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Abstract 

In this paper, we contend that what to teach about scientific reasoning has been bedeviled 

by a lack of clarity about the construct. Drawing on the insights emerging from a cognitive 

history of science, we argue for a conception of scientific reasoning based on six ‘styles of 

scientific reasoning’. Each ‘style’ requires its own specific ontological and procedural entities, 

and invokes its own epistemic values and constructs. Consequently, learning science requires the 

development of not just content knowledge but, in addition, procedural knowledge, and 

epistemic knowledge. Previous attempts to develop a coherent account of scientific reasoning 

have neglected the significance of either procedural knowledge, epistemic knowledge, or both. In 

contrast, ‘styles of reasoning’ do recognize the need for all three elements of domain-specific 

knowledge, and the complexity and situated nature of scientific practice. Most importantly, 

‘styles of reasoning’ offer science education a means of valorizing the intellectual and cultural 

contribution that the sciences have made to contemporary thought, an argument  that is sorely 

missing from common rationales for science education.  Second, the construct of ‘styles of 

reasoning’ offers a more coherent conceptual schema for the contruct of scientific reasoning – 

one of the major goals of any education in the sciences.  
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Introduction 

The project of this paper is to offer a contribution towards improving our understanding 

of the construct of scientific reasoning used in science education. While the study of scientific 

reasoning is far from new, this review and these reflections are required for several reasons. 

First, ever since its inception, one justification for science education has been that it might instill 

the disciplinary habits of mind of the scientist (Chinn & Malhotra, 2003; DeBoer, 1997; Dewey, 

1916; Layton, 1973; Turner, 1927). In contemporary society, such arguments have become even 

more pre-eminent (Economist, 2014; Gilbert, 2005; Hanushek & Woessmann, 2015; Hill, 2008; 

National Research Council, 2008, 2012a). Hill (2008), for instance, argues that the societies that 

sustain their competitive edge in the coming decades will be ‘post-scientific’ societies. In such a 

society, skills that are highly valued will be the ability to draw on a range of disciplinary 

knowledge, to think creatively, and to evaluate and critique new ideas. Employers will require 

individuals who, while having a core understanding of scientific and technical principles, have 

the ability to communicate and synthesize knowledge in an original manner (National Research 

Council, 2008, 2012a) using the higher order reasoning skills of evaluation, synthesis, and 

critique. If so, as Hill (2008) argues, it is important to “emphasize what we want” lest we get 

“what we emphasize” (p. 9). When it comes to the skill of reasoning scientifically, however, we 

argue that science education has suffered from a lack of clarity about “what we want”. The result 

is a substantial gap between the goals of science education and the classroom reality such that 

both the sciences, and its students, have been short-changed. 

One consequence of the failure to define what is meant by scientific reasoning has been 

an over-emphasis on content knowledge (Layton, 1973; Reddy, 1979; Turner, 1927; Weiss, 

Pasley, Sean Smith, Banilower, & Heck, 2003) – a feature which is reflected in the external 
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assessment of much school science (Au, 2007; Osborne and Ratcliffe, 2002). Indeed, the rise of 

demands for accountability in education and state testing has led to an even more deeply 

entrenched emphasis on content (Hout & Elliott, 2011; Wilson & Bertenthal, 2005.). In the case 

of assessment in science, many items make lower-level cognitive demands of recall and 

comprehension (Osborne and Ratcliffe, 2002;(Pellegrino, Chudowsky, & Glaser, 2001; 

Shavelson, Baxter, & Pine, 1991; Wilson & Bertenthal, 2005) failing to test higher-order analytic 

and reasoning skills. This outcome, we argue, is a consequence of the lack of a coherent account 

of the goals of the sciences, the reasoning they use, and their achievements within the field of 

science education.
1
 In the absence of such an account, the field has belittled and distorted the 

accomplishments of the sciences and their epistemic success to a singular algorithmic process – 

‘the scientific method’ – an account that grossly misrepresents and undervalues scientific work 

and its cultural contribution.
2
 

In this paper, we argue for a conception of scientific reasoning drawn from the neglected 

field of scholarship undertaken in the cognitive history of the sciences which shows that there is 

no single form of reasoning in the sciences, but rather, six distinct styles of reasoning. The notion 

of ‘styles of reasoning’ has emerged from a body of scholarship in the history of science that has 

identified the major forms of argument within science and their distinctive features (Crombie, 

                                                

1  The plural ‘sciences’ is chosen deliberately throughout as each of the sciences invokes different 

styles of reasoning and different ontic entities. Indeed, we would argue that the field would 

benefit by talking not about the ‘science’ curriculum but the ‘sciences’ curriculum to emphasize 

the fact that science is characterized by its diversity of thought rather than any singular unity. 

2  This comment is not true of the Next Generation Science Standards (Achieve, 2012) which have 

broadened the notion of what it means to do science by introducing a set of 8 practices which 

are common across the sciences. 
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1994; Davidson, 2004; Hacking, 1992, 2012; Nersessian, 1995; Netz, 1999; Tweney, 2001). 

Each style of reasoning is distinguished by its own entities, procedures, and epistemic constructs. 

Consequently, scientific reasoning is dependent not on one, but rather, three forms of 

knowledge. These are: 

 Content knowledge of the appropriate domain-specific concepts – that is the ontological 

entities that science uses to reason with;  

 Procedural knowledge which is knowledge of the procedures and associated constructs 

that science uses to establish it claims to know; and  

 Epistemic knowledge which is knowledge of the epistemic constructs and values and how 

these are used to justify science’s claims to know.
3
  

The common stance of cognitive historians is that the modes of reasoning within science 

are better determined by taking a descriptive, naturalistic examination of the outcomes of 

scientific reasoning, rather than by empirical investigations of how humans reason. Such modes 

of thinking are not an innate quality of what it means to be human, but rather, are entrenched in 

the language, belief systems, and world-views we hold.  Consequently, they are assimilated by 

each of us from the interpersonal interaction that arises from simply being in that culture 

(Vygotsky, 1978). In short, all cognitive science can do is illuminate the way we reason but not 

how such reasoning has emerged or what it has achieved. Thus, like Fodor (1983), we share his 

skepticism about the ability of cognitive science to determine the workings of the central 

processor or intra-personal processes of the human mind. Rather, we believe that such attempts 

                                                

3
  To exemplify their distinct nature, an ontological entity e.g., a wave, gene or element is distinct from 

a procedural entity such as a variable, a measurement error, or procedure such replication which, in 

turn, is distinct from an epistemic entity such as a theory, a hypothesis or an inductive argument.  
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will simply discover the specific ways of thinking that are already culturally embedded. Thus our 

position follows a long line of American pragmatists such as Pierce, Dewey, and Rorty whose 

concern is not with revealing truth per se but with the cultural modes of thought that have 

evolved, what makes them distinctive, and moreover, what makes them successful.  

