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ABSTRACT 

 

In thisW article we present a detailed sediment-provenance study on the modern Euphrates-Tigris-

Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich 

petrographic and heavy-mineral dataset, integrated by sand geochemistry and U-Pb age spectra of 

detrital zircons, highlights the several peculiarities of this large source-to-sink sediment-routing 

system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic 

settings. Comparison of classical static versus upgraded dynamic petrologic models are applied and 

compared in the endeavour to enhance the power of provenance analysis, and allow us to derive a 

more refined conceptual model of reference and , but also to verify the limitations of the approach 

and understand which secret of nature is likely to remain beyond reach in our efforts to reconstruct 

orogenic landscapes of the past. 

Sands derived from the Anatolia-Zagros orogen contains an abundantce of lithic grains eroded from 

carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges 

representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-

feldspar and mica. This quartz-poor petrographic signature, characterizing the undissected 

composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of 

sands shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid 

climate in the region allows preservation of chemically unstable grains including carbonate rock 

fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump 

most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical 

carbonate factory. Quartz-poor sediments from the Anatolia-Zagros orogen mixes with quartz-rich 

recycled sands from Arabia all along the western side of the foreland basin, and are is traced all 

along the Gulf shores as far as the edge of the Rub' al-Khali sand sea up to 4000 km from 

Euphrates headwaters. 
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A river watering the garden flowed from Eden; from there it was separated into four headwaters. The 

name of the first is the Pishon; it winds through the entire land of Havilah, where there is gold. The name 

of the second river is the Gihon; it winds through the entire land of Cush. The name of the third river is 

the Tigris; it runs along the east side of Ashur. And the fourth river is the Euphrates.       Genesis 2:10-14 

“Their reward from their Lord will be the gardens of Eden, wherein streams flow and wherein they will 

live forever. God will be pleased with them and they will be pleased with Him."                   Al-Quran 98:8 

1. Introduction

Mesopotamia is the cradle of civilization. Bringing water and fertile sediments to an otherwise 

desert region, the Euphrates and Tigris Rivers allowed humans to settle, develop agricultural 

practices 10,000 years ago, learn how to domesticate animals, and produce the first book recorded 

in history, the Epic of Gilgamesh. Mesopotamia, a garden of Eden wounded by decades of war and 

unending atrocities committed in the name of God, is geologically speaking part of a subsiding 

foreland basin including the Arabian/Persian Gulf (Evans, 2011). The transition between the fluvial 

floodplain and the distal marine basin is - or was before the ecosystem collapsed under the impact 

of extensive drainage works and construction of large dams in Turkish headwaters (Partow, 2001) - 

the vast marshland well described by the British explorer Wilfred Thesiger in his book Marsh 

Arabs. Other streams join the trunk-river system, called here the Shatt -al-Arab. These are the 

Karun, identified traditionally with the Gihon of the Genesis and draining the Zagros fold-thust belt 

in Iran, and Wadi Rimah/-al Batin, held by some to be the Pishon of the Genesis, draining in ancient 

more humid times presently desert Arabia (Fig. 1). 

Sediments of the Mesopotamian foreland basin are derived almost entirely from erosion of the 

Anatolia-Zagros composite orogen, grown during collision between Arabia and Eurasia preceded by 

ophiolite obduction in the Late Cretaceous (Alavi, 2004; Okay, 2008). The mountain belt runs along 

the southern front of the Anatolia-Iranian plateau, connecting the Alps and the Himalayas as part of 

the garland of ranges issued from Paleogene closure of the Neotethys Ocean (Dercourt et al., 2000). 

From the Taurus in the south to the Caucasus in the north, the region of distributed tectonic 

deformation is ≤ 1000 km in width and has elevations over 1500 m a.s.l. punctuated by volcanic 

peaks reaching above 5000 m a.s.l. (Yilmaz et al, 1998; Allen et al., 2013). Exposed in this wide 

tectonic domain are sedimentary strata, volcanic rocks and ophiolitic mélanges, with virtual absence 

of paleometamorphic crystalline basements and scarcity of high-pressure neometamorphic rocks 

(Şengör et al., 2003). Because sediments reflect the lithology of source terranes, those shed by the 

Anatolia-Zagros collision orogen are expected to be distinct compositionally from those generated 

in the Alps or the Himalayas, and characterized by an abundantce of lithic grains from sedimentary 
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and volcanic rocks of the widely exposed supracrustal structural level. Peculiar Characteristic of the 

Mesopotamian and Gulf regions is also the arid climate, resulting in negligible chemical weathering 

and almost complete preservation of unstable detrital components. Because of the consequently 

limited erosion rates and fluvial-transport capacity, the Gulf represents today a unique rare case of 

partially underfilled marine foreland basin associated with a large collision orogen. Eolian sediment 

transport plays a very major role in such an arid region. In the Pleistocene, during periods of low 

global sea-level, sand was deflated by reinforced northerly winds along the exposed floors of the 

Gulf and then blown south and southwestwards up the Rub' al-Khali (Teller et al., 2000; Garzanti et 

al, 2003, 2013a).  

This study investigates processes of erosion, transport and deposition at the subcontinental scale by 

using petrographic, mineralogical and geochronological signatures as tracers of long-distance 

multistep sediment dispersal. Besides the relevant archeological implications (Lees and Falcon, 

1952; Morozova, 2005; Wilkinson et al., 2015), monitoring the compositional variability of modern 

sediments in big-river systems such as the Euphrates-Tigris-Karun drainage basin, over 10
6
 km

2
 

wide and ranking about twentieth on Earth, provides us with a key to understand the information 

stored in sedimentary archives, and to reconstruct the evolution of the Earth's surface from the 

recent to the less recent past. Previous mineralogical studies on recent Mesopotamian sediments 

include Philip (1968), Berry et al. (1970), Ali (1976),  and Al-Juboury and Al-Miamary (2009) and 

Awadh et al. (2011). 

 

2. The BitlisAnatolia-Zagros orogen 

 

The Anatolia-Iranian plateau is a geological collage of microcontinents separated by ophiolitic 

sutures and eventually welded during collision between Arabia and Eurasia in the Paleogene 

(Robertson et al., 2013a). Late Cretaceous obduction is documented by both northern and southern 

ophiolitic belts of eastern Anatolia, which wrap around the Tauride microcontinent (Fig. 2). The 

northern (İzmir-Ankara-Erzincan) suture bends northeastward to continue in the Sevan-Akera 

suture of the Lesser Caucasus (Cavazza et al., 2015), whereas the sSoutheast Anatolia orogen and 

the southern (Bitlis) suture bends southeastwards to continue in the Zagros Mmountains across the 

Iraqi Kurdistan (Fig. 3) and the northern coast of the Gulf (Fig. 4). 

The Zagros orogen includes, from northeast to southwest (Agard et al., 2005): 1) subduction-related 

batholiths and volcanic rocks of the Urumieh-Dokhtar mMagmatic aArc, representing the active 

southwestern margin of the Iranian microcontinent. The oldest plutonic rocks are Jurassic, the with 

peak of magmatic activity occurred in the Eocene;, the youngest volcanic products are Quaternary; 

2) vVery-low-grade metasedimentary and metavolcanic rocks of the Sanandaj–Sirjan zZone, 
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including granitoid batholiths in the north and representing either an independent microcontinent 

detached from Gondwana or part of the northern active margin of Neotethys (Alavi, 1994; Ghasemi 

and Talbot, 2006; Arfania and Shahriari, 2009); 3) a Late Cretaceous imbricate belt, including 

obducted ophiolites, limestones, radiolarites, turbidites and volcanic/metavolcanic rocks 

documenting the suture zone; 4) a Cenozoic fold-thrust belt, pierced by salt diapirs mostly rooted in 

Neoproterozoic-Cambrian evaporites, including a ≤ 13 km-thick sedimentary succession originally 

deposited during most of the Phanerozoic on the subsiding outer continental margin of Arabia 

(Sepehr and Cosgrove, 2004; Alavi, 2004); 5) the frontal foothills, including Neogene terrigenous 

sediments derived from the rising orogen (Al-Juboury et al., 2009a).  

 

2.1. North Anatolia ophiolites and the Taurides 

 

The Karasu headwater branch of the Euphrates flows along the Erzincan suture for 200 km and 

next joins with the Murat River and several other tributaries draining the Tauride platform (Fig. 2). 

Exposed in the Erzincan region are the Upper Cretaceous Refahiye Ophiolite, consisting of 

serpentinized harzburgite with subordinate diabase and minor gabbro and plagiogranite, the 

associated mélange containing blocks of basalt, radiolarite and limestone, greenschist-facies arc 

volcanics, and turbidites. This rock assemblage is overlain in angular unconformity by upper 

Paleocene-Eocene shallow-marine carbonates and siliciclastics (Rice et al., 2009; Sarifakioğglu et 

al., 2009). 

The Tauride platform includes Permo-Mesozoic carbonates overlain by ophiolitic mélange (Gürün 

and Munzur units) and a low-grade basement largely consisting of uUpper Paleozoic/lLower 

Mesozoic metacarbonates (Malatya-Keban unit), cut by Upper Cretaceous granites and overlain by 

the associated basaltic and andesitic lavas (Elaziğ-Baskil arc complex; Robertson et al., 2007, 

2013b). The overlying Cenozoic strata document major marine transgressions in the Eocene and 

early Miocene with widespread deposition of carbonates and siliciclastics. Throughout the late 

Neogene, eastern Anatolia was blanketed by shield and fissure eruptions of transitional tholeiitic-

alkaline basalt, interfingering with fluvial and lacustrine deposits and extending to the Arabian 

foreland in the south (Pearce at al., 1990; Yilmaz et al., 1998). 

 

2.2. The sSoutheast Anatolia belt 

 

The Tigris River is sourced in the Ssoutheast Anatolia belt and drains the Arabian platform south of 

it (Fig. 2). The metamorphic backbone of the range is the 500 km-long and 30 km-wide Bitlis-

Pütürge massif, emplaced tectonically onto a polyphase ophiolitic mélange and volcano-

sedimentary succession, separated in turn by a narrow belt of imbricated thrust slices from the 
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underlying Arabian continental-margin strata (Yilmaz, 1993). The massif, drained by the Batman 

tributary of the Tigris, includes gneisses, micaschists and amphibolites of the Pan-African basement 

together with schists, metacarbonates and metavolcanics of its Paleozoic to lower Mesozoic cover 

(Ustaömer et al., 2012). Eclogites and blueschists formed during ophiolite obduction in the Late 

Cretaceous (Oberhänsli et al., 2010).  

North of the metamorphic massif, three relatively undeformed to strongly deformed and partly 

metamorphosed Upper Cretaceous ophiolitic sequences are exposed west (İspendere), between 

(Kömürhan), and east (Guleman) of the Euphrates and Tigris courses (Robertson et al., 2007). 

South and east of the massif, dismembered ophiolites and island-arc assemblages include 

serpentinite, gabbro, basalt, radiolarite, limestone and clastic rocks of the Yüksekova mélange, as 

well as Eocene volcano-sedimentary successions deposited during final closure of Neotethys and 

equivalent to the Walash and Naopurdan Groups of Iraq (Yilmaz et al., 1993). These include the 

Maden Group, overlying stratigraphically the Bitlis-Pütürge massif and exposed in the Tigris 

headwaters, and the Helete volcanic rocks exposed across the drainage divide between the 

Euphrates and Cehyan rRivers and possibly traced as far as the Kyrenia Range in north Cyprus 

(Yiğitbaş and Yilmaz, 1996). The largely marine Cambrian to Miocene succession of the Arabian 

foreland is best exposed in southeasternmost Turkey drained by the Greater Zab (Elmas and 

Yilmaz, 2003). 

 

2.3. The Sanandaj-Sirjan zZone 

 

The Lesser Zab and Diyala tributaries of the Tigris, the Karkheh River, and the Dez tributary of the 

Karun all have their headwaters in the Sanandaj-Sirjan zZone of Iran (Fig. 4). The volcano-

sedimentary succession exposed in this 150-250 km-wide, NW/SE-elongated tectonic domain has 

undergone experienced up to low-grade metamorphismc overprint. It includes Permo-Triassic 

metalavas, marbles and metasandstones, overlain by the 2-3 km-thick Hamedan phyllites, followed 

by Middle-Upper Jurassic clastics and limestones, and capped unconformably in turn by Orbitolina 

limestones (Stocklin, 1968; Alavi, 1994). The domain includes the Songor metavolcanic rocks and 

chlorite-epidote schists; granodiorite to granite with minor tonalite and gabbro are common in the 

northern part (Agard et al., 2005).  

The Shalair unit, which is part of the same domain and represents the structurally highest thrust-

sheet in Iraq (Fig. 3), includes Paleozoic metamorphic rocks intruded locally by Upper 

Carboniferous granites, ≤ 500 m-thick imbricates of Upper Triassic carbonates, a thick volcano-

sedimentary succession with phyllites and calcschists capped unconformably by Orbitolina 
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limestones, and 2 km-thick Upper Cretaceous andesites, dacites and rhyolites with superposed 

prehnite-pumpellyite to greenschist-facies metamorphism. 

 

2.4. The Zagros suture 

 

Geological descriptions of the suture zone, drained by Greater Zab and Lesser Zab tributaries in 

Iraq (Fig. 3) and by Diyala and Karkheh headwaters in Iran (Fig. 4), are taken mostly from Jassim 

and Goff (2006) and Agard et al. (2005). In Iraq, the Qulqula unit includes deformed radiolarites, 

carbonate turbidites and volcanic rocks of mostly Early Cretaceous age, and an upper thrust sheet of 

800 m-thick Triassic platform carbonates (Avroman Formation, partly equivalent to the Bisotun 

Formation in Iran). Permian limestones and thick conglomerates with limestone and chert clasts 

occur. Deposited originally onto the distal continental margin of Arabia as the Hawasina nNappes 

of northern Oman, these strata were thrusted onto the Arabian platform during Late Cretaceous 

obduction. The small  Upper Cretaceous ophiolite complexes exposed in the area (Fig. 3) include 

consist of sheared slivers or larger bodies of serpentinitized harzburgites or lherzolites, and 

incomplete and incomplete crustal ssequences including of cumulates, gabbro, diorite,  and 

plagiogranite, and basaltic lava flows affected by low-grade metamorphism (e.g., Mawat Ophiolite; 

Aziz et al., 2011). These units are overlain unconformably by rudist-bearing Maastrichtian 

limestones and 1 km-thick Paleogene red beds with intercalated Nummulitid limestones and 

conglomerates with boulders of chert and volcanic rocks. 

The ≤ 4 km-thick Paleocene-Eocene arc volcanics and forearc turbidites of the Walash and 

Naopurdan Groups (Ali et al., 2013) are overthrust by a volcano-sedimentary sequence displaying 

greenschist to lower-amphibolite-facies metamorphism (Qandil series). Basalts, boninites and tuffs 

commonly show uralitization and extensive growth of amphibole, epidote or prehnite, and may be 

transformed into strongly foliated actinolitehornblende or chlorite schists. Blueschists occur locally. 

High-grade contact metamorphism was reached in the ≤ 2.5 km-wide aureole developed in 

sedimentary country rocks of the Eocene Bulfat gabbro. 

In the adjacent Kermanshah region of Iran (Fig. 4), thrust-sheets stacked during Late Cretaceous 

obduction include 500 m of strongly folded Jurassic-Cretaceous radiolarites, overthrusted by ≤ 3 

km-thick Upper Triassic to mid-Cretaceous Bisotun exotic shelfal limestones, and in turn by 

ophiolite remnants including locally strongly serpentinized peridotites. Paleocene-Eocene arc-

related volcanic rocks and turbidites are intruded by upper Eocene gabbros (Whitechurch et al., 

2013). 

 

2.5. The Zagros fold-thrust belt 
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The simply folded belt consists of largely competent carbonate rocks exposed in NW-SE trending 

parallel ridges drained by left-bank tributaries of the Tigris River in Iraq and by the Karun and 

Karkheh rRivers in Iran. The base of the thick sedimentary succession, which rests on Precambrian 

metamorphic basement, representing an extension of the Proterozoic Arabian shield, and 

beginscontains with uppermost Neoproterozoic/lowermost Cambrian dolostones and evaporites 

(e.g., Hormuz Salt) acting as a major detachment zone that controls the style of tectonic 

deformation (Bahroudi and Koyi, 2003). The overlying Paleozoic succession consists of shelfal 

clastic and carbonate rocks. In northernmost Iraq, 4 km-thick Paleozoic strata are exposed in the 

Ora tThrust zZone drained by the Khabour River (Fig. 3), including Ordovician quartzose 

sandstones and mudrocks with Cruziana trace fossils, Devonian red beds with a volcanic interval, 

and Carboniferous sandstones, shales and minor limestones ( Al-Juboury and Al-Hadidy, 2009). 

Upper Permian limestones and intercalated evaporites equivalent to the Khuff carbonates of Arabia 

document regional transgression following the initial opening of Neotethys in the Early Permian 

(Angiolini et al., 2003). Triassic and Jurassic strata include variegated mudrocks intercalated with 

carbonates and evaporites, followed overlain by bituminous carbonates with sporadic chert nodules 

and black shales. The Cretaceous succession includes carbonate-ramp deposits, followed overlain 

by 2 km-thick turbiditic sandstones and conglomerates with clasts of Mesozoic carbonate, 

radiolarian chert and green igneous and metamorphic rocks, interpreted to have been derived from, 

and deposited in front of advancing ophiolitic allochthons in the Campanian-Maastrichtian. 

Paleocene-Eocene strata include marls, sandstones and mudrocks with sporadic channelized 

conglomerates. The Neogene succession, gently folded and exposed in the foothills at the front of 

the range, consists of fluvio-deltaic red sandstones and mudrocks (Fat'ha or Lower Fars Formation; 

Al-Juboury and McCann, 2008) and 3 km-thick, coarse-grained fluvio-deltaic sediments (Injana or 

Upper Fars and Bakhtiari fFormations; Al-Juboury, 2009). 

The Neot-Tethyan passive- margin succession in Iran includes ≥ 2 km-thick Permo-Triassic 

carbonates and evaporites unconformably overlain by lowermost Jurassic siliciclastics passing 

upward to shallow-water limestones with Lithiotis (Szabo and Kheradpir, 1978). Deposition of 

cCarbonate- platform deposits, passing laterally to bituminous shales and evaporites, persisted until 

the Turonian. The Late Cretaceous obduction event was recorded by the disconformably overlying 

Santonian-Campanian marly limestones and shales, followed overlain by Maastrichtian sandstones 

and conglomerates with chert, serpentinite, volcanic and limestone clasts derived from the 

obducting ophiolites (Amiran Fm.), which are capped in turn by the uppermost Cretaceous Tarbur 

carbonates. The 3-5 km-thick Cenozoic succession includes Paleogene dolostones, evaporites, 

sandstones and mudrocks, overlain by the upward-coarsening and southwest-prograding Neogene 
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megasequence that includesing carbonates (e.g., Asmari Fm.), siliciclastics and evaporites 

(Gachsaran Fm.), and finally "molassic" sandstones and fluvial conglomerates (Bakhtiari Fm.; 

Hessami et al., 2001). 

 

3. The Euphrates-Tigris-Karun river system 

 

The Euphrates-Tigris-Karun drainage basin exceeds 10
6
 Km

2 
in total and ranges is about the 

twentieth largest on Earth (Fig. 1A). Fluvial management projects extend backbegan over six 

millennia ago, until the second half of the last century when natural water and sediment fluxes were 

revolutionized by the construction of numerous major dams, the largest being the Atatürk Dam in 

southern Turkey with a capacity larger than the Euphrates annual flow. 

 

 

3.1. The Euphrates River  

 

The Euphrates (Firat/Furat) River, with a length of 2800 km and a catchment of 580,000 km
2
, is 

the largest river of southwestern Asia. Its two upstream branches, the Karasu and Murat,
 
rise in 

northeastern Anatolia at 3,290 and 3,520 m a.s.l., respectively. Mountainous headwaters have 

Mediterranean climate with hot dry summers and cold wet winters. Mean annual precipitation 

decreases progressively southward from 1,000 mm in the mountains to 300 mm near the 

Turkish/Syrian border, to 150 mm in Syria and only 75 mm in southern Iraq. Virtually all (88-98%) 

of river water and sediments are generated in Anatolia. Peak discharge fed from rainfall and melting 

snow in April through May accounts for about half of annual runoff, which until the 1960s used to 

vary markedly at the Syrian border (17-43 km
3
), partly as an effect of the North Atlantic climatic 

oscillation (Cullen and deMenocal, 2000). The natural river regime has changed drastically since 

construction of large dams and reservoirs between 1970 and 2000 for hydroelectric power, 

irrigation and flood control. These include the Keban Dam downstream of the Karasu/Murat 

confluence, the Karakaya Dam, the huge Atatürk Dam, the Birecik and Karkamiş Dams just 

upstream of the Syrian border, and the Tabqa (Buhayrat al-Assad) Dam in Syria. Little inflow is 

contributed by the arid plains of Syria, where the Khabur River represents the last significant 

tributary, and of Iraq, where widyan of the western desert may flow episodically during winter 

rains. After winding through a gorge 2-16 km-wide, the river eventually flows out on the 

Mesopotamian plain, where average annual discharge has dropped to 11 km
3
, and peak discharge 

from 7500 m
3
/s to 2500 m

3
/s (Partow, 2001). 

 

3.2. The Tigris River 
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The Tigris (Dicle/Dijlah) River, with a length of 1850 km and a catchment of 370,000 km
2
, 

originates from Lake Hazar in the Taurus Mountains. The mild influence of the Mediterranean Sea 

decreases inland and to the south, causing a rapid shift to increasingly hot and dry conditions 

downstream. Rainfall isPrecipitations are sparse in the Mesopotamian plain, with an annual average 

of 150-200 mm falling mainly in winter, whereas summers are hot and dry with temperatures up to 

50°C. Tigris flow depends only in part on tThe southern Anatolia headwater region, which 

contributes one-third to half of its Tigris total annual water discharge (8-34 km
3
 out of 50 km

3
), 

the rest being supplied by left-bank tributaries with perennial flow descending from the Zagros 

Mmountains (Partow, 2001). These include the Khabour in northernmost Iraq, the Greater Zab 

sourced in southeasternmost Turkey, the Lesser Zab sourced in Iran, the Adhaim with its main Aqsu 

tributary, and finally the Diyala, sourced in Iran where it is called Sirwan and joining the Tigris just 

south of Baghdad. Water and sediment discharge has been reduced progressively through time by 

dam construction in Turkey (e.g., Dicle Dam, 1997), northern Iraq (Mosul Dam, 1986), and central 

Iraq (Samarra Dam, 1956; Kut Dam, 1939). Other dams with large reservoirs include the Dukan 

Dam on the Lesser Zab (1961) and the Darbandikhan Dam on the Sirwan/Diyala (1962). 

 

3.3. The Mesopotamian floodplain 

 

Because of arid climate, the life of plants, animals and humans in the Iraqi plains have always 

depended heavily on the availability of surface water. The Euphrates and Tigris river courses have 

seen continuous change in response to a range of anthropic, autogenic and allogenic processes, 

causing damages to human settlements and irrigation systems due to flooding or desertification 

(Jotheri et al., 2016). Since the early Holocene, considerable efforts have thus been made by the 

Mesopotamian people to control and sustain the water for their requirements, and an extensive 

network of channels was formed over time throughout the region (Wilkinson et al., 2015). 

Downstream of the Hindiya Dam, the Euphrates divides into two channels joining again at 

Samawah. South of Nasiriyah the river flows through the Hawr el Hammar, where its sediment load 

is finally dumped before joining the Tigris south ofat Al-Qurnah. South of Baghdad, the slope of 

the Tigris River decreases progressively and meander curvature increases. At the Kut Dam, much of 

the river waters isare diverted southward into the Shatt- al-Gharraf, once the main river channel 

joining with the Euphrates at Nasiriyah (Fig. 1). More waters are lost through various channels and 

marshes, and only 25% of the original discharge finally reaches the Euphrates confluence to form 

the Shatt -al-Arab. Most of the sediment load is consequently deposited in the plains, and little is 

carried beyond Qalah Salih, 60 km north of Al-Qurnah. Also the Karkheh River, which once 

joined the trunk river just south of Al-Qurnah, breaks into a number ofseveral channels in the 
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swampy area of southern Iraq, and along with the eastern branches of the Tigris is finally absorbed 

in the Hawizah Marshes straddling the Iraq/Iran border. Despite a potential annual load estimated at 

105 million tons for the Euphrates and Tigris combined, the Shatt- al-Arab upstream of the Karun 

confluence is thus virtually free of sediment (Partow, 2001).  

 

3.4. Iranian rivers and the Shatt-hatt al-Arab 

 

The highly sinuous, tectonically controlled courses of the Karkheh and Karun rRivers drain the 

Zagros Mmountains in Iran, where climate is hot and dry in summer and mild in winter, with annual 

precipitation decreasing sharply from 800 mm in the mountains to 150 mm in southern lowlands. 

The Karkheh River, the third longest in Iran, has a lengtht of 960 km, a catchment area of 50,000 

km
2
, and a water discharge of 5 km

3
/a. The major Karkheh Dam, built in 2001 10 km upstream 

of the plains in 2001, never reached even close of to full capacity and expected energy production 

because of low water levels. The Karun River, with a length of 870 km and a catchment of 

70,000 km
2
, has the highest discharge among all rivers in Iran (20 km

3
/a; Salarijazi et al., 2012). 

