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Abstract. In this article pattern statistics of typical cubical cut
and project sets are studied. We give estimates for the rate of con-
vergence of appearances of patches to their asymptotic frequencies.
We also give bounds for repetitivity and repulsivity functions. The
proofs use ideas and tools developed in discrepancy theory.

1. Introduction

1.1. Overview. Cut and project sets, or model sets, are an important
class of point sets which are not periodic, yet are extremely regular.
They were introduced by Meyer in the framework of harmonic analysis,
as a generalisation of lattices, see [23].

The most acclaimed application of these points sets to this date has
been in crystallography. In the early 1980s, Nobel Prize laureate Dan
Shechtman [28] discovered a material for which the diffraction pattern
had both sharp peaks (a feature of order), and five-fold symmetry (an
obstruction to periodicity). Cut and project point sets, such as the Pen-
rose patterns, provide instructive models of these materials. Properties
of cut and project sets are also being studied in connection with signal
sampling and reconstruction [22].

The idea of the cut and project method is the following. Starting
with a lattice, such as the standard integer lattice Zk ⊂ Rk, pick a
d-dimensional subspace E (the physical space), and cut a slice E +W
from the lattice, for some window W . The cut and project set asso-
ciated with this data is the projection of Zk ∩ (E +W) to E. With
appropriate irrationality conditions on E, the resulting point set is not
periodic in E, yet for sensible choices of W it inherits some of the
regularity from the original lattice. The data of a cut and project set
consists of the following parameters: the subspace E, the window W ,
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and the projection π onto E (determined by a choice of a complemen-
tary subspace Fπ to E). It is natural to ask how the properties of the
cut and project set change when these parameters vary.

There are three relevant functions for investigating how ordered a cut
and project set is. Firstly, the complexity function: how many patches
of a given size are there? Secondly, the repetitivity function: given a size
r, how far does one need to look from any given point of the point set
before all ‘legal’ patches of size r can be found? Finally, the discrepancy:
a patch of size r has an expected frequency; what is the difference
between the expected and the actual number of times this patch occurs
in a large region? The first function, the complexity function, has been
satisfactorily described in [17] for polytopal windows. While the latter
two quantities have already been studied for isolated examples of cut
and project sets, their ‘typical’ behaviour (in a measure theoretic sense
to be made precise below) is largely unexplored, and will be the focus
of attention in the current work.

As we will see, the importance of Fπ is only marginal as long as
a few degenerate cases are ruled out. Viewing E as the graph of a
linear transformation L : Rd → Rk−d, we look for properties that hold
for almost every choice of entries in the matrix associated to L. We
restrict our attention to cubical windows; that is, we assume that W
is a (k − d)-dimensional face of the unit cube. Due to our choice of
techniques, it is easiest for us to work with cubical windows, which will
become eminent in the course of the proofs. As a point of reference,
when W is the unit cube of Rk, the cut and project data is usually
called canonical.

For some choices of dimensions k and d, the corresponding cut and
project sets are already well studied. When d = 1 and k = 2, cubical
and canonical cut and project sets (in the case when the line E has
irrational slope) are known as Sturmian sequencies [10, 24]. These sets
provide a partition of the line E to two types of intervals, short and
long, and can be symbolically coded by an element in {a, b}Z. It is
known that many properties of Sturmian sequences can be determined
explicitly by Diophantine properties of the slope θ of E, using in partic-
ular the continued fraction expansion of θ. More generally, when d = 1,
cut and project sets are closely related to cubic billiard sequences [3, 4].
Some attempts have also been made to code d-dimensional cut and
project sets, with d > 1, as Zd-subshifts (sometimes under the name of
“discrete planes” for k = 3, d = 2), see [6] and [11, Chap. I.10].

When it comes to repetitivity, most of the known results have to
do with extreme cases, rather than generic. For example, the lowest
possible growth rate for the repetitivity function of an aperiodic point
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set is linear [21]. When the repetitivity is indeed bounded above by a
linear function, the point set is called linearly repetitive, or LR. In a
previous paper [15], a criterion was given for cut and project sets to be
linearly repetitive. In particular, it was shown that almost no cubical
or canonical cut and project set is LR. However, the almost everywhere
behaviour of the repetitivity function has not been studied in general.