Using the notion of ‘styles of reasoning’, we then explore what this particular conception 

offers – not least that there is more to scientific thinking than ‘the scientific method’; and that 

scientific reasoning requires not just a knowledge of its domain-specific constructs but also a 

knowledge of a set of procedural and epistemic constructs. Perhaps, most importantly, as we 

shall argue, what ‘styles of reasoning’ offers is a cultural argument for the value of an education 

in the sciences – a long overdue riposte to the dominant, neo-liberal, economic imperative. We 

then show how this perspective illuminates the nature of the confusion that has existed, and still 

exists, around the construct of scientific reasoning. For instance, at different points in time, the 

conception of scientific reasoning has been dominated by the views of psychologists, who have 

seen it as requiring a set of domain-general heuristics; philosophers, who have sought to 

characterize reasoning in terms of a set of normative and epistemic features; and sociologists, 

who have sought to characterize it as a collective activity undertaken as a body of socio-cultural 

practices. In contrast to any one of these accounts, each of which identifies certain specific 

features of scientific reasoning, ‘styles of reasoning’ offers a coherent, domain-specific vision of 

both the entities required and the different forms of reasoning that the sciences have developed. 

We then finish by exploring the implications – in particular, how this framework offers a means 

of escaping from the tyranny of content.  
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Styles of Scientific Reasoning 

The goal of scientific reasoning is to answer three specific questions about the material 

world (National Research Council, 2012b, Osborne, 2011). These are the questions of: 

1. What exists? (the ontic question); 

2. Why it happens?(the causal question); and 

3. How do we know? (the epistemic question).
4
  

How scientists commonly develop and construct answers to these questions is, we 

contend, best found in the neglected work of cognitive historians of science. Two major 

contributions to this field are Reviel Netz’s study of the origin of Greek mathematics (Netz, 

1999) and Alistair Crombie’s three-volume study of Styles of thinking in the European Tradition 

(1994). Cognitive historians argue, first, that human reasoning is much better understood using a 

historical approach and by taking an external perspective that looks at the products of that 

reasoning; second, that there are no general, universal rules of reasoning. Instead, the cognitive 

tools used by science have emerged historically as a contingent, cultural product of specific 

contexts—an accident of history—and, given an alternate historical narrative, may well have 

existed in a different form, or not at all. 

Using such an approach, Crombie’s examination of scientific thought since the Greeks 

reveals not one but six distinct ‘styles of reasoning’ and that “the history of science in the 

                                                

4  There is also the question of ‘what can we do with such knowledge?’ but this is a technological 

question. 
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European tradition is the history of vision and argument” (Crombie, 1994, p3).
5
 The success of 

science can then be attributed to the development of cognitive tools, resources and styles of 

reasoning that have been used to argue for a set of ideas – ideas that have initially seemed 

absurd, such as the idea that day and night are caused by a spinning Earth and not a moving Sun, 

or the idea that the Continents were once one, or the idea that all species on the Earth have 

evolved over millions of years. Specifically, Crombie argues that the styles of scientific 

reasoning are: 

1. Mathematical Deduction, which is the use of mathematics to represent the world and for 

deductive argument. The Greeks were the first to initiate this form of reasoning with the 

work of Euclid, Pythagoras, and others. The representation of physical phenomena by 

numerical quantities or algebraic symbols is something that is key to all the sciences. All 

kinds of entities are depicted in a mathematical form, and mathematics is very much one of 

the major languages of the sciences used as a means of making deductive predictions both in 

the sciences and engineering. 

2. Experimental Evaluation, which is the use of empirical investigation to establish patterns, 

differentiate one form of object from another, and to test the predictions of hypothetical 

models. Galileo is commonly seen as the key figure who initiated this style of reasoning 

testing his hypothesis that all masses would fall with equal acceleration by dropping two 

                                                

5  We must emphasize that what is presented here is an argument for the nature of science in the 

Western tradition that forms the basis of the school curriculum across most if not all of the 

globe. We recognize that there are good arguments that this fails to present the nature of 

thinking and reasoning about the material world offered by other cultures – see for instance 

Medin and Bang (2014). 
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cannonballs of different sizes from the tower of Pisa.
6
  Since Galileo, experimental 

exploration has become a key method in nearly all the sciences. Empirical evidence is used to 

test whether scientific ideas can be falsified and to substantiate or critique arguments.7 Only 

those ideas that survive such tests are the ones that we hold to be true. 

3. Hypothetical Modeling, which is the construction of analogical and hypothetical models to 

represent the world. Science advances by developing explanatory models for what scientists 

observe.8 Indeed, some would argue that this is the primary goal of science. Analogical 

models are used to represent things which are too large to imagine (the Solar System), or too 

small to see such as the cell or the Bohr model of the atom. Models, such as the kinetic 

theory of matter, are used to make predictions and are now commonly built with computers 

to simulate the possible behavior of the world, e.g., climate models. Models and 

representations are then central to providing the tools and heuristics necessary to reasoning 

how the world might behave. 

4. Categorization and Classification, which is the ordering of variety by comparison and 

taxonomy. Establishing what exists is a fundamental aspect of science. Many scientists 

engage solely in the process of classification – for instance, distinguishing rocks, animals, 

particles, and chemicals from each other. Defining what exists, and the concepts that we use 

                                                

6  There is no evidence that Galileo actually performed this experiment but there is a record that 

he performed an experiment to show the same point empirically demonstrating that the period 

of a pendulum was independent of the mass of the bob. 

7  Popper, K. (1963). Conjectures and Refutations: the growth of scientific knowledge. London: 

Routledge and Kegan Paul. 

8  Schauble, Leona. (1996). The development of scientific reasoning in knowledge-rich contexts. 

Developmental Psychology, 32(1), 102-119.  
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to talk about them, has been key to building our understanding of the world – not just in 

biology, but in chemistry where the development of the periodic table was totally dependent 

on establishing the elemental nature of the material world, and in physics for distinguishing 

concepts such as heat and temperature, mass and weight, and energy and power. Both field 

work and experimental exploration are vital means of establishing what exists as, until we 

agree on the ontic entities that exist, there can be no common language to reason about such 

entities.  

5.  Probabilistic Reasoning, which is the statistical analysis of regularities in populations, the 

identification of patterns, and the calculus of their probability. The determination of patterns 

is an essential feature of the sciences and the basis, for instance, of the science of 

epidemiology. For example, the link between skin cancer and sunshine was established by a 

data that showed a linear decrease in incidence of skin cancer per thousand members of the 

population with increasing latitude (Findlay, 1928). Likewise the current concern about the 

Zika virus emerges from studies suggesting correlation rather than any understanding of a 

causal mechanism. Scientists, such as Gauss and Poisson, are the individuals who have made 

major contributions to establishing the epistemic criteria used to reason about the existence 

of patterns, and a range of methods for describing variation and the chances of its occurrence. 

