition 1.

Proposition 1 The demand of a raw material is constant and unitary. Its
supply lead time is modelled after the sequence of X1 . . . Xk iid lognormal
variables with mean µx and standard deviation σx for i = 1 . . . K. Define the
customer service level CSL of the supply as the probability of a raw material
arriving before a particular time threshold t, after which the manufacturer’s
operations may be disrupted. Then the condition for assigning a stock unit
can be written as follows:

exp(F−1
Y (CSL, µy, σy) − µx ≥ t (1)

The term on the left of the inequality can be interpreted as the expected delay,
with µx the mean of the compound lognormal variable X obtained through
the Fenton-Wilkinson approximation and F−1

Y the distribution of the normal
variable Y derived from X.

The proof of Proposition 1 can be found in Appendix .1.
The ‘Dynamic algorithm’ is described as unified modelling language ac-

tivity diagram in Figure 2. Although the shipment is updated after every
route segment, the algorithm computes the expected time of arrival of each
raw material based on 1) the current segment where the raw material is and
2) the information about the lognormal variables. The algorithm further con-
siders the changeover time tc, namely, the time needed to set up the assembly
line in case the production sequence is changed. Time tc minutes before the
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line is available for production, all the raw materials arrived or due to arrive
in the next tc minutes are possible candidates for production next. The next
raw material to be manufactured among those arriving or arrived is chosen
because of the original production schedule, to avoid the changeover cost.
This choice may not be possible, for instance, when the raw material origi-
nally scheduled next for production has not yet arrived or is not expected to
be arriving in tc minutes and at least one other raw material has arrived or is
arriving in tc minutes. In this latter case the production sequence is changed
and a changeover cost is charged. Once the algorithm effectively schedules a
product to be manufactured next, the line is made unavailable for the other
products. Once the raw material scheduled for production has arrived and
once the line is available, the production starts.

3 Simulation

3.1 Simulation model

We developed a discrete event simulation model using the language SIMAN
and its visual interface Arena 13.0 to compare the effectiveness of the ‘Dy-
namic algorithm’ against ‘no changes’ and FIFO policies. We chose to use a
simulation approach because the problem has not been considered tractable
analytically for the following reasons: 1) the large state space necessary to
the ‘Dynamic algorithm’ to make the decisions and 2) the scheduling rules
are triggered by discrete events such as the arrival of raw materials and the
final production line becoming available for manufacturing.

Semi-structured interviews with Carb.Co.’s IT project manager and the
technological provider of its current tracking application helped determining
the problem description and the assumptions behind the simulation model.
All the parameters and the data of the model, including the production
and shipping plans used in the simulation, are based on real-data from the
industrial example, some of which have been scaled. A panel consisting of
one academic and one practitioner has verified and validated the simulation
model.

The model incorporates ten sub-models developed for each raw material
shipped to the assembly line by the ten suppliers. Each sub-model is as-
sociated with a physical component, replicating transport and production
activities, and a decision-making component, changing because of the algo-
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Figure 2: The proposed ‘Dynamic algorithm’.
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rithm used.
The initialisation phase of our model entails the creation of a production

plan, a delivery plan and a shipping plan. The predetermined production
plan considers the required sequence of production, the average production
lead times and the hours of operation of the plant. A delivery plan is created
based on the production plan depending on the time lag between the expected
raw-material arrival and the start of the production, called just-in-time extent
or JIT. The planned shipping times of all raw materials are calculated based
on the average supply lead times and planned production times. In our
simulation, the shipping times equal the arrivals of entities, the raw materials,
into the system.

The final production is modelled based on two normal shifts of six hours
each. Additional overtime of six hours is available if raw materials cannot
be produced, because of delays during regular work hours. We determined
CSL being 80% and t being two hours of delays. The changeover time or
tc is set to 30 minutes, and three simulation files are used with one each for
‘No changes’, FIFO and ‘Dynamic algorithm’ policies.

Table I shows relevant parameters and costs used in the model. The lead
time ratio conveys the magnitude of supply lead times compared with pro-
duction lead times. Olhager (2003) uses the multiplicative inverse of this
ratio to position the order penetration point in a supply chain. Higher val-
ues of this ratio mean longer supply lead times, expected to amplify delays
and congestions because of supply variability. The lead time variability is
measured as the relative standard deviation of lead times. This measure is
easy to compute from historical data and commonly used in operations man-
agement literature. As described previously, the JIT extent is the scheduled
slack between the expected arrival time of raw materials in the plant and
the expected start of production in which those materials will be employed.
Lower values of this indicator convey the intuitive idea that the JIT process
is tighter.

Given the short horizon considered in the simulation, inventory costs are
high if compared with other costs. This assumption is based on the chemical
industry, where raw materials are highly expensive and perishable, with both
factors importantly increasing the holding cost. Modelling the overtime and
non-completion penalty costs explicitly prevent us from basing our decisions
on proxy parameters, such as the time when the assembly line is idle, only
indirectly connected to the supply chain cost. The supply chain cost is used
to assess these policies as this indicator helps us better judge the overall
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Value
Parameters Low Medium High

Lead time ratio (supply / production lead time) 1 5 10
Lead time variability (% standard deviation) 10% 50% 100%
JIT extent [minutes] 0 15 30
USC: Changeover cost [£/changeover] 100 200 300
UHC: Inventory holding cost [£/(component*hour)] 5 10 15
UOT: Overtime cost [£/shift] 750 1 000 1 000
UNC: Non-completion penalty [£/product] 250 500 750

Table 1: Cost, lead times and just-in-time parameters.

performance of the system, compared with time-based operational indicators
commonly used in previous studies (Gong et al., 2011).

3.2 Simulation results

We tested the three policies using the medium values of the unit costs and
under the low, medium and high values of three variables: supply lead time
variability, ratio between supply and production mean lead times and just-
in-time extent, leading to 81 experiments. Because we found that the JIT
extent has a modest influence on the cost, for clarity we show the results
with JIT extent equal to 15 minutes (Table II). The number of replications
or simulation runs for each experiment varies because it is calculated based
on 5% confidence interval with the indifference zone set to 50 cost units,
according to the Dudewicz and Dalal method (Law, 2006, Chapter 10). A
unit cost of 50 is chosen because such daily saving would not justify the
introduction of the real-time technology necessary to adopt the ‘Dynamic
algorithm’. Fewer runs are required for experiments with lower lead time
variability and a higher ratio between supply and production lead time.

The simulation results suggest that the ‘Dynamic algorithm’ is the most
effective policy. ‘No changes’ is always the most expensive solution as waiting
for a delayed predetermined raw material increases holding, overtime and
non-completion costs.

For higher values of the ratio between supply and production lead time
the cost is higher. Moreover, the cost increases when the supply lead time
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Lead time ratio Lead time variability
Low (10%) Medium (50%) High (100%)

A: £145 (40) A: £719 (1 167) A: £1 032 (1 640)
Low (1) F: £1 288 (558) F: £1 384 (1 387) F: £1 683 (2 028)

N: £2 137 (40) N: £2 197 (40) N: £2 263 (135)

A: £954 (569) A: £2 224 (2 083) A: £2 621 (3 393)
Medium (5) F: £1 807 (678) F: £2 534 (1 155) F: £2 798 (2 150)

N: £2 606 (40) N: £2 956 (664) N: £3 292 (4 559)

A: £2 040 (997) A: £3 352 (3 494) A: £3 059 (2 093)
High (10) F: £2 570 (934) F: £3,481 (2 134) F: £3 656 (1 934)

N: £2 923 (135) N: £3 994 (4 899) N: £4 396 (5 844)

Table 2: Selection of simulation results, with the number of runs in
brackets (A, F and N mean ‘Dynamic algorithm’, FIFO and ‘No changes’,

respectively).

variability increases for almost every experiment. This effect is principally
relevant to high values of the ratio between supply and production lead time.
Because lead time variability is calculated as a percentage of the supply lead
times longer lead times imply higher variability.