In the particular case of Sturmian sequences, Hedlund and Morse
proved in their original series of papers [24, 25] that for almost all
θ and for all ε > 0, the repetitivity function M(r) of the Sturmian
sequence of slope θ is bounded above by r log(r)1+ε. It would appear
that Sturmian sequences are not generically LR, but are fairly close
to this optimal behaviour. In the present paper, we establish a higher-
dimensional analogue of the Hedlund and Morse result. Theorem 1.2
states that, given d < k and any ε > 0, for δ = (2k − 1)/d− 1 + ε, for
Lebesgue almost any parameters in the cut and project method, the
repetitivity function is bounded above by rk−d(log r)δ. Notice that for
k = 2, d = 1 we do not quite recover the result of Hedlund and Morse.
This is due to the fact that in the arbitrary dimensions we need a more
flexible framework and do not rely on continued fraction arguments.

Discrepancy estimates for the frequencies of aperiodic Delone sets or
aperiodic tilings have been studied by many authors, but the results
are usually stated for the most regular classes of point sets: linearly
repetitive or self-similar. When substitutive systems are considered, the
discrepancy bounds are given in terms of the eigenvalues of the substi-
tution matrix [1, 2, 7], but these quantities are usually not available in
the cut and project set-up. Further, for general tilings it is possible to
derive discrepancy bounds in an implicit form [21, 26]. In Theorem 1.1
we give an explicit discrepancy estimate for generic cubical cut and
project sets. In short, the typical convergence to ergodic averages is
very fast when looking at patches of a certain form (for definitions, see
Section 2.1). In Section 5 we also give a weaker bound which applies
to more general patches which, for d ≥ 2, is asymptotically the best
possible over general search regions.

1.2. Statement of results. A (Euclidean) cut and project scheme
consists of the following data:

• A total space Rk.
• A linear subspace E ⊂ Rk of dimension d with 0 < d < k, called

the physical space.
• A linear subspace Fπ ⊂ Rk, complementary to E in Rk, called

the internal space.
• A subset Wπ ⊂ Fπ called the window.
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The decomposition Rk = E +Fπ defines the projections π and π∗ onto
E and Fπ, respectively. The slice is defined as S := Wπ + E. Given
s ∈ Rk, we define the cut and project set

Ys := π(S ∩ (Zk + s)).

In this paper, we restrict our attention to cubical cut and project
sets, which means that the window is given by π∗([0, 1]k−d×{0}). The
physical space will be assumed to be totally irrational; that is, E+Zk
is dense in Rk or, equivalently, π∗(Zk) is dense in Fπ. We also adopt
the conventional assumption that π is injective on Zk. With these re-
strictions, the patch statistics of interest in this paper will be wholly
dependent on the choice of physical space E, and in particular on its
Diophantine properties. The physical space E will always be given as
the graph of a linear map L : Rd → Rk−d, that is

E = {(x, L(x)) | x ∈ Rd}.

It might be necessary to permute the indexing of the coordinate axes
in order to write E in this manner, but there is no loss in generality in
doing so. We write Li(x) := L(x)i =

∑d
j=1 αijxj and use the coefficients

(αij) ∈ Rd(k−d) to parametrise the choice of physical space.
We say that s ∈ Rk and its corresponding cut and project set Ys are

regular if ∂S∩(Zk+s) = ∅. For all such choices of s, the finite patches
in the corresponding cut and project sets are the same. Hence for our
considerations, the particular choice of a regular Ys does not make a
difference. In what follows, given a cut and project scheme, there will
be no loss in generality in assuming that some regular Y = Ys has been
fixed. For further discussion on this, see [11, Chapter I.2]

Given y ∈ Y and r ∈ R+, denote by P (y, r) the r-patch at y,
which we think of as the pattern of points of Y within distance r of
y. The precise definition of P (y, r) will be given in Section 2 although,
as shall be discussed in detail in Section 5, most of our results will
not be dependent upon the particular choice of notion of r-patch. We
consider two r-patches P (y1, r) and P (y2, r) to be equivalent, and write
P (y1, r) ' P (y2, r), if

P (y1, r)− y1 = P (y2, r)− y2.

Write P(y, r) for the equivalence class of an r-patch P (y, r) and, for
y ∈ Y , let ỹ denote the unique element of Zk + s with π(ỹ) = y. For
an equivalence class P , y ