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Abstract 38 

Aim: Test hypotheses that present biodiversity and endemic species richness are related to climatic 39 

stability and/or biome persistence. 40 

Location: Africa south of 15° S. 41 

Methods: Seventy eight HadCM3 general circulation model palaeoclimate experiments spanning the last 42 

140,000 years, plus a pre-industrial experiment, were used to calculate measures of climatic variability for 43 

0·5° grid cells. Models were fitted relating distributions of the nine biomes of South Africa, Lesotho and 44 

Swaziland to present climate. These models were used to simulate potential past biome distribution and 45 

extent for the 78 palaeoclimate experiments, and three measures of biome persistence. Climatic 46 

response surfaces were fitted for 690 bird species regularly breeding in the region and used to simulate 47 

present species richness for cells of the 0·5° grid. Species richness was evaluated for residents, mobile 48 

species (nomadic or partially/altitudinally migrant within the region), and intra-African migrants, and also 49 

separately for endemic/near-endemic (hereafter ‘endemic’) species as a whole and those associated with 50 

each biome. Our hypotheses were tested by analysing correlations between species richness and climatic 51 

variability or biome persistence. 52 

Results: The magnitude of climatic variability showed clear spatial patterns. Marked changes in biome 53 

distributions and extents were projected, although limited areas of persistence were projected for some 54 

biomes. Overall species richness was not correlated with climatic variability, although richness of mobile 55 

species showed a weak negative correlation. Endemic species richness was significantly negatively 56 

correlated with climatic variability. Strongest correlations, however, were positive correlations between 57 

biome persistence and richness of endemics associated with individual biomes. 58 

Main Conclusions: Low climatic variability, and especially a degree of stability enabling biome 59 

persistence, is strongly correlated with species richness of birds endemic to southern Africa. This 60 

probably principally reflects reduced extinction risk for these species where the biome to which they are 61 

adapted persisted. 62 

Keywords: atmosphere–ocean general circulation model; biome persistence; birds; Cape Floristic 63 

Region; climatic stability; Heinrich Events; last glacial–interglacial cycle; species richness. 64 
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INTRODUCTION 65 

Global climatic conditions varied substantially during the late Quaternary, extended glacial and short 66 

interglacial stages alternating during the last 800–1000 kyr (EPICA community members, 2004). The last 67 

140 kyr spans the final millennia of the penultimate glacial, last interglacial, last glacial and post-glacial 68 

(Holocene). Climatic conditions globally were mostly markedly colder than the recent past, although 69 

somewhat warmer for part of the last interglacial and to a lesser extent the early Holocene. The last 70 

glacial stage also had large millennial climatic fluctuations (Bond et al., 1997; Wolff et al., 2010). 71 

Palaeoecological evidence shows that species responded to these climatic changes mainly by changing 72 

their distribution and/or abundance at regional to continental scales (McGlone, 1988; Huntley & Webb, 73 

1989; Graham & Grimm, 1990; Huntley, 1991; Markgraf, 1993; Markgraf & McGlone, 2005; Marchant et al., 74 

2009). Many species’ populations were at times severely reduced as species were extirpated from 75 

previously occupied areas, not only in glaciated North America and Europe (Ehlers & Gibbard, 2004), but 76 

wherever climatic changes made conditions unsuitable for species’ persistence. These extirpations often 77 

markedly reduced the extent and/or spatial continuity of species’ distributions, with consequent population 78 

isolation and overall population decreases. In turn, population bottlenecks resulted in loss of genetic 79 

diversity (MacPhee et al., 2005; Campos et al., 2010), probably contributing to extinction of some species, 80 

whilst increased isolation of sub-populations led to genetic differentiation (Hewitt, 1996, 2001) and probably 81 

speciation. 82 

Southern Africa (10 – 35°E, 15 – 40°S; Fig. 1) includes the Greater Cape Floristic Region (Allsopp et al., 83 

2014), an area of globally high diversity and endemicity, especially amongst higher plants but also other 84 

taxa, including birds (Colville et al., 2014). Even in such unglaciated or minimally glaciated regions 85 

(Boelhouwers & Meiklejohn, 2002; Mills et al., 2012), climatic conditions varied substantially over the last 86 

glacial–interglacial cycle (Meadows & Baxter, 1999; Partridge et al., 1999; Chase & Meadows, 2007).  87 

However, such areas might have high biodiversity because late-Quaternary climatic changes were less 88 

than elsewhere, leading to greater persistence of species (Dynesius & Jansson, 2000). Testing this 89 

hypothesis requires quantification of the magnitude of late-Quaternary climatic changes and of their 90 

relationships with present diversity patterns. Given that species were more likely to be extirpated from 91 

more changeable regions, we expect present biodiversity patterns, especially endemic species richness, to 92 

reflect patterns in the magnitude of past climatic changes (Huntley et al., 2014). Further, we expect this to 93 
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be more pronounced for species associated with particular biomes, especially biomes that experienced 94 

marked late-Quaternary changes in location and/or extent. 95 

We aim to test two related hypotheses: 96 

1. That present biodiversity, especially endemic species richness, is greater where the late-Quaternary 97 

climate was less variable. 98 

2. That species richness, especially of biome-associated endemics, is greatest where late-Quaternary 99 

climate, although variable, allowed persistence of that biome. 100 

MATERIALS AND METHODS 101 

Study area 102 

The overall area examined, referred to below as southern Africa, is the land area between 15°S and 40°S 103 

and between 10°E and 35°E (Fig. 1). Climatic variability is assessed for this entire region, and model 104 

projections of past biome extents and of avian species richness are also made for the entire region. The 105 

data used to fit models relating biomes to climate extend over only South Africa, Lesotho and Swaziland 106 