We use Figure 3 to illustrate further results. The ‘Dynamic algorithm’
seems to work principally well in two settings: for low levels and for high
levels of lead time variability. For low levels of lead time variability the
scheduling rule based on both the components having arrived and due to
arrive is principally effective. FIFO performs worst as this policy is too
myopic and will always schedule the first raw material arriving, with high
chance of scheduling the ‘wrong product’ and ensuing high changeover costs.
For high levels of lead time variability the inventory policy allocates initial
stock of those raw materials characterised by high variability. This rule
reduces overtime and non-completion costs that could have been caused by
the possible delays in the shipments of these raw materials.

Some surprising results interestingly arise. Under high supply and pro-
duction lead time ratio, when the supply lead time variability increases from
‘medium’ to ‘high’ the cost of ‘Dynamic algorithm’ decreases, because the
‘Dynamic algorithm’ stock allocation mechanism works principally well for
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Figure 3: Illustration of the simulation results.

high supply lead time and high variability, as mentioned earlier. Furthermore,
the ‘Dynamic algorithm’ performs less satisfactorily compared with the FIFO
policy when the ratio between lead times is high under medium lead time
variability and high JIT extent. The ‘Dynamic algorithm’ and FIFO have
similar performance in experiments characterised by intermediate variability,
especially when the ratio between supply and production mean lead times
is high. Nevertheless, it is necessary to consider that the parameters behind
stock allocation, namely, the threshold and the customer service level, have
been selected for the ‘Dynamic Algorithm’ to perform well in various exper-
iments, namely, with variability ranging from 0.1 to 1.0. We expect, in the
real world, companies will face a narrower range of variability. Therefore, the
two parameters associated with initial stock allocation could be refined for
the ‘Dynamic Algorithm’ to perform well also in case the standard deviation
of the variability is 0.5 of the mean supply lead times.

Further insights could be gained from the detailed results on how the
policies perform for holding, overtime, non-completion and changeover costs.
For each of the 27 experiments included in Table II we averaged these costs
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over 1 500 runs of simulation. Results can be found in Table III. We can
highlight some effects of lead time ratio and lead time variability common
to the three policies. If the lead time ratio grows, the relative importance
of holding costs increases. Because of higher lead time’s ratios, component
transit times are longer, therefore increasing holding costs. If the lead time
variability increases, the relative importance of overtime and non-completion
costs grows, because of delays in the production schedule. ‘No changes’ is
penalised by high non-completion and overtime costs. These are important
because workers are forced to wait for the arrival of a predetermined product
even if its transport is delayed, with consequent disruptions to the overall pro-
duction plan. Especially when non-completion costs are high, the ‘Dynamic
algorithm’ and FIFO are the only suitable policies. FIFO favours a myopic
scheduling policy that requires many changeovers but allows completing the
production plan in the shortest time possible. Therefore, FIFO is suitable
when changeover costs are low and labour costs are high. The ‘Dynamic algo-
rithm’ uses a preventive stock allocation mechanism to decongest the system
when delays are likely to happen. Although this mechanism increases holding
costs of inventory, it prevents the system from bearing other more disruptive
costs including overtime, non-completion and changeover costs. Therefore,
if compared with FIFO, the ‘Dynamic algorithm’ has higher holding costs,
which nevertheless lead in most cases to lower supply chain cost. The ef-
fects of lead time ratio on costs allows to gain further understanding of the
stock allocation mechanism used in the ‘Dynamic algorithm’. If the lead time
variability is low, delays in transport are limited and its real-time scheduling
logic avoids unnecessary changeovers by waiting for components due to arrive
soon. If the lead time variability is high, delay-critical components are as-
signed in stock before the simulation starts. This preventive stock-allocation
increases holding costs, but decongests the system, allowing larger savings
in changeover, overtime and non-completion costs. Medium lead time vari-
ability systems are more congested than high lead time variability systems
because their variability is not so high to trigger initial stock allocations.
However, the entity of delays could still be important especially when lead
time ratios are medium or high. In these settings, changeover costs grow,
making the ‘Dynamic Algorithm’ similar to FIFO for the supply chain cost.
As stated above, companies facing medium lead time variability need to fine-
tune the initial stock allocation of the ‘Dynamic Algorithm’ to enhance its
performance over FIFO. This fine-tuning is likely to increase the customer
service level CSL and decrease the threshold time t making the stock al-
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Lead time Lead time variability
ratio Low (10%) Medium (50%) High (100%)