6. Historical-Based Evolutionary Reasoning, which is the construction of historical accounts of 

the derivation of the development of species, the Earth, the solar system, the universe, the 

elements and more. Attempts to explain the origins of the material world and its features are 

a major element of reasoning in the sciences. They rely on constructing theories about what 

might have happened in the past. Darwin’s ideas emerged from his detailed observation of 

the variations of patterns that exist in nature and asking how such differences could have 
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come to be. In astrophysics, evolutionary accounts have been developed by constructing 

mathematical models that would account for what we observe. Such theories have succeeded 

because t they have been the best possible inferences for what exists, and notably not because 

there has been any application of ‘the scientific method’. 

As Hacking (2012) argues, “such styles of reasoning do not answer to some other, higher, 

or deeper, standard of truth and reason than their own” (p. 605). These forms of reasoning exist 

because they have been, and still are, successful in answering the ontological, causal, and 

epistemic questions that are the focus of the sciences. They are good not because they detect the 

truth; rather, they are good because they are successful. And, because of their success, “they 

have become part of our standards for what it is to find out the truth” (p. 605, (Hacking, 2012).  

Importantly though, each of these forms of reasoning brings into being a distinct set of 

ontic, procedural, and epistemic entities that are required to perform their reasoning – examples 

of which are offered in Table 1. Procedural entities are used as cognitive tools which are 

essential to engaging in that style of reasoning, e.g., the notion of a variable which is central to 

experimental exploration, while epistemic knowledge is a knowledge, for instance, of the forms 

of argument used in science, or the nature of a scientific hypothesis.
9
  Both of these forms of 

knowledge are necessary for justifying how we know what we know – that is, how we reason in 

the sciences. Thus, the evolutionary account of human development introduces the ontic 

                                                

9  Cognitive tool are important constructs that are used to reason with. For instance, for Greek 

mathematics it is the diagram that exploits human visual cognitive resources. Likewise, physicists 

use ray diagrams to reason about the behavior of lenses, or free body diagrams to reason about 

the effects of forces. Chemists use molecular models to reason about the behavior of molecules 

while biologists use the construct of a gene to reason about the effects of breeding and 

inheritance.  
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concepts of natural selection, adaptation, and genes. Experimental exploration, which emerges in 

the 16
th
 Century, develops the procedural notion of a variable and the need for their identification 

and control. Greek Mathematics makes the case for the epistemic importance of deduction as a 

form of argument. Notably, each of these modes of thought is associated with a legendary hero –

Euclid and Pythagoras with Greek Mathematics, Galileo with the introduction of experiment and 

hypothetical modeling, Linnaeus and Mendelev with categorization and classification, Poisson 

and John Snow with statistical and correlational thinking, and Darwin and Wegner with 

evolutionary thinking. That it is possible to identify a name with the achievements of one style of 

reasoning is an indicator of both its distinctive nature and its significance. 

 

[Insert Table 1 about here] 

 

In the first column of Table 1 are the ontic entities that science has invented to reason 

with. Thus the Copernican model of the solar system requires planets to move in ‘orbits’; the 

Torricellian explanation of the barometer requires the existence of a ‘vacuum’; Pasteur’s model 

to explain the rotting of food requires the invention of ‘microbes’; Maxwell’s equations to 

explain the velocity of light introduces an ‘ether’. That there is something to be explained is first 

dependent on the categorization and classification of the variety of the material world – the 

fourth of Crombie’s styles of reasoning. Darwin’s work, for example, was totally dependent on 

the notion of a species introduced by Linnaeus, and Lyell’s historic 1815 map of the geology of 

Great Britain was dependent on the idea that there are distinct categories of rock that have 

different origins and different histories. The categorization of the world – that is, the ordering of 

variety by comparison and taxonomy – is essential to the advancement of the sciences. The 
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ability to then see patterns is dependent on the analysis and classification of regularities. Snow’s 

foundational epidemiological work on the causes of cholera typifies the fifth of Crombie’s styles 

of reasoning – probabilistic and statistical thinking. Demonstrating the validity of any given 

explanatory model may depend on deductive mathematical reasoning (style 1), arguments from 

data obtained by experimental observation (style 2), or inferential reasoning as to the most likely 

possibility, as in the case of Darwin’s argument for evolution, or Wegner’s argument for 

continental drift (style 6). 

The second column of Table 1 represents the procedural entities that support reasoning 

about these entities. Most familiar is the notion of dependent and independent variables and the 

control of variables strategy. However, the skilled experimenter also has a diverse knowledge of 

sources of error and techniques for their minimization and the statistical techniques for reducing 

the the possibility that any empirical finding occurring by chance. More recently such procedural 

knowledge has been elaborated as a set of ‘concepts of evidence’ (Gott, Duggan, & Roberts, 

2008) and it is a feature of the PISA framework for assessing scientific literacy (OECD, 2012).  

Arguments for any of the models are, in turn, dependent on epistemic criteria that are an 

intrinsic feature of any given style of reasoning. Thus probabilistic reasoning, of the form used to 

establish the existence of the Higgs Boson, uses, as a criterion of justified belief, the idea that the 

probability of the event observed at CERN being anything other than the Higgs Boson was so 

low as to be virtually impossible. Taxonomic reasoning rests on the application of criteria to 

demarcate one entity from another – for instance, the classification of species depends on the 

criterion that a species can be demarcated by how they reproduce. More recently, the field has 

adopted genetic criteria for its arguments. Experimental exploration is highly dependent on the 

notion of a variable and an epistemic belief that controlling all but the salient variable – an idea 
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often communicated in elementary science as a ‘fair test’ – can enable science to identify causal 

relationships. Mathematical reasoning is reliant on the epistemic belief that it is acceptable to 

represent physical quantities in idealized symbolic forms (e.g., frictionless planes, point masses) 

that can be used to make a deductive argument.  

Moreover, the framework of ‘styles of reasoning’ shows that a key epistemic element 

missing from the account of scientific reasoning offered by school science has been the role of 

explanatory models in science (Cartwright, 1983; Giere, Bickle, & Maudlin, 2006; Suppes, 

1960). Yet, the construction of models (style 3) is “a signature of much research in the sciences” 

(Nercessian, 2008), a standard part of its practice. Experimentation, similarly, is not just a matter 

of knowing how to get reliable data – which is a procedural issue – but also why reliability is 

important – which is an epistemic issue. To conduct an experiment, undoubtedly, it is essential to 

have some understanding of what a variable is, and which variables might be controlled. Why it 

is necessary to control variables, however, is an epistemic construct. Further arguments for the 

importance of epistemic knowledge are the findings of research (Reiner & Gilbert, 2000) that 

suggest that it also plays a crucial role in the production of new knowledge. Thus engaging in 

scientific reasoning requires a body of epistemic knowledge which needs to be taught explicitly 

to students – the third element of a knowledge of the sciences whose significance is justified by 

the perspective of styles of reasoning.  

What Crombie’s work also shows is that establishing the validity of any hypothesis may 

depend on a hypothetico-deductive argument from premises to conclusion, but it could also be an 

abductive argument that it is the best explanation, or an inductive argument about the patterns 

that exist in nature. Yet the simplistic model of scientific reasoning pervasive to most curricula 

would suggest that the sciences draw solely on hypothetico-deductive arguments captured by the 
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notion of ‘the scientific method’ (Bauer, 1992; Windschitl, Thompson, & Braaten, 2008). This 

‘myth’ does the sciences a disservice in two ways. First, the sciences are better characterized by 

their ontological, methodological, and epistemic diversity (Baird, Scerri, & McIntyre, 2006; 

Cartwright, 1983; Mayr, 2004) rather than their commonality – a point which has been made 

consistently by scholarship within the field of science education over the past two decades 

(Martins & Ryder, 2015; Rudolph, 2000; Van Dijk, 2014). Second, the idea that there is some 

singular algorithmic procedure responsible for the production of scientific knowledge 

undervalues the nature and diversity of creative thought that has revolutionized our 

understanding of the material world over the past 450 years sustaining  the misconception that 

there is a single form of reasoning unifying the sciences. 

Our view is that, over the past two decades, the field has been wrestling with how to 

incorporate epistemic knowledge within the science curriculum. The movement to teach more 

about the nature of science (Lederman, 1992, 2007; Matthews, 1994) can be seen as one such 

attempt. Coupled with empirical evidence suggesting that epistemic knowledge is perceived as a 

significant element of any science education (Osborne, Ratcliffe, Collins, Millar, & Duschl, 

2003), epistemic knowedge has become a more prominent feature of contemporary curricula. 

Indeed, the previous version of the English national curriculum (Qualifications and Curriculum 

Authority, 2007) included a specific component entitled ‘How Science Works’, while the 

framework for K-12 science education outlines eight epistemic practices which should be an 

essential element of the curriculum (National Research Council, 2012b) – though notably this 

document does not define what are the specific elements of either procedural or epistemic 

knowledge. In contrast, the PISA assessment framework for 2015 (OECD, 2012) does 

incorporate epistemic knowledge defining it as: a) a knowledge of the constructs and defining 
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features essential to the process of knowledge building in science; and b) the role of these 

constructs in justifying the knowledge produced by science.  

Notably, what all these attempts lack, however, is a coherent rationale for the 

incorporation of such elements other than the argument that such knowledge is essential to be an 

informed and participatory citizen.  What is missing is some broad picture that conveys not only 

something of the variety of the forms of reasoning of the sciences, but also, and above all, why 

its practice and development constitutes such an epistemic achievement.  While, in and of 

themselves, the practices in the NGSS, offer some insight into the epistemic activities conducted 

by scientists, they offer neither a big picture of the distinctive forms of reasoning in the sciences 

nor their outcomes – outcomes which have changed the way we think as a culture.  In what ways 

then, do ‘styles of reasoning’ offer an improvement? 

Why styles of reasoning?  

A focus on styles of reasoning offers three important advances for science education. 

First, it helps to undermine the hegemony of the scientific method (Bauer, 1992; Windschitl et 

al., 2008) for ‘the scientific method’ draws on only two of the six forms of reasoning used in 

science – that is style 3 (hypothetical modeling) and style 2 (experimental exploration). As a 

corollary, students are offered an impoverished account of scientific thinking. Second, as we 

have shown,  it demonstrates unequivocally that scientific reasoning is dependent, not on one 

form of knowledge but three – all of which need to be taught explicitly. Finally, it offers a better 

rationale for educating all students in science rather than the habitual and dominant economic 

imperative or the argument based in education for citizenship – an argument to which we now 

attend in some detail.  



STYLES OF SCIENTIFIC REASONING   

  

18 

To start, the economic argument is highly flawed because there is no universal shortage 

of individuals with STEM qualifications (Salzman, Kuehn, & Lowell, 2013; Xie & Killewald, 

2012). Moreover, it is a highly unconvincing argument for the overwhelming majority of 

students who have no aspiration to pursue the study of science or a STEM career. Furthermore, 

no other curriculum subject has such a propaedeutic function as its primary goal.  Why then 

should science be saddled with such a responsibility?  However, in the absence of strong 

contending arguments, the economic imperative has filled a vacuum to become the dominant 

argument for the value of science education.
10

 The argument that a knowledge of the sciences is 

necessary to be an effective citizen, in contrast, does have universal and utilitarian validity. 

However, at the personal level of decision making it must compete with arguments that other 

competencies are more valuable for citizenship, such as financial literacy, computer literacy or 

health education. In short, what is it about science that makes it more deserving than other forms 

of knowledge, such that it not only earns itself a place at the curriculum table, but one alongside 

mathematics and a first language? Rudolph and Horibe (2015) make a stronger argument that 

science education should develop a “second-order ability” to “locate and use expert knowledge 

as a means to public ends” (p. 12) for the purpose of what they call ‘civic engagement’ – both to 

evaluate the application of scientific knowledge and to consider what forms of knowledge it 

might be valuable to produce.  This is fundamentally a pragmatic argument – that such 

knowledge is necessary to be a responsible, participating member of a democratic society.   As 

such, it is ‘a programmatic concept’ (Norris, Phillips and Burns, 2014) defined by elements that 

                                                

10  For example, the recently published Royal Society document Vision for Science and Mathematics 

Education (The Royal Society, 2014) singularly fails to make any argument for science education 

other than its economic value. 
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embody a valued direction or a desired goal – in this case that the outcome of science education 

should enable individuals to engage in civic considerations of both the application and the 

production of scientific knowledge.  While many, including the authors of this paper, find such 

arguments convincing, they are contentious in two ways.  First, others may not agree about the 

goals.  For instance, the modest changes in the UK curriculum to incorporate an element on 

‘How Science Works’ in 2000 met with considerable opposition (Perks, 2006).  Second, even if 

there is agreement about the goals, there may be disagreement about the means by which they 

are to be achieved.  Indeed, despite numerous attempts to argue for the importance of such 

programmatic goals e.g., (Aikenhead, 1994; Fuller, 1997; Millar & Osborne, 1998; Ziman, 

1994), and strong empirical evidence that such goals require a body of knowledge and 

understanding that differs significantly from the content of most school science curricula (Ryder, 

2001), no coherent consensus has emerged about the means to achieve such an end. 

Missing in all this discussion of the rationales for science education is the cultural 

argument that the sciences offer some of the “best that is worth knowing” (Spencer, 1884). This 

is an argument that: 

“the distinguishing feature of modern Western societies is science and technology. Science 

and technology are the most significant determinants in our culture. In order to decode our 

culture and enrich our participation - this includes protest and rejection - an 

appreciation/understanding of science is desirable” (p. 339). Cossons (1993)  

It is this form of argument that is used to justify all other curriculum subjects that are 

seen as distinct and valued forms of knowledge (Bereiter, 2002; Committee on the Objectives of 

a General Education in a Free Society, 1945; Hirst, 1965; Hirst & Peters, 1970) – and it is only 

this argument that is sufficiently sound and defensible to justify teaching science to all children. 

