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The chemical functionality within porous architectures dictates their performance as heterogeneous 

catalysts
1
, though synthetic routes to control the spatial distribution of individual functions within porous 

solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, via 

the stepwise template removal and chemical functionalization of an interconnected silica framework. 

Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal templated silica sol-

gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-

mesoporous architecture. Decoupling of the individual template extractions allows independent 

functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. 

Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords 

control over the reaction sequence in catalytic cascades
2, 3

; herein illustrated by the Pd/Pt catalyzed oxidation 

of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of 

multifunctional materials
4, 5, 6

 comprising spatially compartmentalized functions.  

 

Multifunctional nanomaterials are ubiquitous in diverse technological applications spanning energy
7
, the 

environment and health
8
, to information storage and communication

9
. Synergy between chemically distinct 

functionalities within porous architectures in particular underpins new magnetic
5
 or optical devices, and 

heterogeneous catalysts
2
. Limited spatial patterning of select materials has been achieved in three 

dimensions at the sub-micron scale, for example through vapor deposition of aligned carbon nanotubes
10

 or 
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two-photon excitation of hydrogels over planar substrates
11

, or through biogenic routes
12

. Such approaches 

respectively incorporate only a single chemically distinct function, require optically transparent and 

photoresponsive materials, or impart a poor degree of ordering and limited thermochemical stability. 

Ordered two-dimensional arrays of monometallic or metal/oxide bifunctional nanocrystals have been 

prepared as model catalysts via electron lithography
13

 and drop-casting
14

 respectively, but afford extremely 

low surface areas with co-located active sites. Hence, there are no synthetic routes able to control either the 

nanoscale spatial distribution, or the communication between, individual functions within three-dimensional 

porous solids. 

 

A hierarchically ordered macroporous-mesoporous SBA-15 silica framework was synthesized through a 

new lyotropic true liquid crystal templating route (see Methods), adapting literature methodology
15, 16, 17

, in 

which a P123 surfactant-templated mesoporous silica network was formed via the acid hydrolysis of 

tetraethoxyorthosilane around an ordered array of unfunctionalized polystyrene colloidal nanospheres (SEM 

and polydispersity index <0.1 by DLS, Supplementary Fig. 1), as illustrated in Fig. 1a. The judicious 

combination of polar P123 mesopore and non-polar polystyrene macropore templates facilitates their 

subsequent independent extraction via different polarity solvents. Exclusive extraction of the polystyrene 

macropore template was unsuccessful through conventional calcination (or toluene reflux) protocols, due to 

simultaneous combustion (or dissolution) of the P123 mesopore template. However, a new sub-ambient 

toluene extraction protocol achieved >95 % selective polystyrene removal as evidenced by TEM and 

porosimetry (Fig. 1b and Supplementary Fig. 2 respectively). The resulting 20 m
2
.g

-1
 material comprised 

empty macropores formed/abutted by surfactant template-filled mesoporous silica (Fig. 1b), permitting 

selective hydrophobization of the macropore network with octyl groups via reaction of triethoxyoctylsilane 

with exposed surface silanols (Fig. 1c),  confirmed by porosimetry and contact angle measurements 

(Supplementary Fig. 3). Removal of the remaining P123 surfactant template from within the mesopores 

was facile under methanol reflux (Supplementary Fig. 4) resulting in a fully-detemplated hierarchical 

bimodal architecture (Fig. 1d) containing (interconnected) hydrophobic 350 nm macropores and hydrophilic 

3.5 nm mesopores. The total surface area of 300 m
2
.g

-1
 was consistent with reports for macroporous SBA-15 
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prepared via high temperature template decomposition, and indeed low angle XRD confirmed a p6mm 

hexagonal arrangement of ordered mesoporous channels. Conventional wet impregnation of this high area 

porous material with an aqueous metal salt (H2PtCl6), followed by a mild (100 °C) reduction under 

molecular H2, yielded chloride-free, fcc metal Pt nanoparticles (NPs) of 2.2 nm mean diameter confined 

within the mesopores (Fig. 1e). This spatial localization of nanoparticulate Pt was only possible due to the 

preceding macropore hydophobization, which directed the water dispersed platinum precursor away from 

the octyl-grafted macropores (Supplementary Fig. 5). Finally, oleylamine-capped, 5.6 0.8 nm nm 

colloidal Pd NPs
18

 (Supplementary Fig. 6) were introduced exclusively into the macropores; their diameter 

preventing access to the smaller mesopores (Fig. 1f). 
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Figure 1| Synthetic strategy for spatially orthogonal functionalisation of hierarchical architectures. a, Bright-

field TEM of parent polystyrene colloidal nanospheres encapsulated within a P123 templated SBA-15 silica network. 

