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Abstract 

 

We examine the role sentiment plays and its manifestation in the trading behavior of investors in 

the U.S. stock market. Our findings support the notion that sentiment-induced buying and selling 

is an important determinant of stock price variation. While ‘classical’ asset pricing categorizes 

investors who trade in ways not consistent with mean-variance optimization as ‘irrational,’ we 

show that this traditional view should not hastily be evoked to characterize sentiment-driven 

investing. We instead show that sentiment-driven investors can trade against the herd and sell 

when prices are overinflated as a result of over-bullishness and vice versa. The asset pricing 

implications of this paper are that sentiment is linked to shifts in risk tolerance and this triggers 

contrarian-type behavior. In sum, we uncover the following regarding the behavior of sentiment-

driven investors; firstly, they are more apt to trade on survey-based indicators rather than market-

based indicators. Secondly, they trade on the basis of information extracted from individual, 

rather than institutional, investor surveys. Thirdly, they respond asymmetrically to shifts in 

sentiment and trade more aggressively during periods of declining sentiment. Finally, there is 

asymmetry in the role of sentiment with respect to business conditions whereby such buying and 

selling is more pronounced during bear markets. 

 

JEL Classification: G10; G12; G15. 
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1. Introduction 

Does investor sentiment really matter? The answer to this question has sweeping implications for 

academics, practitioners and regulators alike. Traditional asset pricing theory explicitly assumes 

the answer is ‘no’ in order to establish equilibrium relations and to tractably identify the linkages 

between stock price movements and intertemporal variation in relevant state factors (Merton, 

1973, 1980). On the other hand, practitioners expend considerable resources to extract investor 

sentiment measures in order to gauge levels of pessimism or optimism. There are at least two 

reasons why a good understanding of sentiment is important to practitioners; firstly, sentiment 

refers to the general attitude or tone of investors toward a particular security or the market. By 

extension, this tone or mood can drive prices in ways that do not reflect fundamentals or changes 

in the investment opportunity set (Edelen et al., 2010). Thus, practitioners need to monitor their 

portfolios for shifts that can occur even in the absence of news pertaining to underlying 

fundamentals. Secondly, sentiment and investor psychology in general can spread quickly 

throughout the market and this in turn affects investors' risk aversions independently of intrinsic 

cash flow prospects or measures for fundamental value. Given how quickly sentiment can 

spread, regulators are directly interested in the role sentiment plays for its involvement in some 

of the manias, bubbles and ‘black swan’ type of events which have undermined our financial 

infrastructure.
1
 

 The finance profession has a long tradition of categorizing investors as either rational and 

informed or irrational and sentiment-driven. Classical theory argues that rational mean-variance 

optimizers dominate in the long-run (Markowitz, 1959). Information diffusion is also assumed to 

disseminate unrestrictedly to all market participants and thus we can deduce market participants 

compete equally and fairly. This leads to equilibrium and to ‘fairly’ priced securities which 

reflect only fundamental value whereby mispricing is transitory and quickly corrected by 

arbitrageurs at virtually no cost or risk (Friedman, 1953). 

 This classical line of reasoning, although refraining from explicitly rejecting the existence 

of sentiment-driven investors, leaves little room for a rigorous analytic discussion in terms of 

their role. The argument that arbitrageurs can effortlessly eliminate mispricing is also dubious 

                                                           
1 The Securities and Exchange Commission (SEC) identifies and publicly discloses behavioral and sentiment factors that cause 

investors to make erroneous investment decisions which impact our economy (see SEC Report, 2010): 

http://www.sec.gov/investor/locinvestorbehaviorreport.pdf. Bernanke (2002) has also publicly spoken on how investor 

irrationality can lead to the formation of bubbles and the difficulties associated with ‘pricking’ them: 

http://www.federalreserve.gov/boarddocs/speeches/2002/20021015/default.htm.  

http://www.sec.gov/investor/locinvestorbehaviorreport.pdf
http://www.federalreserve.gov/boarddocs/speeches/2002/20021015/default.htm


4 
 

since their resources may be limited (Shleifer and Vishny, 1997), they may be incapable of 

deciphering real information from ‘noise’ (Black, 1986), or are hesitant to attack mispricing 

given the possibility prices will further deviate from fundamentals (De Long et al., 1990a, 1990b, 

1991; Figlewski, 1979; Shleifer and Summers, 1990). Wurgler and Zhuravskaya (2002) argue 

that since stocks are imperfect substitutes, it is not possible to eliminate such risk. Finally, Abreu 

and Brunnermeier (2002, 2003) reason that arbitrageurs are incapable of coordinating and 

synchronizing their efforts in order to become a stronger driving force in the market to correct 

mispricing. 

As early as Keynes (1936), there has been interest in determining what role sentiment and 

emotions have on the decision-making of investors and how it drives stock prices. This interest is 

receiving invigorating attention especially in light of the excess volatility we are experiencing in 

stock markets globally and our inability to consistently link fundamentals with stock price 

variations (Dumas et al., 2009; Shiller, 2000).
2
 

Studies now take various paths in order to understand the role of sentiment in the stock 

market. Yu and Yuan (2011) show that sentiment directly influences the mean-variance tradeoff 

on the market portfolio and may be a reason why extant literature cannot agree on the nature of 

this important relation. Other authors find that sentiment contains useful economic information 

which can impact stock returns (Antoniou et al., 2013; Baker and Wurgler, 2006; Frazzini and 

Lamont, 2008; Schmeling, 2009; Stambaugh et al., 2012). Other authors argue that sentiment can 

lead investors to engage in feedback-type strategies of buying and selling in tandem with the 

‘crowd’ (Blasco et al., 2011; Lemmon and Ni, 2010). Hribar and McInnis (2012) find that when 

sentiment is high, analysts’ forecasts are relatively more optimistic for ‘uncertain’ firms. 

What is fascinating (and not to mention challenging) to researchers is that sentiment is 

essentially a qualitative disposition arising from inside an individual stemming from a myriad of 

unobservable factors and cannot easily be measured or quantified. What is quantifiable however, 

to some extent, is the manifestation of sentiment on the decision-making of individuals. The 

aforementioned have contributed significantly to our understanding of how sentiment can affect 

                                                           
2 Interest in the role of sentiment is indeed growing. Testament to this are the growing number of articles related to investor 

sentiment. For example, a quick search on the Social Science Research Network (SSRN) for articles which have titles containing 

the key words “investor sentiment” gives back approximately 600 results. Likewise, if we search only titles containing the 

popular key word “CAPM,” we get approximately 1,500 results (a little more than double). This search result is as of the summer 

of 2015. It should be noted that there is also a growing literature that studies the macro-financial determinants of investor 

sentiment (Lutz, 2015), however the identification of driving forces of sentiment is beyond the scope of this paper. 
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stock price movements. What is still not clear is the mechanism by which it influences investors’ 

demand for risky assets. Baker and Wurgler (2007, pp.130) make this very point: “...the question 

is no longer, as it was a few decades ago, whether investor sentiment affects stock prices, but 

rather how to measure investor sentiment and quantify its effects.” Thus, this paper attempts to 

expound on this and looks at the role sentiment plays on investors’ decision-making. 

We show it is too premature to accept the classical view that sentiment-driven investors 

are irrational and that they contribute to mispricing, especially in light of evidence that investors 

can reap sizeable profits by understanding what the underlying sentiment is in the stock market 

and trading against such sentiment when it is profitable to do so (Soros, 1987). In particular, we 

find that sentiment-driven investors can trade against the ‘herd’ and sell their positions when 

prices are overinflated as a result of over-bullishness and overoptimistic sentiment. Conversely, 

periods of low sentiment can present excellent buying opportunities. The asset pricing 

implications of this paper are that sentiment is linked to shifts in risk tolerance and this triggers 

contrarian-type behavior. 

Given that there is great demand for survey- and market-based indicators of sentiment, it 

is no surprise that sophisticated investors would use such information to make more informed 

decisions. We find in our paper that investor sentiment indeed matters and that such investors are 

more apt to trade on the information content extracted from survey-, rather than market-based, 

sentiment indicators. When focusing more in-depth on this, we specifically find that such 

investors trade on sentiment extracted from individual, rather than institutional, surveys. In terms 

of the time-series dynamics of sentiment changes with respect to such investors’ buying and 

selling decisions we find that they trade more aggressively during periods of declining sentiment 

than rises in sentiment of equal magnitude. Asymmetry is also discernible when we look at their 

behavior with respect to bear versus bull markets whereby they are more prone to sentiment-

driven trading during bearish markets. The findings herein are strikingly robust to various 

econometric specifications and suggest that we ought to take a closer look at the role sentiment 

plays in the decision-making of investors and how this drives stock prices.  

The remainder of this paper is structured as follows. In Section 2 we develop our testable 

hypotheses and review some background literature. Section 3 describes our analytical 

framework. Section 4 describes the investor sentiment data used and the sample characteristics. 
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In section 5 we discuss our major findings and their robustness. Finally, in Section 6, we provide 

concluding remarks. 

 

2. Testable Hypotheses 

As discussed in the introduction, it is still not clear the mechanism by which sentiment impacts 

investors’ demand for risky assets. The classical view in finance is sentiment-driven investors are 

essentially ‘noise traders’ and irrational (De Long et al., 1990a, 1990b, 1991; Shiller, 2000; 

Shleifer and Vishny, 1997). However, it is quite possible that these investors use information 

extracted from sentiment measures to make informed decisions. For example, Soros (1987) 

argues that the key to success is not to arbitrage against herding investors, but instead to ‘ride the 

wave’ along with them and sell out near the top. Thus, it is no surprise that there is a wealth of 

analyst services available to investors as well as survey-based indicators designed to gauge the 

overall sentiment in the market among invested investors as well as those on the sidelines who 

are awaiting an opportunity to invest. 

 Baker and Wurgler (2007), among others, have identified the presence of sentiment-

driven investors and their possible influence on stock price movements. A reasonable starting 

point for discussion is therefore to examine whether investors trade on sentiment and in what 

ways they do so. In other words, do they respond to the information content from sentiment 

measures and how does their demand for risky assets change along with shifts in sentiment. This 

leads us to the first hypothesis of this paper: 

 

 Hypothesis 1: Investor sentiment matters and there exists sentiment-driven buying and 

selling in the stock market. 

 

From the perspective of market timers, it is of use to know which sentiment measures 

matter and which are actually linked to shifts in risk aversion and future expectations. By 

knowing which sentiment measures to look at they can effectively position themselves in order 

to either engage in momentum type strategies, or, to invest against such sentiment. There is 

already a very large universe of market-based measures as well as measures constructed from 

investor surveys. Academic research has also constructed such measures in order to identify 

factors which impact sentiment and how such sentiment drives stock price movements (Baker 
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and Wurgler, 2006). This large supply of sentiment measures reflects the growing demand for 

such measures on the part of investors. The next question naturally is, what type of sentiment 

actually matters and is used by sentiment-driven investors? We conjecture that the information 

content extracted from survey-based indicators is more useful given that it is compiled from 

investors’ forward-looking expectations and outlook of the market. 

We further conjecture that the information content of individual investor sentiment 

measures is particularly important to consider because individual investors may be more prone to 

irrationality and misinformation compared to their institutional counterparts. If they are more 

prone to such biases, this can present excellent investment opportunities in either direction for 

vigilant investors. Verma and Verma (2008) find that institutional investor sentiments are more 

rational than individual investor sentiments. Likewise, Schmeling (2007) argues that institutional 

investors closely watch the sentiment of individual investors, which presents a potential source 

of noise trader risk, in order to form their expectations.  

In light of these findings, it may be useful to trade on the basis of survey-based sentiment 

measures from individual investors since their forward-looking expectations may be more prone 

to biases that can drive stock prices away from fundamentals for an indefinite period of time. 

This leads us to our next hypothesis: 

 

 Hypothesis 2: The sentiment extracted from survey-based measures and, in particular, 

individual sentiment measures, is what matters. 

 

It is of further interest to see whether the direction of sentiment changes impacts the 

buying and selling behavior of sentiment-driven investors differently. The so-called ‘negativity 

effect’ in psychology is a cognitive bias which refers to a phenomenon whereby individuals tend 

to put greater weight and emphasis on negative information rather than positive information of 

equal magnitude (Baumeister et al., 2001; Peeters, 1991). Given this tendency, we would expect 

sentiment-driven investors to trade more aggressively on declining sentiment than on upswings 

in sentiment of equal magnitude. This leads us to our third hypothesis: 

 

 Hypothesis 3: There is asymmetry in the role sentiment plays whereby sentiment-driven 

trading is more pronounced during periods of declining sentiment. 
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Finally, we want to examine whether sentiment-driven investors respond more or less to 

sentiment measures with respect to market conditions. It is possible that poor market conditions 

and declining stock prices may exacerbate individual investors’ irrationality. This may result 

from noise traders’ insufficient liquidity on hand and inability to meet their margin calls. Such a 

scenario can push prices further from fundamentals and may presents better than usual buying or 

selling opportunities for those with an eye on sentiment. This leads us to our last hypothesis: 

 

 Hypothesis 4: There is asymmetry in the role sentiment plays with respect to market 

conditions whereby sentiment-driven trading is more pronounced during bear markets. 

 

3. Analytical Framework 

This paper extends the framework of Shiller (1984) and Sentana and Wadhwani (1992) to 

provide a generalized framework for exploring the interaction of sentiment-driven investors with 

other heterogeneous investors and to directly address the aforementioned hypotheses to discover 

(i) whether investors trade on sentiment; (ii) which sentiment indicators matter to investors; (iii) 

whose sentiment matters; (iv) when does sentiment matter most. 

In particular, building on the intertemporal capital asset pricing model (ICAPM), we 

develop a model to accommodate the heterogeneous trading behavior of three distinct groups of 

investors; rational utility maximizers, or ‘smart money’ investors, positive feedback traders, and 

sentiment-driven investors, respectively. 

The demand for shares by the first group (rational or ‘smart-money’) investors in period 

t, Qt, is consistent with the maximization of expected mean-variance utility: 

1

2

[ ( ) ]
; 0t t

t

t

E R
Q





 

         (1) 

where Et-1(Rt) is the expected return of period t given the information available at period t-1,  is 

the risk-free rate of return,  is the coefficient of relative risk aversion, t
2
 is the conditional 

variance (risk) in period t. According to theory, a positive and significant sign for  denotes a 

positive tradeoff between risk and return. 

The second group of investors we integrate into our model are known as ‘feedback 

traders.’ Their demand for shares, Ft, depends on the previous period’s return:  
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1 ; 0t tF R             (2) 

where Rt-1 is the return in the previous period,  is the feedback parameter and is expected to be a 

positive value ( > 0) for the case of positive feedback, or ‘trend-chasing’ traders, who buy (sell) 

after price increases (decreases).
3
 

Finally, as an extension to the framework of Sentana and Wadhwani (1992), we model 

the demand of sentiment-driven investors who base their investment decisions on the basis of 

overall market sentiment. The fraction of shares held by this group in period t, St, is a function of 

the changes in investor sentiment and is given by:  

1( ) ; 0t tS IS             (3) 

whereby ISt-1 
is an indicator of change in investor sentiment and is defined as 31 ttIS IS    

where ISt-1 
and 3tIS   are the sentiment level in period t-1 and its previous three-month average 

value, respectively. In the empirical analysis we also calculate a ‘weighted’ rolling average of the 

sentiment level for the previous three months as follows: (3/6)*sentimentt-1 + (2/6)*sentimentt-2 + 

(1/6)*sentimentt-3. This is to allow more weight on the most recent sentiment observation.
 4

 The 

demand for shares by this group of investors depends on the sensitivity of their demand to 

sentiment changes (as given by the  coefficient). For instance, if  < 0 it suggests that sentiment 

is considered by this group of investors as a ‘contrarian’ market timing tool; i.e., they lower their 

demand for shares following an increase in investor sentiment and vice versa. 