Why? Because, unlike the citizenship argument, the cultural argument has a much less 
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contentious programmatic objective as, while the choice of what might be taught is a reflection 

of the values of the society, such choices do not embody a program of action. Rather, the theory 

of plate tectonics, the law of conservation of energy, or adaption of species to their environment 

simply aims to capture the best description of the material world we can offer. As expressed by 

the Havard Committee “our culture depends in part on an inherited view of man and society 

which it is the function, though not the only function, of education to pass on
11

…To  study the 

past is immensely to enrich the meaning of the present and at the same time to clarify it by the 

simplification of the writings and the issues which have been winnowed from history.” (p69, 

Committee on the Objectives of a General Education in a Free Society, 1945).  Or, as stated by 

Hector, a leading character in Bennet’s play The History Boys (Bennett, 2004), the function of 

education is to “Pass the parcel. That's sometimes all you can do. Take it, feel it, and pass it on. 

Not for me, not for you, but for someone, somewhere, one day. Pass it on, boys.”   

The question, of course, is what is that the sciences offer that is so valuable that is worth 

passing on? What does it mean to ‘appreciate’ science as a form of thought and a ‘way of 

knowing’?  The sciences themselves have singularly failed to develop such an argument seeing it 

as a task for the popularisers of science and often treating such work with disdain. And, while 

many of these have written notable accounts of the specific sciences e.g., Stephen Jay Gould, 

Asimov, Carl Sagan, Richard Dawkins, there is no overall, useable larger picture.  Yet, if school 

science has to leave students with more than a miscellany of facts (Cohen, 1952) and a sense that 

the production of more knowledge simply requires the application of a standardized algorithmic 

method, there has to be an argument for its cultural significance which is more substantive than 

the argument made by Cossons cited above.    

                                                

11 Emphasis added. 
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This, we contend, is what ‘style of reasoning’ offers.  For, as Bereiter argues, a liberal 

education (Bereiter, 2002) is an enculturation into a world of ideas, learning how to use and 

reason with those ideas enables the individual to participate in the discourse of modern society, 

and thus intiates “ the young into a culture which transcends the particularities of their own 

social and ethnic backgrounds” (p. 12), or, as put by Hirst (1965),  “to learn to see, to experience 

the world in a way otherwise unknown, and thereby come to have mind in a fuller sense" (p. 

125). If so, we are forced to ask what are the features of scientific thought that makes it so 

valuable? What are the scientific ideas that have transformed our understanding of the world? 

Attempts to define the distinguishing elements of science in terms of a set of transcedent features 

(Lederman, 2007; Osborne et al., 2003) have failed to gain any traction within science education 

(Duschl & Grandy, 2013) – a fate which we would suggest is likely to befall the cross-cutting 

concepts of the Framework for K-12 Science Education (National Research Council, 2012b).
12

 

Where then is the coherent vision of the cultural contribution that makes science an 

unquestionable element of the education of all children from K-12? To argue that the sciences 

are an essential foundation of a liberal education, the form of knowledge has to be specified in 

ways that are more than a collecton of information e.g, (Hirsch, 1987). Instead, there has to be a 

framework or narrative which enables students to grasp some understanding of the complex 

conceptual schemes that the sciences have achieved, and the different types of reasoning they 

afford (Hirst, 1965). It is this conception that students need to acquire and to make part of 

themselves, and moreover, which is needed to engage with, and evaluate, the science they 

                                                

12  As we shall show, this is because they focus on only one element of science – its epistemic 

practices and do not offer a coherent conceptual vision of all the forms of knowledge required 

by the sciences. 
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encounter in their daily lives. For instance, many of the findings of the sciences are framed in 

terms of probabilities – from the likelihood that it will rain to an assessment of the risk of dying 

from surgery for a given operation. Thus probabilistic reasoning (style 5) needs to be a core 

feature of any science curriculum rather than a marginal or, more commonly, a missing feature. 

However, both the sciences and scientists seem to suffer from collective amnesia when it 

comes to the magnitude of their achievements. Science, for instance, has transformed our 

understanding of who we are, what we are, and where we are. No longer is the planet on which 

we reside the center of the universe but a rather ordinary, dull object orbiting a sun, which is 

itself a star and part of a collection of 100,000 other stars which form just one of billions of 

galaxies. Moreover, other than the hydrogen and helium in our bodies, most of the elements from 

which we are constituted were synthesized in some star billions of years ago. Perhaps even more 

astounding is the idea that every cell in our bodies carries a chemically coded message about 

how to reproduce each of us. How then has such knowledge been achieved? By engaging in 

specific ‘styles of reasoning’ – a perspective which provides both the sciences and school 

science with what has long been missing – a vision of the sciences’ achievements and the 

distinctive nature of its thought. In short a cultural argument for the value of school science.  

Some Further Insights provided by “Styles of Reasoning”  

In examining how the major ideas about scientific reasoning have developed, the 

impression we have often gained is that of the Indian fable of the blind men studying the 

elephant. Each new approach has pointed towards one or more of the features of scientific 

reasoning, but never have the components been drawn together to provide a complete and 

coherent picture. It is impossible in this paper to review or discuss all the attempts that have been 
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made to address the construct of scientific reasoning and its implications for teaching science. 

Rather, to illustrate the partial nature of any one perspective, we have selected one strand of 

work that has attempted to address the challenge – the scholarship undertaken by psychologists. 

Drawing on the notion of ‘styles of reasoning’ we show the limitations of viewing a cognitive 

process through one particular lens. We then turn to examine the notion of scientific practices 

embodied in the recent K-12 Framework for Science Education (NRC, 2012). In doing so, our 

goal is to show how, seen from the perspective of styles of reasoning, the nature of the 

weaknesses of such approaches becomes more evident. 

The Psychological Approach to Scientific Reasoning: A Partial Perpective 

Many of the attempts to define scientific reasoning have presented it as a knowledge-

independent skill, or, as expressed by Inhelder and Piaget (1958), a facility to be seen as 

“liberated from particular contexts” (p. 331). Another version of this is seen among 

psychologists who commonly take a ‘nothing-special view’ (Simon, 1966) arguing that general 

reasoning abilities can account for the main characteristics of scientific reasoning, and that these 

are more important as they are transferable. While most psychologists today admit that 

reasoning is knowledge-dependent (Willingham, 2008; Zimmerman, 2007), many have 

continued to study domain-general reasoning processes in knowledge-lean tasks.  