b, Bright-field TEM highlighting ordered macroporous framework after selective removal of polystyrene macropore 

template via toluene reflux. c, Selective hydrophobization of macropore framework by triethoxyoctylsilane. d, Bright-

field TEM of ordered hydrophobized macropores and (inset) ordered mesopores following P123 extraction under 

methanol reflux. e, HAADF-STEM of mesopore channels selectively functionalized with Pt NPs via aqueous 

impregnation and reduction. f, Bright-field TEM of hydrophobic macropores selectively functionalized with 

monodispersed 5.6 0.8 nm colloidal oleylamine stabilized Pd NPs (highlighted in yellow). 

 

Spatial compartmentalization of small Pt NPs within the hydrophilic mesopores, and larger Pd NPs within 

the hydrophobic macropores, was verified by HAADF-STEM imaging and EDX analysis (Fig. 2) and 

additional SEM/DF-STEM imaging (Supplementary Fig. 7-8). Z-contrast imaging and line profile analysis 

through cross-sections of the ordered mesoporous silica framework spanning two macropores (Fig. 2a-b) 

provide compelling evidence for partitioning of the two metals, with Pt only observed within the mesopores 

and Pd at the macropore perimeter, and NPs localized within the mesopores affording stronger contrast as 

anticipated for heavier Pt scatterers (Fig. 2c). Particle size distributions for the spatially orthogonal 

bimetallic material in Fig. 2d also reveal a bimodal distribution of NPs, with well-defined maxima at 2.4 and 

5.5 nm, superimposable with those observed for monometallic Pt or Pd analogues prepared according to the 

synthetic route in Fig. 1, and consistent with Pd particle sizes from XRD (Supplementary Fig. 9). Area-

averaged EDX compositions of mesopores and macropores in Fig. 2e affirmed the presence of Pt solely 

within the former and Pd within the latter. Detailed textural analysis (Supplementary Table 1) confirmed 

that colloidal Pd incorporation had minimal impact on BET/mesopore surface areas or mesopore volume, 

congruent with selective functionalization of macropores; in contrast, Pt wet impregnation significantly 

lowered these same properties congruent with selective functionalization of mesopores. 
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Figure 2| Visualization of spatially orthogonal Pd and Pt nanoparticles. a, HAADF-STEM of NPs distributed 

across a section of mesoporous SBA-15 framework surrounded by macropores. b, Cross-sectional EDX compositions 

of the mesoporous SBA-15 framework intersecting either one (1) or two (2) macropores depicted in a. c, High-

resolution HAADF-STEM image highlighting stronger contrast of smaller, mesopore-confined Pt NPs. d, Particle size 

distributions of monometallic and bimetallic hierarchically ordered macroporous-mesoporous SBA-15 demonstrating 

selective functionalization of macropores with large Pd NPs and mesopores with small Pt NPs. e-f, Elemental 

mapping of mesopores (macropores) showing exclusive Pt (Pd) functionalization. 
 

Cascade reactions are sequential chemical transformations in which the starting substrate undergoes a 

reaction whose product becomes the substrate for the next step, and so on, until a stable product is reached
19

. 

Cascades thus offer great advantages in respect of atom economy, and economies of time, labor, resource 

management, and waste generation, and permit the use of synthetically enabling intermediates that may not 

be practical to isolate. Catalytic cascades, in which the product of a reaction catalyzed by species A 

undergoes a subsequent distinct transformation catalyzed by a second species B, are hindered by the 

possibility of undesired interactions between the initial substrate and the second active site, or indeed 

between the two catalytic species
20

. Such highly desirable ‘one-pot’ catalytic cascades therefore necessitate 

the spatial separation of each catalytic step. The catalytic advantage of spatially segregating Pt NPs within 

mesopores, accessible overwhelmingly only through interconnected macropores containing Pd NPs, was 

explored for the cascade oxidative dehydrogenation of cinnamyl alcohol  cinnamaldehyde  cinnamic 
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acid, the latter an important flavorant and essential oil
21, 22

. Pd is highly selective for catalyzing cinnamyl 

alcohol oxidation to cinnamaldehyde
23, 24

, but promotes decarbonylation of the resultant aldehyde product; 

in contrast, Pt favours undesired hydrogenation of cinnamyl alcohol (via reactively-formed surface 

hydrogen) to 3-phenylpropionaldehyde
25

, but is highly selective towards cinnamaldehyde oxidation to the 

desirable cinnamic acid product
26

. An optimal catalyst design would therefore ensure that cinnamyl alcohol 

was oxidized over Pd prior to encountering Pt sites, while permitting the reactively-formed cinnamaldehyde 

to subsequently access Pt sites for the selective production of cinnamic acid in the second oxidation step. 

Such a goal is only achievable through spatial control over the location of Pd and Pt within a hierarchical 

catalyst, illustrated schematically in Supplementary Fig. 10, and demonstrated through our catalytic studies 

below. 

 

Fig. 3 summarizes the reaction kinetics (Supplementary Fig. 11-14), comparing cinnamyl alcohol 

conversion and desired cinnamaldehyde and cinnamic acid productivity for our spatially orthogonal PdPt 

bimetallic catalyst with a variety of monometallic and bimetallic analogues. Monometallic catalysts, their 

combination as a physical mixture, and conventionally synthesized bimetallic catalysts in which Pd and Pt 

were co-localised within the hierarchical pore network, proved ineffective, with either low rates of alcohol 

oxidation, poor selectivity to the cinnamaldehyde intermediate and/or very poor acid production, 

demonstrating the inability of Pd or Pt to either individually catalyze the cascade reaction, or to 

communicate effectively when isolated in discrete catalyst support particles. In contrast, their spatial 

compartmentalization within separate but interconnected pore networks, mere nanometres apart, permits 

control over the reaction sequence enabling oxidation of cinnamyl alcohol entering the macropores to 

cinnamaldehyde over Pd, and subsequent aldehyde diffusion into the mesopores and oxidation to cinnamic 

acid over Pt, conferring an order of magnitude enhancement in cinnamic acid yield. Only selectively 

functionalized materials in which cinnamyl alcohol was able to react over Pd NPs within macropores, prior 

to encountering Pt NPs within mesopores, permit the cascade oxidation. 

A 

B 
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Figure 3| Catalytic cascade aerobic selective oxidation of cinnamyl alcohol. Active site-normalized rates of 

cinnamyl alcohol (CinnOH) conversion, and cinnamaldehyde (CinnCHO) and cinnamic acid (CinnOOH) productivity 

for the one-pot cascade oxidation of cinnamyl alcoholcinnamaldehydecinnamic acid over a spatially orthogonal, 

hierarchical Pd macroporous-Pt mesoporous SBA-15 catalyst (1 wt.% in each metal), and a range of bimetallic and 

monometallic SBA-15 analogues including a physical mixture of 1 wt.% Pd macroporous and 1 wt.% Pd mesoporous 

SBA-15. Spatially separating the two active sites, and first directing cinnamyl alcohol over Pd, significantly enhances 

activity and selectivity towards desired selox products. All reactions performed at 150 C and 5 bar O2. 
 

Localization of different functions within multimodal porous architectures can only enhance selectivity in a 

cascade reaction if the rate of reactant diffusion is slow relative to the first step in the reaction sequence. 

Quantitative comparison of our spatially orthogonal bimetallic catalyst with relevant controls evidences that 

the rate of cinnamyl alcohol selox over Pd indeed exceeds the rate of CinnOH diffusion from 

macroporesmesopores (Supplementary Equation 1). The benefits of spatially separating the individual 

oxidation steps was further highlighted through a spiking experiment in which cinnamic acid was directly 

introduced to the solution mixture at the start of the reaction, enabling its competitive adsorption with 

cinnamyl alcohol over Pd within the macropores (Supplementary Fig. 15). Cinnamic acid addition 

promoted undesired cinnamyl alcohol decarbonylation over Pd at the expense of its selective oxidation to 

cinnamaldehyde. Spatial separation of the selective oxidation step over Pd which produces cinnamaldehyde, 

from that over Pt which produces cinnamic acid, and controlling the sequence of these two reactions such 

that cinnamic acid is only formed after the alcohol has already undergone oxidation to the aldehyde is thus 
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critical to achieving good selox performance. Indeed our spatially orthogonal bimetallic material 

outperforms all literature catalysts (Supplementary Table 2) in terms of both TOFs for cinnamyl alcohol 

oxidation, and selectivity to cinnamaldehyde in high activity systems, and crucially, is the only 

heterogeneous catalyst to our knowledge able to produce quantifiable yields of cinnamic acid in a one-pot 

oxidation of cinnamyl alcohol. 