A: HC: 96%, OC: 4%, A: HC: 29%, OC: 64%, A: HC: 25%, OC: 53%,
NC: 0%, CC: 0%. NC: 1%, CC: 6%. NC: 11%, CC: 12%.

Low (1) F: HC: 13%, OC: 0%, F: HC: 13%, OC: 13%, F: HC: 12%, OC: 22%,
NC: 0%, CC: 87%. NC: 0%, CC: 74%. NC: 2%, CC: 64%.

N: HC: 6%, OC: 47%, N: HC: 9%, OC: 46%, N: HC: 10%, OC: 44%,
NC: 47%, CC: 0%. NC: 46%, CC: 0%. NC: 46%, CC: 0%.

A: HC: 67%, OC: 22%, A: HC: 33%, OC: 34%, A: HC: 39%, OC: 26%,
NC: 0%, CC: 11%. NC: 4%, CC: 28%. NC: 8%, CC: 26%.

Medium (5) F: HC: 34%, OC: 4%, F: HC: 25%, OC: 21%, F: HC: 22%, OC: 23%,
NC: 0%, CC: 62%. NC: 2%, CC: 51%. NC: 6%, CC: 49%.

N: HC: 23%, OC: 38%, N: HC: 26%, OC: 34%, N: HC: 23%, OC: 31%,
NC: 38%, CC: 0%. NC: 40%, CC: 0%. NC: 48%, CC: 0%.

A: HC: 60%, OC: 28%, A: HC: 38%, OC: 26%, A: HC: 63%, OC: 16%,
NC: 0%, CC: 12%. NC: 9%, CC: 27%. NC: 4%, CC: 17%.

High (10) F: HC: 45%, OC: 11%, F: HC: 34%, OC: 21%, F: HC: 29%, OC: 22%,
NC: 0%, CC: 44%. NC: 6%, CC: 39%. NC: 10%, CC: 39%.

N: HC: 37%, OC: 31%, N: HC: 34%, OC: 25%, N: HC: 28%, OC: 23%,
NC: 31%, CC: 0% NC: 41%, CC: 0% NC: 49%, CC: 0%

Table 3: Simulation results: cost breakdown (HC, OC, NC and CC mean
holding cost, overtime cost, non-completion cost and changeover cost,

respectively).

location mechanism more sensitive to lead time variability. This change is
likely to increase holding costs but to reduce at the same time overtime,
non-completion and changeover costs, therefore decreasing the supply chain
cost.

3.3 Taguchi’s method results

Although the above simulation considers three varying variables and three
policies, the unit costs are set at the medium values. To fully investigate
whether the system is robust to changes in various parameters including the
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four unit costs, namely, overtime cost, non-completion cost, holding cost and
changeover cost, a full factorial design should have been employed. However,
a full factorial design with eight parameters, and each of them characterised
by three levels, would require 38, namely, 6 561, experiments. The experi-
ments were run on a computer mounting an Intel Core i5-2400 at 3.10 GHz
and 4 GB of RAM. On this machine, the estimated time saved by using the
Taguchi’s method instead of the full-factorial approach is 2 399 hours.

Taguchi’s method (Roy, 1990) is an alternative to factorial design that
allows the analysis of many parameters without many experiments. By using
Taguchi’s orthogonal arrays, only 18 experiments are necessary in this case.
After conducting the experiments, we computed for each factor j the value
∆j, which in the Taguchi’s analysis is used to make judgements about the
importance of the factors. Factors are ranked from the highest ∆j, having
the highest contribution toward the cost to the lowest ∆j, having the lowest
contribution toward the cost (Figure 4). The description of the design of
experiments and the detailed calculation of the Taguchi’s analysis can be
found in Appendix .2.