In equilibrium, all shares must be held by these three groups of investors:
5
 

1t t tQ F S           (4) 

Or, alternatively,  

1
1 12

[ ( ) ]
( ) 1t t

t t

t

E R
R IS


 




 


   

      
(5) 

                                                           
3 This type of trading behavior may result from portfolio insurance strategies or stop-loss orders and has often been blamed for 

moving prices away from their fundamental value (Shleifer, 2000). Nofsinger and Sias (1999) provide evidence supporting the 

existence of positive feedback trading among individual and institutional investors. 
4 However, as shown in section 5.4, our main results remain unchanged when we use a simple arithmetic average. For robustness 

checks, we also consider alternative periods based on one and five month lags and find that our results continue to hold. 
5 Note that if all investors are rational ‘smart-money’ investors (i.e., Qt = 1), then market equilibrium would yield the familiar 

ICAPM of Merton (1973): 2

1( )t t tE R     . 
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Equation (5) can be converted into a regression model with a stochastic error term. Thus, if we 

assume the rational expectation, 
1( )t t t tR E R   ,  and substitute this back into (5) and rearrange 

the equation, we have the following: 

2 22
1 1( ) ( )tt t t t t tR R IS                  (6) 

whereby t is a stochastic error term. The term 2

1( )t tR    implies that in a market with 

positive feedback traders the returns would exhibit negative autocorrelation and the degree of 

autocorrelation is proportional to the conditional variance of returns, 2

t . Equation (6) can 

further be re-parameterized and expressed in a simplified form as follows:  

2 22
0 1 1 1( )tt t t t t tR R IS                     (7) 

whereby φ1 = - and γ = -. The presence of risk-averse rational investors as described in 

equation (1) implies that  is positive and statistically significant. However, if there is positive 

feedback trading it implies that φ1 is negative and statistically significant. The coefficient φ0 is 

also added to account for the autocorrelation due to non-synchronous trading or market 

inefficiencies. Finally, the presence of sentiment-driven investors who trade against the emotions 

of their peers would imply that γ is positive and statistically significant. If there is no sentiment-

driven trading (i.e., γ = 0), then equation (7) reduces to the feedback trading model proposed by 

Sentana and Wadhwani (1992), 22
0 1 1( )tt t t tR R        . Hereafter in our paper, this 

model is referred to as the ‘baseline model.’ 

Note that in the model associated with equation (7), the reaction of sentiment-driven 

traders to sentiment changes is symmetric. Such a symmetric reaction implicitly posits that 

positive and negative changes have the same effects on their demand for shares. We therefore 

name this as the ‘symmetric effects model’ throughout the paper. As an alternative model, we 

also entertain the possibility that their demand function is affected in an asymmetric way: 

1 1( ) ( )t t tS IS IS    

              (8) 

Herein the indicator of sentiment change is decomposed into positive and negative terms such 

that 1 1 1t t tS IS IS 

      ; whereby 1 1( ,0)t tIS max IS

   
 
and 1 1( ,0)t tIS min IS

    . In this 
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case, the reaction of sentiment-driven traders to variations in sentiment differs if   .
6
 After 

substituting (1), (2) and (8), respectively, into (4) and rearranging, we get the following:  

2 2 22
1 1 1( ) ( ) ( )tt t t t t t t tR R IS IS       

   

             (9) 

Equation (9) can be re-parameterized and expressed in a simplified form as follows: 

2 2 22
0 1 1 1 1( )tt t t t t t t tR R IS IS       

   

                 (10) 

whereby φ1 = -, γ
+
 = -

+
 and γ

 -
 = -

-
. We hereafter refer to equation (10) as the ‘asymmetric 

effects model’. 

As we discuss in greater detail in section 5, in our analysis we estimate a number of 

configurations of the original model in (4) to include the specification outlined by Sentana and 

Wadhwani (1992), which does not include the impact of sentiment-driven investors (i.e., the 

‘baseline model’), and the ‘symmetric effects’ and ‘asymmetric effects’ models, respectively. 

The latter two of the models are estimated and compared in order to examine whether sentiment-

driven investors behave differently in recessionary market conditions. 

Completion of these models requires a specification of the conditional variance ( 2

t ). In 

our paper, we estimate 2

t  using an exponential GARCH (EGARCH) process of order (1,1) 

(Nelson, 1991):  

                                    (11) 

 

whereby ln(.) are natural logarithms and zt = t /t are standardized residuals. The EGARCH(1,1) 

specification allows the conditional variance to be time-varying and to respond asymmetrically 

to positive and negative return innovations. In addition, it also has the advantage of requiring no 

non-negativity constraints to ensure a positive conditional variance.
7
 Given the initial values for 

t and σ
2

t, the parameters of each model can be estimated simultaneously by maximum 

likelihood. The maximization technique used in this paper is based on the algorithm suggested by 

Berndt et al. (1974). We assume that the innovations are drawn from a normal density function. 

                                                           
6 Note that when      then equation (3) is obtained as a special case.  
7 Pagan and Schwert (1990) evaluate several competing volatility models and conclude that the EGARCH provides the best 

overall 'fit' for return volatility. As a robustness check, in our empirical application we also estimate the process by replacing 

equation (11) with a GJR-GARCH(1,1) model. We find that our main results are robust to different specification choices of the 

conditional variance.   

2 2

0 1 1 1 1 1ln( ) [( ) ] ln( )t t t t tz E z z            
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If error terms are not normally distributed, Bollerslev and Wooldridge (1992) robust standard 

errors are employed.
8
 

 

4. Sentiment Data and Sample Characteristics 

To empirically test our hypotheses we obtain a number of market- and survey-based measures 

that have been widely used in the literature to gauge the sentiment of market participants. The 

first measure is the index of investor sentiment provided by Baker and Wurgler (2006) (hereafter 

referred to as ‘BW’). This index is constructed from the following six market-based variables: 

NYSE turnover, closed-end fund discount, number of IPOs, first-day return on IPOs, the equity 

share in the new issues, and the dividend premium, respectively. To remove the effect of 

business cycle variation, they regress each of these variables against a set of macroeconomic 

factors and use the first principal component of the residuals as an ‘orthogonalized’ sentiment 

index.
9
 

The second investor sentiment proxy we consider is investors’ forward-looking 

expectations of market volatility, captured by the VIX (the Chicago Board Options Exchange’s 

volatility index, also known as the ‘investor fear gauge’). The VIX index is constructed from 

implied volatilities of S&P 500 index options and has often been used by traders as a sentiment 

indicator since its introduction in 1993 (Whaley, 2009). The monthly series of the VIX index is 

obtained from Datastream for the period of January 1993 to December 2011. In addition to this 

market-based indicator of sentiment, we employ two additional survey-based measures: the 

Consumer Confidence Index (CCI) compiled by the Conference Board and the University of 

Michigan (MS) consumer sentiment index, respectively. Unlike the BW index and VIX, both the 

CCI and MS surveys gather their information solely from consumers in order to gauge their 

expectations about future business conditions, the general level of prices and overall prospects of 

the economy. Such indexes have proven successful in predicting household spending 

(Ludvigson, 2004; Garrett et al., 2005) and are considered a reliable barometer of sentiment in 

the aggregate market (Fisher and Statman, 2003; Antoniou et al., 2013). The monthly series of 

CCI and MS are extracted directly from the Euromonitor International Economic Observer 

                                                           
8 Hence, our estimation can also be interpreted as a quasi-maximum likelihood method.  
9 See Baker and Wurgler (2006) for more details on the construction of this market-based sentiment index. The monthly series of 

the orthogonalized index of investor sentiment is available from August 1965 to December 2010 at Jeffrey Wurgler’s website 

(http://pages.stern.nyu.edu/~jwurgler/).    

http://pages.stern.nyu.edu/~jwurgler/


13 
 

database for the period between January 1978 and December 2011, for which both consumer 

confidence surveys are available at the monthly frequency.
10

 

We also use two commonly cited surveys available on a weekly basis to capture the 

changing moods and emotions of different groups of market participants. The first is the survey 

conducted by the American Association of Individual Investors (AAII). This association has 

been conducting its weekly sentiment survey for its members since July 1987 whereby 

participants are asked whether they are bullish, bearish, or neutral about the stock market over 

the next six months. Since this survey is targeted towards individuals, it can be interpreted as a 

measure of individual investor sentiment. Specifically, we follow Wang et al. (2006) and use a 

ratio of the bullish percentage to the bearish percentage as our measure of sentiment for 

individual investors. Another sentiment index used in this paper is based on the survey data 

provided by Investors Intelligence (II) which has compiled its weekly sentiment data since 1964. 

Unlike that of AAII, the respondents to this survey are independent newsletter writers and 

market professionals. We thus use the ratio of bullish to bearish responses for the II index as a 

proxy of institutional investor sentiment.
11

 

In addition to the sentiment measures, we collect price series data on the S&P 500 index 

to proxy for the overall performance of the U.S. stock market. We estimate continuously 

compounded returns from these price series for the period January 1978 to December 2011.
12

 

Descriptive statistics of all the variables discussed in this section are provided in table 1. 

The statistics reported are, respectively, the mean (), standard deviation (), measures for 

skewness (S) and excess kurtosis (K), Jarque-Bera (JB) test statistic, Ljung-Box (LB) statistic for 

12 lags, ARCH test, and the JOINT test statistic which tests for volatility asymmetry. As 

indicated by the significant JB test statistics, the stock market return series and sentiment 

indicators display a clear departure from normality. In particular, we see that the monthly return 

on S&P 500 index is negatively skewed and highly leptokurtic. This observation is consistent 

                                                           
10 Both consumer confidence indicators are computed using a set of questionnaire results about the participants’ view and outlook 

for the U.S. economy. However, the earlier parts of CCI and MS indices were not published at the monthly frequency. The CCI 

was released every two months prior to January 1977 and the MS was released every quarter prior to January 1978. Further 

information about these two indices is available at https://www.conference-board.org/ and http://www.sca.isr.umich.edu/.   
11 Although the II index is available from 1964, for the empirical analysis in this paper we collect the weekly AAII and II survey 

results from http://www.aaii.com/ and http://www.investorsintelligence.com/ for the period between July 24, 1987 and December 

29, 2011 because of the changes in the II reporting frequency and the unavailability of AAII prior to 1987. 
12 We also examine the robustness of our main results using the Dow Jones Industrial Average (DJIA) index. The results 

(reported in Table 5) confirm that our conclusions hold for these alternative stock market indices. It should however be noted that 

the frequency of data and the sampling period for the ensuing analysis vary due to data availability of investor sentiment 

indicators. The starting and ending dates for each sentiment indicator are reported in Table 1.    

https://www.conference-board.org/
http://www.sca.isr.umich.edu/
http://www.aaii.com/sentimentsurvey
http://www.investorsintelligence.com/x/us_advisors_sentiment.html
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with existing literature and ties in with the volatility feedback hypothesis which finds that large 

negative stock market returns are more common than large positive returns (Campbell and 

Hentschel, 1992). Likewise, the investor sentiment measures also display a skewed and 

leptokurtic pattern. The Ljung-Box (LB) statistics provide evidence of significant temporal 

dependencies in both the levels and the squared values of all sentiment indicators. The regression 

results reported in panel C of table 1 show that all the sentiment measures are highly persistent 

and exhibit substantial first-order autocorrelations that are positive.  

Visual inspection of figure 1 suggests there is some degree of persistence in the time-

series behavior of investor sentiment. The results of the ARCH and JOINT tests suggest that 

significant time-variations and asymmetries exist in the conditional volatility, supporting the use 

of an asymmetric EGARCH specification as a method of modelling the conditional variance. 

Panel B of table 1 presents the correlations of our monthly measures of investor 

sentiment (both the market- and survey-based indicators) and the returns on the S&P 500 index, 

as well as the correlation between the weekly surveys of individual (AAII) and institutional (II) 

investor sentiments. 

Consistent with Fisher and Statman (2003), the correlation coefficient between the two 

survey-based indicators, CCI and MS, is 0.84 and statistically significant. It is also not surprising 

to see that, understandably, there is some correlation between individual and institutional 

investors’ expectations about future states of the economy. However, it appears that CCI exhibits 

a statistically insignificant correlation with returns on the S&P 500 index. 

The ups and downs of consumer confidence and the S&P 500 index from January 1978 

through December 2011 are presented in Figure 1. Visual inspection reveals at least two 

important observations: (i) Consumer confidence fluctuates substantially over time, with troughs 

in periods corresponding to times of economic uncertainty. (ii) A discernible relation between 

confidence measures and returns on the S&P 500 is more ostensible after the mid-1990s when 

volatility in the market became more and more pronounced. The burst of the 2000 tech bubble 

and the 2008-2009 crash following the collapse of Lehman Brothers are time periods where 

market prices dropped precipitously and are also associated with out-of-the-ordinary drops in 
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investor sentiment. In these time periods, based on visual inspection, the association between 

sentiment and market prices is indeed strongest.
13

           

The two market-based sentiment proxies, BW and VIX, exhibit a limited degree of co-

movement with one another; the correlation coefficient between the two is 0.075 and statistically 

insignificant. This suggests that they also may encompass different sets of information intended 

for somewhat disparate types of investors. While the BW index subsumes macro-level types of 

characteristics, such as mutual fund flows, the VIX captures options data characteristics which 

fluctuate more aggressively and can be used by intraday traders. 

Consistent with the volatility feedback effect of Campbell and Hentschel (1992), there is 

a negative and statistically significant relation between returns on the S&P 500 index and the 

implied volatilities of S&P 500 index options (as captured by the VIX). From an asset pricing 

point of view, this suggests a negative time-series relation between risk and return. From a 

behavioral finance perspective, this type of a relation manifests because rises in the VIX reflect 

fear and uncertainty. As the VIX rises, investors sell their underlying positions and this leads to 

declining stock prices. Conversely, when the VIX is historically low, it signals complacency and 

bullishness. While the former scenario presents a potential buying opportunity for contrarians, 

the latter may be a good time to exit the market. This is why the VIX is also generally referred to 

as a market-based barometer of ‘investor fear’ and is used by contrarians to time market entry 

and exit points. 

Finally, we also find a positive and significant relation between the two respective 

measures of consumer confidence. The correlation coefficient between AAII (which reflects 

individual investor sentiment) and II (which reflects institutional investor sentiment) is 0.37. As 

mentioned, a priori, this is to be expected given that there is some degree of similarity in the 

expectations among these two classes of investors. 

[Insert table 1] 

[Insert figure 1] 

 

5. Main Findings and Robustness Checks 

                                                           
13 Fisher and Statman (2003) argue that the declines in stock prices are likely to erode consumer confidence because of the 

detrimental effects of the declining stock prices on investors’ income and total wealth. While it remains difficult to assert whether 

the collapse of consumer confidence was the cause or the consequences of the recent global financial crisis, most academics and 

policy makers agree the erosion of confidence has ensured the depth and longevity of the crisis regarded by many economists as 

the worst financial crisis since the Great Depression (Pendery, 2009). 
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5.1. Evidence of sentiment-driven trading 

Our first hypothesis tests the notion that sentiment-driven buying and selling exists in the stock 

market. Testing this hypothesis is naturally a first step before delving deeper into our following 

three hypotheses that seek to determine which sentiment measures matter more for investors and 

how sentiment-driven investors behave during bull and bear markets as well as periods of high 

and low sentiment, respectively. 

Table 2 thus reports, among the other models that we will discuss in turn, the parameter 

estimates for our baseline model. As mentioned, our baseline model is analogous to the feedback 

trading model by Sentana and Wadhwani (1992) and assumes that no sentiment-driven investing 

exists in the stock market (i.e., γ = 0). The baseline model is described using equation (7), with 

the restriction that γ = 0, and provides a comparison with the symmetric effects (equation 7) and 

asymmetric effects (equation 10) models, respectively, which test for the presence of sentiment-

driven investors. Such a comparison can be made across the mean equation parameter estimates 

in panel A of table 2. It is important to note that panel B of table 2 reports parameter estimates 

for the EGARCH specification in equation (11) which correspond with the respective models in 

panel A. As mentioned, the conditional mean and variance equations are estimated 

simultaneously because time-series estimates of the conditional variance are used to produce 

conditional mean parameter estimates for each of the models. 

The conditional mean equation parameter estimates (in panel A) naturally exhibit 

observable qualitative differences, which we will discuss, as a result of the different sentiment 

measures that are used. This can be deduced by observing the parameters across the columns. 

For example, for survey-based sentiment measures we have CCI and MS whereby we consider 

symmetric effects and asymmetric effects models, respectively. For the market-based sentiment 

measures we have BW and VIX where we also consider symmetric effects and asymmetric 

effects models, respectively. For the EGARCH parameter estimates (in panel B), however, we 

generally find that the conditional variance at time t is a statistically significant function of past 

innovations and with its past values. This is indicated by parameters 1 and , respectively, and 

supports the view that volatility responds to shocks and is persistent across time. The asymmetry 

parameter, , is generally insignificant across the models. This may be an artifact of using 

monthly data which ‘averages out’ important time-series characteristics of the data. In the 

weekly data we will discuss later on (in table 3) we find that  is consistently negative and 
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significant – consistent with the notion that negative shocks lead to more volatility than positive 

shocks of equal magnitude. It has been argued that asymmetry in the conditional variance arise 

due to, at least in part, the presence of positive feedback (or trend-chasing) trading behaviour 

(Antoniou et al., 2005).  

Let us now turn our attention more closely at the baseline model before delving deeper 

into the sentiment-based models. The very first column of table 2 reports parameter estimates for 

this model for the monthly data we examine. The baseline model is described by equation (7) but 

with the restriction = 0. It is essentially the feedback trading model of Sentana and Wadhwani 

(1992) which assumes the existence of ‘rational’ (mean-variance optimizing) investors and 

feedback traders as the only investors who affect prices. 

The parameters  and 1 for this model, which denote the presence of rational and 

feedback investors, respectively, are positive although insignificant. This suggests, for the 

monthly data that is examined, that the presence of these two types of investors alone cannot 

explain the time-series variations in stock returns. This finding contrasts with Sentana and 

Wadhwani (1992) who find feedback trading in daily price data series but is consistent with the 

finding by Koutmos (2012) who shows that feedback trading may be undetectable in monthly 

time-series price data. A plausible reason is there are other investors whose trades impact stock 

returns in a material way. 

 We posit that such investors are driven by sentiment. The survey-based (CCI and MS) 

and market-based (BW and VIX) columns report on the impact of these types of investors given 

the respective measures that are used to proxy for sentiment. The parameter of interest in this 

case is . Specifically, if is positive and statistically significant it implies that there are certain 

sentiment-driven investors who trade against the emotions and feelings of the herd. For the 

symmetric effects model (equation 7) we find that  is indeed positive and statistically significant 

when CCI and MS, respectively, are used to proxy for sentiment. The coefficient  is not 

significant when either BW or VIX are used as sentiment measures. 

These findings have implications for the first hypothesis, which is concerned with 

whether investor sentiment matters, and for a portion of the second hypothesis, which contends 

that survey-based measures matter for investors. Specifically, in regards to the first hypothesis, 

the coefficient  is positive and significant which means that it explains time-series variations in 

stock returns and supports the view that sentiment-driven investors affect prices. However, how 
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can we interpret the sign of ? If we re-visit our earlier discussion of equation (7), we mention 

that γ = -. Therefore, in the case of our positive and significant coefficients of 0.0057 and 

0.0151 in table 1 for the symmetric effects model for CCI and MS, respectively, we can conclude 

that there exists a negative relation between the quantity demand for stock and sentiment levels 

(recall from equation 4 that the total quantity of shares is dictated by the respective demand 

functions of 'rational,' feedback and sentiment-driven investors). This provides novel insight into 

the behavior of sentiment-driven traders because, up until now, they are assumed to be irrational. 

We instead show from the coefficient γ that as investor sentiment begins to rise, which is 

coupled by rising stock prices (see figure 1), the demand for shares held by sentiment-driven 

investors begins to decline. This may stem from their apprehension as to the reasons for rises in 

stock prices and their anticipation of a reversal or, as in the extreme cases of 2000 and 2008-

2009, respectively, a bubble burst. 

Therefore, unlike feedback traders who 'follow the herd' and buy when everyone else is 

buying (prices are rising) and selling when everyone else is selling (prices are falling), we show 

that sentiment-driven investors behave like contrarians. This view is consistent with the trading 

philosophies detailed by Soros (1987) who argues that, at times, it is lucrative to trade against the 

herd and especially during periods where prices are overly-inflated as a result of exuberance. 

Expounding on this further, let us see what we can deduce from the asymmetric effects 

model (equation 10) when CCI and MS are used to proxy for sentiment. As mentioned, the 

asymmetric effects model tests for asymmetry with respect to rising and declining investor 

sentiment. Estimating the asymmetric effects model for each of the sentiment proxies is useful 

because it allows us to determine whether the intensity of sentiment-driven buying and selling 

differs with respect to rising and declining sentiment. In table 2, the coefficients 

and


, 

respectively, correspond with rising and declining sentiment. For CCI and MS, the coefficient 

 

is positive and statistically significant. This suggests that sentiment-driven investors buy more 

aggressively during periods of declining sentiment than they sell during periods of rising 

sentiment. In some sense, based on their behavior, it can thus be argued that they are providing 

liquidity to the market because, on average, periods of declining sentiment cause average 

investors to sell their positions en masse. 

This is an interesting finding because, although we can deduce from the coefficient  in 

equation (7) that sentiment-driven investors exhibit contrarian-type behavior, we show that there 
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is asymmetry in terms of how they buy and sell with respect to rises and declines in overall 

market sentiment. This finding thus confirms hypothesis (3) where we posit such asymmetry. 

A plausible explanation as to why this asymmetry exists is not readily apparent. It may be 

that sentiment-driven investors are aware of the fact that declines in the market are more severe 

than rises, as a result of bad news and declining sentiment. Thus, they perceive declining 

sentiment (falling stock prices) as a better trading opportunity and will buy when other investors 

are selling. 

An explanation as to why market declines are more severe and thus possibly present 

better buying opportunities can be found in psychology literature which finds that negative 

information has a tendency to outweigh positive information in the minds of individuals. This 

observation is known as the 'negativity bias' or 'negativity effect' in psychology literature and has 

been detected among market participants when making investment decisions (Akhtar et al., 2011; 

Baumeister et al., 2001). From a practical investment perspective, negative news and poor 

sentiment is watched more closely by investors and can be portrayed more vividly by the media, 

thus coercing investors to act quickly to exit the market. This is also consistent with the notion of 

'loss aversion' in economics and decision theory which finds that investors have a stronger 

preference for avoiding losses relative to their desire for acquiring gains (Kahneman and 

Tversky, 1992). 

Both in the symmetric effects (equation 7) and asymmetric effects (equation 10) models 

we do not detect significance in the parameter (for the symmetric effects model)or in the 

parameters 

and


 (for the asymmetric effects model). This finding is consistent with 

hypothesis 2 where we posit that the sentiment from survey evidence is what matters for 

sentiment-driven investors. Although BW and VIX have some explanatory power in the cross-

section of stock returns, we find here that they have no statistically significant bearing on the 

investment decision-making of sentiment-driven investors as we have them defined here in our 

paper. This does not mean that such measures are not important. Instead, it suggests that survey-

based measures may be perceived as less noisy forward-looking indicators of investors' 

expectations regarding future states of the economy because they elicit the opinions and attitudes 

of actual consumers and households - opinions and attitudes that are less prone to intraday 

fluctuations and 'noise' which is common in financial assets such as stocks and options. 

[Insert table 2] 
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5.2. Effects of individual and institutional sentiments 

We have shown that survey-based measures of sentiment are important inputs which affect the 

buying and selling decisions of sentiment-driven investors. We have also shown that sentiment-

driven investors exhibit contrarian-type behavior. 

 What is still unsaid is whose sentiment plays a relatively more significant role in 

influencing these investors' demand for risky assets. Hypothesis 2 directly addresses this 

important question where we posit that survey-based estimates of individual investor sentiment 

matter.  

 To test this hypothesis, we collect weekly data on AAII and II, which are both survey-

based measures and denote the sentiment of individual and institutional investors, respectively. 

Following Wang et al. (2006) and Kurov (2008), we compute an investor sentiment index as a 

ratio of the percentage of bullish investors to the percentage bearish investors. As can be seen by 

the sign and significance of the parameters γ and
 
γ

-
 in table 3, sentiment-driven investors trade 

more aggressively during periods of declining sentiment - a finding that is qualitatively 

analogous to the findings reported in table 2. As in table 2, the interpretation for their demand 

function is also the same; their demand for shares rises when sentiment declines and other 

investors are selling and, conversely, their demand for shares drops when sentiment rises and 

other investors are buying. 

 When comparing the significance of the γ coefficients between AAII (individual) 

sentiment versus II (institutional) sentiment, we see that sentiment-driven investors tend to trade 

on the individual, rather than institutional, sentiment surveys. This finding supports our 

conjecture that the information content of individual investor sentiment (as captured by AAII) is 

particularly important to consider because individual investors may be more prone to irrationality 

and misinformation compared to their institutional counterparts. In other words, they may be 

overly optimistic or pessimistic at various periods of time as a result of influences other than 

fundamentals. These attitudes may lead to uniformed decisions in the short- and medium-run and 

can be exploited by sentiment-driven investors. Shiller (2000) points out that the average 

investor in the market makes investment decisions on a myriad of subjective factors which may 

bear little correlation with underlying fundamentals. Thus, if individual investors lack the 

information and research access which institutional investors benefit from and are more prone to 



21 
 

overly optimistic or pessimistic attitudes, it may be easier to exploit these attitudes in the short- 

and medium-run. 

[Insert table 3] 

 

5.3. Sentiment-driven trading across market conditions and business cycles 

From the perspective of market timers, it is important to know not only whether (and whose) 

sentiment measures matter but also when does sentiment matter the most in influencing the 

decision-making of investors and their future expectations. By knowing when to look at such 

information, sentiment-driven investors can effectively position themselves accordingly. 

Hypothesis 4 examines this issue and empirical findings are presented in table 4. 

 The aim here is to see whether sentiment-driven investors respond asymmetrically to 

sentiment measures with respect to market conditions and business cycles. As mentioned, it is 

plausible that poor market conditions and declining stock prices may exacerbate individual 

investors’ (pessimistic) sentiment thereby pushing prices further from fundamentals and thus 

providing a good (buying) opportunity for those investors with an eye on sentiment. We explore 

this possibility by focusing on the monthly CCI and interacting the indicator of sentiment change 

(ISt-1) with a dummy variable describing business cycles and market conditions, as follows:  

            (12) 

 

                           

 (13) 

where Dt is a dummy variable that is equal to 1 in a period of expansion or bull market and 0 in a 

period of recession or bear market. The indicator used to identify recessions and expansions in 

the U.S. economy is the National Bureau of Economic Research (NBER) business cycle 

indicator.
14

 In this case the reaction of sentiment-driven traders to sentiment changes is allowed 

to differ over the macroeconomic cycles if
UP DOWN  ; 

UP DOWN
   and/or

UP DOWN
   . Given that 

the new model specifications in equations (12) and (13) are nested in our symmetric and 

                                                           
14 As a robustness check, we also classify each period as recession or expansion by comparing the current economic activity (as 

measured by the Chicago Fed National Activity Index, CFNAI) to a rolling average of the previous three-month activity level. 

The results (not reported here) confirm that our main conclusions hold for this alternative macroeconomic condition indicator. In 

terms of market conditions, we follow Chen (2011) and use the moving average approach whereby bull and bear markets are 

identified by using the mean S&P500 return over the last six periods. In particular, we define a period as the bull market if its 

moving average return is greater than zero.     
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asymmetric effects models, the likelihood ratio (LR) statistics can be computed to test such 

restrictions. 

For the sake of brevity, we will concentrate on the interpretation of the values for 

parameters of interest UP and DOWN which indicate the intensity of sentiment-driven trading 

during expansion (or bull market) and recession (or bear market), respectively. An inspection of 

the sign and significance of these key parameters in table 4 confirms our earlier findings that 

there are significant sentiment-driven trading against the emotions of the crowd and that they 

tend to trade more aggressively on declining sentiment than on upswings in sentiment of equal 

magnitude. More importantly, as indicated by the significance of LR test statistics, it also shows 

that their responses to sentiment changes are indeed different across the macroeconomic cycles. 

Specifically, sentiment-driven trading is more pronounced during recessionary and bear market 

conditions. This again is a recurring theme in our paper. It seems that sentiment-driven investors 

are more apt to trade on the survey-derived sentiment of individual investors because it is these 

very investors who are more prone to excessive optimism or pessimism - attitudes that can be 

misaligned with fundamentals and with the objective facts at hand. 

[Insert table 4] 

 

5.4. Robustness and additional tests 

In this sub-section we examine the robustness of our results by attempting to (a) use returns on 

the Dow Jones Industrial Average (DJIA) as a proxy for the market portfolio and see how CCI 

can explain the behavior of sentiment-driven investors; (b) use a rolling weighted average 

calculation method for the sentiment change indicator (ISt-1); (c) use a measure of sentiment 

that is orthogonalized by using the residual from a regression of CCI against a constant and the 

rolling three-month average value of Chicago Fed National Activity Index (CFNAI) in order to 

remove the influence of macroeconomic factors on investor sentiment. 

 Let us now turn our attention to the first columns of table 5 where we focus on the results 

of the CCI measure for our symmetric and asymmetric effects models, respectively, whereby 

returns on the DJIA now serves as a proxy for the market portfolio. Overall, the results are 

qualitatively similar to those presented for the S&P 500 index in Table 2; specifically, they 

confirm the presence of sentiment-driven investors who exhibit contrarian-type investing and 

whose trading behavior becomes more pronounced during periods of declining sentiment. 
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 Let us now examine the middle columns where we use ISt-1 as a measure for sentiment 

to explain returns on the market portfolio. We estimate ISt-1 as the weighted rolling average of 

the sentiment level for previous three months: (
3

6
) × 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑡−1 + (

2

6
) × 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑡−2 +

(
1

6
) × 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑡−3 , rather than the simple moving average approach. Consistent with our 

earlier findings, estimates for the parameters  and 
-
 confirm our hypotheses that investor 

sentiment matters and there exists sentiment-driven trading in the stock market which is 

asymmetric with respect to declining and rising sentiment. Thus, our results are not particularly 

driven by the choice of methods in calculating sentiment change. 

 Finally, consideration is also given to the potential influence of macroeconomic factors 

on investor sentiment by regressing CCI on a constant and the rolling three-month average value 

of Chicago Fed National Activity Index (CFNAI) and using the residual from this auxiliary 

regression as the orthogonalized sentiment measure.
15

 The evidence, presented in the final 

columns of table 5, show that, in general, the results of the ‘unorthogonalized’ CCI carry over to 

the orthogonalized measure, albeit the relatively smaller and less significant estimates for  and 


-
. In other words, even when we control for macroeconomic influences, we see that sentiment-

driven trading is still somewhat present and that they utilize the CCI as a means of investing.  

[Insert table 5] 

 

6. Concluding Remarks 

While a growing number of studies have shown that sentiment plays an important role on the 

decision-making of investors and stock prices dynamics, less is known about the mechanism by 

which sentiment impacts investors’ demand for risky assets. The classical view is that sentiment-

driven investors are essentially ‘noise traders’ and irrational. However, it is quite possible that 

these investors use information extracted from sentiment measures to make informed decisions. 

This paper examines this possibility and empirically tests whether and to what extent investor 

sentiment influences the trading behavior of such investors. In particular, we investigate the 

                                                           
15 We chose the Chicago Fed National Activity Index (CFNAI) as a measure of the overall economic activity because it has been 

shown that this index often provides useful information on the current and future courses of U.S. economic activity and inflation 

(cf., Chau and Deesomsak, 2014). The CFNAI is constructed using principal components of 85 monthly indicators for 

employment, production, personal consumption, sales & inventories, and corresponds to the economic activity index developed 

by Stock and Watson (1999). Further details on the CFNAI are available at https://www.chicagofed.org/publications/cfnai/index  

https://www.chicagofed.org/publications/cfnai/index
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extent to which rational utility maximizers, or ‘smart money’, investors, positive feedback 

traders, and sentiment-driven investors drive stock prices in the U.S. stock market. 

 The economic framework nests the Sentana and Wadhwani (1992) and Cutler et al. 

(1990) models to provide a generalized framework for exploring the influence of these investors 

and to what extent their behavior drives variations in stock prices. Specifically, our hypotheses 

seek to address (i) whether investors trade on sentiment; (ii) which sentiment indicators matter to 

investors; (iii) whose sentiment matters; (iv) when does sentiment matter more. To accomplish 

this, we utilize a number of market- and survey-based measures that are available at both 

monthly and weekly frequencies and which have been widely used in the literature and by 

practitioners to gauge the sentiment of market participants. 

The key findings of this paper can be summarized as follows. Firstly, we show that 

investor sentiment indeed matters and that there exists a group of sentiment-driven investors 

whose action play a significant role in driving stock prices. Secondly, we find that these 

investors are more apt to trade on the information content extracted from survey-, rather than 

market-based, sentiment indicators. Thirdly, we show that investors trade on sentiment extracted 

from individual, rather than institutional, investor surveys. Finally, sentiment-driven investing is 

asymmetric with respect to declining and rising sentiment in the market. This asymmetry is also 

discernible when we look at their behavior with respect to bear versus bull markets whereby they 

are more prone to sentiment-driven trading during bearish markets. 