(Figure S1 in Appendix S1), whilst the data used to fit models relating bird species’ reporting rates to 107 

climate extend over these countries and also over Namibia, Botswana and Zimbabwe. 108 

Palaeoclimatic changes 109 

Results from 78 palaeoclimate experiments and a pre-industrial experiment using a consistent configuration 110 

of the Hadley Centre unified model (Singarayer & Valdes, 2010), a fully-coupled atmosphere–ocean 111 

general circulation model (AOGCM) including interactive sea-ice (Gordon et al., 2000), were used to derive 112 

regional palaeoclimatic estimates. Experiments were performed for time slices from 140 ka to 1 ka at 113 

intervals of 1 kyr (1 – 22 ka), 2 kyr (24 – 80 ka and 120 – 140 ka) or 4 kyr (84 – 116 ka); seven ‘hosing’ 114 

experiments designed to mimic Heinrich Events H0 – H6 (13, 17, 24, 32, 38, 46 and 60 ka) were also 115 

performed. Singarayer and Valdes (2010) provide details of model configuration and derivation of 116 

boundary conditions and forcings applied. 117 

For each palaeoclimate experiment, anomalies were computed relative to the pre-industrial experiment for 118 

monthly mean temperature, precipitation and cloudiness. Thin-plate splines were fitted to these anomalies 119 

at GCM grid cell resolution (2·5° latitude x 3·75° longitude) and used to interpolate them to a 0·5° 120 
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longitude x latitude grid (using ANUSPLIN, Hutchinson, 1989). Regional palaeoclimate scenarios were 121 

obtained by applying interpolated anomalies to observed recent (1961–90) values from the Climatic 122 

Research Unit 0·5° dataset (CRU CL 1.0, New et al., 1999). A modified version of the FORTRAN program 123 

BIOCLI (Wolfgang Cramer and Rik Leemans) was used to calculate nine bioclimatic variables for each grid 124 

cell and palaeoclimate scenario: annual thermal sums above 0°C (GDD0) and 5°C (GDD5); mean 125 

temperatures of the coldest (MTCO) and warmest (MTWA) months; an estimate of the annual ratio of 126 

actual to potential evapotranspiration (AET/PET); annual total intensity of the wet (TOTWETINT) and dry 127 

(TOTDRYINT) season(s); and maximum wet (MAXWETINT) and dry (MAXDRYINT) season intensity (see 128 

Huntley et al., 2006 for details). Each grid cell was assigned to one of three seasonal rainfall zones for 129 

each scenario (Appendix S2) and the frequency with which it was assigned to each zone counted. 130 

Values for each bioclimatic variable were standardized to zero mean and unit standard deviation across all 131 

grid cells and time slices; standardized values were used to calculate Euclidean distances for each grid 132 

cell between climatic conditions for each time slice, including 1961–90 ( hereafter ‘present’), and every 133 

other time slice. Three measures of climatic variability of each grid cell were then computed: maximum; 134 

mean; and standard deviation of Euclidean distances. Each was calculated for Euclidean distances 135 

between present climate and the 78 palaeoclimates, hereafter ‘variability relative to present’, and between 136 

the climate of each time slice and that of every other, hereafter ‘overall variability’. Calculations were 137 

performed using purpose-written FORTRAN programs. Climatic variability measures were mapped to 138 

reveal any spatial patterns (using ArcGIS® and CorelDraw X6®). The frequency with which maximum 139 

Euclidean distance corresponded to each time-slice pair was counted across all grid cells. 140 

Changes in biome extent and location 141 

Quantitative climatic response surfaces (Huntley et al., 2012) were fitted to model relationships between 142 

the extents and locations of nine biomes mapped for South Africa, Lesotho and Swaziland by Mucina and 143 

Rutherford (2006, see Fig. S1 in Appendix S2) and present climate. Extent of each biome in each 0·5° 144 

grid cell was expressed as a proportion of that grid cell’s land area falling within South Africa, Lesotho 145 

and/or Swaziland. Two models were fitted for each biome, each using four bioclimatic variables. All 146 

models included MTCO, MTWA and AET/PET, the fourth variable being either TOTWETINT or 147 

TOTDRYINT; these variables were selected on the basis of known mechanisms through which they 148 

influence vegetation character. Model performance was assessed using the correlation between the 149 
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proportion of each grid cell’s land area mapped as occupied, and predicted by the model to be occupied 150 

under present climatic conditions, by the biome. The model for each biome giving the higher correlation 151 

was used to project its potential distribution for the entire region of southern Africa for each palaeoclimate 152 

scenario. The validity of such a spatial extrapolation of the models was assessed by comparing the 153 

biomes simulated for the present climate with observations of the current distribution of biomes. Models 154 

were fitted and their performance assessed using custom-written FORTRAN programs (based partly on 155 

programs written by Patrick J. Bartlein, see Huntley et al., 1989). 156 

Potential total extent of each biome in southern Africa for each time slice was computed by summing 157 

simulated proportions across grid cells, then normalizing values for each time slice to a sum across biomes 158 

equal to the total number of grid cells (1461). Minimum, maximum and mean potential total extent of each 159 

biome were computed as absolute values and as percentages of its simulated present extent. 160 