For instance, a major contribution has been made by Klahr and Dunbar (1988) who have 

argued, from their detailed studies, that scientists work in dual spaces of hypothesis generation 

and experimental investigation. This conception was later extended to include a third space of 

evidence evaluation (Klahr & Carver, 1995). Klahr and Carver saw that these three spaces have 

both a domain-general and a domain-specific focus – a conception which is summarized in Table 

2. 
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[Insert Table 2 about here] 

 

Klahr’s program of research has been dominated by a focus on students’ abilities to 

engage in hypothesis generation, experimental design, and evidence evaluation in the context of 

experimental inquiry. Along with others, a particular focus has been the ability to control 

variables (Klahr & Li, 2005; Klahr, Zimmerman, & Jirout, 2011; Kuhn, 1991; Shayer, Wylam, 

Adey, & Kuchemann, 1979). Yet this particular form of reasoning is only one of the six styles of 

reasoning common in the sciences. In addition, in two extensive reviews of the nature of 

scientific reasoning (Zimmerman, 2000, 2007), Zimmerman notably excludes the study of 

hypothesis generation (A and D) from her reviews, suggesting that this cognitive operation is of 

less interest because of its domain-specific character when the reality is that it is core feature of 

science! Indeed, many would argue that it is the defining activity of science (Crombie, 1994; 

Lehrer & Schauble, 2006; Nercessian, 2008; Oakeshott, 1933). Instead, both Zimmerman and 

Klahr and Li (2005) emphasize the importance of domain-general approaches – although 

Zimmerman does acknowledge that “understanding the development of scientific thinking would 

be incomplete without studies in which participants take part in all phases of scientific 

discovery” (p. 192, Zimmerman, 2007). In so doing, she has avoided the issue of identifying 

what are the requisite knowledge bases for scientific reasoning.  

The contrary argument for the importance of domain-specific knowledge, made by 

Perkins and Salomon (1989), is that “general heuristics that fail to make contact with a rich 

domain-specific knowledge base are weak,” and that “a domain-specific knowledge base without 

general heuristics…is brittle” (p. 24). A similar argument was made by Koslowski (1996) in her 
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critique of Kuhn’s (1991) studies of individuals’ ability to engage in scientific reasoning. 

Koslowski argued that Kuhn had presented abstract puzzles that operationally defined causation 

in terms of co-variation and had ignored the role of theoretical constructs. As she elegantly 

stated: 

…to study scientific reasoning by asking subjects to evaluate co-variation evidence 

while ignoring what they already know about theory or mechanism is analogous to 

studying verbal memory by studying memory for meaningless nonsense syllables in order 

to control for the effects of meaning....Similarly, studying scientific reasoning by 

ignoring what we know about theory or mechanism might tell us something about the 

subject's ability to follow experimental instructions but not about scientific reasoning13. (p. 

39) 

In contrast, the ‘styles of reasoning’ framework offers a means of identifying both the 

distinctive forms of reasoning and the knowledge required for their undertaking. In so doing it 

offers a vision of the diversity of cognitive processes that science has developed to achieve its 

goals. Empirical support for the importance of domain-specific knowledge is provided by 

Schunn and Anderson (1999) who show how, lacking domain-specific knowledge, their 

undergraduate subjects “did not use theories in designing their experiments” and “did not relate 

their results to their experiments” (p. 368) concluding that what the scientist has acquired “is not 

just a matter of general reasoning ability.” Within domain-specific contexts, a considerable body 

of work has also been undertaken on the processes of evidence evaluation (Chinn & Brewer, 

1993; Howe, Tolmie, Duchak-Tanner, & Rattray, 2000; Koslowski, 1996). Likewise, Passmore 

                                                

13 Emphasis added 
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and Stewart (2002) have argued that “scientific practice is discipline specific” (p. 187), as have 

Sandoval and Morrison who conclude from their analysis of student explanations of Galapagos 

data “that epistemic and conceptual understanding are tightly interrelated” (p. 48).  

Undoubtedly, in the past six decades there has been a development in our understanding 

of what types of knowledge are required for reasoning in any domain – for instance in their 

revised version of Bloom’s taxonomy, Anderson and Krathwohl (2001) use not one but four 

categories to describe their knowledge dimension: factual knowledge, conceptual knowledge, 

procedural knowledge, and metacognitive knowledge. Likewise, Li and Shavelson (2001) have 

used a similar framework splitting knowledge into declarative knowledge (knowing what), 

procedural knowledge (knowing how), schematic knowledge (knowing why), and strategic 

knowledge (knowing when, where, and how knowledge applies) – a perspective that was 

influential in developing the NAEP 2009 framework for assessment in science. However, to date, 

none of these frameworks have offered a vision of how all of these three features of domain-

specific knowledge (content, procedural, and epistemic) are central to the performance and 

teaching of scientific reasoning.  In contrast, ‘styles’ do. 

Finally, we would contend that defining scientific reasoning as a domain-general 

cognitive skill is unsustainable. First, it misrepresents the nature of scientific reasoning. While 

individuals in everyday situations may use reasoning akin to that of scientists, such forms of 

reasoning cannot be used to define what is distinct about scientific reasoning. Second, arguments 

for the value of teaching domain-general reasoning within science are unsustainable as general 

reasoning does not have to be taught in science. Other school subjects may be better at teaching 

it. For example, moral reasoning could be taught in the humanities, deduction in mathematics, 

and problem-solving skills in technology.  
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An examination of the body of research conducted by psychologists, however, would 

suggest that they study either “hypothesizing”, “experimentation” or “evidence evaluation” 

separately and that their attempt to present a complete and coherent construct for scientific 

reasoning have avoided the issue of identifying the nature of the required domain-specfic 

knowledge.  Hence the debate over its nature remains unresolved (Tricot and Sweller, 2014, 

Fischer et al, 2014). While many of these features identitied have been ‘right’ in their own 

limited way, an overall picture of the diversity of reasoning and its knowledge-dependent nature, 

such as that offered by ‘styles of reasoning’, has been missing.  

Teaching Science as a Set of Practices 

What insights then can ‘styles of reasoning’ offer about the conception of the sciences 

advanced in the Framework for K-12 Science Education (NRC, 2012)? The model advanced 

within this document is that the sciences should be taught as a set of eight practices that are 

considered to be a distinctive feature of the sciences. The turn to practice has emerged from the 

social studies of the sciences, which has sought to portray the sciences as an activity undertaken 

by a community of practitioners who engage in a range of specific practices such as the asking of 

questions, developing models, analyzing and interpreting data, and engaging in argument from 

evidence, enable the justification of knowledge. As all of these practices require the use of 

scientific reasoning per se, such an approach clearly demands a greater emphasis on reasoning 

within the teaching and learning of science. In addition the argument in the Framework for K-12 

Science Education that the central project of science is the construction of theories and models, 

rather than empirical investigation, communicates an important and long neglected message that 
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the crowning glory of the sciences are theories (Harré, 1984) and that science is, first and 

foremost, a set of ideas about the material world (Oakeshott, 1933).  

The central model outlined in the Framework – see Fig 1 below – draws on a synthesis of 

empirical results emerging from the work of the psychologists Klahr and Dunbar (1988) and the 

philosopher Giere (1984; 2006). This model defines the activities of science in terms of three 

spheres of activity – one devoted to conducting investigations, one to developing explanations, 

and one to evaluating these ideas by comparing them with the empirical evidence. 

 

 

Figure 1. Model of science presented in the framework for science education (NRC, 2012, p. 45). 