The mountain area comprises 75% of the catchment, the rest being represented by the low-

gradient plain where the trunk river is joined by the Dez tributary. Several dams were built in the 

basin from 1963 (Dez Dam) to 2010 (Karun-4 Dam), resulting in a reduction of sediment fluxes and 

increased levels of salinity in the Shatt al-Arab, thus damaging ecosystems and human activities 

(Afkhami, 2003). The river finally splits into two subparallel branches, one joining the Shatt al-

Arab and the other flowing directly into the Gulf as the Bahmanshir River. In the Gulf, terrigenous 

sediments mix extensively with ooids and other allochems and are finally deposited in marine 

mudflats and sand bars (Aqrawi, 1994).  

 

4. Methods 

 

Field sampling in a region tormented by permanent war and conflict such as modern Iraq, Syria and 

southeastern Turkey is not easy. Between 2012 and 20165, very fine to medium-grained sands were 

collected wherever possible on active bars along the Euphrates River in Iraq and its major 

headwaters tributaries in Turkey (14 samples), along the Tigris River in Iraq and its major 

tributaries in Turkey, Iraq and Iran (32 44 samples), and along the Karkheh and Karun Rivers and 

their major tributaries in Iran as far as the Shatt-hatt al-Arab (17 samples). Sands derived from 

specific tectonic domains and carried by minor mountain rivers draining specific source areas were 

studied to identify the signatures of distinct structural domains (first-order sampling scale of 

Ingersoll, 1990) were studied to identify the signatures of distinct source rocks, focusing in 
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particular on the ophiolitic suture zone of Iraqi Kurdistan drained by the Qara Cholan River (Fig. 3). 

The complete set of 82 94 samples also includes 1 eolian dune and 16 Mesopotamia floodplain 

sediments in Iraq, 1 sample from Wadi al- Batin in Saudi Arabia, and 1 Gulf beach in Kuwait. 

Information on sample location is provided in Appendix Table A1 and Supplementary file 

EuTiKa.kmzl. 

 

4.1. Petrography and heavy minerals  

 

A quartered fraction of each sample was impregnated with Araldite, cut into a standard thin section, 

stained with alizarine red to distinguish dolomite and calcite, and analysed by counting 400 points 

under the microscope (Gazzi-Dickinson method; Ingersoll et al., 1984; Zuffa, 1985). Sand s were 

classification is based by on their main components quartz, feldspars and lithic fragments 

considered if exceeding 10%QFL (e.g., a sand is namedin a quartzo-lithico-feldspatho-quartzose 

sand if L > Q >F>L> 10%QFLQFL > F; Garzanti, 2016). Metamorphic grains were classified by 

protolith composition and metamorphic rank. Average rank of rock fragments in each sample is 

expressed by the mMetamorphic iIndices MI and MI*. MI varies from 0 (detritus shed by 

sedimentary and volcanic cover rocks exclusively) to 500 (very-high-rank detritus exclusively shed 

by high-grade basement rocks exclusively). MI* considers only metamorphic rock fragments and 

thus varies from 100 (very-low-rank detritus shed by very low-grade metamorphic rocks) to 500 

(Garzanti and Vezzoli, 2003). The Sc/S ratio (peridotite and lizardite-serpentinite grains with 

preserved cellular texture over total ultramafic grains including foliated antigorite-serpentineschist) 

allows distinction of detritus from relatively undeformed obducted peridotites versus strongly 

deformed subducted mantle rocks (Garzanti et al., 2002a). Median grain size was determined in thin 

section by ranking and visual comparison with sieved standards. 

Although bulk-sample analyses represent the only correct option to estimate percentages of heavy 

minerals accurately, the presence of grains with great size differences in poorly sorted sands makes 

mounting and identification difficult. For such practical reasons a size window must be chosen, 

which should be wide enough to obtain a faithful characterization of the detrital assemblage 

(Garzanti et al., 2009). Heavy-mineral analyses were carried out on a 3.5 to 5 -wide size window 

(32-355 m to 15-500 m) obtained by dry sieving. E, and even with such a large window, heavy 

minerals occurring inthe 10  10% (finest tail) and 11  17% (coarse tail) of our the bulk samples 

were excluded from analysis. Heavy minerals were separated by centrifuging in sodium 

polytungstate (density ~2.90 g/cm
3
), and recovered by partial freezing with liquid nitrogen. On 

grain mounts, ≥ 200 transparent heavy-mineral grains were either counted under the microscope by 

the area method or point-counted at suitable regular spacing to obtain real volume percentages 
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(Galehouse, 1971). Heavy-mineral concentrations, calculated as the volume percentage of total 

(HMC) and transparent (tHMC) heavy minerals (Garzanti and Andó, 2007a), range from “very 

poor” (tHMC < 0.5) and “poor” (0.5 ≤ tHMC < 1) to “rich” (5 ≤ tHMC < 10),  and “very-rich” (10 

≤ tHMC < 20) and “extremely rich” (20 ≤ tHMC < 50). The ZTR index, expressing the “chemical 

mineralogical stability” of the suite, is the sum of zircon, tourmaline and rutile over total transparent 

heavy minerals (Hubert, 1962). The “Hornblende Colour Index” HCI (Andó et al., 2014) varies 

from 0 in detritus from lowermost amphibolite-facies rocks yielding blue/-green amphibole 

exclusively, to 100 in detritus from granulite-facies or volcanic rocks yielding brown amphibole 

exclusively. Significant minerals are listed in order of abundance throughout the text. Key 

petrographic and mineralogical parameters and weathering indices are shown in Table 1. The 

complete petrographic and mineralogical datasets are provided in Appendix Tables A2 and A3. 

 

4.2. Geochemistry and U-Pb zircon geochronology 
 

Chemical analyses of 14 20 selected samples were carried out at ACME Laboratories (Vancouver) 

on a split aliquot of the 63-2000 m fraction obtained by wet sieving. Major oxides and some minor 

elements were determined by ICP-ES and trace elements by ICP-MS, following a lithium 

metaborate/tetraborate fusion and nitric acid digestion. A separate split was digested in aqua regia 

and analysed for Mo, Ni, Cu, Ag, Au, Zn, Cd, Hg, Tl, Pb, As, Sb, Bi, Se, but the concentration of 

these elements may be underestimated because of only partial leaching digestion particularly of 

refractory minerals. For further information on adopted procedures, geostandards used and precision 

for various elements see http://acmelab.com (group 4A-4B and code LF2002).  

The U-Pb ages of detrital zircons identified by Qemscan electron microscopy on the heavy-mineral 

separates of 25 selected samples were determined at the London Geochronology Centre using an 

Agilent 7700 LA-ICP-MS system, employing a New Wave NWR193 Excimer Laser operated at 10 

Hz with a 20 m spot size and ~2.5 J/cm
2
 fluence. Each analysis comprised 15 s of laser warm-up 

time during which blanks were measured, followed by 27 s of laser ablation and 18 s of washout 

delay. Signal selection and data interpolation wereas done using GLITTER
©

 software (Griffin et al., 

2008). The first 2 s of the laser ablation were discarded, and the remaining signal was normalised to 

the Plešovice zircon standard (Sláma et al. 2008). To avoid grain-to-grain bias and treat all the 

samples equally, the laser spot was always placed in the core of zircon grains; no CL-imaging was 

done. We used 
206

Pb/
238

U and 
207

Pb/
206

Pb ages for zircons younger and older than 1100 Ma, 

respectively. No common Pb correction was applied. Grains with > 10% age discordance were 

discarded, and thus only 9 samples yielded more than 50 usable ages; 1164 ages were used overall. 

http://acmelab.com/
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Key geochemical parameters are shown in Table 2. The full geochemical and geochronological 

datasets are provided in Appendix Tables A4 and A5. 

  

5. Detrital fingerprints 

 

In this section we shall illustrate first the petrographic and mineralogical composition of sand-sized 

sediments generated, transported and deposited in the vast catchment of the Euphrates, Tigris and 

Karun Rivers (Fig. 5). Their geochemical and geochronological signatures will beare described 

next. 

 

5.1. Euphrates sands 

 

The Euphrates River carries to central Iraq feldspatho-quartzo-lithic sand with intermediate to mafic 

volcanic, carbonate, serpentinite,,  chert, and minor metamorphic grains rock fragments (Fig. 5D). 

The rich epidote-clinopyroxene-amphibole-epidote suite includes hypersthene,  and subordinate 

garnet, apatite, oxy-hornblende,  and Cr-spinel and olivine. 

In Turkish headwaters, sand of the Murat tributary is similarly feldspatho-quartzo-lithic, including 

common volcanic and metavolcanic, subordinate limestone and granitoid, and minor chert and 

serpentinite grains, as well as rich amphibole-clinopyroxene-epidote suites with some garnet (Fig. 

6). Karasu sand upstream of Erzincan is instead feldspatho-lithic ultramaficlastic with subequal 

serpentineschist and cellular serpentinite, abundant volcanic/metavolcanic, carbonate and other 

sedimentary rock fragments; the rich clinopyroxene-dominated suite includes amphibole, epidote, 

minor Cr-spinel, garnet, enstatite and olivine. Volcanic detritus increases markedly downstream, 

and sand entering the Keban reservoir is still feldspatho-lithic but with dominant lathwork and 

microlitic volcanic grains; dominant , and augitic clinopyroxene is associated with hypersthene and 

oxy-hornblende. Other Anatolian tributaries carry sands varying in composition from quartzo-

feldspatho-lithic carbonaticlastic with abundant biotite and micaschist lithics (Munzur), to lithic 

with abundant carbonate, volcanic/metavolcanic and cellular serpentinite grains (Pülümur), to 

feldspato-quartzo-lithic volcaniclastic (Perisuyu) or lithic carbonaticlastic (Tohma). Moderately rich 

to rich heavy-mineral suites range from clinopyroxene-dominated (Munzur, Tohma) to amphibole-

clinopyroxene-epidote (Pülümur, Perisuyu), and may contain common grossular or almandine 

garnet, hypersthene, Cr-spinel, enstatite, olivine or apatite, and loccasionally glaucophane. 

 

5.2. Tigris sands 
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The Tigris River carries to central Iraq feldspatho-quartzo-lithic sedimentaclastic sand including 

carbonate, shale/slate, chert, volcanic/metavolcanic and a few serpentinite rock fragments (Fig. 5E). 

The moderately rich to rich epidote-garnet-amphibole-clinopyroxene suite includes Cr-spinel. 

In southeastern Anatolian headwaters, sand is quartzo-feldspatho-lithic volcaniclastic with 

limestone, shale/slate and serpentinite grains. The rich to very rich heavy-mineral assemblage 

mainly includes epidote, clinopyroxene and amphibole, with olivine, garnet, enstatite and minor 

andalusite. The major Batman tributary carries feldspatho-litho-quartzose metamorphiclastic sand 

including granitoid, metavolcanic and serpentinite rock fragments, and a moderately rich epidote-

amphibole-garnet suite (Fig. 5A). Downstream of the Batman confluence, Tigris sand becomes 

litho-feldspatho-quartzose metamorphiclastic with a moderately rich garnet-epidote-amphibole 

suite, quite similar to Batman sand. 

In Iraq downstream of the Khabour confluence, sand ihas become feldspatho-quartzo-lithic 

sedimentaclastic with a garnet-epidote-amphibole-clinopyroxene suite including Cr-spinel. 

Composition does not change much downstream of the Greater Zab confluence. Between the Lesser 

Zab and Adhaim confluences, river sands and adjacent eolian dunes are feldspatho-litho-quartzose 

with rounded quartz, lower heavy-mineral concentration, less amphibole, negligible pyroxene, and 

relatively more common epidote, garnet, zircon, tourmaline and rutile. 

 

5.3. Sands of Tigris tributaries in Iraq 

 

The Khabour River carries quartzo-lithic carbonaticlastic sand including mainly plagioclase 

feldspar and common microclitic volcanic, shale/siltstone, chert and minor low-rank metamorphic 

and serpentinite rock fragments. The poor heavy-mineral suite includes epidote, Cr-spinel, 

clinopyroxene, amphibole actinolite, and minor titanite, garnet and apatite.  

The Greater Zab carries lithic sedimentaclastic sand with common carbonate, intermediate to mafic 

volcanic, shale/slate, cellular serpentinite, and minor chert, metavolcanic and schist lithicrock 

fragments. The rich, clinopyroxene-dominated suite includes common amphibole and epidote, rare 

titanite, apatite, Cr-spinel, and loccasionally glaucophane. 

The Lesser Zab carries quartzo-lithic sedimentaclastic sand with limestone, shale/slate, chert, felsic 

to mafic volcanic, schist and serpentinite rock fragments (Fig. 5B). The moderately rich, epidote-

amphibole-clinopyroxene suite includes garnet and minor andalusite, oxy-hornblende and Cr-spinel. 

Sands in Iranian headwaters range from quartzo-lithic to feldspatho-quartzo-lithic sedimentaclastic, 

with moderately poor amphibole-epidote to very rich amphibole-clinopyroxene-epidote suites with 

some garnet. In Iraq upstream of Lake Dukan, sand is quartzo-lithic sedimentaclastic as in the final 

tract, but with more metamorphic rock fragments, biotite and heavy minerals, and less chert and 
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volcanic rocks fragments; the moderately rich heavy-mineral suite is notably enriched in andalusite. 

Downstream of Lake Dukan, sand is depleted in heavy-minerals and enriched in chert, dolostone, 

volcanic and serpentinite rock fragments.  

The Aqsu tributary of the Adhaim River and a minor tributaryies of the Lesser Zab with ephemeral 

seasonal flow draining entirely within Cenozoic strata of the Zagros foothills carry lithic to quartzo-

lithic sedimentaclastic sands dominated by chert, limestone and shale/slate grains with subordinate 

volcanic/metavolcanic grains (Fig. 5C). Heavy-mineral suites are poor to moderately poor and 

epidote-dominated with some minor garnet, amphibole, clinopyroxene and Cr-spinel., and minor 

but locally rich in amphibole associated with minorand pyroxene. 

The Diyala River carries lithic sedimentaclastic sand dominated by chert, limestone and shale 

associated with volcanic/metavolcanic grains. The moderately poor, clinopyroxene-epidote-

amphibole suite includes oxy-hornblende and garnet. In Iranian headwater branches, sands isare 

quartzo-feldspatho-lithic sedimentaclastic with shale/slate, limestone, volcanic and metabasite 

grains, and includes either moderately rich epidote-dominated or rich clinopyroxene-amphibole-

epidote-garnet suites. Downstream of the Zagros suture, Sirwan sand is notably enriched in 

limestone, chert and pyroxene grains, and includes oxy-hornblende, hypersthene, andalusite and 

olivine. 

 

5.4. Mesopotamian foreland-basin sediments 

 

Sands of the Mesopotamian floodplain between Baghdad and Al-Qurnah are is predominantly 

feldspatho-quartzo-lithic sedimentaclastic with carbonate, lathwork to microlitic volcanic, 

serpentinite and a few metamorphic, shale and chert grains (Fig. 5G). The rich amphibole-

clinopyroxene-epidote suites includes minor garnet, Cr-spinel, orthopyroxenes, prehnite, and 

loccasionally pumpellyite and glaucophane. Detrital modes are intermediate between Euphrates and 

Tigris sands, with Euphrates contribution prevailing in the northwest and Tigris contribution in the 

southeast (Fig. 6). Extensive mixing and homogenization in the floodplain is the result of numerous 

avulsion episodes with lateral migration and repeated bifurcation of trunk-river channels during the 

Quaternary (Jotheri et al., 2016). Even the composition of modern Euphrates sand collected at 

Nasiriyah indicates mixing with sediments transported by right-bank distributaries of the Tigris 

(e.g., Shatt-hatt al-Gharraf) and/or reworked from the floodplain. Some floodplain sands collected 

west of the Euphrates in the Karbala region are litho-feldspatho-quartzose or even quartzose, with 

much poorer heavy-mineral suites enriched slightly in zircon, tourmaline and rutile, which indicates 

mixing with sand recycled from the Arabian foreland in the southwest (Fig. 5H).  
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The upper Miocene Injana Formation in northernmost Iraq consists of quartzo-feldspatho-lithic 

carbonaticlastic sandstones yielding magnetite, ilmenite, Cr-spinel, amphibole, pyroxene, epidote, 

garnet, zircon, tourmaline and rutile (Al-Juboury, 2009). Quartz steadily increases southward, 

reaching maximum in the Karbala area (fig. 8 in Al-Juboury, 2009). Heavy-mineral data from 

Pleistocene terraces and Neogene molassic wedges (Philip, 1968) document a consistent 

compositional pattern since the lLate Miocene at least, with notably unchanged epidote-amphibole-

pyroxene suites in the Euphrates valley and epidote-dominated suites in the Adhaim catchment. 

 

5.5. Karkheh and Karun sands 

 

The Karkheh River carries lithic carbonaticlastic sand with chert and a few volcanic and 

serpentinite rock fragments. The poor epidote-clinopyroxene-amphibole suite includes Cr-spinel, 

garnet, andalusite, and minor tourmaline, apatite and oxy-hornblende. Detritus in the small 

Jamishan headwater tributary is far richer in plagioclase and volcanic rock fragments, and contains 

more very-low-rank metasedimentary and metavolcanic grains and far less chert; the rich 

clinopyroxene-epidote-amphibole suite includes olivine but little Cr-spinel. Sand collected at 

Jalogir downstream of the Kashkan confluence yielded abundant gypsum grains and a very poor 

transparent-heavy-mineral suite dominated by celestite. 

The Karun River carries lithic carbonaticlastic sand with chert and other sedimentary grains (Fig. 

5F). The poor/very poor epidote-clinopyroxene-amphibole suite includes Cr-spinel and garnet, and 

minor zircon, tourmaline, andalusite and oxy-hornblende. Sand of its Dez tributary is lithic 

cherticlastic-carbonaticlastic and includes abundant carbonate and rare volcanic lithics, relatively 

common pyroxene and amphibole, and some andalusite. 

 

5.6. Shatt-hatt al-Arab, Wadi al-Batin and Gulf sands 

 

Sand in the Shatt-hatt al-Arab estuary has the very same lithic carbonaticlastic signature as Karun 

sand (Fig. 5I), indicating negligible contribution from the Tigris and Euphrates. Since long before 

construction of large dams and irrigation canals, the two rivers have dumped their load upstream of 

their confluence in Iraqi marshlands (Berry et al., 1970; Baltzer and Purser, 1990; Aqrawi and 

Evans, 1994), which act as a very efficient sediment trap much as the Sudd Marshes along the 

White Nile in South Sudan (Garzanti et al., 2015). 

Wadi al-Batin, which once represented the lower tract of Wadi Rimah connecting interior Arabia to 

the Gulf, contains sand dominated by mainly monocrystalline quartz grains commonly showing 

abraded overgrowths, with a few carbonate grains and feldspars. The very poor heavy-mineral suite 

includes amphibole, zircon, clinopyroxene, rutile, epidote, and minor tourmaline. 
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The terrigenous fraction of beach sand in Kuwait, mixed with abundant ooids and some bioclasts, is 

almost as quartzose as Wadi al-Batin sand but includes a little more plagioclase and K-feldspar, and 

some mafic volcanic, metavolcanic and metabasite rock fragments (Fig. 6). Instead, the extremely 

poor heavy-mineral suite closely resembles closely Shatt-hatt al-Arab sands, being rich in epidote 

associated with clinopyroxene, amphibole and garnet, and including enstatite, hypersthene, oxy-

hornblende and Cr-spinel, with only a few zircon, tourmaline and rutile grains. 

 

5.7. Geochemistry 

 

Because of their peculiar quartz-poor composition with abundant carbonate grains, Ttraditional 

geochemical approaches are scarcely applicable to Mesopotamian foreland-basin sediments, derived 

largely from sedimentary strata, volcanic fields and obducted ophiolites, because of their quartz-poor 

composition with abundant carbonate grains. Comparison with the uUpper cContinental cCrust 

standard (UCC; Taylor and McLennan, 1995) hardly makes sense. Classical indices such as the CIA 

(Nesbitt and Young, 1982) or the WIP (Parker, 1970) are of little use, because the correction needed 

for CaO hosted in carbonates is huge and no correction method is very robust (Garzanti and 

Resentini, 20165). The use of the CIA/WIP ratio as an indicator of recycling (Garzanti et al., 2014) 

is also prevented. The CIA uncorrected for CaO in carbonates is ≤ 30 for all most samples, and 

reaches as low as 10 for Karkheh sand and ≤ 5 for Karun and Shatt-hatt al-Arab sands, reflecting 

abundance of carbonate grains. Scarcely meaningful are also 
Al 

values (Garzanti et al., 2013a), 

which are generally very low for elements hosted in carbonates (0.01-0.26 7 for Ca, 0.1-0.8 for Mg, 

0.1-1.50 for Sr) and vary mostly between 1 and 2 for Na, K and Ba, depending on the mineralogy of 

source rocks rather than on weathering conditions. On the other hand, the widespread and commonly 

overwhelming presence of carbonate grains is a sufficient indicator that weathering is negligible, as 

expected given the arid climate through most of the catchment. Sand remains unweathered in the 

floodplain to a depth of at least some meters, as indicated by No unchanged compositional 

parameters correlates with burial depth, suggesting that sand remains unweathered in the floodplain 

to a depth of at least some meters. Worthy of note is that the scarcity in quartz does not translate 

automatically to low SiO2, because chert-rich Aqsu and Diyala sands display SiO2 concentrations 

close to 80% (Table 2). Distinguishing on purely geochemical ground these sands from quartz-rich 

sediments derived instead from the Arabian foreland on purely geochemical ground is would less not 

be straightforward than imagined. 

Relative to litho-feldspatho-quartzose metamorphiclastic Ganga-Brahmaputra sediments, derived 

dominantly from the Himalaya but partly also from the Indian foreland and taken here as a 

reference for foreland-basin sands (Garzanti et al., 2010), Mesopotamian sands show concentration 
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ofs  Ca and loss on ignition higher by factors of 4 (Euphrates), 5 (Tigris) or even 10-15 (Karun and 

Shatt-hatt al-Arab) for Ca and loss on ignition, and higher by factors of 2-3 for Mg and Sr. In Tigris, 

Euphrates, Karkheh and Karun sands, Cr is higher by an order of magnitude; Mo, Ni, Cu and As are 

also markedly higher. Notably higher in Euphrates and Tigris sands are Sc, V and Co as well. In 

Wadi al-Batin sand, instead, the overwhelming abundance of quartz recycled from quartzose 

siliciclastic covers of the Arabian foreland is reflected in dominant Si and marked depletion of all 

other elements. 

 

5.8. Detrital- zircon geochronology 

 

From the Euphrates sand collected at Nasiryiah, 147 concordant U-Pb zircon ages were obtained. 

They show minor clusters at 21 Ma (2% of total zircons), 70-77 Ma (6%), 93-98 Ma (2%) and 307-

310 (2%), and a Paleozoic scatter (325-522; 7%). The dominant peak is between 530 and 662 Ma 

(37%), followed by a cluster (752-848; 12%) and a scatter (865-1048 Ma; 14%) in the 

Neoproterozoic, by a 0.8 Ga-long gap, some ages around 1.85 Ga and 2.5 Ga (7% overall) with a 

maximum of 2701 Ma. 

From three Tigris sands collected north, at, and south of Baghdad, 215 concordant U-Pb zircon ages 

were obtained. They show an Oligocene-Late Cretaceous peak (25-102 Ma; 16% of total zircons), 

minor mid-Jurassic and Late Triassic clusters (166-170 and 225-230 Ma; 3%), a Carboniferous peak 

(294-349 Ma; 11%), and a mid-Paleozoic scatter (358-493 Ma; 8%). The dominant peak is between 

500 and 666 Ma (39%), followed by a Neoproterozoic scatter (680-958 Ma; 10%), minor clusters 

around 1.8 Ga and 2.4 Ga (4% overall) with a maximum of 3265 Ma. 

From nine Karun and Shatt-hatt al-Arab sand samples, 789 concordant U-Pb zircon ages were 

obtained. They show ages from as young as 6-8 Ma (< 1%) to as old as 2665-3260 Ma (1%). Minor 

clusters occur at 30-68 Ma (3%) and 87-98 Ma (1%), a major peak at 141-192 Ma (12%), and 

clusters at 203-346 Ma (13%), 364-383 Ma (1%) and 393-469 Ma (5%). Older ages are mostly 

concentrated between 485 and 1090 Ma (44%), between 1685 and 1722 (1%), between 1787 and 

1986 Ma (8%), and between 2407 and 2632 Ma (6%). 

Karun and Shatt-hatt al-Arab sands, most readily distinguished by many Jurassic to Permian zircon 

ages virtually lacking in Euphrates sands and scarcely represented in Tigris sands, are characterized 

also by late Miocene, eEarly Paleozoic, Mesoproterozoic to late Paleoproterozoic, and early 

Paleoproterozoic ages. Age spectra are sufficiently distinct from those shed from Arabian sources 

(Garzanti et al., 2013a) to conclude that only a few zircon grains may be recycled from sandstones 

intercalated in the carbonate-dominated succession accreted in the Zagros fold-thrust belt and 

originally derived from Arabia. Tigris sand is characterized by late Oligocene ages, Eocene ages, 
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and Paleozoic clusters at 320 and 540; Euphrates sand by early Miocene ages, latest Cretaceous 

ages, and Neoproterozoic clusters at 600, 650 and 840 (Fig. 7).  