Potential past biome patterns were mapped by assigning each grid cell to the biome simulated to dominate 161 

that cell for that time slice, the dominant biome being that simulated to occupy the maximum extent. The 162 

number of grid cells dominated by each biome was also counted for each time slice. Three measures of 163 

persistence of each biome were computed for each grid cell across all time slices: (i) the frequency with 164 

which the cell was simulated to have been dominated by the biome; (ii) the mean percentage of the cell 165 

simulated to have been occupied by the biome; and (iii) the frequency with which the biome was 166 

simulated to have been present in the cell, presence being assigned when simulated biome extent in the 167 

cell exceeded the threshold value that maximised qualitative goodness-of-fit of its response surface model 168 

as assessed using the true skill statistic (Allouche et al., 2006). Frequencies were mapped to reveal any 169 

cell(s) where a biome was consistently potentially present or dominant. 170 

Present avian diversity patterns 171 

Bird distribution data were obtained from the Southern African Bird Atlas Project (SABAP, Harrison et al., 172 

1997) at 0·25° resolution for South Africa, Lesotho, Swaziland, Namibia and Zimbabwe, and at 0·5° 173 

resolution for Botswana. These data record species’ reporting rates, i.e. proportion of cards returned for a 174 

grid cell on which the species was recorded. Quantitative response surface models relating species’ 175 

reporting rates to present climate were fitted as described by Huntley et al. (2012), using four bioclimatic 176 
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variables (MTCO, MTWA, AET/PET and TOTDRYINT) shown previously most often to give the best-fitting 177 

model (Huntley et al., 2012). 178 

We fitted models for 697 species regularly breeding in the region, categorised by Hockey et al. (2005) as 179 

residents (207 spp.), altitudinal or partial migrants or nomadic (hereafter ‘mobile species’, 402 spp.), or 180 

intra-African migrants (88 spp.). Long-distance, mainly inter-continental, migrants were excluded because 181 

their richness patterns are unlikely to reflect longer-term stability of regional climate and/or biomes; 182 

vagrants were excluded because their occurrences are sporadic. Species endemic or near-endemic to 183 

southern Africa (hereafter ‘endemics’) were distinguished from more widespread species, and endemics 184 

were categorised according to the biome(s) predominantly used (following Hockey et al., 2005). 185 

Models successfully fitted for 690 species were used to simulate each species’ potential present reporting 186 

rate for each 0·5° cell of the entire study region. This required spatial extrapolation of the models beyond 187 

the region from which data were available for model fitting, albeit to a much more modest extent than in the 188 

case of the biome models. Rather than reduce these reporting rates to presence–absence and count 189 

presences, we summed simulated reporting rates for a cell to obtain a measure of its potential species 190 

richness. Sums were calculated for: (i) all species; (ii) all residents (203); (iii) all mobile species 191 

(399); (iv) all intra-African migrants (88); (v) all widespread (i.e. non-endemic) species (524); (vi) all 192 

endemics (163; two intra-African migrants categorised by Hockey et al. (2005) as near-endemic and one 193 

as an endemic breeder, respectively, were excluded); (vii) endemic residents (53); and (viii) endemic 194 

mobile species (108). Relationships between contemporary species richness and past climatic variability 195 

were assessed using the Pearson product–moment correlation coefficient. Species richness of endemics 196 

associated with each biome was also computed for each cell. It was necessary to combine Succulent 197 

Karoo and Nama Karoo for this analysis as they are not distinguished by Hockey et al. (2005) when 198 

indicating principal habitats used by bird species. In addition, no analysis could be performed for the 199 

Indian Ocean Coastal Belt as this is not distinguished by Hockey et al. (2005) as a potential habitat. 200 

Relationships between contemporary species richness and biome persistence were again assessed using 201 

the Pearson correlation coefficient. In this case correlations were calculated both for all 1461 grid cells in 202 

the study area and for 823 grid cells south of 22°S, the northernmost latitude to which data used to fit 203 

response surface models for the biomes extended. 204 
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RESULTS 205 

Palaeoclimatic changes 206 

Considering maximum climatic differences relative to present (Fig. 2(a)), lowest variability was principally in 207 

an area corresponding to the present extent of the Nama Karoo and Fynbos biomes (Fig. S1 in Appendix 208 

S1), with outlying relatively stable grid cells along the southern half of the west coast and in a broad area in 209 

the east. Greatest variability was principally in the north-west, especially centred upon the area of 210 

stabilized dunes lying between the Etosha Pan and Okavango Delta and extending north across the Caprivi 211 

Strip to span the borders of Namibia, Angola and Botswana (Thomas et al., 2000). Overall variability 212 

maxima show a similar pattern (Fig. 2(d)), though with a more marked area of low variability extending from 213 

south-eastern Namibia to the centre of the Western Cape province of South Africa. Greatest variability 214 

was again mainly in the north-west and the stabilised dune-field. Considering grid cells simulated to be 215 

dominated by each biome under present climate, medians and third quartiles for maximum overall 216 

Euclidean distance were smaller for those of the Indian Ocean Coastal Belt, Nama Karoo, Fynbos and 217 

Succulent Karoo (Table S3 & Fig. S2 in Appendix S3). Climate over the past 140 kyr is thus simulated to 218 

have been more stable in areas currently occupied by these biomes than in areas occupied by the 219 

remaining biomes, although a minority of grid cells in the Nama Karoo show greater variability. This area 220 

of relative climatic stability broadly corresponds to the year-round rainfall zone both at present and most 221 

persistently over the past 140 kyr (Figs. S7 & S8 in Appendix S3). 222 

Across the 1461 grid cells, maximum differences from present climate were for a Heinrich Event stadial in 223 