The findings herein are robust to various econometric specifications and have important 

implications to market practitioners. Specifically, we need to recognize that such sentiment-

driven investors are not irrational as in the context of classical asset pricing theory but instead 

play a role in trading against the crowd and, in times of declining sentiment and bear conditions, 

can even act as liquidity providers by buying overly sold stock.  
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Table 1: Descriptive statistics of S&P 500 returns and investor sentiment measures 

 

 

Monthly  
Weekly 

 
    Survey-based Market-based   Survey-based  

  S&P500 CCI MS BW VIX AAII   II   

Start 

Date 01/1978   01/1978   01/1978   01/1978   01/1993   24/07/1987 24/07/1987 

End Date 12/2011   12/2011   12/2011   12/2010   12/2011   29/12/2011 29/12/2011 

Panel A: Summary statistics            

 0.639   93.066   85.916   0.222   20.307   1.561   1.540 

 
 4.530   24.756   13.109   0.708   7.905   0.651   0.966 

 
S -0.943   -0.204   -0.391   0.705   1.948   0.646   2.122 

 
K 3.662 

  
-0.505 

  
-0.612 

  
0.461 

  
6.929 

  
-0.060 

  
7.719  

JB 284.19 *** 7.05 ** 16.54 *** 36.28 *** 679.34 *** 87.17 *** 4,041.60 *** 

LB(12) 11.41   3,423.82 *** 3,233.78 *** 3,274.51 *** 940.33 *** 6,880.71 *** 1,761.54 *** 

LB²(12) 82.97 *** 3,561.01 *** 3,298.41 *** 2,120.79 *** 510.30 *** 5,942.42 *** 789.89 *** 

ARCH 33.00 *** 380.07 *** 365.64 *** 355.64 *** 150.52 *** 1,061.09 *** 127.12 *** 

JOINT 47.37 *** 369.52 *** 362.73 *** 339.23 *** 156.68 *** 1,039.56 *** 214.52 *** 

Panel B: Correlation Coefficients          

S&P500 1   

 

  

 

  

 

  

 

      

  

CCI 0.080   1   

 

  

 

  

 

  

 

  

  

MS 0.136 *** 0.839 *** 1   
 

  
 

  
 

  
  

BW -0.048 
  

0.079 
  

0.104 ** 1 
  

 

  AAII       1 
  

  

VIX -0.389 *** -0.171 *** -0.251 *** 0.075 
  

1 
  

II      0.370 *** 1 
  

Panel C: Autocorrelation            

b 0.551 ** 2.386 ** 3.043 ** 0.010   2.510 *** 0.100 *** 0.409 *** 

b 0.064   1.023 *** 0.925 *** 0.977 *** 0.843 *** 1.073 *** 0.357 *** 

b -0.077   -0.056   -0.057   0.009   -0.077   -0.112 ** 0.148 *** 

b 0.054   -0.031   0.054   0.019   0.007   -0.008   0.155 *** 

b 0.041 
  

0.041 
  

0.000 
  

0.074 
  

0.143 
* 

-0.063 
  

0.071  

b 0.078 
  

-0.004 
  

0.042 
  

-0.113 
** 

-0.041 
  

0.047 
  

0.004  

F-test 1.61 
  

1305.23 *** 806.30 *** 1519.75 *** 133.85 *** 2095.03 *** 136.10 *** 

 
Notes: This table provides descriptive statistics of S&P500 returns and investor sentiment measures. The statistics reported are 

the mean (), standard deviation (), measures for skewness (S) and excess kurtosis (K), and Jarque-Bera (JB) test statistic. 

LB(12) and LB2(12) are the Ljung-Box test of autocorrelation for the level and squared returns and sentiment indices; the test 

statistics follow Chi-square distribution with 12 degree of freedom. ARCH is the Lagrange Multiplier test for ARCH (1) effect. 

The JOINT test is Engle and Ng’s (1993) test for the potential asymmetries in conditional variance. The autocorrelation 

parameters (b1 through b5) are estimated from the autoregressive model, AR(5). *, **, and *** indicate statistical significance at 

the 10%, 5% and 1% levels, respectively. 
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Figure 1: Time series plots of investor sentiment and S&P 500 price level    

 

Panel A: Monthly sentiment series  

 
Panel B: S&P 500 Index  

 
Notes: This figure depicts time series variation in the investor sentiment indices (Panel A) and in the stock market (Panel B). 

Panel A shows the levels of survey-based sentiment measures (CC and MS) on the left scale, and the market-based indicators 

(BW and VIX) on the right scale. 
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Table 2: Evidence on sentiment-driven trading  

 

 
    MONTHLY SENTIMENT MEASURES 

 

Baseline 

Survey-based Market-based 

 
CCI MS BW VIX 

  Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric Asymmetric

Panel A : Mean equation                               

 0.5571   0.6438   0.5519 *** 0.8084 ** 0.7811 * 0.6253   0.6145   0.6141 * 0.5339   

  (1.254)   (1.551)   (12.005)   (1.999)   (1.908)   (1.462)   (1.105)   (1.756)   (1.404) 

 
 0.0082   0.0038   0.0221 *** -0.0029   0.0138   0.0033   0.0105   0.0055   0.0186   

  (0.308)   (0.155)   (5.393)   (-0.115)   (0.469)   (0.129)   (0.229)   (0.205)   (0.507)   

 -0.1329   -0.1272   -0.1567 *** -0.1629   -0.1926 * -0.1299   -0.1377   -0.1326   -0.1378   

  (-1.429)   (-1.298)   (-6.667)   (-1.629)   (-1.849)   (-1.370)   (-1.395)   (-1.450)   (-1.478) 

 
 0.0044   0.0018   0.0027 *** 0.0015   0.0025   0.0043   0.0046   0.0042   0.0039   

  (1.573)   (0.615)   (3.290)   (0.456)   (0.707)   (1.524)   (1.205)   (1.140)   (1.063)   

     0.0057 **     0.0151 ***     -0.0298       0.0008       

      (2.133)       (3.552)       (-0.357)       (0.225)       

+         0.0031       0.0089       -0.1149       -0.0023   

          (1.264)       (1.015)       (-0.577)       (-0.489)   

-         0.0096 ***     0.0219 ***     0.0294       0.0033   

          (5.680)       (3.076)       (0.180)       (0.430)   

Panel B : Variance equation                               

 0.1486 ** 0.1294 ** 0.1344 *** 0.1322 * 0.1167 * 0.1302 ** 0.1394   0.2927 ** 0.2766 ** 

  (2.032)   (2.000) 

 

(76.009) 

 

(1.953) 

 

(1.773)   (1.971) 

 

(1.301)   (2.411) 

 

(2.305) 

 
 0.2403 *** 0.2403 *** 0.2402 *** 0.2618 *** 0.2520 *** 0.2415 *** 0.2376 *** 0.4012 *** 0.4005 *** 

  (3.357)   (3.439)   (8.505)   (3.459)   (3.398)   (3.398)   (7.039)   (2.963)   (2.984)   

 0.9510 *** 0.9576 *** 0.9557 *** 0.9558 *** 0.9619 *** 0.9580 *** 0.9546 *** 0.8889 *** 0.8949 *** 

  (38.404)   (44.176) 

 

(171.534) 

 

(41.174) 

 

(42.353)   (43.114) 

 

(22.552)   (19.901) 

 

(20.315) 

 
 -0.1660   -0.1520   -0.1888 * -0.0849   -0.0663   -0.1384   -0.1617   -0.4417 * -0.4331 * 

  (-0.975)   (-0.865)   (-1.812)   (-0.568)   (-0.412)   (-0.843)   (-0.498)   (-1.908)   (-1.905)   

 
Notes: This table reports maximum likelihood estimates for the Sentana and Wadhwani (1992) heterogeneous trader model (i.e., baseline model) and our two augmented models 

(i.e. symmetric effects model given by equation (7) and asymmetric effect model given by equation (10)) that allow us to detect the presence of sentiment-driven trading. The 

heteroskedasticity-consistent t-statistics are shown in parentheses. *, **, and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. 
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Table 3: Effects of individual and institutional sentiments 

 

 
    WEEKLY SENTIMENT MEASURES 

 

Baseline 

Survey-based 

 
AAII II 

 
(Individual) (Institutional) 

  Symmetric Asymmetric Symmetric Asymmetric

Panel A : Mean equation              

 0.1328 ** 0.1195   0.1232   0.1141   0.1163   

  (2.006)   (1.560)   (1.382)   (1.632)   (1.536) 