 

6. Provenance and recycling of quartz-poor orogenic sands 

 

In contrast to the adjacent Alpines andor the Himalayans, collision belts orogens belonging to the 

same orogenic system but where a variousety of both neometamorphic and paleometamorphic rocks 

are exposed, the composite Anatolia-Zagros orogen drained by the Euphrates, Tigris and Karun 

rRivers consists largely of sedimentary strata, volcanic to low-grade metavolcanic rocks and 

ophiolites. As a consequence of both arid climate and geological history, including a Late 

Cretaceous obduction event followed by collision in the Cenozoic, both first-cycle and recycled 

Mesopotamian foreland-basin sands are remarkably quartz-poor. They display high 

plagioclase/feldspar ratio and abundant carbonate grains associated with chert, 

volcanic/metavolcanic and ultramafic rock fragments, pyroxenes and Cr-spinel. Such a peculiar 

signature characterizes detritus shed from broad undissected orogenic domains such as the Anatolia-

Iranian plateau, formed by a collage of microcontinents and arc terranes separated by ophiolitic 

sutures and which, compared to the Alps or the Himalayas, lacks a prominent axial belt of syn-

collisional metamorphic rocks. 

 

6.1. Volcanic and ophiolitic detritus from suture zones 

 

First-cycle detritus from ophiolites, ophiolitic mélanges, arc-related rocks and continental lava 

fields, widely exposed in eastern Anatolia and along the Zagros suture in Iraq and Iran, represents a 

significant fraction of Mesopotamian sediments. Provenance from such dense mafic and ultramafic 

source rocks is readily revealed by high heavy-mineral concentration in sands of the Euphrates 

River and Mesopotamian floodplain (tHMC 6 ± 3; estimated grain density 2.75 ± 0.04 g/cm
3
). PIn 

central-southern Iraq, lagioclase/feldspar (P/F) ratios are 82 ± 5 in Euphrates, Tigris and 

Mesopotamian floodplain sands in central-southern Iraq,, and reach above 90 in sands draining 

volcanic fields or the Erzincan, Bitlis and Zagros suture zones.  

In Anatolia, volcanic detritus represented by lathwork to microlitic rock fragments, plagioclase and 

clinopyroxene, with subordinate hypersthene, oxy-hornblende or olivine, is most common in sands 

of the Euphrates (Fig. 5D) and its tributaries, being overwhelmingespecially in the Karasu branch. 

Uppermost Tigris sand, containing abundant volcanic, metavolcanic and metabasite grains eroded 

from the Maden Group, ibecomes enriched downstream in olivine derived from Plio-Quaternary 

lavas exposed west of Diyarbakir (Fig. 2). Cellular serpentinite and serpentineschist grains, 
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subordinate in Tigris headwaters draining the Bitlis suture (Sc/S 74 ± 7), are most abundant in 

upper Karasu sand draining serpentinized harzburgites of the Erzincan suture (Sc/S 49 ± 19), where; 

enstatite, olivine and Cr-spinel are overwhelmed by clinopyroxene derived largely from volcanic 

rocks. Serpentinite grains, common in Pülümur sands also draining the Erzincan suture (Sc/S 83), 

are carried by all Anatolian tributaries of the Euphrates and Tigris but the Perisuyu. Enstatite, 

olivine or Cr-spinel occur in low amountsare rare. 

In Iraq, volcanic/metavolcanic rock fragments and mainly augitic clinopyroxene characterize the 

Rawanduz tributary of the Greater Zab, reflecting supply from the Naopurdan-Walash Group (Fig. 

3). Low-grade metavolcanic rocks of the Zagros suture supply abundant epidote, widespread in 

Neogene sandstones as in modern sands recycled from them (Philip, 1968; Ghazal, 2005), along 

with minor prehnite and pumpellyite commonly detected in Mesopotamian sands. Dominant 

actinolitic amphibole and hornblende are associated with almost invariably subordinate and 

generally minor clinopPyroxene and rare hypersthene remains subordinate in sands of the Lesser 

Zab sand upstream of Lake Dukan and of its tributaries draining the ophiolitic suture zone, 

reflecting extensive uralitization in metabasite and gabbroic source rocks (Al-Saffi et al., 2012). 

Low-grade metavolcanic rocks of the Zagros suture supply abundant epidote, widespread in 

Neogene sandstones as in modern sands recycled from them (Philip, 1968; Ghazal, 2005), along 

with minor prehnite and pumpellyite commonly detected in Mesopotamian sands. Because blue-

green amphiboles derived from low-grade metavolcanic and retrogressed gabbroic rocks are 

invariably associated with green-brown kaersutitic hornblende and reddish-brown oxy-hornblende 

derived from arc lavas, Despite of only low-grade metamorphism, amphiboleHornblende cColor 

iIndices are significantly higher in Mesopotamian sands (HCI 25 ± 10) than generally found in 

foreland basin sediments (e.g., 8 ± 3, 9 ± 3 and 10 ± 4 for Indus, Ganga and Brahmaputra sands; 

Garzanti et al., 2005; 2010) . because greenish actinolite and blue-green hornblende derived from 

metavolcanic and retrogressed gabbroic rocks are invariably associated with green-brown kaersutite 

and reddish-brown oxy-hornblende derived from arc lavas. 

The Qara Cholan River and its right-bank tributaries draining the suture zone in Iraq carry mostly 

lithic to feldspatho-lithic sands locally dominated by metabasite grains (mostly amphibolite, 

associated with epidosite, metagabbro and chloritoschist; MI up to 403) and containing common 

volcanic and metavolcanic grains (lathwork, microlitic, metadiabase). Shale/siltstone to 

slate/metasiltstone, limestone and chert grains derived from sedimentary rocks of the imbricate belt 

(Qulqula-Khwakurk and Balambo-Tanjero zones) are also common. Plagioclase is the dominant 

feldspar (P/F 97 ± 5). Ultramafic grains are subordinate even in streams draining almost exclusively 

the Penjween and Mawat ophiolites. Cellular serpentinite predominates over serpentineschist (Sc/S 
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87 ± 12) and olivine-bearing peridotite grains occur and are traced to the Lesser Zab downstream. 

Very rich to extremely rich heavy-mineral assemblages are dominated by amphibole associated 

with epidote. Clinopyroxene is abundant only locally and hypersthene occurs in detritus from the 

Penjween Ophiolite. Cr-spinel and olivine are rare, and enstatite very rare. Amphibole-epidote 

suites shed by the Penjween and Mawat ophiolites contrast with pyroxene suites shed by ophiolitic 

complexes exposed all along the Alpine-Himalayan belt from the Apennines to the Andaman 

Islands (Garzanti et al., 2000, 2002a, 2002b, 2013b), reflecting extensive post-obduction 

greenschist-facies metamorphism of dominantly crustal protoliths.  

Cellular serpentinite and serpentineschist grains occur in both Greater Zab and Lesser Zab sands 

(Fig. 5B), where Cr-spinel and enstatite are very minor. Khewaka sand contains abundant chert 

grains eroded from the Qulqula radiolarite, and a few olivine-bearing serpentinite grains derived 

from the Mawat Ophiolite and traced to the Lesser Zab downstream. 

In Iran, Sirwan sand downstream of the Zagros suture is notably enriched in chert, but not 

significantly in volcanic or metavolcanic rock fragments; heavy-mineral suites arebecome 

clinopyroxene-dominated and hypersthene and olivine appearare present, but heavy-mineral 

concentration is lowerdecreases. Jamishan sand draining the Kermanshah Ophiolite is moderately 

rich in lathwork and subordinately microlitic and metavolcanic rock fragments, contains abundant 

clinopyroxene but virtually lacks ultramafic detritus. Seymareh sand downstream of the suture is 

markedly enriched in chert, includes a few serpentinite, enstatite and Cr-spinel grains, but not much 

volcanic detritus. Volcanic and ultramafic rock fragments are minor in Dez sand, which is very rich 

in chert and contains clinopyroxene and a little enstatite.  

Ultramafic detritus thus notably decreases from eastern Anatolia to the Iraqi Kurdistan, and 

ibecomes scarce in Iran (Table 1). Mantle source rocks belonged to the oceanic upper plate 

obducted onto Arabia in the Late Cretaceous, and thus cellular serpentinite grains prevail over 

serpentineschist throughout the Euphrates and Tigris catchments (Fig. 5B; Sc/S 6174 ± 2514). 

Serpentineschist The Sc/s ratio is grains, however, are mainly in the same range as more frequent 

than in sands eroded from other ophiolitic complexes of the "croissant ophiolitique peri-Arabe" 

(Baer Bassit, Kizildag, Mersin and Sama'il ophiolites of Syria, Turkey and Oman; Ricou, 1971), 

where the Sc/S ratioit ranges between 76 ± 10 and 85 ± 9 (fig. 9 in Garzanti et al., 2002a). This 

Locally lower Sc/S ratio is ascribed largely to strong stronger post-obduction deformation during 

Paleogene collision and final Neogene welding between Arabia and Eurasia.  

 

 

6.2. Metamorphic detritus from axial belts 
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The best example of an axial neometamorphic complex in the Anatolia-Zagros orogen is the Bitlis-

Pütürge massif, exposing greenschist, blueschist and amphibolite-facies rocks with eclogite relics 

(Oberhänsli et al., 2010). The massif is drained by the Batman, the only major river in our study that 

carries metamorphiclastic sand (MI 304>300; Fig. 5A). Downstream of the Batman confluence, 

Tigris sand ibecomes dominated by quartz, granitoid and metamorphic rock fragments, a drastic 

compositional change testifying to notably higher erosion rates in the Bitlis massif than elsewhere 

in southeast Anatolia. Medium/high-rank gneiss and amphibolite rock fragments derived from the 

Bitlis-Pütürge massif are traced to Iraq in Euphrates, Tigris and Mesopotamian floodplain sands. 

The low-grade neometamorphic basement of the Tauride microcontinent (Malatya-Keban unit) 

supplies micaschist grains and biotite, most common in Munzur sand.   

High-pressure metamorphic rocks are virtually almost lacking in the Zagros orogen (Agard et al., 

2005), where the axial belt is represented by the Sanandaj-Sirjan zZone affected by very low to 

low-grade metamorphism only. Sand is are thus dominated by sedimentary/metasedimentary and 

volcanic/metavolcanic detritus (MI* 136 ± 21), with moderately poor to very rich heavy-mineral 

suites dominated by epidote, amphibole and clinopyroxene. Lower-amphibolite facies conditions 

were reached in the metamorphic Qandil volcano-sedimentary sequence, and temperatures ≥ 600°C 

are inferred for contact aureoles surrounding the Bulfat and Penjween gabbros (Jassim and Goff, 

2006 p.219-225). Medium to high-rank metamorphic detritus is thus increases markedly markedly 

higher along the Lesser Zab upstream of Lake Dukan, where andalusite becomes suddenlyis 

abundant. Downstream of Lake Dukan, metamorphic detritus hais been diluted rapidly, but 

andalusite is traced to the Tigris confluence. Andalusite, occurring present also in Tigris and 

Batman sands in Anatolia, appears occurs in significant amounts in Sirwan and Seymareh sands 

downstream of the Zagros suture, and is traced all along the Karkheh River as well as from the Dez 

tributary along the Karun River to the Shatt-hatt al-Arab. The HCI index approaches middle 

amphibolite-facies values in Batman sand (13), and is < 5 in metamorphic detritus elsewhere. 

 

6.3. Sedimentary detritus from the external belt 

 

Because the very thick Phanerozoic succession of the Arabian platform was detached along the 

underlying Neoproterozoic-Cambrian salt from its basement, the Zagros fold-belt entirely consists 

of cover strata  entirely(Alavi, 2004). Sedimentary detritus consequently represents the major 

component of the Mesopotamian foreland-basin fill. Sedimentary to very low-rank 

metasedimentary rock fragments increase markedly in abundance from west to east, being common 

in Euphrates sand (20 ± 5% of the bulk sampltotal sediment), very common in Tigris sand (42 ± 

3%), and overwhelming in Karun and Shatt-hatt al-Arab sands (83 ± 7%). The inverse trend is 
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displayed by heavy-mineral concentration, which decreases by an full order of magnitude from 

Euphrates and Tigris sands to Karun and Shatt-hatt al-Arab sands, reflecting marked eastward 

decrease in the exposure of, and hence supply from igneous and metamorphic rocks yielding heavy 

minerals in significant quantities. 

Limestone grains, associated with chert, mudrock and dolostone grains in varying abundance, are 

predominant (Fig. 5F,I). Such a carbonaticlastic-cherticlastic signature is peculiar characterizesof 

detritus derived from sedimentary successions deposited originally along the distal distal 

passiveGondwanan margin of southern Neotethys (e.g., Hawasina units of northern Oman, 

Mamonia complex of Cyprus, Toscana-Umbria domain of the Apennines; Garzanti et al., 2000; 

2002a; 2002b), where arid/semiarid climate at tropical latitudes since the close of the Paleozoic 

have favored biogenic carbonate factories versus rather than physical siliciclastic production. 

Interbedded quartz-rich sandstones, characteristic of many passive-margin settings (Garzanti et al., 

2014), are consequently few, and modern sands are quartz-poor with ZTR ≤ 12 even where entirely 

derived from sedimentary rocks entirely (e.g., upper Karun). After orogenic accretion into the 

Alpine-Himalayan belt, carbonate rocks are now widely exposed from the Mediterranean region to 

central Asia in cold-mountain or still arid/semiarid climates, where chemical weathering is 

ineffective and soluble limestone clasts, traditionally held to be non-durable, are preserved in 

abundance (Zuffa, 1985; Garzanti et al., 2005; 2006). Even most labile gypsum grains, associated 

with very unusual celestite-dominated heavy-mineral assemblages and derived from evaporites of 

the lower Miocene Gachsaran Formation, occur inare abundantce locally in Karkheh sand.  

 

6.4. Recycling of orogen-derived clastic wedges 

 

Quantifying recycling is perhaps one of the most difficult tasks in provenance studies of sand and 

sandstone. Because Mesopotamian sandediments isare almost invariably quartz-poor and dominated 

by unstable grains, the temptation would be to jump to the very wrong conclusion that they are 

dominantly first-cycle. Recycling does not necessarily result in concentrating quartz relative to 

sedimentary source rocks (Cavazza et al., 1993; Garzanti et al., 2013b), especially in arid climates 

where weathering is negligible. Not only durable chert, but also unstable carbonate grains, mafic 

lithics and heavy minerals are recycled in abundance from molassic units of the foothills, as 

documented in sands of the Aqsu River and middle-course Lesser Zab tributaryies draining 

Cenozoic units exclusively (Fig. 5C). Volcanic rock fragments, negligible in Lesser Zab sand 

upstream of Lake Dukan, become increase in abundance gly common as the river cuts across 

Cenozoic clastic rocks downstream. Epidote dominates transparent heavy-mineral suites in 

Neogene clastic wedges and river sands recycled from them (Philip, 1968). 
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A simple way to determine which minerals are preferentially recycled from Neogene sandstones of 

the Zagros foothills molasses is to check whether in our samples they correlate positively or 

negatively with the tHMC index in our samples (Fig. 8). Correlations are negative for epidote and 

durable zircon, tourmaline, rutile and Cr-spinel (r ≈ -0.5, sign. lev. 0.1%) and poorly negative for 

apatite, garnet and staurolite (r ≈ -0.3). Unstable Aamphibole and pyroxene correlate positively (r 

0.3-0.6), and but may occur in Neogene molasses (Philip, 1968), and thus resisted diagenetic 

dissolution to some degree (Al-Juboury, 2009). Ferromagnesian minerals are virtually absent in 

epidote-dominated recycled sands of the Adhaim-Aqsu River. However, even, whereas amphibole 

may be abundant in Lesser Zab tributaries draining Cenozoic units,  unstable ferromagnesian 

minerals can be recycled, because they resisted diagenetic dissolution to some degree (Al-Juboury, 

2009) and are quite and both amphibole and pyroxene are common in upper Miocene foreland strata 

drained by the Euphrates (Philip, 1968). This points to decreasing intensity of diagenetic dissolution 

from more deeply buried internal units of the foothills, containing dominant epidote because 

ferromagnesian minerals have been selectively dissolved, to less deeply buried external units, and to 

foreland strata where diagenetic effects are least extensive and ferromagnesian minerals largely 

preserved. Virtually full preservation of epidote is indicated by ZTR ≤ 2 in sands of the Aqsu River 

and middle-course Lesser Zab tributaryies. In the Lesser Zab, tThe P/F ratio decreases from 72-88 

to 60-67 downstream, and is relatively lowest in Aqsu sand (50) and decreases to 60-67 in the lower 

Lesser Zab course, suggesting faster dissolution for plagioclase than for K-feldspar during 

diagenesis ofin clastic parent rocks.  

A tell-taleuseful tracer of recycling is Cr-spinel (fig. 3 in Garzanti and Andó, 2007a), widespread in 

Mesopotamian sands and derived ultimately from mafic/ultramafic rocks of the suture zone (Aswad 

et al. 2011). The relative abundance of Cr-spinel is less in tributaries draining ophiolitic sutures and 

in Euphrates and Tigris sands (≤ 1%, 1 ± 1% and 2 ± 1% of transparent heavy minerals, 

respectively) than in tributaries draining Cenozoic strata only and in the Karun River (5 ± 5% and 

10 ± 6%, respectively), increases in inverse proportion to transparent-heavy-mineral concentration, 

and correlates negatively with ultramafic grains (Fig. 8). This confirms that Cr-spinel is largely 

recycled rather than first cycle (fig. 9 in Garzanti et al., 2013b), and was concentrated by selective 

diagenetic dissolution of ferromagnesian minerals in Cenozoic clastic parent rocks (Al-Juboury et 

al., 2009b). 

 

6.5. Polycyclic detritus from the cratonic foreland 

 

Foreland-basin stratafills are not entirely derived from the associated orogens. As the Indo-Gangetic 

plain is partly fed from right-bank tributaries of the Ganga River draining the Indian shield, also the 
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Mesopotamian basin receives detritus recycled from sedimentary covers of the Arabian foreland in 

the southwest, consisting of quartzose sand with poor transparent-heavy-mineral suites nearly half 

of which isrepresented by zircon, tourmaline and rutile. This additional contribution is distinguished 

readily by marked local enrichment in coarser and rounded monocrystalline quartz grains, 

associated with a slight increase in ZTR index and lower P/F ratio in Mesopotamian floodplain 

sandediments west of the Euphrates (Fig. 5H), and to a lesser extent in Tigris sand and aeolian 

dunes west of the Tigris in central Iraq. 

A major source of quartzose polycyclic detritus is the Neogene Dibdibba Formation of southern 

Iraq and Kuwait. These alluvial-fan to deltaic sediments were fed by seasonal floods of a powerful 

paleo-river flowing along the presently dry Wadi al-Batin and connected with Wadi Rimah of 

central Arabia during wetter climatic stages of the past (Holm, 1960; Al-Sulaimi and Pitty, 1995). 

Similar Neogene deposits are patchily exposed all along the northeastern margin of the Arabian 

foreland from Syria to the Gulf (Jassim and Goff, 2006 p.181-183; Al-Juboury, 2009). Additionally, 

fine-grained quartzose sediments with K-feldspar, zircon and tourmaline are is blown during major 

dust storms from Arabian deserts to reach the Mesopotamian plain, the Gulf and beyond (Fig. 1C; 

Emery, 1956; Awadh, 2012). This is testified documented by the decrease in P/F ratio from Karun 

sands (74 ± 7) to Shatt-hatt al-Arab sands at Khorramshahr (54 ± 7), where values approach those 

of Kuwait beach and Wadi al-Batin sands (Table 1).  

 

6.6. Relative sediment contributions 

 

The Euphrates and Tigris rRivers drain different geological domains in different proportions, but 

largely within the same Anatolia-Zagros orogen. The compositional signatures of their sediments 

thus differ, but not markedly (Fig. 6), and distinguishing their relative contributions to the 

Mesopotamian foreland -basin fill is not straightforward. The Euphrates carries more detritus from 

Anatolian volcanic fields (plagioclase, volcanic rock fragments, clinopyroxene and hypersthene; 

Fig. 5D), the Tigris more sedimentary detritus from the Zagros fold-belt (carbonate, shale/slate, 

chert) and thus less fewer heavy minerals with including more zircon, tourmaline, rutile and garnet 

(Fig. 5E). Instead, virtually entirelydominantly sedimentaclastic sand is carried by the Karun River 

(Fig. 5F). Forward end-member modelling of integrated petrographic and heavy-mineral data 

(Garzanti et al., 2012) suggests locally variable but overall similar relative contributions to 

Mesopotamian sands from the Euphrates (54 ± 35%) and Tigris rRivers (45 ± 35%). Quartzose sand 

from the Arabian foreland, invariably negligible in the east, represents as much as 63% and 82% 

of the two sand samples collected near Karbala west of the Euphrates. 
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Much closerGreater compositional similarity of Euphrates sand with Murat rather than Karasu sand, 

and of Tigris sand downstream of the Batman confluence with Batman rather than upper Tigris sand 

upstream, indicates the Murat and Batman rRivers as the major sediment contributors to the two 

trunk rivers in Anatolia (94 ± 4% and 83 ± 14%, respectively). Shatt-hatt al-Arab sand is calculated 

to be supplied 100% by the Karun River, and the Kuwait beach 93% from the Arabian foreland and 

7% from the combined Euphrates-Tigris-Karun drainage system, although the extremely poor heavy 

heavy-mineral suite is has been contributed virtually entirely by the latter because of very low 

heavy-mineral concentration in Arabian sources is very low. 

 

6.7. Channel profiles and erosion in an undissected orogen  

 

Relief is controlled by several competing factors, including lithology, tectonics and climate 

(Burbank and Pinter, 1999). High topography may be residual, simply reflecting the distribution ofr 

erosion-resistant rocks, or may result from focused active uplift. Similarly, knickpoints can be 

associated with sharp lithological boundaries or active faults. The quantitative analysis of stream 

profiles is one effective way to characterize a tectonically active n evolving mountain region with 

morphometric parameters that help us investigate the drivers of erosional evolution. Two indices, 

channel steepness ks and concavity , are defined by a power-law relationship between the local 

channel slope S and the contributing drainage area A used as a proxy for discharge (S = ksA
- 

; Flint 

1974). In this study, tThe steepness index ksn referenced to a fixed concavity 0.45 (Korup and 

Schlunegger, 2009) is used here to compare gradients in channels with different drainage areas.  

WWe have calculataed concavity and steepness indices for 16 short stream segments, draining each 

one a single tectonic unit of the Anatolia-Zagros orogen (Fig. 9). In this broad tectonic domain  

sSteepness indices are among the lowest in active orogenic areas, comparable to those in the 

Apennines (Kirby and Whipple, 2012). Low erosion potential is confirmed by sediment yields and 

erosion rates around 100 ton/km
2
∙a and 0.04 mm/a calculated for the entire Euphrates-Tigris basin, 

increasing to 200-400 ton/km
2
∙a for the northern mountains facing the Black Sea (Jaoshvili, 2002). 

Average erosion rates in the Anatolian plateau do not exceed 0.1 mm/a. 

Short streams draining the resistant mantle rocks of the RefahiyeErzincan Oophiolite are steepest 

and may show extreme concavity, whereas streams draining Neogene volcanic fields or the 

Kermanshah Ophiolite where mantle volcanic rocks are not exposed dominant have low steepness 

and moderate concavity. Relief thus appears to be controlled more by lithological contrast than by 

tectonic uplift. Low steepness also characterizes rivers in the Sanandaj-Sirjan zZone, with 

concavities ranging from moderate for streams draining across structural strike to low or even 

markedly negative (-0.3) for the Gavrud River draining subparallel to itstructural strike. The marked 
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change in detrital modes of Sirwan sand across the Zagros suture points to notably low erosion rates 

in upstream reaches. 

 Very different morphometry characterizes channels incised into the northern and southern flanks of 

the Bitlis Massif. The former have gentle profiles with very high concavity, the latter are steeper 

and with moderate concavity (Fig. 9). Channel steepness and erosion rates are relatively high along 

the southern flank of the Bitlis Massif, but remain still markedly lower than along Alpine or 

Himalayan neometamorphic axial belts (Wobus et al., 2003; Korup and Schlunegger, 2009).  

 

7. The use and misuse of provenance models 

 

Foreland-basin sediments conveyed through the Euphrates-Tigris-Karun fluvial network present a 

peculiar unique case of virtually unweathered detritus generated in semiarid climate from a slowly 

eroding, largely undissected composite orogenic domain produced by ophiolite obduction followed 

by continental collision. In this section we shall examine to what extent the lesson learned from our 

modern-sand perspective may be applicable to the analysis of an imaginary non-diagenetically 

alteredized ancient clastic wedge generated by analogous geodynamic processes, and discuss the 

insight gained and potential pitfalls associated with the classical approach postulating the existence 

of a univocal direct link between sediment composition and plate-tectonic setting (Dickinson, 

1985), versus an upgraded approach focusing specifically on the tectono-stratigraphic level of 

source terranes (Garzanti, 20165). 

 

7.1. The Dickinson model at work 

 

In the classical triangular diagrams of Dickinson and Suczek (1979), detrital modes of Karun and 

Tigris sands plot broadly correctly within or at the boundary of the "rRecycled oOrogen" field, 

whereas Euphrates and most Mesopotamian sands straddle that boundary and plot largely into the 

"mMagmatic aArc" field (Fig. 10). If a provenance diagnosis had to be made for an analogous 

ancient sandstone suite based on such information alone, then we should be able to infer an active-

margin orogenic setting. A fold-thrust/suture belt provenance may be indicated correctly, but it 

would be hard to tell whether an arc was active at the time of deposition or long extinct, and to 

establish conclusively that these sediments were deposited in a foreland basin and not for instance 

in a forearc basin. Carbonate lithics, which may occur in forearc -basin fills although hardly in such 

abundance (Marsaglia and Ingersoll and Marsaglia, 1992; Garzanti et al., 1996; An et al., 2014), 

would represent a revealing parameter, but they are not considered in the Dickinson (1985) model. 
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The quartz-rich composition of the two Mesopotamian samples plotting in the "cContinental 

bBlock" field may be interpreted correctly as fed mainly from the cratonic foreland. 