 

The ability to control the spatial patterning of functionalities within the pore networks of multi-modal 

architectures confers unique and flexible properties upon the resulting materials, which are critical to the 

development of e.g. cascade reactions in which the reaction sequence is controlled by the location of 

different catalytically active sites. Our methodology is extendable to diverse catalytic cascades featuring 

chemically incompatible (e.g. acid-base
3, 27, 28

) functions, and e.g. selective functionalization of mesopores 

and macropores with different fluorescent markers to afford new sensing devices able to discriminate 

between analytes of different molecular dimensions; macropore and mesopore dimensions are independently 

tunable, and may be incorporated into different host matrices
29

. 

 

Methods 

Polystyrene colloidal nanospheres. Monodispersed non-cross linked polystyrene spheres were produced 

adapting literature methods.
30

 Styrene (105 cm
3
) was washed five times with sodium hydroxide solution (0.1 

M, 1:1 vol/vol) followed by five washings with distilled water (1:1 vol/vol) to remove polymerisation 

inhibitors. The washed organic phase was added to nitrogen degassed water (850 cm
3
) at 80 °C followed by 

dropwise addition of aqueous potassium persulfate solution (0.24M, 50 cm
3
) with 300 rpm agitation. The 

reaction proceeded for 22 h, after which the solution had turned white due to the formation of polystyrene 

nanospheres. Solid product was recovered and colloidal crystal arrangement induced by centrifugation (8000 

rpm, 1 h). The resulting highly ordered polystyrene colloidal nanosphere crystalline matrix was finally 

ground to a fine powder for use as the hard macropore directing template. 
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Hierarchically ordered SBA-15. The hierarchical, bimodal silica support was synthesised via a modified 

true liquid crystal templating technique
16

 to incorporate the polystyrene nanospheres as macropore directing 

hard templates. Pluronic P123 (2 g) was sonicated with hydrochloric acid acidified water (pH 2, 2 g) at  40 

°C to a homogeneous gel. Tetramethoxysilane (4.08 cm
3
) was added and stirred rapidly for 5 minutes at 800 

rpm to form a homogeneous liquid. Immediately following this change in physical state the polystyrene 

colloidal crystals (6 g ground to a fine powder) were added with agitation at 100 rpm for 1 min to 

homogenise the mix. The resulting viscous mixture was heated under vacuum (100 mbar) at 40 °C to 

remove the evolved methanol. After 2 h the solid was exposed to the atmosphere at room temperature for 24 

h to complete precursor condensation. 

 

Step-wise template extraction and macropore hydrophobisation. The preceding parent silica support (10 g) 

was stirred in toluene (100 cm
3
) at -8 °C for 1 min. The solid was recovered by vacuum filtration and briefly 

washed with cold toluene. The extraction protocol was subsequently repeated four times to fully extract the 

polystyrene template, affording an empty macropore network without removal of the P123 mesopore 

template. The resulting solid (2 g) was stirred in triethoxy(octyl)silane (6 cm
3
) for 3 min and recovered by 

vacuum filtration before drying overnight at room temperature. This step introduced hydrophobic character 

selectivity into the macropores.  The macroporous solid (~2 g) was subsequently refluxed in methanol (400 

cm
3
) for 18 h to fully extract the pluronic P123 mesopore directing agent, and recovered by filtration and 

washing three times with methanol, to yield a macroporous-mesoporous support with differing 

hydrophobicity between the interconnected pore networks. 

 

Palladium NP synthesis. Near monodisperse palladium NPs of 5.6 0.8 nm diameter were prepared 

adapting the protocol of Mazumder and Sun
18

 to employ a readily available borane complex, and extending 

the duration of particle aging at 90 °C in order to obtain larger NPs. Synthesis was carried out using standard 

Schlenk techniques under an argon atmosphere. After evacuation of Pd(acac)2 (73 mg, Alfa Aesar) in a 3-

neck round bottom flask and backfilling with Ar (repeated three times), oleylamine (15 cm
3
, Acros 

Organics, 80-90 %) was added and the flask heated to 60 °C while stirring. Addition of borane triethylamine 
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(0.52 cm
3
, Aldrich, 97 %) turned the solution from pale yellow to pale brown and was immediately followed 

by heating to 90 °C within 15 minutes, during which time the solution turned black indicating colloidal NP 

formation. Heating was continued at 90 °C for 90 minutes before cooling to room temperature. Ethanol 