 
 0.0103   0.0160   0.0240   0.0082   0.0122   

  (0.532)   (0.941)   (1.036)   (0.507)   (0.676)   

 -0.0955 *** -0.1156 *** -0.1154 *** -0.1166 *** -0.1179 *** 

  (-254.939)   (-2.827)   (-3.297)   (-2.743)   (-2.796) 

 
 0.0021   0.0012   0.0011   0.0025   0.0025   

  (0.941)   (0.354)   (0.255)   (0.663)   (0.855)   

     0.1453 ***     0.0160       

      (2.805)       (1.032)       

+         0.0663       0.0036   

          (0.520)       (0.133)   

-         0.2105 **     0.0292   

          (2.331)       (0.980)   

Panel B : Variance equation               

 0.0855 *** 0.0899 *** 0.0900 *** 0.0858 ** 0.0858 *** 

  (2.638)   (4.112) 

 

(6.106) 

 

(2.522) 

 

(2.684) 

 
 0.2238 *** 0.2241 *** 0.2251 *** 0.2151 *** 0.2152 *** 

  (4.318)   (5.154)   (8.580)   (4.234)   (4.219)   

 0.9426 *** 0.9393 *** 0.9393 *** 0.9419 *** 0.9419 *** 

  (44.661)   (63.873) 

 

(91.670) 

 

(43.814) 

 

(45.304) 

 
 -0.5709 *** -0.5883 *** -0.5778 *** -0.6880 *** -0.6882 *** 

  (-4.032)   (-4.018)   (-5.680)   (-3.684)   (-4.669)   

   
Notes: This table reports maximum likelihood estimates for the Sentana and Wadhwani (1992) heterogeneous trader model (i.e., 

baseline model) and our two augmented models (i.e. symmetric effects model given by equation (7) and asymmetric effects 

model given by equation (10)) when we use the two commonly cited weekly surveys of AAII and II to measure the sentiments of 

individual and institutional investors. The variance equation is given by equation (11). The heteroskedasticity-consistent t-

statistics are shown in parentheses. *, **, and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively.  
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Table 4: Sentiment-driven trading across business cycles and market conditions 

 

 

MONTHLY SENTIMENT MEASURE (CCI)  

  

 
Market Conditions  Business Cycles  

 
(Bull vs. Bear) (Expansion vs. Recession) 

  Symmetric Asymmetric Symmetric Asymmetric 

Panel A : Mean equation              

 0.7521 * 0.6339   0.7699   0.4874   

  (1.746)   (1.471) 

 

(1.560)   (0.762) 

 
 0.0000   0.0140   -0.0021   0.0236   

  (0.000)   (0.458)   (-0.067)   (0.474)   

 -0.0924   -0.1222   -0.1158   -0.1514   

  (-1.170)   (-1.193) 

 

(-1.257)   (-1.352) 

 
 0.0004   0.0014   0.0012   0.0030   

  (0.110)   (0.432)   (0.295)   (0.572)   

UP 0.0032 *     0.0033       

  (1.688)       (0.861)       

DOWN 0.0067 **     0.0055 **     

  (2.129)       (2.230)       

+
UP     0.0016       0.0042   

      (0.306)       (0.749)   

+
DOWN     0.0040       0.0013   

      (0.532)       (0.227)   

-
UP     0.0048       0.0055   

      (0.931)       (0.774)   

-
DOWN     0.0077 **     0.0074 * 

      (2.429)       (1.770)   

Panel B : Variance equation              

 0.1214   0.1069 * 0.1148   0.1252   

  (1.145) 

 

(1.669) 

 

(1.354) 

 

(0.954) 

 
 0.2441 *** 0.2475 *** 0.2496 *** 0.2388 *** 

  (6.626)   (3.489)   (8.369)   (5.382)   

 0.9599 *** 0.9653 *** 0.9624 *** 0.9590 *** 

  (23.513) 

 

(44.578) 

 

(30.380) 

 

(18.976) 

 
 -0.1170   -0.1208   -0.1333   -0.1942   

  (-0.402)   (-0.729)   (-0.497)   (-0.554)   
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Table 4: Sentiment-driven trading across business cycles and market conditions (Cont’d) 

 

 

 

MONTHLY SENTIMENT MEASURE (CCI)  

  

 
Market Conditions  Business Cycles  

 

(Bull vs. Bear) (Expansion vs. Recession) 

  Symmetric Asymmetric Symmetric Asymmetric 

Panel C : Likelihood ratio tests           

LR 129.0796 ***   

 

4.9712 **   

   <0.000> 

 

  

 

<0.026> 

 

  

 
LR+     0.2834       0.0517   

      <0.594>       <0.820>   

LR-     5.8998 **     3.1342 * 

      <0.015>       <0.077>   

  
Notes: This table reports maximum likelihood estimates for our two augmented models when we interact the indicator of 

sentiment change (ISt-1) with a dummy variable describing business cycles and market conditions (i.e. symmetric effects model 

given by equation (12) and asymmetric effects model given by equation (13)). The variance equation is given by equation (11).  

LR, LR+, and LR- are the likelihood ratio statistics for testing the parameter restrictions H0: UP DOWN  , H0:
UP DOWN
   , and H0: 

UP DOWN
   , respectively. The heteroskedasticity-consistent t-statistics are shown in parentheses. *, **, and *** indicate statistical 

significance at the 10%, 5% and 1% levels, respectively. 
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Table 5: Robustness and additional tests 

 

 
MONTHLY SENTIMENT MEASURES (CCI) 

 
DJIA ISt-1 CFNAI 

  Symmetric Asymmetric  Symmetric Asymmetric  Symmetric Asymmetric  

Panel A : Mean equation                   

 4.1482   4.1416   0.7183 * 0.5946   0.6297   0.6030   

  (1.571)   (1.364)   (1.740)   (1.509)   (1.492)   (1.418) 

 
 -0.1698   -0.1599   -0.0008   0.0184   0.0045   0.0082   

  (-1.231)   (-0.993)   (-0.030)   (0.703)   (0.174)   (0.274)   

 -0.1821   -0.1723   -0.1204   -0.1351 ** -0.1208   -0.1194   

  (-1.415)   (-1.117)   (-1.225)   (-2.171)   (-1.291)   (-1.255) 

 
 -0.0045   -0.0050   0.0013   0.0022   0.0028   0.0027   

  (-1.206)   (-0.917)   (0.445)   (0.657)   (0.988)   (0.942)   

 0.0060 **     0.0049 ***     0.0038 *     

  (2.200)       (2.904)       (1.908)       

+     0.0024       0.0023       0.0030   

      (0.367)       (1.042)       (0.676)   

-     0.0088 **     0.0071 ***     0.0043 * 

      (2.149)       (3.996)       (1.840)   

Panel B : Variance equation               

 2.9895 *** 2.9677 *** 0.1143 * 0.1153   0.1257 * 0.1203 * 

  (6.565) 

 

(7.443)   (1.828) 

 

(1.309)   (1.892) 

 

(1.823) 

 
 0.0198 *** 0.0085   0.2456 *** 0.2433 *** 0.2413 *** 0.2416 *** 

  (5.308)   (0.118)   (3.595)   (8.334)   (3.411)   (3.380)   

 -0.0251   -0.0188   0.9629 *** 0.9624 *** 0.9594 *** 0.9617 *** 

  (-0.163) 

 

(-0.139)   (45.576) 

 

(28.251)   (42.610) 

 

(43.057) 

 
 -15.9119 *** -36.7798   -0.1516   -0.1634   -0.1554   -0.1357   

  (-5.697)   (-0.118)   (-0.925)   (-0.614)   (-0.923)   (-0.782)   

  
Notes: This table reports robustness tests for our two augmented models (i.e. symmetric effects model given by equation (7) and 

asymmetric effects model given by equation (10)) when we use an alternative stock market index (DJIA), a different calculation 

method for sentiment change indicator (IS’t-1), and the orthogonalized CCI sentiment measure using the residual from a 

regression of CCI on a constant and the rolling three-month average value of Chicago Fed National Activity Index (CFNAI) in 

order to remove the influence of macroeconomic factors on investor sentiment. The variance equation is given by equation (11). 

The heteroskedasticity-consistent t-statistics are shown in parentheses. *, **, and *** indicate statistical significance at the 10%, 

5% and 1% levels, respectively. 