 

 

7.2. The upgraded model at work 

 

The simplest model of a collisionn orogen includes five types of allochthonous tectonic domains 

arranged in subparallel cylindrical belts (Garzanti et al., 2007): (1) arc remnants and (2) obducted or 

accreted ophiolites exposed along the suture zone, (3) an axial belt of high-pressure 

neometamorphic basement and cover rocks ("fossil continental-subduction zone"), (4) external fold-

thrust belts of accreted continental-margin paleometamorphic basement and cover strata, and (5) 

accreted molassic wedges of the foothills. Orogenic sediments can thus be envisaged as mixtures in 

various proportions of such five sources (mMagmatic aArc, oOphiolite, aAxial bBelt, cContinental 

bBlock, and rRecycled cClastic provenances). Each domain but the fifth can be idealized as a 

tectono-stratigraphic multilayer evolving progressively while erosion cuts deeper from the shallow 

supracrustal to the deep crustal or even mantle level. Undissected, transitional and dissected stages 

can thus be defined for each provenance but the fifth, and traced in space or time by their distinct 

petrographic and mineralogical fingerprints. 

Sandediments eroded from the Anatolia-Zagros orogen are is significantly richer in 

sedimentary/low-rank metasedimentary and volcanic/low-rank metavolcanic lithics and much 

poorer in quartz, K-feldspar and high-rank metamorphic detritus than sands generated along the 

Alpine-Himalayan system (Fig. 11). Besides the classic amphibole-epidote-garnet orogenic triad 

(Garzanti and Andó, 2007b), heavy-mineral suites in the Anatolia-Zagros orogen include invariably 

abundant and even dominant clinopyroxene commonly associated with some hypersthene. In an 

imaginary ancient analogue, such signatures would lead us to infer deposition in a foreland basin by 

rivers draining within the external fold-thrust belt and across volcanic-arc rocks and ophiolites of 

the suture zone. The dearth of high-rank metamorphic detritus would indicate dominance of 

supracrustal tectono-stratigraphic levels across the orogenic source, with minor exposures of a 

neometamorphic axial belt and/or paleometamorphic basement. It would not be difficult to figure 

out that carbonaticlastic/cherticlastic detritus was supplied in arid climatic conditions from strata 

originally deposited on the distal continental-margin of the lower plate and subsequently accreted at 

the front of the outward-growing accretionary prism. The existence of a tectonic detachment above 

the basement of the lower-plate continental margin with accretion of cover strata in mainly thin-

skinned mode could be guessed. The obducted origin of ophiolitc source rocks and possibly their 

subsequent shear deformation would be revealed by the moderately high Sc/S ratioT, as the 



30 
 

paleovolcanic nature of most arc sources would be readily inferred by from the abundance of very-

low-rank metavolcanic grains and low-grade minerals (i.e., epidote with minor prehnite and 

pumpellyite). Predominant cellular serpentinite grains would reveal the original upper-plate setting 

of ophiolitic source rocks. The abundance of actinolite-rich rock fragments and very rich 

amphibole-epidote heavy-mineral suites would suggest dominance of crustal over mantle protoliths 

in the originally obducted ophiolitic allochthons and regional post-obduction greenschist-facies 

metamorphism.  

Subduction polarity would be hard to tell, because Ssediments derived from undissected collision 

orogens associated with eastward/northeastward subduction such as the wide Anatolia-Zagros range 

plateau share all of their main diagnostic compositional signatures with detritus from singly-vergent 

thin-skinned thrust belts associated with westward subduction such as the Apennines (Garzanti et 

al., 2002b), and thus the geometry of s. ubduction could not be inferred. Although the Amazon 

River carries a similar pyroxene-rich heavy-mineral suite as the Euphrates (Limonta et al., 2015), 

Mesopotamian sediments are readily distinguished from those shed from either side of an Andean-

type cordillera. The feldspatho-lithic volcaniclastic to litho-quartzo-feldspathic plutoniclastic 

signatures of mMagmatic aArc provenance characterize in fact the Pacific side of the Andes 

(Yerino and Maynard 1984; Thornburg and Kulm 1987), whereas litho-quartzose to quartzose 

metamorphiclastic sands lacking carbonate and ultramafic grains characterize its retro-side 

(DeCelles and Hertel, 1989; Johnsson et al., 1991). Carbonate grains shed from Laramide uplifts are 

however found in abundance locally in syn-orogenic clastic wedges of the Rocky Mountain 

foreland basin (Ingersoll et al., 1987). 

The most challenging problem is posed by detritus recycled along both flanks of the foreland basin. 

Local addition of quartzose detritus recycled from siliciclastic cover rocks of the cratonic foreland 

would be easier to appraise, but it would be hard not to underestimate the amount of unstable 

carbonate, mafic/ultramafic rock fragments, epidote and other and heavy minerals recycled from 

molassic units of the foothills (Fig. 5C). The widespread occurrence of Cr-spinel would offer the 

best clue to guessevidence for the largely recycled origin of ultramafic detritus, rather than first-

cycle provenance from ophiolitic allochthons.  

 

8. Long-distance sediment dispersal in arid climate 

 

Because of arid climate and consequently limited river-transport capacity, the Arabian/Persian Gulf 

is presently underfilled and dominated by carbonate sedimentation despite the existence of a major 

longitudinal river system and transverse rivers draining the Zagros Mmountains in southern Iran 
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(Baltzer and Purser, 1990; Kendall and Alsharhan, 2010). During the major eustatic lowstands of 

the Pleistocene, however, the Gulf was overfilled and subaerial, and trunk-river sediments reached 

into the Gulf of Oman remnant-ocean basin (Lambeck, 1996; Uchupi et al., 1999). Loose sediments 

of the floodplain were then deflated by reinforced northerly (Shamal) winds, and eventually pushed 

southwestwards onto Arabia where they accumulated in vast dunefields (Glennie and Singhvi, 

2002). 

By combining petrographic, mineralogical and geochronological fingerprints we can trace sediment 

dispersal from the Anatolia-Zagros orogen to almost as far as the heart of Arabia. In this long 

multistep transport process, finer-grained quartz-poor orogenic sand from the north has mixeds with 

coarser-grained quartz-rich sand recycled from lLower Paleozoic and younger quartzarenite units 

overlying and surrounding the Neoproterozoic Arabian shield in the west. This has occurreds first 

locally along the western foreland side of the Mesopotamian floodplain (Fig. 5H), and next along 

the western shores of the Gulf. Orogenic detritus is estimated to represent ~40% of eolian sand in 

the coastal Jafurah dunefield of eastern Saudi Arabia (decreasing from 65 ± 25% in very fine sand 

to 5 ± 5% in medium sand; fig. 7 in Garzanti et al., 2013a). Composition changes progressively 

inland, and orogenic detritus decreases to virtually 0% in western Jafurah dunes, which largely 

consist of polycyclic quartzose sand deflated from the Dibdibba plains of Kuwait. Jafurah dunes 

contain a few zircon grains yielding Paleogene, Late Cretaceous, Jurassic or Permian ages (fig. 9 in 

Garzanti et al., 2013a), which are not documented in Arabia but are common in Mesopotamian river 

sands, thus confirming subordinate minor sediment contribution from the latter. 

Identical feldspatho-litho-quartzose carbonaticlastic compositions revealing mixing in subequal 

proportions of quartz-poor orogenic and quartz-rich anorogenic sands are traced southward along 

the western shores of the Gulf from north of Dammam to coastal Jafurah dunes and as far as inland 

Sabkha Matti at the edge of the Rub’al-Khali desert (Fig. 1C; Garzanti et al., in preparation). In 

contrast, cCoastal dunes in the United Arab Emirates are instead lithic carbonaticlastic with epidote-

dominated rich heavy-mineral assemblages, indicating recycling of Pleistocene eolianites and 

ultimate provenance largely from the Zagros fold-belt in the north (Garzanti et al., 2003). Quartz 

increases rapidly inland (fig. 8 in Garzanti et al., 2013a), but orogenic detritus remains common,  in 

but litho-feldspatho-quartzose dune sand in of the Liwa oasis (fig. 8 in Garzanti et al., 2013a).  is 

estimated to contain still 18±4% of orogenic detritus. The orogenic trace fades away in feldspatho-

quartzose Rub’al-Khali megadunes of eastern Saudi Arabia, which contain ere orogenic 

contribution documented by a few chert, volcanic, carbonate, low-rank metabasite and ultramafic 

grains is estimated to account for 2% of the sediment only (Garzanti et al., in preparation). Sand 
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grains have thus traveled by multistep fluvial and eolian transport a distance up to of 4000 km, 

from the Euphrates headwaters to the Rub’al-Khali sand sea. 

 

9. Conclusions 

 

The Anatolia-Zagros orogen chiefly includes remnants of magmatic arcs, obducted ophiolites and a 

frontal fold-thrust belt of thick sedimentary cover strata. Paleometamorphic basement is virtually 

lacking. Subducted continental crust with high-pressure neometamorphic overprint is exposed in the 

Bitlis-Pütürge massif of southern Anatolia but not in the Zagros Mmountains of Iran, where the 

axial belt is represented by the Sanandaj-Sirjan zZone affected by very low to low-grade 

metamorphism only. These features are reflected by markedly distinct petrographic and heavy-

mineral signatures of sediments generated across the entire Anatolia-Iranian plateau relative to 

foreland-basin fills sediment derived from the Alps or the Himalayas, and represent the peculiar 

distinctive detrital fingerprint of this type of broad and composite, slowly eroding undissected 

orogenic domain. Lithic-rich detritus from supracrustal rocks including carbonates, cherts, arc 

lavas, oceanic mélanges and obducted ophiolitic sequences allochthons dominates over quartz, K-

feldspar, high-rank metamorphic rock fragments and mica. Pyroxene is nearly as abundant as 

amphibole or epidote, and much more common than any other heavy mineral including garnet; 

andalusite is the only locally significant heavy mineral derived from medium-grade 

metasedimentary rocks. Because chemical weathering is negligible in arid climates, even soluble 

gypsum grains may be locally abundant, and carbonate rock fragments are fully preserved through 

multipleore than a single sedimentary cycles. Recycling of Neogene molasses thus produces lithic 

sand characterized by an abundantce of unstable carbonate and mafic volcanic grains rock 

fragments (Fig. 5C), with epidote-dominated heavy-mineral suites that includeing Cr-spinel and a 

few locally amphibole or even a littleand pyroxene grains. Recycling does not necessarily produce 

“mature” daughter sediments with more quartz, zircon, tourmaline or rutile than in parent rocks. 

Relative eEnrichment in K-feldspar and epidote in recycled sands points to selective diagenetic 

dissolution of plagioclase and ferromagnesian minerals in Neogene molassic units of the Zagros 

foothills. 

In contrast to foreland basins associated with highly elevated, fast-eroding and deeply dissected 

collision orogens such as the Himalaya, the Zagros foreland basin is presently underfilled. The 

Mesopotamian plains pass southeastward, through a marshland where sediments of the Euphrates 

and Tigris Rivers are dumped, to the shallow sea of the Arabian/Persian Gulf dominated by 

allochemical carbonate sedimentation. The quartz-poor orogenic signature of sediments derived 

from eastern Anatolia, Iraq and Iran, progressively diluted by mixing with quartz-rich anorogenic 
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sand recycled from siliciclastic covers units of the Arabian shield, can be traced all along the 

southwestern side of the Gulf to the Rub' al-Khali sSand sSea. This modern-sand provenance study 

highlights the diversityvariety of plate-tectonic settings and associated long-distance and multistep 

source-to-sink sediment-routing systems found in nature, and consequently the potential insight but 

also the pitfalls encountered when reconstructing past orogenic landscapes without the solid guide 

of a suitable provenance models in mind. 
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Supplementary data associated with this article can be found in the online version, at 

http://dx.doi.___________. These include information on sampling sites (Table A1), the complete 

bulk-sand petrography (Table A2), heavy-mineral (Table A3), geochemical (Table A4) and 

geochronological datasets (Table A5), a compilation of published geochronological data in source 

rocks of the Anatolia-Zagros orogen (Table A6), and morphological parameters of studied river 

tracts (Table A7). The Google-Earth map of sampling sites EuTiKa.kml kmz is also provided. 
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FIGURES 

 

Figure 1. Shaded relief map of the Euphrates-Tigris-Karun drainage basin with sample location (A; 

modified after Partow, 2001). B) Imaginary reconstruction of river drainage in the "Garden of 

Eden", as described in the Genesis of the Bible. C) Dust storm carrying Arabian dust to 

Mesopotamia and the Gulf. 

 

Figure 2. Geology of eastern Anatolia (redrawn after the Geological Map of Turkey 1:2,000,000; 

location within the Euphrates-Tigris-Karun basin shown in inset, drainage divide outlined by thick 

grey line), illustrating bedrock units exposed in the headwaters of the Euphrates and Tigris Rivers. 

 

Figure 3. Geology of the Iraqi Kurdistan region (redrawn after the Lithostratigraphic Map of 

northern Iraq; location within the Euphrates-Tigris-Karun basin shown in inset), illustrating bedrock 

units exposed in the diverse tectonic domains drained by Zagros tributaries of the Tigris River. 

Gabbroic massifs: Bu = Bulfat; Ma = Mawat; Pe = Penjween; Pu = Pushtashan. 

 

 

Figure 4. Geology of the central Zagros orogen (redrawn after the Geological Map of Iran 

1:2,500,000; location within the Euphrates-Tigris-Karun basin shown in inset), illustrating bedrock 

units exposed in the diverse tectonic domains drained by the Karun, Karkheh and Sirwan (Diyala) 

Rivers. 

 

Figure 5. Petrography of Euphrates-Tigris-Karun river sands. Orogenic provenances: A) 

Metamorphiclastic detritus from the Bitlis massif (M = metamorphic lithic; m = mica). B) Cellular 

serpentinite (Sc) and foliated serpentineschist (Ss) grains from ophiolites of the Zagros suture. C) 

Volcanic (V), chert (H) and carbonate (C) grains recyled entirely from Neogene molasse units of 

the foothills. Trunk-river systems: D) Euphrates sand rich in volcanic detritus including 

plagioclase (P) and clinopyroxene (p). (E) Tigris sand rich in sedimentary detritus (S = shale lithic; 

e = epidote). F) Carbonaticlastic Karun sand. Foreland-basin fill: G) Mesopotamian sediments 

derived from Euphrates and Tigris Rivers in subequal proportions. H) Rounded quartz grains (Q) 

recycled from Arabian sources mixed with finer-grained quartz-poor orogenic detritus in the 

Karbala area (calcareous grains stained with alizarine red). I) Carbonaticlastic Shatt al-Arab sand 

supplied entirely by the Karun River bBecause Euphrates and Tigris bedload is trapped in Iraqi 

marshlands before reaching the Gulf, Shatt-al-Arab sand is carbonaticlastic and supplied entirely by 

the Karun River. All photos with crossed polars; all blue bars for scale are 250 m. 
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Figure 6. Detrital modes and heavy-mineral suites in Mesopotamian foreland-basin sediments are 

intermediate between Euphrates and Tigris sands. Euphrates supply predominates in the northwest, 

Tigris contribution in the southeast. Floodplain samples collected west of the Euphrates are locally 

enriched markedly in quartz, zircon, tourmaline and rutile recycled from siliciclastic units in Arabia. 

Tigris sands between the Lesser Zab and Adhaim confluences are also enriched in quartz from the 

Arabian foreland. Q = quartz; F = feldspars; L = lithic grains (Lm = metamorphic; Lv = volcanic; 

Ls = sedimentary). Amp = amphibole; Px = pyroxene; Ol = olivine; &tHM = other transparent 

heavy minerals; ZTR = zircon + tourmaline + rutile; Sp = Cr-spinel; Ep = epidote group minerals; 

Grt = garnet; MM = chloritoid + staurolite + andalusite + kyanite + staurolite + sillimanite. 

 

Figure 7. U-Pb age spectra of detrital zircons in Euphrates-Tigris-Karun river sands, plotted as 

Kernel Density Estimates (Vermeesch 2012). We used 
206

Pb/
238

U and 
207

Pb/
206

Pb ages for zircons 

younger and older than 1100 Ma, respectively; n = number of concordant ages. Cumulative age 

distributions show nearly identical patterns for Karun and Shatt -al-Arab zircons, as confirmed by 

much shorter Kolmogorov-Smirnov distance than for Euphrates and Tigris zircons. All plots 

generated using software package 'Provenance' 'provenance' (Vermeesch et al., 2016). 

 

Figure 8. Provenance discrimination with the compositional biplot (Gabriel, 1971). Sands of the 

Mesopotamian foreland basin are a mixture of orogenic detritus derived largely from sedimentary 

rocks (e.g., accreted to the Zagros fold-belt and drained by the Karun), volcanic arcs and ophiolitic 

sutures (e.g., drained by Euphrates headwaters), and only subordinately from metamorphic 

complexes (e.g., Bitlis Massif drained by the Batman tributary of the Tigris). Quartz-rich detritus, 

supplied from Arabia all along the western side of the foreland basin, ibecomes overwhelming in 

Kuwait beach sand. All major petrographic and heavy-mineral parameters are considered, and both 

multivariate observations (points) and variables (rays) are displayed. The length of each ray is 

proportional to the variability of the compositional parameter in the data set. If the angle between 

two rays is close to 0°, 90°, and 180°, then the corresponding parameters are directly correlated, 

uncorrelated, and inversely correlated, respectively. GSZ = grain size (in m); KF = K-feldspar; L = 

lithic fragments grains (Lp = shale/siltstone; Lms = low-rank metasedimentary; Lmf = high-rank 

felsic metamorphic; Lmb = high-rank metabasite); HMC = Heavy Mineral Concentration; MM = 

chloritoid + staurolite + kyanite+ andalusite + kyanite + sillimanite+chloritoid). Other parameters as 

in Table 1. 

 



36 
 

Figure 9. Results of channel-profile analysis. Fluvial network delineated in TecDEM (software 

shell implemented in MATLAB; Shahzad and Gloaguen, 2011) from a 30 m resolution digital 

elevation model provided by ASTER GDEM (http://www.gdem.aster.ersdac.or.jp).  

 

Figure 10. Provenance insights obtained from Dickinson's (1985) diagrams. An active margin 

setting can be inferred, but sands of the Mesopotamian foreland basin plot undecidedly in both the 

mMagmatic aArc or and rRecycled oOrogen fields. Karun sand plots in the rRecycled oOrogen 

field, but most information is lost by neglecting carbonate rock fragments representing the majority 

(57 ± 8%) of detrital grains. Polycyclic quartz sands derived from the Arabian foreland plot 

correctly in the cContinental bBlock field.  

 

Figure 11. Contrasting composition of foreland-basin sands derived from dissected Alpine-

Himalayan and undissected Anatolia-Iranian collision orogens. Major rivers draining 

neometamorphic gneiss domes exposed in the axial Alps or Himalayas carry litho-feldspatho-

quartzose metamorphiclastic sand with amphibole-epidote-garnet heavy-mineral suites, whereas the 

Anatolia-Iranian plateau generates feldspatho-quartzo-lithic sedimentaclastic, volcaniclastic or 

ophioliticlastic detritus notably richer in pyroxene (data from Garzanti et al., 2005; 2010; 2012; 

Vezzoli et al., 2014 and own unpublished database). The Miocene Kithrea Flysch is exposed in the 

Kyrenia Range of north Cyprus. Compositional parameters as in Figure 6. The LmLvLs diagram 

poorly illustrates level of unroofing poorly because medium/high-grade metamorphic rocks are 

coarse-grained and thus shed virtually no aphanite lithics. 

 

Table 1. Petrography and mineralogy of Euphrates-Tigris-Karun river sands and Mesopotamian 

foreland-basin sediments. N° = number of samples; Q = quartz; F = feldspars (P = plagioclase); L = 

lithic grains (Lvm = volcanic and low-rank metavolcanic; Lc = carbonate; Lh = chert; Lsm = other 

sedimentary and low-rank metasedimentary; Lm = high-rank metamorphic; Lu = ultramafic); MI = 

Metamorphic Index; tHMC = transparent Heavy Mineral Concentration; ZTR = zircon + tourmaline 

+ rutile; Ttn = titanite; Ap = apatite; Ep = epidote group minerals; Grt = garnet; And = andalusite; 

Amp = amphibole; Cpx = clinopyroxene; En = enstatite; Hy = hypersthene; Ol = olivine; Sp = Cr-

spinel; &tHM = other transparent heavy minerals (kyanite, staurolite, prehnite, pumpellyite, 

chloritoid, anatase, brookite, sillimanite, celestite and barite); HCI = Hornblende Color Index. 

 

Table 2. Geochemical composition of Euphrates-Tigris-Karun river sands. Data for Euphrates and 

Tigris sands are the average of central Iraq samples S4455 and S4661, and S4981 and BH21/0.1, 

respectively. 

http://www.gdem.aster.ersdac.or.jp/
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ABSTRACT 

 

We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial 

system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and 

heavy-mineral dataset, integrated by sand geochemistry and U-Pb age spectra of detrital zircons, 

highlights the several peculiarities of this large source-to-sink sediment-routing system and widens 

the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison 

of classical static versus upgraded dynamic petrologic models enhance the power of provenance 

analysis, and allow us to derive a more refined conceptual model of reference and to verify the 

limitations of the approach. 

Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from 

carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges 

representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-

feldspar and mica. This quartz-poor petrographic signature, characterizing the undissected 

composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of 

sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate 

in the region allows preservation of chemically unstable grains including carbonate rock fragments 

and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of 

their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical 

carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich 

recycled sands from Arabia along the western side of the foreland basin, and is traced all along the 

Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters. 
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A river watering the garden flowed from Eden; from there it was separated into four headwaters. The 

name of the first is the Pishon; it winds through the entire land of Havilah, where there is gold. The name 

of the second river is the Gihon; it winds through the entire land of Cush. The name of the third river is 

the Tigris; it runs along the east side of Ashur. And the fourth river is the Euphrates.       Genesis 2:10-14 

“Their reward from their Lord will be the gardens of Eden, wherein streams flow and wherein they will 

live forever. God will be pleased with them and they will be pleased with Him."                   Al-Quran 98:8 

 

1. Introduction 

 

Mesopotamia is the cradle of civilization. Bringing water and fertile sediments to an otherwise 

desert region, the Euphrates and Tigris Rivers allowed humans to settle, develop agricultural 

practices 10,000 years ago, learn how to domesticate animals, and produce the first book recorded 

in history, the Epic of Gilgamesh. Mesopotamia, a garden of Eden wounded by decades of war and 

unending atrocities committed in the name of God, is geologically speaking part of a subsiding 

foreland basin including the Arabian/Persian Gulf (Evans, 2011). The transition between the fluvial 

floodplain and the distal marine basin is - or was before the ecosystem collapsed under the impact 

of extensive drainage works and construction of large dams in Turkish headwaters (Partow, 2001) - 

the vast marshland well described by the British explorer Wilfred Thesiger in his book Marsh 

Arabs. Other streams join the trunk-river system, called here the Shatt al-Arab. These are the Karun, 

identified traditionally with the Gihon of the Genesis and draining the Zagros fold-thust belt in Iran, 

and Wadi Rimah/al Batin, held by some to be the Pishon of the Genesis, draining in ancient more 

humid times presently desert Arabia (Fig. 1). 

Sediments of the Mesopotamian foreland basin are derived almost entirely from erosion of the 

Anatolia-Zagros composite orogen, grown during collision between Arabia and Eurasia preceded by 

ophiolite obduction in the Late Cretaceous (Alavi, 2004; Okay, 2008). The mountain belt runs along 

the southern front of the Anatolia-Iranian plateau, connecting the Alps and the Himalayas as part of 

the garland of ranges issued from Paleogene closure of the Neotethys Ocean (Dercourt et al., 2000). 

From the Taurus in the south to the Caucasus in the north, the region of distributed tectonic 

deformation is ≤ 1000 km in width and has elevations over 1500 m a.s.l. punctuated by volcanic 

peaks reaching above 5000 m a.s.l. (Yilmaz et al, 1998; Allen et al., 2013). Exposed in this wide 

tectonic domain are sedimentary strata, volcanic rocks and ophiolitic mélanges, with virtual absence 

of paleometamorphic crystalline basements and scarcity of high-pressure neometamorphic rocks 

(Şengör et al., 2003). Because sediments reflect the lithology of source terranes, those shed by the 

Anatolia-Zagros collision orogen are expected to be distinct compositionally from those generated 

in the Alps or the Himalayas, and characterized by abundant lithic grains from sedimentary and 
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volcanic rocks of the widely exposed supracrustal level. Characteristic of the Mesopotamian and 

Gulf regions is the arid climate, resulting in negligible chemical weathering and almost complete 

preservation of unstable detrital components. Because of the consequently limited erosion rates and 

fluvial-transport capacity, the Gulf represents today a rare case of partially underfilled marine 

foreland basin associated with a large collision orogen. Eolian sediment transport plays a major role 

in such an arid region. In the Pleistocene, during periods of low global sea-level, sand was deflated 

by reinforced northerly winds along the exposed floors of the Gulf and blown south and southwest 

up the Rub' al-Khali (Teller et al., 2000; Garzanti et al, 2003, 2013a).  