There is much to commend in this model. For instance, evidence would suggest that these 

spheres of activity are not self-evident as studies of young children reveal that students often see 

the sciences differently (Driver, Leach, Millar, & Scott, 1996; Klahr & Carver, 1995; Millar, 

Lubben, Gott, & Duggan, 1995; Schauble, Klopfer, & Raghavan, 1991). Schauble et al. (1991), 

for instance, have identified that much investigatory work is conceptualized by students in terms 

of an ‘engineering frame’, in which the children do not set out to test ideas, but instead, to test a 
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design (i.e., change variables to achieve ‘best’ or optimal conditions). Again, another study 

(Kind, Kind, Hofstein and Wilson, 2011) has demonstrated that students recognize the activity 

required for hypothesizing and experimentation more readily than that required for the evaluation 

of evidence. Furthermore, the Framework does acknowledge the centrality of critique 

(Henderson, Osborne, MacPherson, & Wild, 2015) – something which no other K-12 science 

curriculum of which we are aware manages to do. 

However, drawing on the concept of ‘styles of reasoning’ we see three weaknesses in the 

model of science offered by the Framework. First, its emphasis on engaging students in scientific 

practice places all of the stress on the activity itself and not its goals and purposes. For instance, 

one major reason for asking students to ‘analyze and interpret data’ is to develop an 

understanding that all data has a degree of uncertainty associated with its measurement, that 

there are standard ways of reducing the uncertainty, and that there may be competing 

interpretations of any given data set. Essentially that engaging in any practice has specific 

procedural and epistemic knowledge as its learning outcomes – outcomes which the framework 

notably fails to specify. Second, the emphasis on practice itself does not recognize that there is a 

set of distinct ‘styles of reasoning’ in science. Yes, scientists do engage in argument from 

evidence but the forms of argument may be deductive, inductive, or abductive, and, moreover, 

the ontological and procedural entities and epistemic criteria used are dependent on the specific 

domain of interest, and the relevant style of reasoning as shown by Table 1.  

A recognition that there are six distinct styles of reasoning in science would have enabled 

the Framework to make a more explicit statement about the diversity of reasoning in the 

sciences, its cognitive tools, and all of the forms of knowledge that are intrinsic to reasoning in 

the disparate sciences rather than just content knowledge. Seen in this light, it is strange that the 
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Framework makes an extensive statement about the disciplinary core ideas that should be the 

goal of learning science K-12 – that is the content knowledge – but only minimal statements 

about the other forms of knowledge which are so core to the practice of science. Moreover, the 

sciences are not a human activity bound together by a universal set of practices or a set of cross-

cutting themes, but rather, are a distinctive and diverse mode of thought defined by a set of 

‘styles of reasoning’.  

Third, we ask whether sustained engagement in scientific inquiry and the practices of the 

sciences can develop the overview of the sciences that the framework of ‘styles of reasoning’ 

suggest we should be seeking to attain – something that Duschl and Grandy (2013) believe it can 

attain?  Our view is that, while illuminating, practices focus on the actions that scientists take 

within the moment or short term.  What is needed is a ‘bigger picture’ of what this collection of 

activities achieves in the long term and its goals – that is what are the significant outcomes of 

engaging in scientific practices .  Currently, only ‘styles of reasoning’ offers such an overview of 

the nature and diversity of scientific rationality (Kusch, 2010). 

Finally, we must point to the fact that there is little evidence that professional scientists 

develop a deep understanding of the nature science by engaging in its practice. Imre Lakatos, 

once memorably commented that “most scientists tend to understand little more about science 

than fish do about hydrodynamics” (Lakatos & Musgrave, 1974)(p. 148). This would suggest 

that practice itself does not develop the overview of the sciences or the epistemic and procedural 

knowledge that should be the outcome of any education in the sciences.  

In contrast to the partial or, more often, absent conception of the nature of scientific 

reasoning, what styles of reasoning does offer is a more coherent and comprehensive vision of its 

nature and the knowledge bases required – in short, a comprehensive overview of the 
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contribution of European science to the intellectual capital and cognitive resources of 

contemporary society. Only when armed with this kind of vision and understanding, we contend, 

can the teacher act as an effective guide to the scientific landscape and its cultural achievement.  

Implications for Science Education 

What then are the implications for science education? First, we see it as essential that a 

primary goal of science education should be to introduce students to all of the six styles of 

reasoning, some of the ontic, procedural, and epistemic entities they use, and the scientific 

practices they deploy. More importantly, ‘styles of reasoning’ offers a framework for the choice 

of curriculum topics – as any coherent curriculum should insure that students experience each of 

the major types of reasoning that characterize the sciences. Essentially that scientists need to 

establish what entities exist by engaging in categorization and classification (style 4) to answer 

the primary ontological question of what exists. Then – to answer causal questions about the 

nature of the world – they construct hypothetical models of the world (style 3). To test their 

models and to establish what exists they engage in experimental exploration (style 2). Some of 

their models are best represented mathematically, as is much of the data they collect from 

experimentation (style 1). Some of their observations of the world lead to the identification of 

patterns and, by applying probabilistic thinking, they can predict with a degree of 

certainty/uncertainty what might happen (style 5). And finally, to explain how the world came to 

be as it is, they have to make abductive arguments about what might have happened in the past 

based on observations and/or simulations (style 6).  Each of these styles of reasoning illuminates 

how the sciences answers its epistemic question of how we know.  Any education in the sciences 

that omits one or more of these styles, then, would only offer a partial account of the cultural 
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achievements of the sciences. And, given that these styles of reasoning represent the major 

contribution of science to contemporary culture, they offer a framework and rationale for the 

choice and excision of content. 

Moreover, the singular emphasis on what we know without some insights into the 

methods that have led to the justification for the belief in these entities and concepts – that is 

procedural knowledge – or the constructs that are used to justify their existence and the way in 

which they are used (epistemic knowledge) – is akin to offering students a description of a great 

cathedral without any understanding of how it came to be built, or the creative achievement it 

represents. And, without any understanding of the procedural or epistemic elements of scientific 

reasoning, students will emerge from their formal education lacking a key aspect of the 

knowledge required to evaluate scientific arguments (Ryder, 2001). 

Thus, the first implication is that there needs to be a rebalancing of the curriculum. 

Mathematical and computational thinking cannot be excised. Likewise the development of 

analogical models and theories that are central to science has to be given the pre-eminence that a 

cognitive history of the sciences suggests it occupies. Moreover, the omission of any treatment of 

evolutionary accounts of the origins of species, stars, the universe, and more would be a failure 

to introduce young people to one of the major paradigms of scientific thought – in the case of 

evolution itself a paradigm of which Dobhansky famously noted that “nothing in biology mades 

sense except in the light of evolution” (Dobhansky, 1973),  and a paradigm that has become 

influential in the psychological and social sciences (Barkow, Cosmides, & Tooby, 1992; Rose & 

Rose, 2010). 