(Fisher Scientific, HPLC grade, ca. 30 cm
3
) was added to this suspension, precipitating the NPs, which were 

then extracted by centrifugation (8000 rpm, 20 minutes, 50 cm
3
 plastic centrifuge tube, prewashed with 

ethanol). The resulting solid was redispersed in hexane (ca. 4 cm
3
, Fisher Scientific, reagent grade), and the 

volume of hexane evaporated to around 2 cm
3
 under flowing argon before precipitation by the addition of 

the minimum quantity of ethanol and separation by centrifugation (6000 rpm, 10 minutes). Washing in ca. 2 

cm
3
 hexane and precipitation with ethanol, followed by centrifugation was repeated a further two times to 

remove any excess oleylamine and other residual synthetic agents. The solid was finally re-dispersed and 

stored in hexane (30 cm
3
) until further use. The Pd content of this NP solution was determined by ICP-OES 

to be 11.0 0.12 mg (in 30 cm
3
), indicating around 43 % of the initial Pd is present in the NPs after 

purification. The as-prepared NPs were characterised by TEM by casting one droplet of NP solution onto a 

holey carbon coated copper grid (Agar Scientific) and evaporation to dryness. TEM imaging was performed 

using a JEOL 2100F FEG TEM with a Schottky field emission source, equipped with an Oxford INCAx-

sight Si(Li) detector for energy dispersive spectroscopy. The accelerating voltage was 200 kV. The particle 

size distribution was obtained from imaging 6 different areas of the grid and measuring the diameter over 

800 individual NPs. No variation in particle size was apparent in different regions of the grid.  

 

Platinum NP impregnation. Platinum NPs were deposited selectively within the mesopore domains by 

incipient wetness impregnation of the hydrophobic, hierarchically ordered macroporous-mesoporous SBA-

15 with an aqueous solution of dihydrogen hexachloroplatinate. The parent support (0.6 g) was stirred in the 

aqueous salt solution (3 cm
3
, 0.01575 g Pt salt, nominal 1 wt.% loading) for 18 h in the dark. A dry powder 

was obtained by gentle heating of the slurry at 50 °C for 10 h, followed by 100 °C reduction under H2 (10 

cm
3
.min

-1
) for 1 h, yielding monometallic Pt NPs. The bimetallic Pd macropore/Pt mesopore material was 

produced from the preceding Pt functionalised material (0.3 g) via impregnation with 6.5 cm
3
 of a solution 

of the preformed colloidal Pd NPs in hexane (0.46 mg of Pd NP cm
-3

, nominal 1 wt.% loading). The 
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resulting solid was stirred in solution for 1 h before solvent evaporation at room temperature to leave a dry 

powder. The monometallic Pd material was produce identically except with omission of the initial aqueous 

platinum salt impregnation.  

 

Pt and Pd in mesopores. Platinum and palladium NPs were deposited selectively within the mesopore 

domains by incipient wetness impregnation of the hierarchically ordered macroporous-mesoporous SBA-15, 

in which the macropores had been previously hydrophobised by triethoxy(octyl)silane, with an aqueous 

solution of dihydrogen hexachloroplatinate and tetraamine palladium nitrate. The parent support (0.25 g) 

was stirred in the aqueous salt solution (1 cm
3
, 0.0066 g Pt salt and 0.0070 g Pd salt, nominal 1 wt.% loading 

of each) for 18 h in the dark. A dry powder was obtained by gentle heating of the slurry at 50 °C for 10 h, 

followed by calcination under air at 500 °C for 2 h and subsequent 200 °C reduction under H2 (10 cm
3
.min

-

1
) for 1 h, yielding Pt and Pd NPs.  

 

Pt and Pd in macropores. Platinum and palladium NPs were deposited selectively within the macropore 

domains by incipient wetness impregnation of macropore template extracted macroporous-mesoporous 

SBA-15 (with the mesopores blocked the Pluronic template) with an aqueous solution of dihydrogen 

hexachloroplatinate and tetraamine palladium nitrate. The parent support (0.3 g) was stirred in the aqueous 

salt solution (1 cm
3
, 0.0066 g Pt salt and 0.0070 g Pd salt, nominal 1 wt.% loading of each) for 18 h in the 

dark. A dry powder was obtained by gentle heating of the slurry at 50 °C for 10 h, followed by calcination 

under air at 500 °C for 2 h and subsequent 200 °C reduction under H2 (10 cm
3
.min

-1
) for 1 h, yielding Pt and 

Pd NPs.  

 

Pt and Pd in mesopores and macropores. Platinum and palladium NPs were deposited throughout both 

mesopores and macropores by incipient wetness impregnation of the fully detemplated hierarchically 

ordered macroporous-mesoporous SBA-15 (in which macropore hydrophobisation was omitted) with an 

aqueous solution of dihydrogen hexachloroplatinate and tetraamine palladium nitrate. The parent support 

(0.25 g) was stirred in the aqueous salt solution (1 cm
3
, 0.0066 g Pt salt and 0.0070 g Pd salt, nominal 1 
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wt.% loading of each) for 18 h in the dark. A dry powder was obtained by gentle heating of the slurry at 50 

°C for 10 h, followed by calcination under air at 500 °C for 2 h and subsequent 200 °C reduction under H2 

(10 cm
3
.min

-1
) for 2 h, yielding Pt and Pd NPs. 