This study investigates processes of erosion, transport and deposition at the subcontinental scale by 

using petrographic, mineralogical and geochronological signatures as tracers of long-distance 

multistep sediment dispersal. Besides the relevant archeological implications (Lees and Falcon, 

1952; Morozova, 2005; Wilkinson et al., 2015), monitoring the compositional variability of modern 

sediments in big-river systems such as the Euphrates-Tigris-Karun drainage basin, over 10
6
 km

2
 

wide and ranking about twentieth on Earth, provides us with a key to understand the information 

stored in sedimentary archives, and to reconstruct the evolution of the Earth's surface from the 

recent to the less recent past. Previous mineralogical studies on recent Mesopotamian sediments 

include Philip (1968), Berry et al. (1970), Ali (1976), Al-Juboury and Al-Miamary (2009) and 

Awadh et al. (2011). 

 

2. The Anatolia-Zagros orogen 

 

The Anatolia-Iranian plateau is a geological collage of microcontinents separated by ophiolitic 

sutures and eventually welded during collision between Arabia and Eurasia in the Paleogene 

(Robertson et al., 2013a). Late Cretaceous obduction is documented by both northern and southern 

ophiolitic belts of eastern Anatolia, which wrap around the Tauride microcontinent (Fig. 2). The 

northern (İzmir-Ankara-Erzincan) suture bends northeastward to continue in the Sevan-Akera 

suture of the Lesser Caucasus (Cavazza et al., 2015), whereas the southeast Anatolia orogen and the 

southern (Bitlis) suture bends southeastwards to continue in the Zagros Mountains across Iraqi 

Kurdistan (Fig. 3) and the northern coast of the Gulf (Fig. 4). 

The Zagros orogen includes, from northeast to southwest (Agard et al., 2005): 1) subduction-related 

batholiths and volcanic rocks of the Urumieh-Dokhtar magmatic arc, representing the active 

southwestern margin of the Iranian microcontinent. The oldest plutonic rocks are Jurassic, with 

peak magmatic activity in the Eocene; the youngest volcanic products are Quaternary; 2) very-low-

grade metasedimentary and metavolcanic rocks of the Sanandaj–Sirjan zone, including granitoid 

batholiths in the north and representing either an independent microcontinent detached from 
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Gondwana or part of the northern active margin of Neotethys (Alavi, 1994; Ghasemi and Talbot, 

2006; Arfania and Shahriari, 2009); 3) a Late Cretaceous imbricate belt, including obducted 

ophiolites, limestones, radiolarites, turbidites and volcanic/metavolcanic rocks documenting the 

suture zone; 4) a Cenozoic fold-thrust belt, pierced by salt diapirs mostly rooted in Neoproterozoic-

Cambrian evaporites, including a ≤ 13 km-thick sedimentary succession originally deposited during 

most of the Phanerozoic on the subsiding outer continental margin of Arabia (Sepehr and Cosgrove, 

2004; Alavi, 2004); 5) the frontal foothills, including Neogene terrigenous sediments derived from 

the rising orogen (Al-Juboury et al., 2009a).  

 

2.1. North Anatolia ophiolites and the Taurides 

 

The Karasu headwater branch of the Euphrates flows along the Erzincan suture for 200 km and 

next joins with the Murat River and several other tributaries draining the Tauride platform (Fig. 2). 

Exposed in the Erzincan region are the Upper Cretaceous Refahiye Ophiolite, consisting of 

serpentinized harzburgite with subordinate diabase and minor gabbro and plagiogranite, the 

associated mélange containing blocks of basalt, radiolarite and limestone, greenschist-facies arc 

volcanics, and turbidites. This rock assemblage is overlain in angular unconformity by upper 

Paleocene-Eocene shallow-marine carbonates and siliciclastics (Rice et al., 2009; Sarifakioğlu et 

al., 2009). 

The Tauride platform includes Permo-Mesozoic carbonates overlain by ophiolitic mélange (Gürün 

and Munzur units) and a low-grade basement largely consisting of upper Paleozoic/lower Mesozoic 

metacarbonates (Malatya-Keban unit), cut by Upper Cretaceous granites and overlain by associated 

basaltic and andesitic lavas (Elaziğ-Baskil arc complex; Robertson et al., 2007, 2013b). The 

overlying Cenozoic strata document major marine transgressions in the Eocene and early Miocene 

with widespread deposition of carbonates and siliciclastics. Throughout the late Neogene, eastern 

Anatolia was blanketed by shield and fissure eruptions of transitional tholeiitic-alkaline basalt, 

interfingering with fluvial and lacustrine deposits and extending to the Arabian foreland in the south 

(Pearce at al., 1990; Yilmaz et al., 1998). 

 

2.2. The southeast Anatolia belt 

 

The Tigris River is sourced in the southeast Anatolia belt and drains the Arabian platform south of 

it (Fig. 2). The metamorphic backbone of the range is the 500 km-long and 30 km-wide Bitlis-

Pütürge massif, emplaced tectonically onto a polyphase ophiolitic mélange and volcano-

sedimentary succession, separated in turn by a narrow belt of imbricated thrust slices from 

underlying Arabian continental-margin strata (Yilmaz, 1993). The massif, drained by the Batman 
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tributary of the Tigris, includes gneiss, micaschist and amphibolite of the Pan-African basement 

together with schist, metacarbonate and metavolcanics of its Paleozoic to lower Mesozoic cover 

(Ustaömer et al., 2012). Eclogites and blueschists formed during ophiolite obduction in the Late 

Cretaceous (Oberhänsli et al., 2010).  

North of the metamorphic massif, three relatively undeformed to strongly deformed and partly 

metamorphosed Upper Cretaceous ophiolitic sequences are exposed west (İspendere), between 

(Kömürhan), and east (Guleman) of the Euphrates and Tigris courses (Robertson et al., 2007). 

South and east of the massif, dismembered ophiolites and island-arc assemblages include 

serpentinite, gabbro, basalt, radiolarite, limestone and clastic rocks of the Yüksekova mélange, as 

well as Eocene volcano-sedimentary successions deposited during final closure of Neotethys and 

equivalent to the Walash and Naopurdan Groups of Iraq (Yilmaz et al., 1993). These include the 

Maden Group, overlying the Bitlis-Pütürge massif and exposed in the Tigris headwaters, and the 

Helete volcanic rocks exposed across the drainage divide between the Euphrates and Cehyan rivers 

and possibly traced as far as the Kyrenia Range in north Cyprus (Yiğitbaş and Yilmaz, 1996). The 

largely marine Cambrian to Miocene succession of the Arabian foreland is best exposed in 

southeasternmost Turkey drained by the Greater Zab (Elmas and Yilmaz, 2003). 

 

2.3. The Sanandaj-Sirjan zone 

 

The Lesser Zab and Diyala tributaries of the Tigris, the Karkheh River, and the Dez tributary of the 

Karun all have their headwaters in the Sanandaj-Sirjan zone of Iran (Fig. 4). The volcano-

sedimentary succession exposed in this 150-250 km-wide, NW/SE-elongated tectonic domain has 

experienced up to low-grade metamorphism. It includes Permo-Triassic metalavas, marbles and 

metasandstones, overlain by the 2-3 km-thick Hamedan phyllites, followed by Middle-Upper 

Jurassic clastics and limestones, and capped unconformably by Orbitolina limestones (Stocklin, 

1968; Alavi, 1994). The domain includes Songor metavolcanics and chlorite-epidote schist; 

granodiorite to granite with minor tonalite and gabbro are common in the northern part (Agard et 

al., 2005).  

The Shalair unit, which is part of the same domain and represents the structurally highest thrust-

sheet in Iraq (Fig. 3), includes Paleozoic metamorphic rocks intruded locally by Upper 

Carboniferous granites, ≤ 500 m-thick imbricates of Upper Triassic carbonates, a thick volcano-

sedimentary succession with phyllites and calcschists capped unconformably by Orbitolina 

limestones, and 2 km-thick Upper Cretaceous andesites, dacites and rhyolites with superposed 

prehnite-pumpellyite to greenschist-facies metamorphism. 
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2.4. The Zagros suture 

 

Geological descriptions of the suture zone, drained by Greater Zab and Lesser Zab tributaries in 

Iraq (Fig. 3) and by Diyala and Karkheh headwaters in Iran (Fig. 4), are taken mostly from Jassim 

and Goff (2006) and Agard et al. (2005). In Iraq, the Qulqula unit includes deformed radiolarites, 

carbonate turbidites and volcanic rocks of mostly Early Cretaceous age, and an upper thrust sheet of 

800 m-thick Triassic platform carbonates (Avroman Formation, partly equivalent to the Bisotun 

Formation in Iran). Permian limestones and thick conglomerates with limestone and chert clasts 

occur. Deposited originally onto the distal continental margin of Arabia as the Hawasina nappes of 

northern Oman, these strata were thrust onto the Arabian platform during Late Cretaceous 

obduction. The small Upper Cretaceous ophiolite complexes exposed in the area (Fig. 3) consist of 

sheared slivers or larger bodies of serpentinitized harzburgites or lherzolites, and incomplete crustal 

sequences including cumulates, gabbro, diorite, plagiogranite, and basaltic lava flows affected by 

low-grade metamorphism (e.g., Mawat Ophiolite; Aziz et al., 2011). These units are overlain 

unconformably by rudist-bearing Maastrichtian limestones and 1 km-thick Paleogene red beds 

with intercalated Nummulitid limestones and conglomerates with boulders of chert and volcanic 

rocks. 

The ≤ 4 km-thick Paleocene-Eocene arc volcanics and forearc turbidites of the Walash and 

Naopurdan Groups (Ali et al., 2013) are overthrust by a volcano-sedimentary sequence displaying 

greenschist to lower-amphibolite-facies metamorphism (Qandil series). Basalts, boninites and tuffs 

commonly show uralitization and extensive growth of amphibole, epidote or prehnite, and may be 

transformed into strongly foliated actinolite or chlorite schists. Blueschists occur locally. High-

grade contact metamorphism was reached in the ≤ 2.5 km-wide aureole developed in sedimentary 

country rocks of the Eocene Bulfat gabbro. 

In the adjacent Kermanshah region of Iran (Fig. 4), thrust-sheets stacked during Late Cretaceous 

obduction include 500 m of strongly folded Jurassic-Cretaceous radiolarites, overthrust by ≤ 3 km-

thick Upper Triassic to mid-Cretaceous Bisotun exotic shelfal limestones, and by ophiolite 

remnants including locally strongly serpentinized peridotites. Paleocene-Eocene arc-related 

volcanic rocks and turbidites are intruded by upper Eocene gabbros (Whitechurch et al., 2013). 

 

2.5. The Zagros fold-thrust belt 
 

The simply folded belt consists of largely competent carbonate rocks exposed in NW-SE trending 

parallel ridges drained by left-bank tributaries of the Tigris River in Iraq and by the Karun and 

Karkheh rivers in Iran. The base of the thick sedimentary succession, which rests on Precambrian 

metamorphic basement representing an extension of the Proterozoic Arabian shield, contains 
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uppermost Neoproterozoic/lowermost Cambrian dolostones and evaporites (e.g., Hormuz Salt) 

acting as a major detachment zone that controls the style of tectonic deformation (Bahroudi and 

Koyi, 2003). The overlying Paleozoic succession consists of shelfal clastic and carbonate rocks. In 

northernmost Iraq, 4 km-thick Paleozoic strata are exposed in the Ora thrust zone drained by the 

Khabour River (Fig. 3), including Ordovician quartzose sandstones and mudrocks with Cruziana 

trace fossils, Devonian red beds with a volcanic interval, and Carboniferous sandstones, shales and 

minor limestones (Al-Juboury and Al-Hadidy, 2009). Upper Permian limestones and intercalated 

evaporites equivalent to the Khuff carbonates of Arabia document regional transgression following 

initial opening of Neotethys in the Early Permian (Angiolini et al., 2003). Triassic and Jurassic 

strata include variegated mudrocks intercalated with carbonates and evaporites, overlain by 

bituminous carbonates with sporadic chert nodules and black shales. The Cretaceous succession 

includes carbonate-ramp deposits, overlain by 2 km-thick turbiditic sandstones and conglomerates 

with clasts of Mesozoic carbonate, radiolarian chert and green igneous and metamorphic rocks, 

interpreted to have been derived from, and deposited in front of advancing ophiolitic allochthons in 

the Campanian-Maastrichtian. Paleocene-Eocene strata include marls, sandstones and mudrocks 

with sporadic channelized conglomerate. The Neogene succession, gently folded and exposed in the 

foothills, consists of fluvio-deltaic red sandstones and mudrocks (Fat'ha or Lower Fars Formation; 

Al-Juboury and McCann, 2008) and 3 km-thick, coarse-grained fluvio-deltaic sediments (Injana or 

Upper Fars and Bakhtiari formations; Al-Juboury, 2009). 

The Neotethyan passive-margin succession in Iran includes ≥ 2 km-thick Permo-Triassic carbonates 

and evaporites unconformably overlain by lowest Jurassic siliciclastics passing upward to shallow-

water limestones with Lithiotis (Szabo and Kheradpir, 1978). Deposition of carbonate-platform 

deposits, passing laterally to bituminous shales and evaporites, persisted until the Turonian. Late 

Cretaceous obduction was recorded by the disconformably overlying Santonian-Campanian marly 

limestones and shales, overlain by Maastrichtian sandstones and conglomerates with chert, 

serpentinite, volcanic and limestone clasts derived from the obducting ophiolites (Amiran Fm.), 

which are capped by the uppermost Cretaceous Tarbur carbonates. The 3-5 km-thick Cenozoic 

succession includes Paleogene dolostones, evaporites, sandstones and mudrocks, overlain by the 

upward-coarsening and southwest-prograding Neogene megasequence that includes carbonates 

(e.g., Asmari Fm.), siliciclastics and evaporites (Gachsaran Fm.), and finally "molassic" sandstones 

and fluvial conglomerates (Bakhtiari Fm.; Hessami et al., 2001). 

 

3. The Euphrates-Tigris-Karun river system 
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The Euphrates-Tigris-Karun drainage basin exceeds 10
6
 Km

2 
and is about the twentieth largest on 

Earth (Fig. 1A). Fluvial management projects began over six millennia ago, until the second half of 

the last century when natural water and sediment fluxes were revolutionized by the construction of 

numerous major dams, the largest being the Atatürk Dam in southern Turkey with a capacity larger 

than the Euphrates annual flow. 

 

 

3.1. The Euphrates River  

 

The Euphrates (Firat/Furat) River, with a length of 2800 km and a catchment of 580,000 km
2
, is 

the largest river of southwestern Asia. Its two upstream branches, the Karasu and Murat,
 
rise in 

northeastern Anatolia at 3,290 and 3,520 m a.s.l., respectively. Mountainous headwaters have 

Mediterranean climate with hot dry summers and cold wet winters. Mean annual precipitation 

decreases progressively southward from 1,000 mm in the mountains to 300 mm near the 

Turkish/Syrian border, to 150 mm in Syria and only 75 mm in southern Iraq. Virtually all (88-98%) 

river water and sediments are generated in Anatolia. Peak discharge from rainfall and melting snow 

in April through May accounts for about half of annual runoff, which until the 1960s used to vary 

markedly at the Syrian border (17-43 km
3
), partly as an effect of the North Atlantic climatic 

oscillation (Cullen and deMenocal, 2000). The natural river regime has changed drastically since 

construction of large dams and reservoirs between 1970 and 2000 for hydroelectric power, 

irrigation and flood control. These include the Keban Dam downstream of the Karasu/Murat 

confluence, the Karakaya Dam, the huge Atatürk Dam, the Birecik and Karkamiş Dams just 

upstream of the Syrian border, and the Tabqa (Buhayrat al-Assad) Dam in Syria. Little inflow is 

contributed by the arid plains of Syria, where the Khabur River represents the last significant 

tributary, and of Iraq, where widyan of the western desert may flow episodically during winter 

rains. After winding through a gorge 2-16 km-wide, the river eventually flows out on the 

Mesopotamian plain, where average annual discharge has dropped to 11 km
3
, and peak discharge 

from 7500 m
3
/s to 2500 m

3
/s (Partow, 2001). 

 

3.2. The Tigris River 

  

The Tigris (Dicle/Dijlah) River, with a length of 1850 km and a catchment of 370,000 km
2
, 

originates from Lake Hazar in the Taurus Mountains. The mild influence of the Mediterranean Sea 

decreases inland and to the south, causing a rapid shift to increasingly hot and dry conditions 

downstream. Precipitations are sparse in the Mesopotamian plain, with an annual average of 150-

200 mm falling mainly in winter, whereas summers are hot and dry with temperatures up to 50°C. 
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The southern Anatolia headwater region contributes one-third to half of Tigris total annual water 

discharge (8-34 km
3
 out of 50 km

3
), the rest being supplied by left-bank tributaries with perennial 

flow descending from the Zagros Mountains (Partow, 2001). These include the Khabour in 

northernmost Iraq, the Greater Zab sourced in southeasternmost Turkey, the Lesser Zab sourced in 

Iran, the Adhaim with its main Aqsu tributary, and the Diyala, sourced in Iran where it is called 

Sirwan and joining the Tigris just south of Baghdad. Water and sediment discharge has been 

reduced progressively through time by dam construction in Turkey (e.g., Dicle Dam, 1997), 

northern Iraq (Mosul Dam, 1986), and central Iraq (Samarra Dam, 1956; Kut Dam, 1939). Other 

dams with large reservoirs include the Dukan Dam on the Lesser Zab (1961) and the Darbandikhan 

Dam on the Sirwan/Diyala (1962). 

 

3.3. The Mesopotamian floodplain 

 

Because of arid climate, the life of plants, animals and humans in the Iraqi plains have always 

depended heavily on the availability of surface water. The Euphrates and Tigris river courses have 

seen continuous change in response to anthropic, autogenic and allogenic processes, causing 

damages to human settlements and irrigation systems due to flooding or desertification (Jotheri et 

al., 2016). Since the early Holocene, considerable efforts have been made by the Mesopotamian 

people to control and sustain the water for their requirements, and an extensive network of channels 

was formed over time throughout the region (Wilkinson et al., 2015). Downstream of the Hindiya 

Dam, the Euphrates divides into two channels joining again at Samawah. South of Nasiriyah the 

river flows through the Hawr el Hammar, where its sediment load is finally dumped before joining 

the Tigris south of Al-Qurnah. South of Baghdad, the slope of the Tigris River decreases 

progressively and meander curvature increases. At the Kut Dam, much of the river waters is 

diverted southward into the Shatt al-Gharraf, once the main river channel joining with the Euphrates 

at Nasiriyah (Fig. 1). More waters are lost through channels and marshes, and only 25% of the 

original discharge finally reaches the Euphrates confluence to form the Shatt al-Arab. Most of the 

sediment load is consequently deposited in the plains, and little is carried beyond Qalah Salih, 60 

km north of Al-Qurnah. Also the Karkheh River, which once joined the trunk river south of Al-

Qurnah, breaks into several channels in the swampy area of southern Iraq, and along with the 

eastern branches of the Tigris is finally absorbed in the Hawizah Marshes straddling the Iraq/Iran 

border. Despite a potential annual load estimated at 105 million tons for the Euphrates and Tigris 

combined, the Shatt al-Arab upstream of the Karun confluence is thus virtually free of sediment 

(Partow, 2001).  
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3.4. Iranian rivers and the Shatt al-Arab 

 

The highly sinuous, tectonically controlled courses of the Karkheh and Karun rivers drain the 

Zagros Mountains in Iran, where climate is hot and dry in summer and mild in winter, with annual 

precipitation decreasing sharply from 800 mm in the mountains to 150 mm in southern lowlands. 

The Karkheh River, the third longest in Iran, has a length of 960 km, a catchment area of 50,000 

km
2
, and a water discharge of 5 km

3
/a. The major Karkheh Dam, built in 2001 10 km upstream 

of the plains, never reached even close to full capacity and expected energy production because of 

low water levels. The Karun River, with a length of 870 km and a catchment of 70,000 km
2
, has 

the highest discharge among all rivers in Iran (20 km
3
/a; Salarijazi et al., 2012). The mountain area 

comprises 75% of the catchment, the rest being represented by the low-gradient plain where the 

trunk river is joined by the Dez tributary. Several dams were built in the basin from 1963 (Dez 

Dam) to 2010 (Karun-4 Dam), resulting in a reduction of sediment fluxes and increased levels of 

salinity in the Shatt al-Arab, thus damaging ecosystems and human activities (Afkhami, 2003). The 

river finally splits into two subparallel branches, one joining the Shatt al-Arab and the other flowing 

directly into the Gulf as the Bahmanshir River. In the Gulf, terrigenous sediments mix extensively 

with ooids and other allochems and are finally deposited in marine mudflats and sand bars (Aqrawi, 

1994).  

 

4. Methods 

 

Field sampling in a region tormented by permanent war and conflict such as modern Iraq, Syria and 

southeastern Turkey is not easy. Between 2012 and 2016, very fine to medium-grained sands were 

collected wherever possible on active bars along the Euphrates River in Iraq and its major 

tributaries in Turkey (14 samples), along the Tigris River in Iraq and its major tributaries in Turkey, 

Iraq and Iran (44 samples), and along the Karkheh and Karun Rivers and their major tributaries in 

Iran as far as the Shatt al-Arab (17 samples). Sands derived from specific tectonic domains and 

carried by minor mountain rivers (first-order sampling scale of Ingersoll, 1990) were studied to 

identify the signatures of distinct source rocks, focusing in particular on the ophiolitic suture zone 

of Iraqi Kurdistan drained by the Qara Cholan River (Fig. 3). The complete set of 94 samples also 

includes 1 eolian dune and 16 Mesopotamia floodplain sediments in Iraq, 1 sample from Wadi al-

Batin in Saudi Arabia, and 1 Gulf beach in Kuwait. Information on sample location is provided in 

Appendix Table A1 and Supplementary file EuTiKa.kmz. 

 

4.1. Petrography and heavy minerals  
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A quartered fraction of each sample was impregnated with Araldite, cut into a standard thin section, 

stained with alizarine red to distinguish dolomite and calcite, and analysed by counting 400 points 

under the microscope (Gazzi-Dickinson method; Ingersoll et al., 1984; Zuffa, 1985). Sand  

classification is based on the main components quartz, feldspars and lithic fragments considered if 

exceeding 10%QFL (e.g., a sand is named quartzo-lithic if L > Q > 10%QFL > F; Garzanti, 2016). 

Metamorphic grains were classified by protolith composition and metamorphic rank. Average rank 

of rock fragments in each sample is expressed by the metamorphic indices MI and MI*. MI varies 

from 0 (detritus shed by sedimentary and volcanic cover rocks exclusively) to 500 (very-high-rank 

detritus exclusively shed by high-grade basement rocks). MI* considers only metamorphic rock 

fragments and thus varies from 100 (very-low-rank detritus shed by very low-grade metamorphic 

rocks) to 500 (Garzanti and Vezzoli, 2003). The Sc/S ratio (peridotite and lizardite-serpentinite 

grains with preserved cellular texture over total ultramafic grains including foliated antigorite-

serpentineschist) allows distinction of detritus from relatively undeformed obducted peridotites 

versus strongly deformed subducted mantle rocks (Garzanti et al., 2002a). Median grain size was 

determined in thin section by ranking and visual comparison with sieved standards. 

Although bulk-sample analyses represent the only correct option to estimate percentages of heavy 

minerals accurately, the presence of grains with great size differences in poorly sorted sands makes 

mounting and identification difficult. For such practical reasons a size window must be chosen, 

which should be wide enough to obtain a faithful characterization of the detrital assemblage 

(Garzanti et al., 2009). Heavy-mineral analyses were carried out on a 3.5 to 5 -wide size window 

(32-355 m to 15-500 m) obtained by dry sieving. Even with such a large window, the 10  10% 

(fine tail) and 11  17% (coarse tail) of the bulk sample were excluded from analysis. Heavy 

minerals were separated by centrifuging in sodium polytungstate (density ~2.90 g/cm
3
), and 

recovered by partial freezing with liquid nitrogen. On grain mounts, ≥ 200 transparent heavy-

mineral grains were either counted under the microscope by the area method or point-counted at 

suitable regular spacing to obtain real volume percentages (Galehouse, 1971). Heavy-mineral 

concentrations, calculated as the volume percentage of total (HMC) and transparent (tHMC) heavy 

minerals (Garzanti and Andó, 2007a), range from “very poor” (tHMC < 0.5) and “poor” (0.5 ≤ 

tHMC < 1) to “rich” (5 ≤ tHMC < 10), “very-rich” (10 ≤ tHMC < 20) and “extremely rich” (20 ≤ 

tHMC < 50). The ZTR index, expressing the “mineralogical stability” of the suite, is the sum of 

zircon, tourmaline and rutile over total transparent heavy minerals (Hubert, 1962). The “Hornblende 

Colour Index” HCI (Andó et al., 2014) varies from 0 in detritus from lowermost amphibolite-facies 

rocks yielding blue-green amphibole exclusively, to 100 in detritus from granulite-facies or 
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volcanic rocks yielding brown amphibole exclusively. Significant minerals are listed in order of 

abundance throughout the text. Key petrographic and mineralogical parameters are shown in Table 

1. The complete petrographic and mineralogical datasets are provided in Appendix Tables A2 and 

A3. 