1288 cases, with maximum difference for almost 23% of grid cells being with respect to H2 (H0 61; H1 224 

221; H2 331; H3 143; H4 47; H5 259; H6 226). When all pairwise comparisons were examined, 225 

124 ka contributed to the maximum pairwise difference in 959 cases, the other partner in most cases (942) 226 

being a Heinrich Event, with H2 again the most frequent (H0 14; H1 244; H2 383; H3 48; H4 30; H5 227 

190; H6 33). Other pairs giving maximum difference for >20 grid squares all included a Heinrich Event; 228 

they were: H0 vs 19 ka (21); H0 vs 22 ka (143); 16 ka vs H5 (23); 17 ka vs H5 (21); 19 ka vs H6 229 

(87); 22 ka vs H5 (48); 28 ka vs H6 (48); and H6 vs 120 ka (21). Overall, a Heinrich Event was one 230 

of the pair giving maximum difference in >98% of cases (1433 of 1461 grid cells). 231 
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Mean Euclidean distances with respect to present climate and overall (Figs. 2(b) & (e)) show strikingly 232 

different spatial patterns. They also show, especially for mean differences from present climate, a pattern 233 

distinctly different from that for maximum differences (Fig. 2(a)). Lowest variability with respect to present 234 

(Fig. 2(b)), is focused in the west of Northern Cape province and southern Namibia, the most stable area 235 

being on the coast of south-west Namibia. For overall variability (Fig. 2(e)) the pattern is similar to that for 236 

maximum differences (Figs. 2(a) & (d)), with a broad area of relatively low variability extending from south-237 

eastern Namibia south to central Western Cape, albeit with relative stability in coastal areas with low mean 238 

differences from present climate (Fig. 2(b)), and greatest variability in north-west Namibia/south-west 239 

Angola and the stabilised dunes spanning the Namibia, Angola and Botswana borders. 240 

The patterns for standard deviation of Euclidean distances (Figs. 2(c) & (f)) again differ somewhat between 241 

variability with respect to present climate and overall variability. Both show areas of lowest variability 242 

centred in the Western Cape and in south-east Namibia. There is also a more limited area of low 243 

variability along the coast of north-east Eastern Cape province and south-west Kwazulu-Natal. For 244 

variability with respect to present climate, a much more extensive area of low variability extends from the 245 

east of Eastern Cape through Kwazulu-Natal to southern Mozambique. In both cases variability is 246 

generally lower in South Africa than in areas to the north, with greatest variability corresponding mainly to 247 

areas of greatest variability as assessed by both mean and maximum Euclidean distances. 248 

Changes in biome extent and location 249 

Response surface models for biomes all gave high correlations with observed data when used to simulate 250 

biome extents in the 0·5° grid cells of South Africa, Lesotho and Swaziland for present climate (Table S1 in 251 

Appendix S1). The model using TOTWETINT gave a higher correlation for Desert, Fynbos and Forest, 252 

the TOTDRYINT model performing better for the other biomes. The better performing models for 253 

individual biomes had correlations of between 0·901 (Forest) and 0·969 (Indian Ocean Coastal Belt). 254 

Relatively poor model performance for Forest is because this biome accounts for <0·4% of the land area 255 

and does not dominate any grid cells. The simulation of present biomes for the entire study region broadly 256 

accorded with observed and simulated regional biome patterns (see e.g. Scheiter & Higgins, 2009), no 257 

substantially different biomes occurring in the region. 258 
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Aside from revealing a general dynamism of biome distributions since 140 ka, maps of dominant biomes 259 

(Fig. 3) reveal several systematic patterns. Visually the most striking are the large and complementary 260 

changes in extent of Nama Karoo and Grassland, and the simulated extensive presence of Fynbos in the 261 

north of the region and markedly increased simulated extent of Succulent Karoo under many palaeoclimate 262 

scenarios. When plotted against age (Fig. 4), the relative extent of most biomes is clearly related to 263 

austral summer insolation at 30°S, and also responds markedly to climatic conditions simulated for Heinrich 264 

Events. The relative extent of Savanna more closely mirrors global climatic signals such as [CO2]atm and 265 

the δ18O record from Greenland (Fig. S4 in Appendix S3). Evidence of core areas of persistence of 266 

several biomes is seen when the frequency with which each dominates grid cells is mapped (Fig. 5). 267 

Accounts of the simulated history of each biome are provided in Appendix S2 and details of the simulations 268 

given in Appendix S3 (Tables S4, S5 and S6, Fig. S3). 269 

Relationships of present avian diversity to climatic variability 270 

Response surface models fitted for 690 southern African bird species were good, with a high median 271 

correlation between observed and simulated reporting rates of 0·585 (n = 3964, p << 0·001). The 272 

performance for endemics was better than that for widespread species, with median correlations of 0·630 273 

vs 0·560; this is expected given that virtually all of the geographical, and hence climatic, range of the 274 

former is encompassed by the data used to fit the models. Qualitatively the models also performed well, 275 

with median true skill statistic (Allouche et al., 2006) for all (endemic vs widespread) species of 0·842 276 

(0·855 vs 0·835) and median Cohen’s kappa (Cohen, 1960) of 0·720 (0·753 vs 0·710). 277 