Figure 4 provides the following interesting observations. First, the ratio
between supply and production lead time has the highest influence on the
cost. That means that when the supply lead time is longer, the effects of the
variability of other factors on the cost will be more relevant. Surprisingly
lead time variability is found to have little influence on cost. This finding
should be understood with care. Because we calculate lead time variability
as a percentage of the standard deviation of the mean supply lead time, its
effects depend first on the supply lead time as longer supply lead time means
higher lead time variability. As a lesson learnt, the company should direct
their efforts toward supply lead time reduction because shorter lead time
means lower lead time variability.

Figure 4 shows that the policy used has the second highest influence on
the cost. Next, unit overtime costs and unit non-completion costs seem to
have had an important influence on the cost. Care is needed in extending
the results obtained where unit overtime and non-completion costs differ from
those employed in these simulations. Other parameters such as unit holding
cost, unit changeover cost and JIT extent have little influence on the cost.
That means the cost is robust to changes in these parameters. The lack
of influence of the JIT extent was also apparent from the results presented
earlier.
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Figure 4: Taguchi’s method results.
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4 Discussion and conclusions

The analysis performed by this research yields some new observations. Pre-
vious studies argued that the benefits of tracking technologies often do not
justify their investment expenditures (Sari, 2010). On the contrary, we show
that a GPS-based application, combined with the ‘Dynamic algorithm’, could
be relevant to firms operating in a JIT or perishable supply environment, for
which the gains ensuing from the introduction of tracking technologies are
relevant. Simulation experiments show that the ‘Dynamic algorithm’ out-
performs commonly used scheduling policies. Such GPS- and RFID-based
real-time tracking technologies were useful in supply chains for generating ex-
press orders (Gaukler et al., 2008) and for sharing collaborative information
(Sari, 2010). This paper shows that final assemblers can use GPS-enabled
real-time transport information for production re-scheduling to save impor-
tant costs.

To our knowledge, this research study is the first to propose dynamic
policies considering not only the state of order completion in the production
system, but also the progress of raw-material transport directed to the fi-
nal production plant, under supply and production uncertainties. Previous
studies on dynamic policies are based exclusively on the order progress in
the production system (Hausman and Scudder, 1982; Wein and Ou, 1991
and Gong et al., 2011). Our study is consistent with this body of litera-
ture because they showed, as we did, that dynamic policies based on current
system status perform better than static policies. Other studies considering
inventory and scheduling problems in the same research tend to focus on
demand uncertainty only (Leachman and Gascon, 1988 and Gallego, 1990).
Moreover, similar attempts to study dynamic scheduling rules tend to focus
on assembly processing lead time uncertainty but not on supply lead time un-
certainty. With a more realistic setting based on an industrial example, this
paper provides some new understanding about the use of dynamic scheduling
rules for final assemblers facing long and variable supply lead times.

Results from a sensitivity analysis performed with Taguchi’s method show
that longer supply lead times could exacerbate the adverse effects of supply
uncertainty. This result is consistent with the study of Gaukler et al. (2008),
who investigated by simulation the use of dynamic expediting policies when
order progress information is available. They found, as we did, that the
performance of their dynamic policies deteriorated among long supply lead
times. The ‘Dynamic algorithm’ is less effective when lead time variability is

19



medium combined with medium and high ratio between supply and produc-
tion lead times. In any other case it performs really well (Table II). Based on
different settings without using dynamic scheduling rules, Sari (2010) found
more benefits when firms in a supply chain collaborate by sharing real-time
demand information under long supply lead times. With these results, com-
panies operating under such supply and production uncertainties and JIT
supply environment should focus on reducing supply lead time and its vari-
ability, and if these measures are impossible, then dynamic scheduling rules
like ours can be considered. Based on a cost-breakdown analysis, we also
found that the ‘Dynamic algorithm’ works really well when changeovers are
expensive and holding costs are low (Table III).