The role of taxonomy and classification in the development of science provides an 

organizing framework where disparate piece of the science curriculum – classification of life 
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forms in biology, the categorization of rocks in the earth sciences (the foundations of geology), 

the identification and separation of elements (essential to the development of the periodic table), 

and the differentiation of heat and temperature can all be seen as a mode of thought which is 

essential for progress in science. The identification of patterns – the work of the epidemiologist – 

is also fundamental to establishing potential causal relationships. In school science these can be 

studied through historical examples, or alternatively they can be modeled using exercises that 

explore relationships between eye color and hair color, reaction time and gender, or height and 

foot size. Likewise, the emergence of probabilistic thinking in the 17
th
 Century (Hacking, 1984) 

has become a style of reasoning which is fundamental to science (Fine, Goldacre, & Haines, 

2014). As a style of reasoning it can be exemplified through the collection of data sets that 

produce Gaussian distributions such as the variation in the heights of a set of students of the 

same age, the use of Punnett Squares to predict the outcomes of monohybrid and dihybrid 

crosses, and, at higher levels, statistical and quantum mechanics. 

A major focus of science is producing an answer to the causal question of why the world 

behaves as it does requiring ‘the hypothetical construction of analogical models’ and a mode of 

thinking that is pervasive to science. Students, for instance, are introduced to the physical models 

of the human body, they construct physical models of cells, they are asked to use the particle 

model of matter to explain phenomena such as condensation and evaporation, the phenomena of 

diffraction and refraction are explained using a wave model of light, the atom is represented by 

the Bohr model as a kind of mini solar system, and molecular models of chemical structures are 

used to explain ionic and covalent bonding, the properties of materials, and the nature of 

chemical reactions. Yet, despite the significance of modeling to the scientific enterprise as a style 
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of reasoning, it is rarely discussed explicitly within science education (Justi & Gilbert, 2002; 

Schwarz & White, 2005). 

The second implication is that an emphasis on styles of reasoning offers school science a 

rationale for transcending the dominance of content knowledge in the curriculum, for as long as 

content knowledge is seen as the sole organizing framework for the determination of the 

curriculum, school science will continue to struggle with an overloaded curriculum. Moreover, 

the ever-expanding body of scientific knowledge exerts more and more pressure to squeeze ever 

more concepts into a finite and limited time such that the curriculum runs the risk of becoming a 

mile wide and only microns deep.
14

 In contrast, a curriculum which saw its primary goal as a 

means of introducing students to the six major styles of reasoning in science could simply limit 

itself to a set of key examples which have established the success of scientific thought. 

Arguments for any specific aspect of scientific knowledge would have to be made not in terms of 

its importance to physics, biology, or the earth sciences, but instead on why it was key to 

illuminating and exploring one of the major modes of scientific reasoning.  

Third, students need to see not only how such modes of thought have been successful but 

also to experience and practice their use to: a) understand their value and utility for the 

production of reliable knowledge; b) to develop some basic competency in their use; and c) to 

appreciate their intellectual and cultural significance. In a society that seeks to develop students’ 

ability to reason critically, any understanding of styles and modes of reasoning is not acquired en 

passant. Rather it is acquired through systematic opportunities to engage in some of the key 

                                                

14  The superficial scratching of the scientific landscape is captured by the common use of the 

argument that there is a need to ‘cover’ the curriculum. A ‘cover’ is something which rest on the 

surface and does not permit the investigation of the underlying structure.  
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epistemic practices of the sciences, to use the entities on which such reasoning draws, and to 

engage in meta-level reflection on the process. Practice, of itself, has demonstrated “little 

effectiveness in developing any real understanding of how science works within and across fields 

and how that knowledge might relate to civic goals” (p1073)(Linn, Palmer, Baranger, Gerard, & 

Stone, 2015; Rudolph, 2014). Hence, the primary function of asking students to engage in the 

activity of scientific reasoning should be to build a deeper understanding of how such knowledge 

came to be and the intellectual achievement it represents.  This in turn requires a well-defined 

conception of the learning outcomes that engaging in practice might seek to achieve – that is the 

procedural knowledge essential for practice, the epistemic criteria by which new knowledge 

might be judged, and the forms of reasoning used in science – all of which are conjoint with 

much of the knowledge needed for civic engagement (Ryder, 2000) and all of which emerge 

from a perspective that draws on ‘styles of reasoning’.  

Fourth, in the development of our current scientific understanding of the material world, 

critique has played an essential role, for instance, in identifying why – Ptolemy’s geocentric 

universe, Lamarkianism, the ether, cold fusion, phlogiston, spontaneous generation, and many 

other ideas were ultimately flawed. As Allchin (2012) has cogently argued, “students also need 

to learn how science can go wrong” (p. 905, emphasis in original) and that establishing error is 

scientific work that can also help to deepen student understanding. Critique and argument are, 

therefore, central to learning science and there can be no attempt to teach students how to reason 

in science without providing them opportunities to review and evaluate alternative interpretations 

of data sets, experimental designs, explanatory models, or causal explanations – features which 

are notable by their absence from many, if not most, science curricula (Henderson et al., 2015). 
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Ultimately, the reader might ask why this emphasis on teaching scientific reasoning and 

its conceptualization matters? Our response is twofold. First, leaving students with the 

overwhelming impression that science is a body of unequivocal and uncontested knowledge that 

offers no space for intellectual engagement or human creativity does both the sciences and its 

students a disservice. It does the sciences a disservice by presenting them as a ‘final form’ 

(Duschl, 1990) product without any insights into the processes that led to their attainment; and it 

does students a disservice by offering them an educational experience dominated by the lower 

order cognitive challenges of recall, comprehension, and application. In contrast, recent research 

suggests that students who are challenged in their classes are more likely to feel confident, 

successful, and happy during their science classes as well as in other academic classes 

(Schneider et al., 2015). By exploring how reasoning in science is central to its practice it will be 

possible to offer a means of illuminating the intellectual creativity required to do science, and to 

cultivate the critical disposition and distaste for easy answers that is the hallmark of the scientific 

thinker. 

Our argument has been that the failure to place scientific reasoning at the center of the 

science curriculum can be attributed to the lack of clarity of its role and function in learning 

science. In short, the absence of a big picture of what it might be. To borrow from Thomas 

Kuhn’s notion of paradigms within a discipline, our limited portrayal of some of the confusion 

about the teaching of scientific reasoning would suggest that as a field we have been working in 

what Kuhn calls the period of pre-science, the period in which there is a clearly a phenomenon of 

interest, worthy of study, but no coherence or agreement about its theoretical framing within the 

community. Present knowledge is now such that the time has come, we think, for the 

establishment of a period that is more akin to normal science where the science education 
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community can coalesce around a more unified vision of the disparate nature of scientific 

reasoning, its role and function within any science education, and the knowledge bases required. 

To the question ‘which vision?’, the contention of this paper is that a focus on ‘styles of 

reasoning’ offers a good answer – in short a way out of the sea of confusion that we have 

observed looking backwards. For those who do not agree with our answer, the challenge is to 

develop a better and alternate answer. For only then, can we offer students a less-distorted 

account of the scientific enterprise and the cultural achievement it represents.  
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