 

Pt in mesopores and macropores with Pd in macropores. Platinum NPs were deposited within the 

mesopore and macropore domains by incipient wetness impregnation of the fully detemplated hierarchically 

ordered macroporous-mesoporous SBA-15 (in which macropore hydrophobisation was omitted) with an 

aqueous solution of dihydrogen hexachloroplatinate. The parent support (0.25 g) was stirred in the aqueous 

salt solution (1 cm
3
, 0.0066 g Pt salt, nominal 1 wt.% loading) for 18 h in the dark. A dry powder was 

obtained by gentle heating of the slurry at 50 °C for 10 h, followed by 100 °C reduction under H2 (10 

cm
3
.min

-1
) for 2 h, yielding Pt NPs. Pd NPs were selectively deposited within the macropores by 

impregnation with 5.4 cm
3
 of a solution of the preformed colloidal Pd NPs in hexane (0.46 mg of Pd NP cm

-

3
, nominal 1 wt.% loading). The solid was stirred in solution for 1 h before solvent evaporation at room 

temperature to leave a dry powder. 

 

Pd in mesopores and macropores and Pt in mesopores. Platinum NPs were deposited selectively within the 

mesopore domains by incipient wetness impregnation of the hydrophobic, hierarchically ordered 

macroporous-mesoporous SBA-15 with an aqueous solution of dihydrogen hexachloroplatinate. The parent 

support (0.25 g) was stirred in the aqueous salt solution (1 cm
3
, 0.0066 g Pt salt, nominal 1 wt.% loading) 

for 18 h in the dark. A dry powder was obtained by gentle heating of the slurry at 50 °C for 10 h, followed 

by 100 °C reduction under H2 (10 cm
3
.min

-1
) for 1 h, yielding Pt NPs. The solid was then calcined under air 

at 500 °C for 2 h to remove the organic octyl groups (hydrophobicity) from the macropores. Palladium NPs 

were deposited within the mesopore and macropore domains by incipient wetness impregnation with an 

aqueous solution of tetraamine palladium nitrate. The solid (0.25 g) was stirred in the aqueous salt solution 

(1 cm
3
, 0.0070 g Pd salt, nominal 1 wt.% loading) for 18 h. A dry powder was obtained by gentle heating of 

the slurry at 50 °C for 10 h, followed by calcination under air at 500 °C for 2 h and subsequent 200 °C 

reduction under H2 (10 cm
3
.min

-1
) for 2 h, yielding Pt and Pd NPs.  
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Materials characterisation. Nitrogen porosimetry was undertaken on a Quantachrome Autosorb IQTPX 

porosimeter with analysis using ASiQwin v3.01 software. Samples were degassed at 150 °C for 12 h prior to 

recording N2 adsorption/desorption isotherms. BET surface areas were calculated over the relative pressure 

range 0.02-0.2. Mesopore properties were calculated applying the BJH method to the desorption isotherm 

for relative pressures >0.35, and fitting of isotherms to the relevant DFT kernel within the software package.  

Powder X-ray diffraction (XRD) patterns were recorded Bruker D8 diffractometer employing a Cu Kα (1.54 

Ǻ) source fitted with a Lynx eye high speed strip detector. Low angle patterns were recorded for 2θ = 0.3-8 ° 

with a step size of 0.01 °. Wide angle patterns were recorded for 2θ = 10-80 ° with a step size of 0.02 °. 

Contact angle measurements were carried out on a Kruss DSA100 drop shape analyser, fitted with a digital 

camera for continuous data collection. Water drop shapes were analysed 10 seconds after deposition via 

DSA3 software. Thermogravimetric analysis (TGA) was conducted using a Stanton Redcroft STA 780 

thermal analyser at 10 °C min
-1

 under flowing N2/O2 (80:20 v/v 20 cm
3
.min

-1
). Scanning electron 

microscopy (SEM) images were recorded on a Carl ZEISS SUPRA 55-VP operating at 25 kV. Samples 

were supported on aluminium stubs each backed with carbon tape. Transmission electron microscopy 

(TEM) imaging of the silica support and preformed Pd NPs were performed using a JEOL 2100F FEG TEM 

with a Schottky field emission source, equipped with an Oxford INCAx-sight Si(Li) detector for energy 

dispersive spectroscopy (EDX). High resolution (scanning) transmission electron microscopy (S)TEM 

images and were recorded on either a FEI Tecnai F20 FEG TEM operating at 200 kV equipped with an 

Oxford Instruments X-Max SDD EDX detector (10 nm diameter spot-size), or a JEOL 2100F FEG STEM 

operating at 200 keV and equipped with a spherical aberration probe corrector (CEOS GmbH) and a Bruker 

XFlash 5030 EDX. A Hitachi SU8230 cold field emission SEM operating at 20 kV was used for 

simultaneous imaging of secondary, backscattered and dark field scanning transmission electron signals. 