This paper differs from previous studies in several manners. Recent con-
tributions on scheduling are often focused on how to re-schedule disrupted
operations (Zhang et al., 2013). Heuristic genetic algorithms are employed
with this purpose because of their computational efficiency (Rossi and Dini,
2000). However, they are used for re-scheduling purposes when a disruption
already happened, but normally do not explicitly consider the probability of
a future disruption to happen when defining the production schedule. Our
study differs from those contributions by modelling explicitly production and
supply lead times uncertainties with the goal of altering scheduling decisions
before the delays in supply transport hit assembly plants. We investigate the
effects of possible delays based on the state of completion of the transport
process to allow assembly companies to proactively react to possible supply
delays beforehand. This approach is similar to the one used in Gaukler et
al. (2008) who based express ordering decisions on the state of completion of
the order in a supply chain. In addition, this paper addresses the problem of
modelling supply and production lead time variability. Tang and Grubbström
(2003) and Louly et al. (2008) assume for production lead times discrete dis-
tributions and continuous density functions, respectively. Commonly used
continuous density functions to model lead times in operations management
include the normal distribution, which is unsuitable as it could lead to neg-
ative values of lead times, and the Erlang distribution, used by Tang and
Grubbström (2003), which may not be realistic in this setting. This paper
applies a continuous lognormal distribution to model supply and production
lead time variability, based on verification from the industrial example.

This study provides some foundations for future research. First, a possi-
ble extension of this paper could contribute to the more theoretical literature
on heuristic scheduling mentioned above considering the uncertainties of the
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supply and production processes. This contribution could be based on the
approximate-stochastic-dynamic programming framework. Second, the ap-
plication of the ‘Dynamic algorithm’ provides cost reduction benefits but
also requires much higher coordination with line supervisors and workers,
because of schedule changes in the middle of the work. To investigate what
are the precise effects of the adoption of this application on workers behaviour
through in-depth case studies would be of interest.
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A Appendix

A.1 Proof of Proposition 1

Let X1 . . . XK be K independent and identical lognormal variables repre-
senting the travel time to cover each road segment of a particular route.
The lognormal variables are characterised by a mean µXi

and a standard
deviation σXi

for each i = 1 . . . K. Each Xi can be written as exp(Yi),
with each Yi as a normal variable with mean µYi

and a standard deviation
σYi

. Therefore, the lead time for a particular route from a supplier to the
company can be represented by the compound distribution of K lognormal
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variables. Unfortunately, no exact result is known for this resulting distri-
bution. Thus we estimate the lead time distribution for a route by using
the Fenton-Wilkinson approximation (Fenton, 1960, p. 60) as follows. The
Fenton-Wilkinson method approximates the sum of the K independent log-
normal variables with a lognormal variable X, with mean µX and a standard
deviation σX , obtained by matching the first and second central moments of
X with that of the sum of Xi for i = 1 . . . K, as given by:

µX = K · µXi
, (2a)

σ2
X = K · σ2

Xi
. (2b)

The lognormal variable X can then be written as exp(Y ), with Y as a
normal variable with mean µY and a standard deviation σY . Knowing the
parameters µX and σ2

X , µY and σ2
Y can be determined from the formulas

(Aitchison and Brown, 1957):

µY = ln

(
µ2
X√

µ2
X + σ2

X

)
, (3a)

σ2
Y = ln

(
1 +

σ2
X

µ2
X

)
. (3b)

Because Y is normally distributed, it is easy to numerically determine its
cumulative distribution function FY and its inverse F−1

Y when µY and σ2
Y are

given. We assign a raw material in stock before the day of production if the
delay associated with the customer service level F−1

X (CSL, µX , σ
2
X) is more

than the threshold t. The delay can be expressed as F−1
X (CSL, µX , σ

2
X)−µX .

Finally, because of the relationship between the normal distribution and the
lognormal distribution the condition for assigning a stock unit can be written
as follows:

F−1
X (CSL, µX , σ

2
X) − µX = exp(F−1

Y (CSL, µy, σy) − µx ≥ t (4)

A.2 Details of Taguchi’s analysis

In our setting we use Taguchi’s orthogonal array L18 that involves 18 exper-
iments. The array has been defined by testing combinations of parameters
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N Policy Ratio JIT Variability UOT UNC UHC USC SN

T1 A 1 30 0.1 750 250 5 100 5.91
T2 A 1 15 0.5 1 000 500 10 200 1.70
T3 A 1 0 1 1 250 750 15 300 1.63
T4 A 5 30 0.1 1 000 500 15 300 9.11
T5 A 5 15 0.5 1 250 750 5 100 6.23
T6 A 5 0 1 750 250 10 200 10.99
T7 A 10 30 0.5 750 750 10 300 9.67
T8 A 10 15 1 1 000 250 15 100 14.44
T9 F 10 0 0.1 1 250 500 5 200 9.10
T10 F 1 30 1 1 250 500 10 100 4.21
T11 F 1 15 0.1 750 750 15 200 9.79
T12 F 1 0 0.5 1 000 250 5 300 7.76
T13 F 5 30 0.5 1 250 250 15 200 11.70
T14 F 5 15 1 750 500 5 300 12.85
T15 F 5 0 0.1 1 000 750 10 100 10.62
T16 F 10 30 1 1 000 750 5 200 11.44
T17 F 10 15 0.1 1 250 250 10 300 13.45
T18 F 10 0 0.5 750 500 15 100 13.96

Table 4: Taguchi’s method experiments

instead of single parameters and derives from a statistical technique, which
selects the experiments denser in information. However, Taguchi’s array L18
allows us to test seven parameters with three levels and one parameter with
two levels. Therefore, it is necessary to eliminate one level from our analysis.
We decided to remove the ‘No changes’ scheduling policy from the analysis
because it performed relevantly worse compared with the ‘Dynamic algo-
rithm’ and FIFO policies as could be seen from the results of Table II. The
18 experiments derived from Taguchi’s technique are shown in Table B1.

Taguchi’s method analyses the experiments based on the calculation of
the signal-to-noise ratio for each experiment. We respectively denote the
mean and the variance of the value of interest across the replications per-
formed for the experiment i as ȳi and s2i . Then the signal-to-noise ratio SNi

for the experiment i can be computed as follows:

26



Factor SN1,k SN2,k SN3,k ∆j Rank

Policy A: 7.64 F: 10.64 – 3.00 2
Ratio 1: 5.17 5: 10.25 10: 12.01 6.84 1
JIT 30: 8.67 15: 9.74 0: 9.01 1.07 7

Variability 0.1: 9.66 0.5: 8.50 1: 9.26 1.16 6
UOT 750: 10.53 1 000: 9.18 1 250: 7.72 2.81 3
UNC 250: 10.71 500: 8.49 750: 8.23 2.48 4
UHC 5: 8.88 10: 8.44 15: 10.11 1.67 5
USC 100: 9.23 200: 9.12 300: 9.08 0.15 8

Table 5: Taguchi’s method results

SNi = 10 log
ȳ2i
s2i
. (5)

As the assessment of each experiment i is based on the measure SNi,
which directly considers the variance s2i of the experiment, it is paramount
that the number of runs is the same for each experiment. We set the number
of runs to 5 000 because this number, as could be seen in the simulation
results of Table II, should, usually, guarantee a confidence interval of 5%
with an indifference zone of 50. The values of SNi for each experiment i are
shown in Table B2. After calculating SNi for each experiment i it is possible
to compute the average SNj,k for each factor j and each level k. This is
obtained by averaging all the experiments based on the factor j and the
level k. Finally, for each factor j the value ∆j is computed as the difference
between the highest value and the lowest value of SNj,k for all the levels k of
j. Factors are ranked from the highest ∆j, having the highest contribution
toward the cost to the lowest ∆j, having the lowest contribution toward the
cost.
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