Endemic species richness patterns differed from those of species as a whole; species of different 278 

movement categories also showed different patterns (Appendix S2; Figs. S5 & S6 in Appendix S3). 279 

When considering all species, more than half the correlations between species richness and climatic 280 

variability are positive, although mostly of small magnitude (Table 1). Strongly positive correlations 281 

indicate greater species richness overall, as well as of residents and intra-African migrants, where mean 282 

difference from present climate has been higher over the last 140 kyr. Two strongly negative correlations 283 

relate to mobile species, indicating that these species achieve greater richness where standard deviations 284 

of climatic differences are lower. Mobile species richness thus tends to accord with expectation, being 285 

greater where climatic variability (assessed by standard deviations of Euclidean Distances) has been less. 286 
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Correlations for widespread species are all positive, indicating that their species richness tends to be 287 

greater where climate has been more variable. In contrast, correlations for endemics not only all have the 288 

expected negative sign, but are also on average 3·36 x greater in absolute values than correlations for 289 

species as a whole, all achieving high significance (Table 1). For endemics as a whole, and for endemic 290 

mobile species, highest correlations are with mean climatic differences from present, whereas for endemic 291 

resident species highest correlation is with standard deviation of overall climatic differences. Current 292 

species richness patterns of endemics thus accord with expectation, with higher species richness where 293 

climate has been less variable over the last glacial–interglacial cycle. 294 

Relationships of present avian diversity to biome persistence 295 

The alternative measures of biome persistence showed broadly similar spatial patterns (Fig. 5, Fig. S3 in 296 

Appendix S3). All biomes except Forest were persistently present across all 79 time slices in at least a 297 

small number of grid cells, whereas only four biomes (Succulent Karoo, Fynbos, Grassland and Savanna) 298 

persistently dominated one or more grid cells. Correlations between the first measure of biome 299 

persistence and avian diversity could not be calculated for Forest associated species because this biome 300 

never dominated any grid cells. Simulated patterns of species richness for endemics associated with each 301 

biome showed the expected general spatial patterns (Fig. S6 in Appendix S3). However, because many 302 

species are not restricted to a single biome, areas with lower numbers of biome-associated species are 303 

much more extensive than the area of occurrence of that biome. 304 

For six of the biomes that could be analysed, all correlations between biome persistence and avian 305 

diversity were, as expected, strongly positive (Table 2). Strongest correlations were for Grassland, Karoo 306 

and Desert, with lower values for Forest, Fynbos and Albany Thicket. Highest correlations for Karoo and 307 

Desert were with their frequency of occurrence across the study area as a whole, whilst for Forest the 308 

highest correlation was with its frequency of occurrence south of 22°S. For Grassland, Fynbos and 309 

Albany Thicket highest correlations were with their mean percentage occupied south of 22°S, Fynbos, as 310 

expected, showing the strongest increase in correlations when analysis was constrained to the southern 311 

part of the study area because this excludes those areas in the north often simulated as occupied by 312 

Fynbos (Fig. 3), but remote from the area simulated as consistently dominated by this biome (Fig. 5(d)) and 313 

also consistently disjunct from the latter area. 314 
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Thus for these six biomes the evidence strongly supports our second hypothesis, that present species 315 

richness of biome-associated endemics is highly correlated with degree of persistence of the biome in that 316 

grid cell during the last glacial–interglacial cycle. 317 

Savanna was the exception to this pattern. For the study area as a whole correlations were significant 318 

and negative; correlations for the area south of 22°S, although positive, were weak. Simulated 319 

persistence of Savanna was greatest in the north and east (Fig. 5(g), Fig. S3(g) in Appendix S3), whereas 320 

the area richest in savanna-associated regional endemics lies mostly south of 22°S and centrally in terms 321 

of longitude (Fig. S6(g) in Appendix S3), overlapping only to a limited extent with areas of high persistence 322 

of the biome. 323 

DISCUSSION 324 

Previous studies have advanced a wide range of hypotheses to account for global and/or regional patterns 325 

of biodiversity and/or of endemism (see e.g. Dynesius & Jansson, 2000; Gaston, 2000). These 326 

hypotheses can broadly be categorised into those that explain patterns in terms of present environment 327 

versus historical factors. Present patterns of productivity, climate and topographic diversity all correlate 328 

with biodiversity patterns in at least some regions (Rahbek & Graves, 2001; Jetz & Rahbek, 2002; Thuiller 329 

et al., 2006), but present environment attributes alone cannot generally account for present biodiversity 330 

patterns (Jetz et al., 2004). Historical factors, in contrast, can often account for these patterns more 331 

completely (Huntley, 1993; Araújo et al., 2008; Voelker et al., 2010; Sandel et al., 2011; Huntley et al., 332 

2014). Historical factors may operate over a range of time scales, from millions of years (e.g. Linder & 333 

Hardy, 2004; Voelker et al., 2010) through the multi-millennial glacial–interglacial cycles of the Quaternary 334 

(e.g. Huntley, 1993; Dynesius & Jansson, 2000) to the millennial climatic fluctuations of the last glacial 335 

stage (Huntley et al., 2014). 336 

We focus upon the most recent glacial–interglacial cycle, including millennial fluctuations characteristic of 337 

glacial stages, and test two alternative hypotheses to account for present patterns of avian species 338 

richness in southern Africa: (i) present biodiversity, especially endemic species richness, is greater where 339 

late-Quaternary climate was less variable; and (ii) species richness, especially of biome-associated 340 

endemics, is greatest where late-Quaternary climate, although variable, allowed persistence of that biome. 341 
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Unfortunately the generally sparse independent evidence of past climates and biomes in the region, prior to 342 

the Holocene (Chase & Meadows, 2007), severely limits assessment of the extent to which simulated 343 

palaeoclimate and biome patterns accord with observations. There is neither a sufficiently dense spatial 344 

coverage of such evidence, nor sufficient independently-dated or stratigraphically continuous evidence for 345 

the last glacial stage and last interglacial, to support systematic assessment of our modelling results. 346 