Samples were prepared for microscopy by dispersion in methanol and drop-casting onto a copper grid 

coated with a holey carbon support film (Agar Scientific Ltd). Images were analysed using ImageJ 1.41 

software.  
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Catalytic cascade oxidation. Catalytic aerobic selective oxidations were performed in a 100 cm
3
 Buchi 

miniclave stirred batch reactor on a 75 cm
3
 scale at 150 °C. 12.5 mg of catalyst was added to reaction 

mixtures containing 4.2 mmol cinnamyl alcohol (0.562 g), an internal standard (mesitylene, 0.1 cm
3
), and 

toluene solvent (75 cm
3
) at 150 °C under 5 bar oxygen and stirring. Reactions were periodically sampled for 

off-line gas chromatography analysis via a Varian 3800GC with 8400 autosampler fitted with a CP-Sil5 CB 

column (15 m x 0.25 mm x 0.25 m). Conversion, selectivity and yields were calculated via calibration to 

reference compounds and quoted 2 %. Turnover Frequencies for cinnamyl alcohol conversion and 

cinnamaldehyde production are quoted relative to the surface density of PdO sites (determined by XPS), and 

for cinnamic acid production relative to the surface density of PtO2 sites (determined by XPS), being the 

respective active sites for selective oxidation over Pd NPs and Pt NPs
23, 24, 26

. 

 

References 

1. Parlett, C. M. A., Wilson, K., Lee, A. F. Hierarchical porous materials: catalytic applications. Chem. 

Soc. Rev. 42, 3876-3893 (2013). 

 

2. Climent, M. J., Corma, A., Iborra, S., Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS 

Catal. 4, 870-891 (2014). 

 

3. Merino, E., Verde-Sesto, E., Maya, E. M., Iglesias, M., Sánchez, F., Corma, A. Synthesis of structured 

porous polymers with acid and basic sites and their catalytic application in cascade-type reactions. 

Chem. Mater. 25, 981-988 (2013). 

 

4. Balazs, A. C., Emrick, T., Russell, T. P. Nanoparticle polymer composites: Where two small worlds 

meet. Science 314, 1107-1110 (2006). 

 

5. Cheong, S. W., Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13-20 

(2007). 

 

6. Kim, J., Piao, Y., Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and 

simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372-390 (2009). 

 

7. Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., et al. Photocatalyst releasing 

hydrogen from water. Nature 440, 295-295 (2006). 

 

8. Ragesh, P., Anand Ganesh, V., Nair, S. V., Nair, A. S. A review on 'self-cleaning and multifunctional 

materials'. J. Mat. Chem. A 2, 14773-14797 (2014). 

 

9. Lu, W., Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841-850 (2007). 

 

10. Zhou, W., Ding, L., Yang, S., Liu, J. Orthogonal orientation control of carbon nanotube growth. J. Am. 

Chem. Soc. 132, 336-341 (2010). 



15 
 

 

11. Paciello, A., Santonicola, M. G. A supramolecular two-photon-active hydrogel platform for direct 

bioconjugation under near-infrared radiation. J. Mat. Chem. B 3, 1313-1320 (2015). 

 

12. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. 

Mater. 13, 515-523 (2014). 

 

13. Grunes, J., Zhu, J., Anderson, E. A., Somorjai, G. A. Ethylene hydrogenation over platinum 

nanoparticle array model catalysts fabricated by electron beam lithography:  determination of active 

metal surface area. J. Phys. Chem. B 106, 11463-11468 (2002). 

 

14. Yamada, Y., Tsung, C.-K., Huang, W., Huo, Z., Habas, S. E., Soejima, T., et al. Nanocrystal bilayer for 

tandem catalysis. Nat. Chem. 3, 372-376 (2011). 

 

15. Dhainaut, J., Dacquin, J.-P., Lee, A. F., Wilson, K. Hierarchical macroporous-mesoporous SBA-15 

sulfonic acid catalysts for biodiesel synthesis. Green Chem. 12, 296-303 (2010). 