 

4.2. Geochemistry and U-Pb zircon geochronology 
 

Chemical analyses of 20 selected samples were carried out at ACME Laboratories (Vancouver) on a 

split aliquot of the 63-2000 m fraction obtained by wet sieving. Major oxides and some minor 

elements were determined by ICP-ES and trace elements by ICP-MS, following a lithium 

metaborate/tetraborate fusion and nitric acid digestion. A separate split was digested in aqua regia 

and analysed for Mo, Ni, Cu, Ag, Au, Zn, Cd, Hg, Tl, Pb, As, Sb, Bi, Se, but the concentration of 

these elements may be underestimated because of only partial leaching of refractory minerals. For 

further information on adopted procedures, geostandards used and precision for various elements see 

http://acmelab.com (group 4A-4B and code LF200).  

The U-Pb ages of detrital zircons identified by Qemscan electron microscopy on the heavy-mineral 

separates of 25 selected samples were determined at the London Geochronology Centre using an 

Agilent 7700 LA-ICP-MS system, employing a New Wave NWR193 Excimer Laser operated at 10 

Hz with a 20 m spot size and ~2.5 J/cm
2
 fluence. Each analysis comprised 15 s of laser warm-up 

time during which blanks were measured, followed by 27 s of laser ablation and 18 s of washout 

delay. Signal selection and data interpolation were done using GLITTER
©

 software (Griffin et al., 

2008). The first 2 s of the laser ablation were discarded, and the remaining signal was normalised to 

the Plešovice zircon standard (Sláma et al. 2008). To avoid grain-to-grain bias and treat all the 

samples equally, the laser spot was always placed in the core of zircon grains; no CL-imaging was 

done. We used 
206

Pb/
238

U and 
207

Pb/
206

Pb ages for zircons younger and older than 1100 Ma, 

respectively. No common Pb correction was applied. Grains with > 10% age discordance were 

discarded, and thus only 9 samples yielded more than 50 usable ages; 1164 ages were used overall. 

Key geochemical parameters are shown in Table 2. The full geochemical and geochronological 

datasets are provided in Appendix Tables A4 and A5. 

  

5. Detrital fingerprints 

 

In this section we illustrate the petrographic and mineralogical composition of sand generated, 

transported and deposited in the vast catchment of the Euphrates, Tigris and Karun Rivers (Fig. 5). 

Their geochemical and geochronological signatures are described next. 

http://acmelab.com/
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5.1. Euphrates sands 

 

The Euphrates River carries to central Iraq feldspatho-quartzo-lithic sand with intermediate to mafic 

volcanic, carbonate, serpentinite, chert, and minor metamorphic rock fragments (Fig. 5D). The rich 

epidote-clinopyroxene-amphibole suite includes hypersthene, garnet, apatite, oxy-hornblende, Cr-

spinel and olivine. 

In Turkish headwaters, sand of the Murat tributary is similarly feldspatho-quartzo-lithic, including 

common volcanic and metavolcanic, subordinate limestone and granitoid, and minor chert and 

serpentinite grains, as well as rich amphibole-clinopyroxene-epidote suites with some garnet (Fig. 

6). Karasu sand upstream of Erzincan is instead feldspatho-lithic ultramaficlastic with subequal 

serpentineschist and cellular serpentinite, abundant volcanic/metavolcanic, carbonate and other 

sedimentary rock fragments; the rich clinopyroxene-dominated suite includes amphibole, epidote, 

minor Cr-spinel, garnet, enstatite and olivine. Volcanic detritus increases markedly downstream, 

and sand entering the Keban reservoir is feldspatho-lithic with lathwork and microlitic volcanic 

grains; dominant augitic clinopyroxene is associated with hypersthene and oxy-hornblende. Other 

Anatolian tributaries carry sand varying in composition from quartzo-feldspatho-lithic 

carbonaticlastic with abundant biotite and micaschist lithics (Munzur), to lithic with abundant 

carbonate, volcanic/metavolcanic and cellular serpentinite grains (Pülümur), to feldspato-quartzo-

lithic volcaniclastic (Perisuyu) or lithic carbonaticlastic (Tohma). Moderately rich to rich heavy-

mineral suites range from clinopyroxene-dominated (Munzur, Tohma) to amphibole-clinopyroxene-

epidote (Pülümur, Perisuyu), and may contain common grossular or almandine garnet, hypersthene, 

Cr-spinel, enstatite, olivine or apatite, and locally glaucophane. 

 

5.2. Tigris sands 

 

The Tigris River carries to central Iraq feldspatho-quartzo-lithic sedimentaclastic sand including 

carbonate, shale/slate, chert, volcanic/metavolcanic and a few serpentinite rock fragments (Fig. 5E). 

The moderately rich to rich epidote-garnet-amphibole-clinopyroxene suite includes Cr-spinel. 

In southeastern Anatolian headwaters, sand is quartzo-feldspatho-lithic volcaniclastic with 

limestone, shale/slate and serpentinite grains. The rich to very rich heavy-mineral assemblage 

mainly includes epidote, clinopyroxene and amphibole, with olivine, garnet, enstatite and minor 

andalusite. The major Batman tributary carries feldspatho-litho-quartzose metamorphiclastic sand 

including granitoid, metavolcanic and serpentinite rock fragments, and a moderately rich epidote-

amphibole-garnet suite (Fig. 5A). Downstream of the Batman confluence, Tigris sand becomes 
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litho-feldspatho-quartzose metamorphiclastic with a moderately rich garnet-epidote-amphibole 

suite, quite similar to Batman sand. 

In Iraq downstream of the Khabour confluence, sand is feldspatho-quartzo-lithic sedimentaclastic 

with a garnet-epidote-amphibole-clinopyroxene suite including Cr-spinel. Composition does not 

change much downstream of the Greater Zab confluence. Between the Lesser Zab and Adhaim 

confluences, river sand and adjacent eolian dunes are feldspatho-litho-quartzose with rounded 

quartz, lower heavy-mineral concentration, less amphibole, negligible pyroxene, and relatively 

more common epidote, garnet, zircon, tourmaline and rutile. 

 

5.3. Sands of Tigris tributaries in Iraq 

 

The Khabour River carries quartzo-lithic carbonaticlastic sand including mainly plagioclase 

feldspar and common microclitic volcanic, shale/siltstone, chert and minor low-rank metamorphic 

and serpentinite rock fragments. The poor heavy-mineral suite includes epidote, Cr-spinel, 

clinopyroxene, amphibole and minor titanite, garnet and apatite.  

The Greater Zab carries lithic sedimentaclastic sand with common carbonate, intermediate to mafic 

volcanic, shale/slate, cellular serpentinite, and minor chert, metavolcanic and schist lithic fragments. 

The rich, clinopyroxene-dominated suite includes common amphibole and epidote, rare titanite, 

apatite, Cr-spinel, and locally glaucophane. 

The Lesser Zab carries quartzo-lithic sedimentaclastic sand with limestone, shale/slate, chert, felsic 

to mafic volcanic, schist and serpentinite rock fragments (Fig. 5B). The moderately rich, epidote-

amphibole-clinopyroxene suite includes garnet and minor andalusite, oxy-hornblende and Cr-spinel. 

Sands in Iranian headwaters range from quartzo-lithic to feldspatho-quartzo-lithic sedimentaclastic, 

with moderately poor amphibole-epidote to very rich amphibole-clinopyroxene-epidote suites with 

some garnet. In Iraq upstream of Lake Dukan, sand is quartzo-lithic sedimentaclastic as in the final 

tract, but with more metamorphic rock fragments, biotite and heavy minerals, and less chert and 

volcanic rock fragments; the moderately rich heavy-mineral suite is notably enriched in andalusite. 

Downstream of Lake Dukan, sand is depleted in heavy-minerals and enriched in chert, dolostone, 

volcanic and serpentinite rock fragments.  

The Aqsu tributary of the Adhaim River and a minor tributary of the Lesser Zab with ephemeral 

seasonal flow draining entirely within Cenozoic strata of the Zagros foothills carry lithic to quartzo-

lithic sedimentaclastic sands dominated by chert, limestone and shale/slate grains with subordinate 

volcanic/metavolcanic grains (Fig. 5C). Heavy-mineral suites are poor to moderately poor and 

epidote-dominated with some garnet, amphibole, clinopyroxene and Cr-spinel. 
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The Diyala River carries lithic sedimentaclastic sand dominated by chert, limestone and shale 

associated with volcanic/metavolcanic grains. The moderately poor, clinopyroxene-epidote-

amphibole suite includes oxy-hornblende and garnet. In Iranian headwater branches, sand is 

quartzo-feldspatho-lithic sedimentaclastic with shale/slate, limestone, volcanic and metabasite 

grains, and includes either moderately rich epidote-dominated or rich clinopyroxene-amphibole-

epidote-garnet suites. Downstream of the Zagros suture, Sirwan sand is notably enriched in 

limestone, chert and pyroxene grains, and includes oxy-hornblende, hypersthene, andalusite and 

olivine. 

 

5.4. Mesopotamian foreland-basin sediments 

 

Sand of the Mesopotamian floodplain between Baghdad and Al-Qurnah is predominantly 

feldspatho-quartzo-lithic sedimentaclastic with carbonate, lathwork to microlitic volcanic, 

serpentinite and a few metamorphic, shale and chert grains (Fig. 5G). The rich amphibole-

clinopyroxene-epidote suite includes minor garnet, Cr-spinel, orthopyroxenes, prehnite, and locally 

pumpellyite and glaucophane. Detrital modes are intermediate between Euphrates and Tigris sands, 

with Euphrates contribution prevailing in the northwest and Tigris contribution in the southeast 

(Fig. 6). Extensive mixing and homogenization in the floodplain is the result of numerous avulsion 

episodes with lateral migration and repeated bifurcation of trunk-river channels during the 

Quaternary (Jotheri et al., 2016). Even the composition of modern Euphrates sand collected at 

Nasiriyah indicates mixing with sediments transported by right-bank distributaries of the Tigris 

(e.g., Shatt al-Gharraf) and/or reworked from the floodplain. Some floodplain sands collected west 

of the Euphrates in the Karbala region are litho-feldspatho-quartzose or even quartzose, with much 

poorer heavy-mineral suites enriched slightly in zircon, tourmaline and rutile, which indicates 

mixing with sand recycled from the Arabian foreland in the southwest (Fig. 5H).  

The upper Miocene Injana Formation in northernmost Iraq consists of quartzo-feldspatho-lithic 

carbonaticlastic sandstone yielding magnetite, ilmenite, Cr-spinel, amphibole, pyroxene, epidote, 

garnet, zircon, tourmaline and rutile (Al-Juboury, 2009). Quartz steadily increases southward, 

reaching maximum in the Karbala area (fig. 8 in Al-Juboury, 2009). Heavy-mineral data from 

Pleistocene terraces and Neogene molassic wedges (Philip, 1968) document a consistent 

compositional pattern since the late Miocene at least, with notably unchanged epidote-amphibole-

pyroxene suites in the Euphrates valley and epidote-dominated suites in the Adhaim catchment. 

 

5.5. Karkheh and Karun sands 
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The Karkheh River carries lithic carbonaticlastic sand with chert and a few volcanic and 

serpentinite rock fragments. The poor epidote-clinopyroxene-amphibole suite includes Cr-spinel, 

garnet, andalusite, and minor tourmaline, apatite and oxy-hornblende. Detritus in the small 

Jamishan headwater tributary is far richer in plagioclase and volcanic rock fragments, and contains 

more very-low-rank metasedimentary and metavolcanic grains and far less chert; the rich 

clinopyroxene-epidote-amphibole suite includes olivine but little Cr-spinel. Sand collected at 

Jalogir downstream of the Kashkan confluence yielded abundant gypsum grains and a very poor 

transparent-heavy-mineral suite dominated by celestite. 

The Karun River carries lithic carbonaticlastic sand with chert and other sedimentary grains (Fig. 

5F). The poor/very poor epidote-clinopyroxene-amphibole suite includes Cr-spinel and garnet, and 

minor zircon, tourmaline, andalusite and oxy-hornblende. Sand of its Dez tributary is lithic 

cherticlastic-carbonaticlastic and includes abundant carbonate and rare volcanic lithics, relatively 

common pyroxene and amphibole, and some andalusite. 

 

5.6. Shatt al-Arab, Wadi al-Batin and Gulf sands 

 

Sand in the Shatt al-Arab estuary has the very same lithic carbonaticlastic signature as Karun sand 

(Fig. 5I), indicating negligible contribution from the Tigris and Euphrates. Since long before 

construction of large dams and irrigation canals, the two rivers have dumped their load upstream of 

their confluence in Iraqi marshlands (Berry et al., 1970; Baltzer and Purser, 1990; Aqrawi and 

Evans, 1994), which act as a very efficient sediment trap much as the Sudd Marshes along the 

White Nile in South Sudan (Garzanti et al., 2015). 

Wadi al-Batin, which once represented the lower tract of Wadi Rimah connecting interior Arabia to 

the Gulf, contains sand dominated by mainly monocrystalline quartz grains commonly showing 

abraded overgrowths, with a few carbonate grains and feldspars. The very poor heavy-mineral suite 

includes amphibole, zircon, clinopyroxene, rutile, epidote, and minor tourmaline. 

The terrigenous fraction of beach sand in Kuwait, mixed with abundant ooids and some bioclasts, is 

almost as quartzose as Wadi al-Batin sand but includes a little more plagioclase and K-feldspar, and 

some mafic volcanic, metavolcanic and metabasite rock fragments (Fig. 6). Instead, the extremely 

poor heavy-mineral suite closely resembles Shatt al-Arab sands, being rich in epidote associated 

with clinopyroxene, amphibole and garnet, and including enstatite, hypersthene, oxy-hornblende 

and Cr-spinel, with only a few zircon, tourmaline and rutile grains. 

 

5.7. Geochemistry 
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Traditional geochemical approaches are scarcely applicable to Mesopotamian foreland-basin 

sediments, derived largely from sedimentary strata, volcanic fields and obducted ophiolites, because 

of their quartz-poor composition with abundant carbonate grains. Comparison with the upper 

continental crust standard (UCC; Taylor and McLennan, 1995) hardly makes sense. Classical indices 

such as the CIA (Nesbitt and Young, 1982) or the WIP (Parker, 1970) are of little use because the 

correction needed for CaO hosted in carbonates is huge and no correction method is robust (Garzanti 

and Resentini, 2016). The use of the CIA/WIP ratio as an indicator of recycling (Garzanti et al., 

2014) is also prevented. The CIA uncorrected for CaO in carbonates is ≤ 30 for most samples, and 

reaches as low as 10 for Karkheh sand and ≤ 5 for Karun and Shatt al-Arab sands, reflecting 

abundance of carbonate grains. Scarcely meaningful are also 
Al 

values (Garzanti et al., 2013a), 

which are generally very low for elements hosted in carbonates (0.01-0.7 for Ca, 0.1-0.8 for Mg, 0.1-

1.5 for Sr) and vary mostly between 1 and 2 for Na, K and Ba, depending on the mineralogy of 

source rocks rather than on weathering conditions. On the other hand, the widespread and commonly 

overwhelming presence of carbonate grains is a sufficient indicator that weathering is negligible, as 

expected given the arid climate through most of the catchment. Sand remains unweathered in the 

floodplain to a depth of at least some meters, as indicated by unchanged compositional parameters 

with burial depth. Worthy of note is that the scarcity in quartz does not translate automatically to low 

SiO2, because chert-rich Aqsu and Diyala sands display SiO2 concentrations close to 80% (Table 2). 

Distinguishing on purely geochemical ground these sands from quartz-rich sediments derived 

instead from the Arabian foreland would not be straightforward. 

Relative to litho-feldspatho-quartzose metamorphiclastic Ganga-Brahmaputra sediments, derived 

dominantly from the Himalaya but partly also from the Indian foreland and taken here as a 

reference for foreland-basin sands (Garzanti et al., 2010), Mesopotamian sands show concentration 

of Ca and loss on ignition higher by factors of 4 (Euphrates), 5 (Tigris) or even 10-15 (Karun and 

Shatt al-Arab), and higher by factors of 2-3 for Mg and Sr. In Tigris, Euphrates, Karkheh and Karun 

sands, Cr is higher by an order of magnitude; Mo, Ni, Cu and As are also markedly higher. Notably 

higher in Euphrates and Tigris sands are Sc, V and Co as well. In Wadi al-Batin sand, instead, the 

overwhelming abundance of quartz recycled from quartzose siliciclastic cover of the Arabian 

foreland is reflected in dominant Si and marked depletion of all other elements. 

 

5.8. Detrital-zircon geochronology 

 

From the Euphrates sand collected at Nasiryiah, 147 concordant U-Pb zircon ages were obtained. 

They show minor clusters at 21 Ma (2% of total zircons), 70-77 Ma (6%), 93-98 Ma (2%) and 307-

310 (2%), and a Paleozoic scatter (325-522; 7%). The dominant peak is between 530 and 662 Ma 
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(37%), followed by a cluster (752-848; 12%) and a scatter (865-1048 Ma; 14%) in the 

Neoproterozoic, by a 0.8 Ga-long gap, some ages around 1.85 Ga and 2.5 Ga (7% overall) with a 

maximum of 2701 Ma. 

From three Tigris sands collected north, at, and south of Baghdad, 215 concordant U-Pb zircon ages 

were obtained. They show an Oligocene-Late Cretaceous peak (25-102 Ma; 16% of total zircons), 

minor mid-Jurassic and Late Triassic clusters (166-170 and 225-230 Ma; 3%), a Carboniferous peak 

(294-349 Ma; 11%), and a mid-Paleozoic scatter (358-493 Ma; 8%). The dominant peak is between 

500 and 666 Ma (39%), followed by a Neoproterozoic scatter (680-958 Ma; 10%), minor clusters 

around 1.8 Ga and 2.4 Ga (4% overall) with a maximum of 3265 Ma. 

From nine Karun and Shatt al-Arab sand samples, 789 concordant U-Pb zircon ages were obtained. 

They show ages from as young as 6-8 Ma (< 1%) to as old as 2665-3260 Ma (1%). Minor clusters 

occur at 30-68 Ma (3%) and 87-98 Ma (1%), a major peak at 141-192 Ma (12%), and clusters at 

203-346 Ma (13%), 364-383 Ma (1%) and 393-469 Ma (5%). Older ages are mostly concentrated 

between 485 and 1090 Ma (44%), between 1685 and 1722 (1%), between 1787 and 1986 Ma (8%), 

and between 2407 and 2632 Ma (6%). 

Karun and Shatt al-Arab sands, most readily distinguished by many Jurassic to Permian zircon ages 

virtually lacking in Euphrates sand and scarcely represented in Tigris sand, are characterized also 

by late Miocene, early Paleozoic, Mesoproterozoic to late Paleoproterozoic, and early 

Paleoproterozoic ages. Age spectra are sufficiently distinct from those shed from Arabian sources 

(Garzanti et al., 2013a) to conclude that only a few zircon grains may be recycled from sandstones 

intercalated in the carbonate-dominated succession accreted in the Zagros fold-thrust belt and 

originally derived from Arabia. Tigris sand is characterized by late Oligocene ages, Eocene ages, 

and Paleozoic clusters at 320 and 540; Euphrates sand by early Miocene ages, latest Cretaceous 

ages, and Neoproterozoic clusters at 600, 650 and 840 (Fig. 7).  

 

6. Provenance and recycling of quartz-poor orogenic sands 

 

In contrast to the adjacent Alpine and Himalayan collision orogens where various neometamorphic 

and paleometamorphic rocks are exposed, the composite Anatolia-Zagros orogen drained by the 

Euphrates, Tigris and Karun rivers consists largely of sedimentary strata, volcanic to low-grade 

metavolcanic rocks and ophiolites. As a consequence of both arid climate and geological history, 

including Late Cretaceous obduction followed by collision in the Cenozoic, both first-cycle and 

recycled Mesopotamian foreland-basin sands are remarkably quartz-poor. They display high 

plagioclase/feldspar ratio and abundant carbonate grains associated with chert, 
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volcanic/metavolcanic and ultramafic rock fragments, pyroxenes and Cr-spinel. Such a signature 

characterizes detritus shed from broad undissected orogenic domains such as the Anatolia-Iranian 

plateau, formed by a collage of microcontinents and arc terranes separated by ophiolitic sutures and 

which, compared to the Alps or the Himalayas, lacks a prominent axial belt of syn-collisional 

metamorphic rocks. 

 

6.1. Volcanic and ophiolitic detritus from suture zones 

 

First-cycle detritus from ophiolites, ophiolitic mélanges, arc-related rocks and continental lava 

fields, widely exposed in eastern Anatolia and along the Zagros suture in Iraq and Iran, represents a 

significant fraction of Mesopotamian sediments. Provenance from such dense mafic and ultramafic 

source rocks is readily revealed by high heavy-mineral concentration in sands of the Euphrates 

River and Mesopotamian floodplain (tHMC 6 ± 3; estimated grain density 2.75 ± 0.04 g/cm
3
). 

Plagioclase/feldspar (P/F) ratios are 82 ± 5 in Euphrates, Tigris and Mesopotamian floodplain sands 

in central-southern Iraq, and reach above 90 in sands draining volcanic fields or the Erzincan, Bitlis 

and Zagros suture zones.  

In Anatolia, volcanic detritus represented by lathwork to microlitic rock fragments, plagioclase and 

clinopyroxene, with subordinate hypersthene, oxy-hornblende or olivine, is most common in sands 

of the Euphrates (Fig. 5D) and its tributaries, especially in the Karasu branch. Uppermost Tigris 

sand, containing abundant volcanic, metavolcanic and metabasite grains eroded from the Maden 

Group, is enriched downstream in olivine derived from Plio-Quaternary lavas exposed west of 

Diyarbakir (Fig. 2). Cellular serpentinite and serpentineschist grains, subordinate in Tigris 

headwaters draining the Bitlis suture (Sc/S 74 ± 7), are most abundant in upper Karasu sand 

draining serpentinized harzburgites of the Erzincan suture (Sc/S 49 ± 19), where enstatite, olivine 

and Cr-spinel are overwhelmed by clinopyroxene derived largely from volcanic rocks. Serpentinite 

grains, common in Pülümur sands also draining the Erzincan suture (Sc/S 83), are carried by all 

Anatolian tributaries of the Euphrates and Tigris but the Perisuyu. Enstatite, olivine or Cr-spinel are 

rare. 

In Iraq, volcanic/metavolcanic rock fragments and mainly augitic clinopyroxene characterize the 

Rawanduz tributary of the Greater Zab, reflecting supply from the Naopurdan-Walash Group (Fig. 

3). Low-grade metavolcanic rocks of the Zagros suture supply abundant epidote, widespread in 

Neogene sandstones as in modern sands recycled from them (Philip, 1968; Ghazal, 2005), along 

with minor prehnite and pumpellyite commonly detected in Mesopotamian sands. Dominant 

actinolitic amphibole and hornblende are associated with almost invariably subordinate and 

generally minor clinopyroxene and rare hypersthene in sands of the Lesser Zab upstream of Lake 
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Dukan and of its tributaries draining the ophiolitic suture zone, reflecting extensive uralitization in 

metabasite and gabbroic source rocks (Al-Saffi et al., 2012). Despite of only low-grade 

metamorphism, amphibole color indices are higher in Mesopotamian sands (HCI 25 ± 10) than 

generally found in foreland basin sediments (e.g., 8 ± 3, 9 ± 3 and 10 ± 4 for Indus, Ganga and 

Brahmaputra sands; Garzanti et al., 2005; 2010) because greenish actinolite and blue-green 

hornblende derived from metavolcanic and retrogressed gabbroic rocks are invariably associated 

with green-brown kaersutite and reddish-brown oxy-hornblende derived from arc lavas. 

The Qara Cholan River and its right-bank tributaries draining the suture zone in Iraq carry mostly 

lithic to feldspatho-lithic sands locally dominated by metabasite grains (mostly amphibolite, 

associated with epidosite, metagabbro and chloritoschist; MI up to 403) and containing common 

volcanic and metavolcanic grains (lathwork, microlitic, metadiabase). Shale/siltstone to 

slate/metasiltstone, limestone and chert grains derived from sedimentary rocks of the imbricate belt 

(Qulqula-Khwakurk and Balambo-Tanjero zones) are also common. Plagioclase is the dominant 

feldspar (P/F 97 ± 5). Ultramafic grains are subordinate even in streams draining almost exclusively 

the Penjween and Mawat ophiolites. Cellular serpentinite predominates over serpentineschist (Sc/S 

87 ± 12) and olivine-bearing peridotite grains occur and are traced to the Lesser Zab downstream. 

Very rich to extremely rich heavy-mineral assemblages are dominated by amphibole associated 

with epidote. Clinopyroxene is abundant only locally and hypersthene occurs in detritus from the 

Penjween Ophiolite. Cr-spinel and olivine are rare, and enstatite very rare. Amphibole-epidote 

suites shed by the Penjween and Mawat ophiolites contrast with pyroxene suites shed by ophiolitic 

complexes exposed all along the Alpine-Himalayan belt from the Apennines to the Andaman 

Islands (Garzanti et al., 2000, 2002a, 2002b, 2013b), reflecting extensive post-obduction 

greenschist-facies metamorphism of dominantly crustal protoliths.  

In Iran, Sirwan sand downstream of the Zagros suture is notably enriched in chert, but not 

significantly in volcanic or metavolcanic rock fragments; heavy-mineral suites are clinopyroxene-

dominated and hypersthene and olivine are present, but heavy-mineral concentration is lower. 

Jamishan sand draining the Kermanshah Ophiolite is moderately rich in lathwork and subordinately 

microlitic and metavolcanic rock fragments, contains abundant clinopyroxene but virtually lacks 

ultramafic detritus. Seymareh sand downstream of the suture is markedly enriched in chert, includes 

a few serpentinite, enstatite and Cr-spinel grains, but not much volcanic detritus. Volcanic and 

ultramafic rock fragments are minor in Dez sand, which is very rich in chert and contains 

clinopyroxene and a little enstatite.  

Ultramafic detritus thus notably decreases from eastern Anatolia to Iraqi Kurdistan, and is scarce in 

Iran (Table 1). Mantle source rocks belonged to the oceanic upper plate obducted onto Arabia in the 
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Late Cretaceous, and thus cellular serpentinite grains prevail over serpentineschist throughout the 

Euphrates and Tigris catchments (Fig. 5B; Sc/S 74 ± 14). The Sc/s ratio is mainly in the same range 

as in sands eroded from other ophiolitic complexes of the "croissant ophiolitique peri-Arabe" (Baer 

Bassit, Kizildag, Mersin and Sama'il ophiolites of Syria, Turkey and Oman; Ricou, 1971), where it 

ranges between 76 ± 10 and 85 ± 9 (fig. 9 in Garzanti et al., 2002a). Locally lower Sc/S ratio is 

ascribed to strong post-obduction deformation during Paleogene collision and final Neogene 

welding between Arabia and Eurasia.  

 

6.2. Metamorphic detritus from axial belts 

 

The best example of an axial neometamorphic complex in the Anatolia-Zagros orogen is the Bitlis-

Pütürge massif, exposing greenschist, blueschist and amphibolite-facies rocks with eclogite relics 

(Oberhänsli et al., 2010). The massif is drained by the Batman, the only major river in our study that 

carries metamorphiclastic sand (MI 304; Fig. 5A). Downstream of the Batman confluence, Tigris 

sand is dominated by quartz, granitoid and metamorphic rock fragments, a drastic compositional 

change testifying to notably higher erosion rates in the Bitlis massif than elsewhere in southeast 

Anatolia. Medium/high-rank gneiss and amphibolite rock fragments derived from the Bitlis-Pütürge 

massif are traced to Iraq in Euphrates, Tigris and Mesopotamian floodplain sands. The low-grade 

neometamorphic basement of the Tauride microcontinent (Malatya-Keban unit) supplies micaschist 

grains and biotite, most common in Munzur sand.   

High-pressure metamorphic rocks are almost lacking in the Zagros orogen (Agard et al., 2005), 

where the axial belt is represented by the Sanandaj-Sirjan zone affected by very low to low-grade 

metamorphism only. Sand is thus dominated by sedimentary/metasedimentary and 

volcanic/metavolcanic detritus (MI* 136 ± 21), with moderately poor to very rich heavy-mineral 

suites dominated by epidote, amphibole and clinopyroxene. Lower-amphibolite facies conditions 

were reached in the metamorphic Qandil volcano-sedimentary sequence, and temperatures ≥ 600°C 

are inferred for contact aureoles surrounding the Bulfat and Penjween gabbros (Jassim and Goff, 

2006 p.219-225). Medium to high-rank metamorphic detritus is thus markedly higher along the 

Lesser Zab upstream of Lake Dukan, where andalusite is abundant. Downstream of Lake Dukan, 

metamorphic detritus has been diluted, but andalusite is traced to the Tigris confluence. Andalusite, 

present also in Tigris and Batman sands in Anatolia, occurs in significant amounts in Sirwan and 

Seymareh sands downstream of the Zagros suture, and is traced all along the Karkheh River as well 

as from the Dez tributary along the Karun River to the Shatt al-Arab. The HCI index approaches 

middle amphibolite-facies values in Batman sand (13), and is < 5 in metamorphic detritus 

elsewhere. 
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6.3. Sedimentary detritus from the external belt 

 

Because the very thick Phanerozoic succession of the Arabian platform was detached along the 

underlying Neoproterozoic-Cambrian salt from its basement, the Zagros fold-belt entirely consists 

of cover strata (Alavi, 2004). Sedimentary detritus consequently represents the major component of 

the Mesopotamian foreland-basin fill. Sedimentary to very low-rank metasedimentary rock 

fragments increase markedly in abundance from west to east, being common in Euphrates sand (20 

± 5% of the bulk sample), very common in Tigris sand (42 ± 3%), and overwhelming in Karun and 

Shatt al-Arab sands (83 ± 7%). The inverse trend is displayed by heavy-mineral concentration, 

which decreases by an order of magnitude from Euphrates and Tigris sands to Karun and Shatt al-

Arab sands, reflecting marked eastward decrease in the exposure of, and hence supply from igneous 

and metamorphic rocks yielding heavy minerals in significant quantities. 

Limestone grains, associated with chert, mudrock and dolostone grains in varying abundance, are 

predominant (Fig. 5F,I). Such a carbonaticlastic-cherticlastic signature characterizes detritus 

derived from sedimentary successions deposited originally along the distal passive margin of 

southern Neotethys (e.g., Hawasina units of northern Oman, Mamonia complex of Cyprus, 

Toscana-Umbria domain of the Apennines; Garzanti et al., 2000; 2002a; 2002b), where 

arid/semiarid climate at tropical latitudes since the close of the Paleozoic have favored biogenic 

carbonate factories rather than physical siliciclastic production. Interbedded quartz-rich sandstones, 

characteristic of many passive-margin settings (Garzanti et al., 2014), are consequently few, and 

modern sands are quartz-poor with ZTR ≤ 12 even where entirely derived from sedimentary rocks 

(e.g., upper Karun). After orogenic accretion into the Alpine-Himalayan belt, carbonate rocks are 

now widely exposed from the Mediterranean region to central Asia in cold-mountain or still 

arid/semiarid climates, where chemical weathering is ineffective and soluble limestone clasts, 

traditionally held to be non-durable, are preserved in abundance (Zuffa, 1985; Garzanti et al., 2005; 

2006). Even most labile gypsum grains, associated with very unusual celestite-dominated heavy-

mineral assemblages and derived from evaporites of the lower Miocene Gachsaran Formation, are 

abundant locally in Karkheh sand.  

 

6.4. Recycling of orogen-derived clastic wedges 

 

Quantifying recycling is one of the most difficult tasks in provenance studies of sand and sandstone. 

Because Mesopotamian sand is almost invariably quartz-poor and dominated by unstable grains, the 

temptation would be to jump to the very wrong conclusion that they are dominantly first-cycle. 

Recycling does not necessarily result in concentrating quartz relative to sedimentary source rocks 
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(Cavazza et al., 1993; Garzanti et al., 2013b), especially in arid climates where weathering is 

negligible. Not only durable chert, but also unstable carbonate grains, mafic lithics and heavy 

minerals are recycled in abundance from molassic units of the foothills, as documented in sands of 

the Aqsu River and middle-course Lesser Zab tributary draining Cenozoic units exclusively (Fig. 

5C). Volcanic rock fragments, negligible in Lesser Zab sand upstream of Lake Dukan, increase in 

abundance as the river cuts across Cenozoic clastic rocks downstream. Epidote dominates 

transparent heavy-mineral suites in Neogene clastic wedges and river sands recycled from them 

(Philip, 1968). 

A way to determine which minerals are preferentially recycled from Neogene sandstones of the 

Zagros foothills is to check whether they correlate negatively with the tHMC index in our samples 

(Fig. 8). Correlations are negative for epidote and durable zircon, tourmaline, rutile and Cr-spinel (r 

≈ -0.5, sign. lev. 0.1%) and poorly negative for apatite, garnet and staurolite (r ≈ -0.3). Amphibole 

and pyroxene correlate positively (r 0.3-0.6), and are virtually absent in epidote-dominated recycled 

sands of the Adhaim-Aqsu River. However, even unstable ferromagnesian minerals can be 

recycled, because they resisted diagenetic dissolution to some degree (Al-Juboury, 2009) and are 

quite common in upper Miocene foreland strata drained by the Euphrates (Philip, 1968). This points 

to decreasing intensity of diagenetic dissolution from more deeply buried internal units of the 

foothills, containing dominant epidote because ferromagnesian minerals have been selectively 

dissolved, to foreland strata where diagenetic effects are least extensive and ferromagnesian 

minerals largely preserved. Virtually full preservation of epidote is indicated by ZTR ≤ 2 in sands 

of the Aqsu River and middle-course Lesser Zab tributary. In the Lesser Zab, the P/F ratio decreases 

from 72-88 to 60-67 downstream, and is lowest in Aqsu sand (50) suggesting faster dissolution for 

plagioclase than for K-feldspar during diagenesis of clastic parent rocks.  

A useful tracer of recycling is Cr-spinel (fig. 3 in Garzanti and Andó, 2007a), widespread in 

Mesopotamian sands and derived ultimately from mafic/ultramafic rocks of the suture zone (Aswad 

et al. 2011). The relative abundance of Cr-spinel is less in tributaries draining ophiolitic sutures and 

in Euphrates and Tigris sands (≤ 1%, 1 ± 1% and 2 ± 1% of transparent heavy minerals, 

respectively) than in tributaries draining Cenozoic strata only and in the Karun River (5 ± 5% and 

10 ± 6%, respectively), increases in inverse proportion to transparent-heavy-mineral concentration, 

and correlates negatively with ultramafic grains (Fig. 8). This confirms that Cr-spinel is largely 

recycled rather than first cycle (fig. 9 in Garzanti et al., 2013b), and was concentrated by selective 

diagenetic dissolution of ferromagnesian minerals in Cenozoic clastic parent rocks (Al-Juboury et 

al., 2009b). 
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6.5. Polycyclic detritus from the cratonic foreland 

 

Foreland-basin strata are not entirely derived from associated orogens. As the Indo-Gangetic plain 

is partly fed from right-bank tributaries of the Ganga River draining the Indian shield, so the 

Mesopotamian basin receives detritus recycled from sedimentary cover of the Arabian foreland in 

the southwest, consisting of quartzose sand with poor transparent-heavy-mineral suites nearly half 

of which is zircon, tourmaline and rutile. This additional contribution is distinguished readily by 

marked local enrichment in coarser and rounded monocrystalline quartz grains, associated with a 

slight increase in ZTR index and lower P/F in Mesopotamian floodplain sand west of the Euphrates 

(Fig. 5H), and to a lesser extent in Tigris sand and aeolian dunes west of the Tigris in central Iraq. 

A major source of quartzose polycyclic detritus is the Neogene Dibdibba Formation of southern 

Iraq and Kuwait. These alluvial-fan to deltaic sediments were fed by seasonal floods of a powerful 

paleo-river flowing along the presently dry Wadi al-Batin and connected with Wadi Rimah of 

central Arabia during wetter climatic stages (Holm, 1960; Al-Sulaimi and Pitty, 1995). Similar 

Neogene deposits are patchily exposed along the northeastern margin of the Arabian foreland from 

Syria to the Gulf (Jassim and Goff, 2006 p.181-183; Al-Juboury, 2009). Additionally, fine-grained 

quartzose sediment with K-feldspar, zircon and tourmaline is blown during major dust storms from 

Arabian deserts to reach the Mesopotamian plain, the Gulf and beyond (Fig. 1C; Emery, 1956; 

Awadh, 2012). This is documented by decrease in P/F from Karun sands (74 ± 7) to Shatt al-Arab 

sands at Khorramshahr (54 ± 7), where values approach those of Kuwait beach and Wadi al-Batin 

sands (Table 1).  

 

6.6. Relative sediment contributions 

 

The Euphrates and Tigris rivers drain different geological domains in different proportions, but 

largely within the same Anatolia-Zagros orogen. The compositional signatures of their sediments 

thus differ, but not markedly (Fig. 6), and distinguishing their relative contributions to the 

Mesopotamian foreland basin is not straightforward. The Euphrates carries more detritus from 

Anatolian volcanic fields (plagioclase, volcanic rock fragments, clinopyroxene and hypersthene; 

Fig. 5D), the Tigris more sedimentary detritus from the Zagros fold-belt (carbonate, shale/slate, 

chert) and thus fewer heavy minerals including more zircon, tourmaline, rutile and garnet (Fig. 5E). 

Instead, dominantly sedimentaclastic sand is carried by the Karun River (Fig. 5F). Forward end-

member modelling of integrated petrographic and heavy-mineral data (Garzanti et al., 2012) 

suggests locally variable but overall similar relative contributions to Mesopotamian sands from the 

Euphrates (54 ± 35%) and Tigris rivers (45 ± 35%). Quartzose sand from the Arabian foreland, 
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negligible in the east, represents as much as 63% and 82% of the two sand samples collected near 

Karbala west of the Euphrates. 

Greater compositional similarity of Euphrates sand with Murat rather than Karasu sand, and of 

Tigris sand downstream of the Batman confluence with Batman rather than Tigris sand upstream, 

indicates the Murat and Batman rivers as the major sediment contributors to the two trunk rivers in 

Anatolia (94 ± 4% and 83 ± 14%, respectively). Shatt al-Arab sand is calculated to be supplied 

100% by the Karun River, and the Kuwait beach 93% from the Arabian foreland and 7% from the 

combined Euphrates-Tigris-Karun drainage system, although the extremely poor heavy-mineral 

suite has been contributed virtually entirely by the latter because of very low heavy-mineral 

concentration in Arabian sources. 

 

6.7. Channel profiles and erosion in an undissected orogen  

 

Relief is controlled by several competing factors, including lithology, tectonics and climate 

(Burbank and Pinter, 1999). High topography may be residual, reflecting the distribution of erosion-

resistant rocks, or may result from focused active uplift. Similarly, knickpoints can be associated 

with sharp lithological boundaries or active faults. The quantitative analysis of stream profiles is 

one effective way to characterize a tectonically active mountain region with morphometric 

parameters that help us investigate the drivers of erosional evolution. Two indices, channel 

steepness ks and concavity , are defined by a power-law relationship between the local channel 

slope S and the contributing drainage area A used as a proxy for discharge (S = ksA
- 

; Flint 1974). 

In this study, the steepness index ksn referenced to a fixed concavity 0.45 (Korup and Schlunegger, 

2009) is used to compare gradients in channels with different drainage areas.  

We have calculated concavity and steepness indices for 16 short stream segments, draining each a 

single tectonic unit of the Anatolia-Zagros orogen (Fig. 9). In this broad tectonic domain  steepness 

indices are among the lowest in active orogenic areas, comparable to those in the Apennines (Kirby 

and Whipple, 2012). Low erosion potential is confirmed by sediment yields and erosion rates 

around 100 ton/km
2
∙a and 0.04 mm/a calculated for the entire Euphrates-Tigris basin, increasing to 

200-400 ton/km
2
∙a for the northern mountains facing the Black Sea (Jaoshvili, 2002). Average 

erosion rates in the Anatolian plateau do not exceed 0.1 mm/a. 

Short streams draining the resistant mantle rocks of the Refahiye Ophiolite are steepest and may 

show extreme concavity, whereas streams draining Neogene volcanic fields or the Kermanshah 

Ophiolite where volcanic rocks are dominant have low steepness and moderate concavity. Relief 

thus appears to be controlled more by lithological contrast than by tectonic uplift. Low steepness 

also characterizes rivers in the Sanandaj-Sirjan zone, with concavities ranging from moderate for 



27 
 

streams draining across structural strike to low or even markedly negative (-0.3) for the Gavrud 

River draining subparallel to structural strike. The marked change in detrital modes of Sirwan sand 

across the Zagros suture points to notably low erosion rates in upstream reaches. 

Very different morphometry characterizes channels incised into the northern and southern flanks of 

the Bitlis Massif. The former have gentle profiles with very high concavity, the latter are steeper 

with moderate concavity (Fig. 9). Channel steepness and erosion rates are relatively high along the 

southern flank of the Bitlis Massif, but still markedly lower than along Alpine or Himalayan 

neometamorphic axial belts (Wobus et al., 2003; Korup and Schlunegger, 2009).  

 

7. The use and misuse of provenance models 

 

Foreland-basin sediments conveyed through the Euphrates-Tigris-Karun fluvial network present a 

unique case of virtually unweathered detritus generated in semiarid climate from a slowly eroding, 

largely undissected composite orogen produced by ophiolite obduction followed by continental 

collision. In this section we examine to what extent the lesson learned from our modern-sand 

perspective may be applicable to the analysis of an imaginary non-diagenetically altered ancient 

clastic wedge generated by analogous geodynamic processes, and discuss the insight gained and 

potential pitfalls associated with the classical approach postulating the existence of a direct link 

between sediment composition and plate-tectonic setting (Dickinson, 1985), versus an upgraded 

approach focusing specifically on the tectono-stratigraphic level of source terranes (Garzanti, 2016). 

 

7.1. The Dickinson model at work 

 

In the classical triangular diagrams of Dickinson and Suczek (1979), detrital modes of Karun and 

Tigris sands plot broadly correctly within or at the boundary of the "recycled orogen" field, whereas 

Euphrates and most Mesopotamian sands straddle that boundary and plot largely in the "magmatic 

arc" field (Fig. 10). If a provenance diagnosis had to be made for an analogous ancient sandstone 

suite based on such information alone, then we should be able to infer an active-margin orogenic 

setting. A fold-thrust/suture belt provenance may be indicated correctly, but it would be hard to tell 

whether an arc was active at the time of deposition or long extinct, and to establish conclusively that 

these sediments were deposited in a foreland basin and not for instance in a forearc basin. 

Carbonate lithics, which may occur in forearc basins although hardly in such abundance (Marsaglia 

and Ingersoll, 1992; Garzanti et al., 1996; An et al., 2014), would represent a revealing parameter, 

but they are not considered in the Dickinson (1985) model. The quartz-rich composition of the two 



28 
 

Mesopotamian samples plotting in the "continental block" field may be interpreted correctly as fed 

mainly from the cratonic foreland. 

 

7.2. The upgraded model at work 

 

The simplest model of a collision orogen includes five types of allochthonous tectonic domains 

(Garzanti et al., 2007): (1) arc remnants and (2) obducted or accreted ophiolites exposed along the 

suture zone, (3) an axial belt of high-pressure neometamorphic basement and cover rocks ("fossil 

continental-subduction zone"), (4) external fold-thrust belts of accreted continental-margin 

paleometamorphic basement and cover strata, and (5) molassic wedges of the foothills. Orogenic 

sediments can thus be envisaged as mixtures in various proportions of such five sources (magmatic 

arc, ophiolite, axial belt, continental block, and recycled clastic provenances). Each domain but the 

fifth can be idealized as a tectono-stratigraphic multilayer evolving progressively while erosion cuts 

deeper from the shallow supracrustal to the deep crustal or even mantle level. Undissected, 

transitional and dissected stages can thus be defined for each provenance but the fifth, and traced in 

space or time by their distinct petrographic and mineralogical fingerprints. 

Sand eroded from the Anatolia-Zagros orogen is significantly richer in sedimentary/low-rank 

metasedimentary and volcanic/low-rank metavolcanic lithics and much poorer in quartz, K-feldspar 

and high-rank metamorphic detritus than sand generated along the Alpine-Himalayan system (Fig. 

11). Besides the classic amphibole-epidote-garnet orogenic triad (Garzanti and Andó, 2007b), 

heavy-mineral suites in the Anatolia-Zagros orogen include invariably abundant and even dominant 

clinopyroxene commonly associated with some hypersthene. In an imaginary ancient analog, such 

signatures would lead us to infer deposition in a foreland basin by rivers draining within the 

external fold-thrust belt and across volcanic-arc rocks and ophiolites of the suture zone. The dearth 

of high-rank metamorphic detritus would indicate dominance of supracrustal tectono-stratigraphic 

levels across the orogenic source, with minor exposures of a neometamorphic axial belt and/or 

paleometamorphic basement. It would not be difficult to figure out that carbonaticlastic/cherticlastic 

detritus was supplied in arid climatic conditions from strata originally deposited on the distal 

continental-margin of the lower plate and subsequently accreted at the front of the outward-growing 

accretionary prism. The existence of a tectonic detachment above the basement of the lower-plate 

continental margin with accretion of cover strata in mainly thin-skinned mode could be guessed. 

The paleovolcanic nature of most arc sources would be readily inferred from the abundance of very-

low-rank metavolcanic grains and low-grade minerals (i.e., epidote with minor prehnite and 

pumpellyite). Predominant cellular serpentinite grains would reveal the original upper-plate setting 

of ophiolitic source rocks. The abundance of actinolite-rich rock fragments and very rich 
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amphibole-epidote heavy-mineral suites would suggest dominance of crustal over mantle protoliths 

in the originally obducted ophiolitic allochthons and regional post-obduction greenschist-facies 

metamorphism.  

Sediments derived from undissected collision orogens such as the wide Anatolia-Zagros plateau 

share all of their main diagnostic compositional signatures with detritus from singly-vergent thin-

skinned thrust belts such as the Apennines (Garzanti et al., 2002b), and thus the geometry of 

subduction could not be inferred. Although the Amazon River carries a similar pyroxene-rich 

heavy-mineral suite as the Euphrates (Limonta et al., 2015), Mesopotamian sediments are readily 

distinguished from those shed from either side of an Andean-type cordillera. The feldspatho-lithic 

volcaniclastic to litho-quartzo-feldspathic plutoniclastic signatures of magmatic arc provenance 

characterize the Pacific side of the Andes (Yerino and Maynard 1984; Thornburg and Kulm 1987), 

whereas litho-quartzose to quartzose metamorphiclastic sand lacking carbonate and ultramafic 

grains characterize its retro-side (DeCelles and Hertel, 1989; Johnsson et al., 1991). Carbonate 

grains shed from Laramide uplifts are however found in abundance locally in syn-orogenic clastic 

wedges of the Rocky Mountain foreland basin (Ingersoll et al., 1987). 

The most challenging problem is posed by detritus recycled along both flanks of the foreland basin. 

Local addition of quartzose detritus recycled from siliciclastic cover rocks of the cratonic foreland 

would be easier to appraise, but it would be hard not to underestimate the amount of unstable 

carbonate, mafic/ultramafic rock fragments, epidote and other heavy minerals recycled from 

molassic units of the foothills (Fig. 5C). The widespread occurrence of Cr-spinel would offer the 

best evidence for the largely recycled origin of ultramafic detritus, rather than first-cycle 

provenance from ophiolitic allochthons.  

 

8. Long-distance sediment dispersal in arid climate 

 

Because of arid climate and consequently limited river-transport capacity, the Arabian/Persian Gulf 

is presently underfilled and dominated by carbonate sedimentation despite the existence of a major 

longitudinal river system and transverse rivers draining the Zagros Mountains in southern Iran 

(Baltzer and Purser, 1990; Kendall and Alsharhan, 2010). During the major eustatic lowstands of 

the Pleistocene, however, the Gulf was overfilled and subaerial, and trunk-river sediments reached 

into the Gulf of Oman remnant-ocean basin (Lambeck, 1996; Uchupi et al., 1999). Loose sediments 

of the floodplain were then deflated by reinforced northerly (Shamal) winds, and eventually pushed 

southwestwards onto Arabia where they accumulated in vast dunefields (Glennie and Singhvi, 

2002). 
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By combining petrographic, mineralogical and geochronological fingerprints we can trace sediment 

dispersal from the Anatolia-Zagros orogen to as far as the heart of Arabia. In this long multistep 

transport process, finer-grained quartz-poor orogenic sand from the north has mixed with coarser-

grained quartz-rich sand recycled from lower Paleozoic and younger quartzarenites overlying and 

surrounding the Neoproterozoic Arabian shield in the west. This has occurred first locally along the 

western foreland side of the Mesopotamian floodplain (Fig. 5H), and next along the western shores 

of the Gulf. Orogenic detritus is estimated to represent ~40% of eolian sand in the coastal Jafurah 

dunefield of eastern Saudi Arabia (decreasing from 65 ± 25% in very fine sand to 5 ± 5% in 

medium sand; fig. 7 in Garzanti et al., 2013a). Composition changes progressively inland, and 

orogenic detritus decreases to virtually 0% in western Jafurah dunes, which largely consist of 

polycyclic quartzose sand deflated from the Dibdibba plains of Kuwait. Jafurah dunes contain a few 

zircon grains yielding Paleogene, Late Cretaceous, Jurassic or Permian ages (fig. 9 in Garzanti et 

al., 2013a), which are not documented in Arabia but are common in Mesopotamian river sands, thus 

confirming minor sediment contribution from the latter. 

Identical feldspatho-litho-quartzose carbonaticlastic compositions revealing mixing in subequal 

proportions of quartz-poor orogenic and quartz-rich anorogenic sands are traced southward along 

the western shores of the Gulf from north of Dammam to coastal Jafurah dunes and as far as inland 

Sabkha Matti at the edge of the Rub’al-Khali desert (Fig. 1C). In contrast, coastal dunes in the 

United Arab Emirates are lithic carbonaticlastic with epidote-rich heavy-mineral assemblages, 

indicating recycling of Pleistocene eolianites and ultimate provenance largely from the Zagros fold-

belt in the north (Garzanti et al., 2003). Quartz increases rapidly inland, but orogenic detritus 

remains common in litho-feldspatho-quartzose dune sand of the Liwa oasis (fig. 8 in Garzanti et al., 

2013a). The orogenic trace fades in feldspatho-quartzose Rub’al-Khali megadunes of Saudi Arabia, 

which contain a few chert, volcanic, carbonate, low-rank metabasite and ultramafic grains. Sand 

grains have thus traveled by multistep fluvial and eolian transport a distance up to 4000 km, from 

the Euphrates headwaters to the Rub’al-Khali sand sea. 