Furthermore, as Huntley et al. (2014) discussed, at least some of the palaeoclimatic evidence is 347 

contradictory. Nonetheless, the AOGCM results are in overall agreement with those few records that are 348 

available, with some striking examples of detailed agreement (Huntley et al., 2014; Singarayer & Burrough, 349 

2015). Comparison of the palaeoclimate simulation results with data from marine sediment cores 350 

collected in the adjacent oceans (e.g. Kim et al., 2003) supports this conclusion. Similarly, when 351 

expressed in terms of seasonal rainfall patterns, there is broad agreement between the palaeoclimate 352 

scenarios (Appendix S2, Figs. S7–9 in Appendix S3) and palaeoenvironmental evidence (Chase & 353 

Meadows, 2007). 354 

Although we modelled only the influence of past climate on biome distribution, well-documented glacial–355 

interglacial changes in atmospheric carbon dioxide concentration ([CO2]atm) (e.g. Petit et al., 1999) would 356 

have shifted the competitive balances between woody and herbaceous plants (Bond & Midgley, 2012), and 357 

between C3 and C4 species (Polley et al., 1993). This probably most directly affected the distribution of 358 

the savanna biome that is defined by the relative dominance of grasses versus trees. Our models 359 

probably over-predict the spatial extent of savanna and under-predict that of grassland when [CO2]atm was 360 

lower during glacial stages. We explore here only the role of climate, however, because sufficiently 361 

credible dynamic vegetation models incorporating plant growth forms and disturbance regimes needed to 362 

investigate the interacting effects of changes in climate and [CO2]atm are not yet available. Whilst progress 363 

is being made, more work is required both on representing tree–grass interactions and resulting biome 364 

structure under varying [CO2]atm, and especially on developing representations of shrub and succulent 365 

growth forms that dominate some southern African biomes. 366 

Difficulties in validating our simulations of palaeoclimates and limitations of our approach to modelling past 367 

biome distributions notwithstanding, their reliability is supported by our results (Tables 1 & 2). No 368 

consistent pattern emerged with respect to relationships between overall species richness (widespread plus 369 

endemic species) and climatic stability. Fewer than half of the correlations had the expected sign, and 370 
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only two with the expected sign achieved high significance (Table 1). However, the patterns for endemics 371 

were clear and consistent with both our hypotheses. Species richness of endemics was generally higher 372 

in areas with less variable climate over the past 140,000 years (Table 1). We did not expect weaker 373 

correlations for endemic resident species than for all endemics or for mobile endemics. However, a 374 

relatively higher proportion of resident than mobile endemics occurs in the Savanna biome than in other 375 

biomes (compare Fig. S5(e) & (f) in Appendix S3). The correlation of Savanna-associated endemic 376 

richness with biome persistence is also weaker than for other biomes (Table 2). Savanna, however, is 377 

likely to have responded more than other biomes to the lowered [CO2]atm during the glacial, with resulting 378 

greater equatorward contraction meaning it was likely to have been extensive mainly north of our study 379 

region at the last glacial maximum (Elenga et al., 2000). This greater sensitivity and equatorward 380 

contraction would offer scope for, and favour adaptation of, regional Savanna-associated endemics to track 381 

biome shifts. Similarly, past range shifts and/or northward contractions likely account also for the lack of 382 

the expected relationship in the case of widespread species. Indeed evidence of higher present richness 383 

in more climatically variable areas is consistent with such a response. Among mobile species as a whole 384 

the relationship between richness and climatic stability is generally weaker. This may indicate that such 385 

partial and altitudinal migrants, and nomads, persisted by making local movements, paralleling their 386 

responses to seasonal and inter-annual climatic variability and exploiting the opportunities offered by 387 

topographically diverse landscapes. Such contrasting responses to climatic change pose challenges for 388 

biodiversity conservation. 389 

There were generally stronger correlations between biome persistence and richness of biome-associated 390 

endemics (Table 2). This indicates that it is not primarily the absolute magnitude of climatic variability that 391 

leads to reduced current richness of endemics, but the extent to which climatic conditions have changed 392 

sufficiently to result in biome replacement. Persistence of a biome in a given geographical location is 393 

likely to reduce extinction risk amongst biome-associated endemics, whereas biome replacement will 394 

frequently cause local extinction. If extensive and repeated over time, this will likely reduce the overall 395 

number of endemics associated with the biome. Furthermore, a combination of biome persistence and 396 

moderate climatic variability may favour the evolution of new biome-associated endemics (Midgley et al., 397 

2005). Whilst our results for birds will not necessarily apply also to other taxonomic groups in southern 398 

Africa, evidence that biome-associated species in other groups may also have persisted where biomes 399 
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persisted, elsewhere showing range shifts as climatic conditions changed (Tolley et al., 2014), suggests 400 

that our results may be more general. 401 

Our results increase concerns about the potential for future biodiversity losses resulting from biome 402 

replacements. Given projections that more than half Earth’s land area may experience climatic changes 403 

by 2100 sufficient to cause biome replacement (Williams et al., 2007), we conclude that future biome 404 

replacement resulting from anthropogenic climatic change is likely to result in substantial biodiversity losses 405 

worldwide. Avoiding such losses will require a combination of vigorous mitigation measures, so as to limit 406 

the magnitude of climatic change as far as possible, and active conservation measures designed to sustain 407 

species’ populations and facilitate their spatial responses to changing conditions. 408 
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Table 1: Species richness and climatic variability 597 

Species group 
Overall climatic difference Climatic difference with respect to 

present climate 
Maximum Mean S.D. Maximum Mean S.D. 