 

16. Wainwright, S. G., Parlett, C. M. A., Blackley, R. A., Zhou, W., Lee, A. F., Wilson, K., et al. True 

liquid crystal templating of SBA-15 with reduced microporosity. Micropor. Mesopor. Mat. 172, 112-

117 (2013). 

 

17. Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F., et al. Triblock 

copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548-

552 (1998). 

 

18. Mazumder, V., Sun, S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid 

oxidation. J. Am. Chem. Soc. 131, 4588-4589 (2009). 

 

19. Nicolaou, K. C., Edmonds, D. J., Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int.-

Ed. 45, 7134-7186 (2006). 

 

20. Motokura, K., Tada, M., Iwasawa, Y. Heterogeneous organic base-catalyzed reactions enhanced by acid 

supports. J. Am. Chem. Soc. 129, 9540-9541 (2007). 

 

21. Burt, S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. 

Food Microbiol. 94, 223-253 (2004). 

 

22. Soto-Vaca, A., Gutierrez, A., Losso, J. N., Xu, Z., Finley, J. W. Evolution of phenolic compounds from 

color and flavor problems to health benefits. J. Agr. Food Chem. 60, 6658-6677 (2012). 

 

23. Hackett, S. F. J., Brydson, R. M., Gass, M. H., Harvey, I., Newman, A. D., Wilson, K., et al. High-

activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. 

Angew. Chem. Int.-Ed. 119, 8747-8750 (2007). 

 

24. Lee, A. F., Ellis, C. V., Naughton, J. N., Newton, M. A., Parlett, C. M. A., Wilson, K. Reaction-driven 

surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd. J. Am. 

Chem. Soc. 133, 5724-5727 (2011). 

 

25. Durndell, L. J., Parlett, C. M. A., Hondow, N. S., Isaacs, M. A., Wilson, K., Lee, A. F. Selectivity 

control in Pt-catalyzed cinnamaldehyde hydrogenation. Sci. Rep. 5,  (2015). 

 

26. Durndell, L. J., Parlett, C. M. A., Hondow, N. S., Wilson, K., Lee, A. F. Tunable Pt nanocatalysts for 

the aerobic selox of cinnamyl alcohol. Nanoscale 5, 5412-5419 (2013). 

 



16 
 

27. Zhang, F., Jiang, H., Li, X., Wu, X., Li, H. Amine-functionalized GO as an active and reusable acid–

base bifunctional catalyst for one-pot cascade seactions. ACS Catal. 4, 394-401 (2014). 

 

28. Zeidan, R. K., Hwang, S.-J., Davis, M. E. Multifunctional heterogeneous catalysts: SBA-15-containing 

primary amines and sulfonic acids. Angew. Chem. Int.-Ed. 45, 6332-6335 (2006). 

 

29. Dacquin, J.-P., Dhainaut, J., Duprez, D., Royer, S., Lee, A. F., Wilson, K. An efficient route to highly 

organized, tunable macroporous−mesoporous alumina. J. Am. Chem. Soc. 131, 12896-12897 (2009). 

 

30. Sen, T., Tiddy, G. J. T., Casci, J. L., Anderson, M. W. Synthesis and characterization of hierarchically 

ordered porous silica materials. Chem. Mater. 16, 2044-2054 (2004). 

 

 

Acknowledgements  

This work was supported by the EPSRC (EP/G007594/4). A.F.L. was supported by an EPSRC Leadership 

Fellowship, K.W. by a Royal Society Industry Fellowship, and S.K.B by a Durham University Addison 

Wheeler Fellowship and The Leverhulme Trust ECF schemes. L.B. acknowledges EPSRC for a studentship. 

Electron microscopy access was provided through the Leeds EPSRC Nanoscience and Nanotechnology 

Research Equipment Facility (LENNF) (EP/K023853/1), the University of Birmingham Nanoscale Physics 

Laboratory, and DU GJ Russell Microscopy Facility. 

 

Author Contributions 

A.F.L., C.M.A.P. and K.W. planned the experiments. C.M.A.P. synthesized all porous materials and 

performed catalytic testing. L.B. and S.B. synthesized and characterized the Pd colloids. C.M.A.P., M.A.I. 

and N.S.H. undertook materials characterization. A.F.L. wrote the manuscript. 

 

Additional Information  

Supplementary information is available in the online version of the paper. Reprints and permissions 

information is available online at www.nature.com/reprints. Correspondence and requests for materials 

should be addressed to A.F.L.  

 

Competing Financial Interests 

The authors declare no competing financial interests. 

http://www.nature.com/reprints
http://www.nature.com/authors/editorial_policies/competing.html