 

9. Conclusions 

 

The Anatolia-Zagros orogen chiefly includes remnants of magmatic arcs, obducted ophiolites and a 

frontal fold-thrust belt of thick sedimentary strata. Paleometamorphic basement is virtually lacking. 

Subducted continental crust with high-pressure neometamorphic overprint is exposed in the Bitlis-

Pütürge massif of southern Anatolia but not in the Zagros Mountains of Iran, where the axial belt is 

represented by the Sanandaj-Sirjan zone affected by very low to low-grade metamorphism only. 

These features are reflected by markedly distinct petrographic and heavy-mineral signatures of 



31 
 

sediments generated across the entire Anatolia-Iranian plateau relative to foreland-basin sediment 

derived from the Alps or the Himalayas, and represent the distinctive detrital fingerprint of this type 

of broad and composite, slowly eroding undissected orogenic domain. Lithic-rich detritus from 

supracrustal rocks including carbonates, cherts, arc lavas, oceanic mélanges and obducted ophiolitic 

allochthons dominates over quartz, K-feldspar, high-rank metamorphic rock fragments and mica. 

Pyroxene is nearly as abundant as amphibole or epidote, and much more common than any other 

heavy mineral; andalusite is the only locally significant heavy mineral derived from medium-grade 

metasedimentary rocks. Because chemical weathering is negligible in arid climates, even soluble 

gypsum grains may be locally abundant, and carbonate rock fragments are preserved through 

multiple sedimentary cycles. Recycling of Neogene molasse produces lithic sand characterized by 

abundant carbonate and mafic volcanic rock fragments (Fig. 5C), with epidote-dominated heavy-

mineral suites that include Cr-spinel and a few amphibole and pyroxene grains. Recycling does not 

necessarily produce “mature” daughter sediments with more quartz, zircon, tourmaline or rutile 

than in parent rocks. Relative enrichment in K-feldspar and epidote in recycled sands points to 

selective diagenetic dissolution of plagioclase and ferromagnesian minerals in Neogene units of the 

Zagros foothills. 

In contrast to foreland basins associated with highly elevated, fast-eroding and deeply dissected 

collision orogens such as the Himalaya, the Zagros foreland basin is presently underfilled. The 

Mesopotamian plains pass southeastward, through a marshland where sediments of the Euphrates 

and Tigris Rivers are dumped, to the shallow sea of the Arabian/Persian Gulf dominated by 

allochemical carbonate sedimentation. The quartz-poor orogenic signature of sediments derived 

from eastern Anatolia, Iraq and Iran, progressively diluted by mixing with quartz-rich anorogenic 

sand recycled from siliciclastic units of Arabia, can be traced along the southwestern side of the 

Gulf to the Rub' al-Khali sand sea. This modern-sand provenance study highlights the diversity of 

plate-tectonic settings and associated long-distance and multistep source-to-sink sediment-routing 

systems found in nature, and potential pitfalls encountered when reconstructing past orogenic 

landscapes without suitable provenance models. 
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SUPPLEMENTARY MATERIAL 

 

Supplementary data associated with this article can be found in the online version, at 

http://dx.doi.___________. These include information on sampling sites (Table A1), the complete 

bulk-sand petrography (Table A2), heavy-mineral (Table A3), geochemical (Table A4) and 

geochronological datasets (Table A5), a compilation of published geochronological data in source 

rocks of the Anatolia-Zagros orogen (Table A6), and morphological parameters of studied river 

tracts (Table A7). The Google-Earth map of sampling sites EuTiKa.kmz is also provided. 
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FIGURES 

 

Figure 1. Shaded relief map of the Euphrates-Tigris-Karun drainage basin with sample location (A; 

modified after Partow, 2001). B) Imaginary reconstruction of river drainage in the "Garden of 

Eden", as described in the Genesis of the Bible. C) Dust storm carrying Arabian dust to 

Mesopotamia and the Gulf. 

 

Figure 2. Geology of eastern Anatolia (redrawn after the Geological Map of Turkey 1:2,000,000; 

location within the Euphrates-Tigris-Karun basin shown in inset, drainage divide outlined by thick 

grey line), illustrating bedrock units exposed in the headwaters of the Euphrates and Tigris Rivers. 

 

Figure 3. Geology of the Iraqi Kurdistan region (redrawn after the Lithostratigraphic Map of 

northern Iraq; location within the Euphrates-Tigris-Karun basin shown in inset), illustrating bedrock 

units exposed in the diverse tectonic domains drained by Zagros tributaries of the Tigris River. 

Gabbroic massifs: Bu = Bulfat; Ma = Mawat; Pe = Penjween; Pu = Pushtashan. 

 

 

Figure 4. Geology of the central Zagros orogen (redrawn after the Geological Map of Iran 

1:2,500,000; location within the Euphrates-Tigris-Karun basin shown in inset), illustrating bedrock 

units exposed in the diverse tectonic domains drained by the Karun, Karkheh and Sirwan (Diyala) 

Rivers. 

 

Figure 5. Petrography of Euphrates-Tigris-Karun river sands. Orogenic provenances: A) 

Metamorphiclastic detritus from the Bitlis massif (M = metamorphic lithic; m = mica). B) Cellular 

serpentinite (Sc) and foliated serpentineschist (Ss) grains from ophiolites of the Zagros suture. C) 

Volcanic (V), chert (H) and carbonate (C) grains recyled entirely from Neogene molasse units of 

the foothills. Trunk-river systems: D) Euphrates sand rich in volcanic detritus including 

plagioclase (P) and clinopyroxene (p). (E) Tigris sand rich in sedimentary detritus (S = shale lithic; 

e = epidote). F) Carbonaticlastic Karun sand. Foreland-basin fill: G) Mesopotamian sediments 

derived from Euphrates and Tigris Rivers in subequal proportions. H) Rounded quartz grains (Q) 

recycled from Arabian sources mixed with finer-grained quartz-poor orogenic detritus in the 

Karbala area (calcareous grains stained with alizarine red). I) Carbonaticlastic Shatt al-Arab sand 

supplied entirely by the Karun River because Euphrates and Tigris bedload is trapped in Iraqi 

marshlands before reaching the Gulf. All photos with crossed polars; all blue bars for scale are 250 

m. 
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Figure 6. Detrital modes and heavy-mineral suites in Mesopotamian foreland-basin sediments are 

intermediate between Euphrates and Tigris sands. Euphrates supply predominates in the northwest, 

Tigris contribution in the southeast. Floodplain samples collected west of the Euphrates are locally 

enriched markedly in quartz, zircon, tourmaline and rutile recycled from siliciclastic units in Arabia. 

Tigris sands between the Lesser Zab and Adhaim confluences are also enriched in quartz from the 

Arabian foreland. Q = quartz; F = feldspars; L = lithic grains (Lm = metamorphic; Lv = volcanic; 

Ls = sedimentary). Amp = amphibole; Px = pyroxene; Ol = olivine; &tHM = other transparent 

heavy minerals; ZTR = zircon + tourmaline + rutile; Sp = Cr-spinel; Ep = epidote group minerals; 

Grt = garnet; MM = chloritoid + staurolite + andalusite + kyanite + sillimanite. 

 

Figure 7. U-Pb age spectra of detrital zircons in Euphrates-Tigris-Karun river sands, plotted as 

Kernel Density Estimates (Vermeesch 2012). We used 
206

Pb/
238

U and 
207

Pb/
206

Pb ages for zircons 

younger and older than 1100 Ma, respectively; n = number of concordant ages. Cumulative age 

distributions show nearly identical patterns for Karun and Shatt al-Arab zircons, as confirmed by 

much shorter Kolmogorov-Smirnov distance than for Euphrates and Tigris zircons. All plots 

generated using software package 'provenance' (Vermeesch et al., 2016). 

 

Figure 8. Provenance discrimination with the compositional biplot (Gabriel, 1971). Sands of the 

Mesopotamian foreland basin are a mixture of orogenic detritus derived largely from sedimentary 

rocks (e.g., accreted to the Zagros fold-belt and drained by the Karun), volcanic arcs and ophiolitic 

sutures (e.g., drained by Euphrates headwaters), and only subordinately from metamorphic 

complexes (e.g., Bitlis Massif drained by the Batman tributary of the Tigris). Quartz-rich detritus, 

supplied from Arabia along the western side of the foreland basin, is overwhelming in Kuwait 

beach sand. All major petrographic and heavy-mineral parameters are considered, and both 

multivariate observations (points) and variables (rays) are displayed. The length of each ray is 

proportional to the variability of the compositional parameter in the data set. If the angle between 

two rays is close to 0°, 90°, and 180°, then the corresponding parameters are directly correlated, 

uncorrelated, and inversely correlated, respectively. GSZ = grain size (in m); KF = K-feldspar; L = 

lithic grains (Lp = shale/siltstone; Lms = low-rank metasedimentary; Lmf = high-rank felsic 

metamorphic; Lmb = high-rank metabasite); HMC = Heavy Mineral Concentration; MM = 

chloritoid + staurolite + andalusite + kyanite + sillimanite). Other parameters as in Table 1. 
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Figure 9. Results of channel-profile analysis. Fluvial network delineated in TecDEM (software 

shell implemented in MATLAB; Shahzad and Gloaguen, 2011) from a 30 m resolution digital 

elevation model provided by ASTER GDEM (http://www.gdem.aster.ersdac.or.jp).  

 

Figure 10. Provenance insights obtained from Dickinson's (1985) diagrams. An active margin 

setting can be inferred, but sands of the Mesopotamian foreland basin plot in both magmatic arc and 

recycled orogen fields. Karun sand plots in the recycled orogen field, but most information is lost 

by neglecting carbonate rock fragments representing the majority (57 ± 8%) of detrital grains. 

Polycyclic quartz sands derived from the Arabian foreland plot correctly in the continental block 

field.  

 

Figure 11. Contrasting composition of foreland-basin sands derived from dissected Alpine-

Himalayan and undissected Anatolia-Iranian collision orogens. Major rivers draining 

neometamorphic gneiss domes exposed in the axial Alps or Himalayas carry litho-feldspatho-

quartzose metamorphiclastic sand with amphibole-epidote-garnet heavy-mineral suites, whereas the 

Anatolia-Iranian plateau generates feldspatho-quartzo-lithic sedimentaclastic, volcaniclastic or 

ophioliticlastic detritus notably richer in pyroxene (data from Garzanti et al., 2005; 2010; 2012; 

Vezzoli et al., 2014 and own unpublished database). The Miocene Kithrea Flysch is exposed in the 

Kyrenia Range of north Cyprus. Compositional parameters as in Figure 6. The LmLvLs diagram 

poorly illustrates level of unroofing because medium/high-grade metamorphic rocks are coarse-

grained and thus shed virtually no aphanite lithics. 

 

Table 1. Petrography and mineralogy of Euphrates-Tigris-Karun river sands and Mesopotamian 

foreland-basin sediments. N° = number of samples; Q = quartz; F = feldspars (P = plagioclase); L = 

lithic grains (Lvm = volcanic and low-rank metavolcanic; Lc = carbonate; Lh = chert; Lsm = other 

sedimentary and low-rank metasedimentary; Lm = high-rank metamorphic; Lu = ultramafic); MI = 

Metamorphic Index; tHMC = transparent Heavy Mineral Concentration; ZTR = zircon + tourmaline 

+ rutile; Ttn = titanite; Ap = apatite; Ep = epidote group minerals; Grt = garnet; And = andalusite; 

Amp = amphibole; Cpx = clinopyroxene; En = enstatite; Hy = hypersthene; Ol = olivine; Sp = Cr-

spinel; &tHM = other transparent heavy minerals (kyanite, staurolite, prehnite, pumpellyite, 

chloritoid, anatase, brookite, sillimanite, celestite and barite); HCI = Hornblende Color Index. 

 

Table 2. Geochemical composition of Euphrates-Tigris-Karun river sands.  

  

http://www.gdem.aster.ersdac.or.jp/
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The Euphrates-Tigris-Karun river system: provenance, recycling and 

dispersal of quartz-poor foreland-basin sediments in arid climate  

 

ABSTRACT  

We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial 

system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and 

heavy-mineral dataset, integrated by sand geochemistry and U-Pb age spectra of detrital zircons, 

highlights the several peculiarities of this large source-to-sink sediment-routing system and widens 

the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison 

of classical static versus upgraded dynamic petrologic models enhance the power of provenance 

analysis, and allow us to derive a more refined conceptual model of reference and to verify the 

limitations of the approach. 

Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from 

carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges 

representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-

feldspar and mica. This quartz-poor petrographic signature, characterizing the undissected 

composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of 

sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate 

in the region allows preservation of chemically unstable grains including carbonate rock fragments 

and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of 

their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical 

carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich 

recycled sands from Arabia along the western side of the foreland basin, and is traced all along the 

Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters. 
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Table 1

N° Q F Lvm Lc Lh Lsm Lm Lu P/F MI tHMC ZTR Ttn Ap Ep Grt And Amp Cpx En Hy Ol Sp &tHM HCI

MOUNTAIN STREAMS

Erzincan suture 2 4 22 26 13 1 5 1 27 100.0 96 69 8.6 0 0 1 11 2 0 24 57 1 1 1 2 0 100.0 47

(upper Karasu) 1 11 1 3 2 1 1 10 4 44 0.9 0 0 1 9 2 0 5 19 1 1 2 0 0 6

Tauride  platform 6 14 19 22 31 1 3 4 5 100.0 94 108 4.0 1 0 2 21 3 0 26 40 2 1 1 2 0 100.0 30

(+ophiolite & lava) 13 13 16 24 1 3 3 7 4 51 1.6 1 0 4 13 6 0 12 16 2 0 1 0 0 15

Sanandaj-Sirjan Zone 4 19 13 8 21 0 37 2 0 100.0 86 73 6.2 0 0 1 40 3 0 37 18 0 0 0 0 0 100.0 43

(in Iran) 8 9 7 7 0 9 2 0 8 42 4.4 0 0 1 33 3 0 26 17 0 0 0 0 0 30

Bitlis suture 1 25 34 26 1 1 3 9 2 100.0 94 183 13.9 1 0 1 19 2 0 44 32 0 0 0 0 0 100.0 3

Zagros suture 12 6 11 17 13 6 15 26 6 100.0 97 212 16.2 0 0 0 26 0 0 58 14 0 1 1 0 0 100.0 10

(in Iraq and Iran) 4 7 10 8 7 9 25 5 5 116 14.1 0 0 0 8 1 0 21 19 0 2 1 1 0 10

Meso-Cenozoic strata 2 2 3 6 27 18 42 1 1 100.0 94 34 0.6 0 0 3 53 2 0 37 3 0 1 0 1 0 100.0 n.d.

(suture zone) 3 4 9 19 10 11 1 1 24 0.5 0 0 3 17 2 0 17 1 0 1 0 1 0

Mesozoic strata 3 9 3 6 52 7 21 2 0 100.0 93 72 0.3 13 0 3 33 5 0 13 23 0 0 0 9 0 100.0 21

(simply folded belt) 3 1 5 19 6 13 2 0 12 27 0.2 9 0 1 19 5 0 12 17 0 0 0 5 1 4

Cenozoic strata 2 9 3 12 21 30 22 1 1 100.0 58 69 0.9 1 1 2 83 3 1 3 2 0 0 0 2 0 100.0 n.d.

(simply folded belt) 6 1 2 2 8 2 1 1 12 50 0.7 1 0 1 9 3 1 1 3 0 1 0 0 0

EUPHRATES SYSTEM

Karasu 1 3 34 51 11 0 0 0 0 100.0 99 3 5.5 0 0 0 1 0 0 14 63 1 19 2 0 0 100.0 83

Murat 1 31 27 27 5 1 2 5 1 100.0 93 152 7.5 0 1 1 26 6 0 33 28 0 1 0 0 2 100.0 0

Euphrates 3 33 23 17 15 3 3 3 4 100.0 78 99 6.8 0 0 2 33 3 0 27 29 0 4 1 1 0 100.0 29

(west-central Iraq) 2 7 3 2 2 1 1 3 3 15 2.5 0 1 1 5 2 0 3 2 0 1 1 1 0 5

Euphrates (S Iraq) 1 49 17 6 23 4 1 1 1 100.0 77 141 2.3 4 0 4 35 15 1 23 11 0 0 0 6 0 100.0 21

TIGRIS SYSTEM

Upper Tigris 1 26 26 19 13 1 8 4 5 100.0 84 144 7.9 2 0 0 43 3 1 11 25 2 0 10 0 0 100.0 15

Batman 1 54 21 4 4 1 3 11 3 100.0 79 304 4.5 1 1 1 29 22 1 40 3 0 0 0 0 0 100.0 13

Khabour 1 20 10 15 38 3 13 1 1 100.0 69 48 0.7 1 5 3 37 4 0 17 13 0 0 0 14 4 100.0 39

Tigris   3 32 11 10 25 8 8 4 1 100.0 73 143 3.0 2 1 3 28 11 1 29 17 0 0 0 2 5 100.0 17

(north Iraq) 11 2 6 5 4 4 3 0 36.6 10 47 0.6 1 1 1 10 11 2 10 8 0 0 0 0 5 4

Greater Zab 1 9 6 21 30 2 25 2 6 100.0 89 39 4.6 0 2 2 17 0 0 22 54 0 0 0 1 1 100.0 20

Lesser Zab 3 17 8 7 26 3 20 13 6 100.0 80 196 5.3 2 1 2 16 3 10 50 14 0 0 0 2 0 100.0 29

(middle course) 8 5 4 8 5 7 8 7 11 33 2.9 1 1 3 4 2 15 14 9 1 1 0 1 0 10

Lesser Zab 3 21 9 13 24 9 18 3 3 100.0 72 88 1.9 2 1 1 42 7 3 27 11 0 0 0 2 3 100.0 35

(lower course) 7 0 5 2 2 3 1 1 16 11 0.9 2 1 0 8 1 2 5 6 0 0 0 2 1 10

Tigris + dune 2 53 15 6 15 5 4 2 0 100.0 61 92 1.4 5 2 0 53 22 0 11 2 0 0 0 2 3 100.0 17

(central Iraq) 3 2 0 4 5 3 1 0 2 50 0.8 3 0 0 13 5 0 1 2 0 0 0 2 3 n.d.

Diyala 2 11 9 13 25 30 10 1 1 100.0 85 56 1.4 0 0 0 35 3 0 13 48 0 1 0 0 0 100.0 52

3 5 1 1 10 3 1 1 15 3 0.2 0 0 0 16 0 0 9 24 0 1 0 1 0 10

Tigris  3 31 11 6 32 4 9 4 4 100.0 80 157 3.5 2 1 1 36 15 0 26 14 0 0 0 3 1 100.0 22

(lower course) 6 2 2 2 3 2 1 3 5 15 1.1 1 1 1 10 8 0 14 7 0 0 0 2 2 12

MESOPOTAMIA

East of  Euphrates 13 27 23 12 25 1 3 4 5 100.0 85 148 7.3 1 1 1 25 4 0 38 27 0 1 0 2 1 100.0 18

4 3 4 3 1 1 2 2 4 22 3.0 1 0 1 5 2 0 7 8 0 1 0 1 1 6

West of Euphrates 3 69 12 3 8 0 1 3 4 100.0 70 165 2.9 4 1 1 31 4 0 25 30 1 1 0 1 1 100.0 28

22 4 4 6 0 1 3 6 12 35 3.5 3 1 1 8 3 0 4 13 1 0 0 0 1 7

IRAN, GULF & ARABIA

Karkeh 2 12 9 5 45 21 8 1 0 100.0 76 86 0.8 3 0 2 39 7 3 17 19 0 0 0 9 1 100.0 42

(lower course) 2 1 1 14 10 3 1 0 4 42 0.4 2 0 0 13 2 1 7 10 0 0 0 1 0 2

Karun 4 10 3 1 72 7 6 0 0 100.0 73 56 0.5 8 0 3 35 9 1 17 13 0 0 0 13 0 100.0 30

(lower course) 2 1 1 2 2 2 0 0 7 15 0.2 1 0 1 9 3 1 5 5 0 0 0 7 1 11

Shatt al-Arab 4 9 3 3 60 16 8 1 0 100.0 63 34 0.2 3 0 1 46 7 2 11 21 0 0 0 6 2 100.0 38

0 2 2 12 12 3 0 0 18 4 0.2 2 1 1 7 4 1 3 3 1 0 0 2 1 8

Wadi al-Batin 1 94 2 1 4 0 0 0 0 100.0 43 n.d. 0.4 41 1 0 9 0 0 33 12 0 0 0 0 2 100.0 24

Kuwait beach 1 89 9 1 1 0 0 0 0 100.0 52 n.d. 0.03 6 1 1 45 7 0 15 22 2 1 0 1 2 100.0 30
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Table 2

River SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO LOI Rb Sr Ba Sc Y La Sm Eu Gd Yb Th U Zr V Nb Cr Co Ni

wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

TIGRIS

Tigris@Diyarbakir 56.5 10.4 6.5 4.2 9.0 2.4 1.2 0.7 0.26 0.09 8.5 26 215 185 15 18 18 3 0.8 3.3 1.7 6 3 104 169 9 889 28 159

Batman 72.9 9.5 3.6 2.3 3.5 2.7 1.4 0.5 0.10 0.06 3.3 32 136 292 8 16 21 4 0.7 3.2 1.7 6 2 113 63 7 404 11 75

Tigris@Sohaila 63.2 8.1 3.8 2.8 9.7 2.0 1.2 0.6 0.07 0.08 8.2 28 210 209 8 16 17 3 0.7 2.8 1.6 5 2 103 70 8 787 10 70

Greater Zab 45.9 9.2 6.1 6.3 14.3 1.5 1.3 0.7 0.12 0.10 14.1 33 268 206 16 16 17 3 0.9 3.2 1.6 3 2 89 138 9 684 21 180

Lesser Zab 58.2 8.3 3.7 2.9 12.4 1.3 1.2 0.4 0.07 0.08 11.3 35 180 185 9 13 14 2 0.7 2.4 1.4 4 1 74 85 5 445 10 78

Aq Su 78.7 4.5 2.0 0.9 6.1 0.7 0.8 0.2 0.05 0.03 6.1 22 135 250 4 9 8 2 0.4 1.6 0.8 2 1 49 46 4 75 5 26

Diyala 77.4 4.5 2.1 0.9 6.8 0.8 0.8 0.2 0.07 0.03 6.4 19 150 221 4 9 8 1 0.4 1.5 0.8 3 1 47 42 3 41 6 28

Tigris@Baghdad 53.2 8.2 4.5 2.8 14.1 1.6 1.2 0.8 0.08 0.11 13.0 32 247 239 10 19 19 3 0.7 3.1 1.9 4 1 184 106 11 2189 17 78

Tigris@Numaniyah 55.7 8.3 3.5 3.2 13.6 1.9 1.2 0.5 0.07 0.08 11.7 30 224 202 9 14 13 3 0.6 2.8 1.5 4 1 91 79 6 677 12 92

EUPHRATES

Karasu 56.6 15.2 4.7 2.8 8.5 3.4 1.5 0.8 0.15 0.07 6.1 41 364 287 12 15 17 3 0.9 2.7 1.4 5 2 122 92 8 192 15 64

Murat 59.3 13.5 6.5 2.9 6.1 3.3 1.6 1.0 0.18 0.11 5.2 43 245 266 17 23 19 4 1.0 4.1 2.3 6 1 150 146 10 281 17 66

Euphrates@AlQaim 53.0 11.2 5.8 4.5 12.3 2.4 0.9 0.8 0.09 0.11 8.6 23 296 196 18 17 15 3 0.9 3.1 1.8 3 1 89 164 7 992 19 107

Euphrates@Ramadi 61.3 9.9 3.7 3.6 9.6 2.3 1.1 0.5 0.07 0.07 7.7 27 250 237 10 13 11 2 0.7 2.2 1.3 3 1 73 92 5 376 13 107

Euphrates@Nasiriyah 73.6 5.2 1.7 1.4 7.8 1.1 1.3 0.2 0.06 0.04 7.4 30 253 274 4 8 8 1 0.4 1.3 0.8 2 1 73 34 4 260 5 42

KARUN

Karkheh 51.2 4.5 2.2 1.8 19.9 0.8 0.9 0.3 0.07 0.05 18.1 24 289 178 5 10 13 2 0.5 1.9 1.0 3 1 75 54 4 753 7 41

Dez 65.1 1.8 1.4 1.0 15.6 0.2 0.4 0.1 0.06 0.02 14.4 10 283 103 2 6 8 1 0.3 1.1 0.6 1 1 29 39 2 41 3 <20

Upper Karun 25.4 1.6 1.0 2.2 36.6 0.3 0.4 0.1 0.04 0.03 32.2 9 366 76 2 6 7 1 0.3 1.0 0.5 1 2 39 31 1 144 3 <20

Karun 31.1 3.0 2.1 3.2 30.4 0.5 0.5 0.3 0.07 0.05 28.4 14 369 94 4 9 13 2 0.5 1.9 0.9 2 2 95 54 4 1081 7 35

Shatt al-Arab 31.9 2.5 1.6 2.5 31.7 0.4 0.5 0.2 0.06 0.05 28.5 13 386 82 3 8 9 1 0.4 1.4 0.7 2 2 54 41 3 322 6 31

WADI AL-BATIN 91.6 1.5 0.5 0.9 1.8 0.1 0.5 0.1 0.03 <0.01 3.0 10 54 109 1 4 9 1 0.3 1.0 0.6 2 1 240 13 2 <14 1 <20
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