All species       

Overall -0·006 0·017 -0·070 -0·016 0·174 -0·064 

Residents 0·065 0·110 0·001 0·045 0·274 0·007 

Mobile species -0·057 -0·051 -0·116 -0·059 0·090 -0·111 
Intra-African migrants 0·043 0·078 -0·024 0·025 0·248 -0·019 

Widespread species 0·050 0·089 -0·015 0·031 0·254 -0·011 

Endemic species       

Overall -0·263 -0·344 -0·247 -0·220 -0·395 -0·244 
Residents -0·143 -0·202 -0·164 -0·112 -0·153 -0·160 
Mobile species -0·279 -0·358 -0·252 -0·236 -0·436 -0·250 

Pearson product–moment correlation coefficients between present simulated avian species richness and 598 
six measures of climatic variability over the past 140 kyr for 0·5° grid cells in southern Africa (n = 1461, 599 
bold entries indicate values for which p < 0·0005). Climatic variability is expressed as the maximum, 600 
mean or standard deviation of standardised Euclidean distances between climatic conditions calculated 601 
either for all time slices, including the present, relative to one another (overall climatic difference), or for all 602 
palaeoclimatic time slices relative to the present. High variability of climate thus corresponds to high 603 
Euclidean distance values, whereas a high degree of stability of climate is indicated by low Euclidean 604 
Distance values. Correlation coefficients are shown for all species, for all species categorised according 605 
to seasonal movements, for widespread (i.e. non-endemic) species, for all endemics and for endemics 606 
categorised according to seasonal movements (note that Intra-African migrants cannot by definition be 607 
endemic or near-endemic to southern Africa). Negative correlations indicate high species richness 608 
associated with low climatic variability (i.e. low Euclidean distance values, and hence high climatic stability) 609 
and vice versa. 610 
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Table 2: Endemic species richness and biome stability 611 

Biome 

All of southern Africa South of 22°S 
Frequency 

of 
dominance 

Mean 
percentage 
occupied 

Frequency 
of 

occurrence  

Frequency 
of 

dominance 

Mean 
percentage 
occupied 

Frequency 
of 

occurrence 
Desert 0·474 0·673 0·725 0·469 0·599 0·645 

Karoo 0·743 0·751 0·770 0·638 0·646 0·674 

Fynbos 0·326 0·180 0·213 0·575 0·615 0·482 

Albany Thicket 0·318 0·471 0·424 0·342 0·501 0·492 

Grassland 0·722 0·762 0·711 0·720 0·799 0·763 

Savanna -0·247 -0·367 -0·293 0·029 0·024 0·071 

Forest – 0·299 0·308 – 0·497 0·698 

Pearson product–moment correlation coefficients between present simulated avian species richness of 612 
endemics using each of seven regional biomes in southern Africa as their principal habitat and three 613 
measures of the simulated stability of those biomes over the past 140 kyr for 0·5° grid cells (entries in italics 614 
are values for which p > 0·025; p < 0·0005 for all other values). Correlations are presented both for the 615 
entire study region (n = 1461) and for the area south of 22°S that corresponds approximately to the region 616 
from which the data used to construct models relating biome extents to climate were available (n = 823). 617 
The three measures of biome stability are: the frequency, across all time slices, with which the biome 618 
dominates the grid cell (i.e. is simulated to extend over a greater percentage of the land area of the grid cell 619 
than does any other biome); the mean extent of the biome in the grid cell, across all time slices, 620 
expressed as the percentage of the area of land in the grid cell simulated to be occupied by the biome; 621 
and the frequency, across all time slices, with which the biome is simulated to be present in the grid cell. 622 
Positive correlations indicate high species richness associated with high stability of the associated biome. 623 
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FIGURES 624 

Figure 1: Map of Southern Africa 625 
The overall extent of the map corresponds to the overall study area for which climatic variability was 626 
assessed and for which projections were made using the response surface models for biomes and bird 627 
species. Distribution data used to fit the models for bird species extended across South Africa, Lesotho, 628 
Swaziland, Namibia, Botswana and Zimbabwe. Biome extent data used to fit the models for biomes 629 
extended over the area south of the red boundary line, i.e. South Africa, Lesotho and Swaziland. Country 630 
names are in black upright text and South African province names in red text; geographical features 631 
mentioned in the text are indicated by italic black text. Topography is shown using the GEBCO 1′ 632 
resolution global altitudinal and bathymetric grid (IOC et al., 2003). 633 

Figure 2: Climatic variability in southern Africa since 140 ka 634 
Maximum (a & d), mean (b & e) and standard deviation (c & f) of Euclidean Distances between present 635 
climate and 78 palaeoclimate time slices (a–c), and of all possible pairwise Euclidean Distances (d–f) 636 
between the 79 climates, for each 0·5° grid cell. Deep orange indicates low climatic variability (i.e. 637 
minimum Euclidean Distances) whereas deep blue indicates high climatic variability (i.e. maximum 638 
Euclidean Distances). Mapping of Euclidean Distance values to the colour scale in each case was 639 
designed to provide the clearest representation of the spatial pattern of climatic variability. 640 

Figure 3: Simulated biome distributions for southern Africa 641 
Maps show the biome simulated to dominate each 0·5° grid cell for a set of time slices selected to show the 642 
extreme contrasts corresponding to time-slice pairs most frequently giving maximum climatic differences, 643 
as well as to illustrate responses to both orbital and sub-orbital forcing. The 22, 46, 70, 92, 116 and 644 
138 ka time slices correspond approximately to austral summer (December–January) insolation maxima at 645 
30°S, whilst 11, 32, 60, 82, 104 and 124 ka correspond approximately to austral summer insolation minima 646 
at 30°S. The H0, H1, H2, H5 and H6 simulations of Heinrich Events, at close to 13, 17, 24, 46 and 60 ka 647 
respectively, reflect maximal millennial climatic contrasts relative to conditions simulated using only orbital 648 
and other ‘slow’ forcing factors. 649 

Figure 4: Relative extent of each biome in southern Africa over the past 140 kyr 650 
Simulated extent of each biome for each palaeoclimate scenario, relative to its extent for 1961–90, plotted 651 
against age. Also shown are the austral summer (December–January) insolation at 30°S, computed 652 
following Laskar et al. (2004), and atmospheric CO2 concentration, derived as a composite from the Law 653 
Dome (Etheridge et al., 1996, 0-0.940 ka), Taylor Dome (Indermühle et al., 1999, 1.020-11.103 ka) and 654 
Vostok (Barnola et al., 1987, 12.930-140.430 ka) Antarctic Ice Cores. Grey lines indicate Heinrich Events 655 
0 – 6. 656 

Figure 5: Frequency with which biomes were simulated to dominate grid cells 657 
Shading indicates for how many of the 79 time slices examined, including the present, climatic conditions in 658 
each grid cell result in simulated dominance of a given biome. (IOCB = Indian Ocean Coastal Belt. 659 
Forest was not simulated as the dominant biome in any grid cell for any time slice.) 660 
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 661 

Figure 1: Map of Southern Africa 662 
The overall extent of the map corresponds to the overall study area for which climatic variability was 663 
assessed and for which projections were made using the response surface models for biomes and bird 664 
species. Distribution data used to fit the models for bird species extended across South Africa, Lesotho, 665 
Swaziland, Namibia, Botswana and Zimbabwe. Biome extent data used to fit the models for biomes 666 
extended over the area south of the red boundary line, i.e. South Africa, Lesotho and Swaziland. Country 667 
names are in black upright text and South African province names in red text; geographical features 668 
mentioned in the text are indicated by italic black text. Topography is shown using the GEBCO 1′ 669 
resolution global altitudinal and bathymetric grid (IOC et al., 2003). 670 
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Figure 2: Climatic variability in southern Africa since 140 ka 672 
Maximum (a & d), mean (b & e) and standard deviation (c & f) of Euclidean Distances between present climate and 78 palaeoclimate time slices (a–c), and of 673 
all possible pairwise Euclidean Distances (d–f) between the 79 climates, for each 0·5° grid cell. Deep orange indicates low climatic variability (i.e. minimum 674 
Euclidean Distances) whereas deep blue indicates high climatic variability (i.e. maximum Euclidean Distances). Mapping of Euclidean Distance values to the 675 
colour scale in each case was designed to provide the clearest representation of the spatial pattern of climatic variability. 676 
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 677 

Figure 3: Simulated biome distributions for southern Africa 678 
Maps show the biome simulated to dominate each 0·5° grid cell for a set of time slices selected to show the extreme contrasts corresponding to time-slice 679 
pairs most frequently giving maximum climatic differences, as well as to illustrate responses to both orbital and sub-orbital forcing. The 22, 46, 70, 92, 116 680 
and 138 ka time slices correspond approximately to austral summer (December–January) insolation maxima at 30°S, whilst 11, 32, 60, 82, 104 and 124 ka 681 
correspond approximately to austral summer insolation minima at 30°S. The H0, H1, H2, H5 and H6 simulations of Heinrich Events, at close to 13, 17, 24, 682 
46 and 60 ka respectively, reflect maximal millennial climatic contrasts relative to conditions simulated using only orbital and other ‘slow’ forcing factors. 683 
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Figure 4: Relative extent of each biome in southern Africa over the past 140 kyr 685 
Simulated extent of each biome for each palaeoclimate scenario, relative to its extent for 1961–90, plotted against age. Also shown are the austral summer 686 
(December–January) insolation at 30°S, computed following Laskar et al. (2004), and atmospheric CO2 concentration, derived as a composite from the Law 687 
Dome (Etheridge et al., 1996, 0-0.940 ka), Taylor Dome (Indermühle et al., 1999, 1.020-11.103 ka) and Vostok (Barnola et al., 1987, 12.930-140.430 ka) 688 
Antarctic Ice Cores. Grey lines indicate Heinrich Events 0 – 6. 689 
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 690 

Figure 5: Frequency with which biomes were simulated to dominate grid cells 691 
Shading indicates for how many of the 79 time slices examined, including the present, climatic conditions in each grid cell result in simulated dominance of a 692 
given biome. (IOCB = Indian Ocean Coastal Belt. Forest was not simulated as the dominant biome in any grid cell for any time slice.) 693 


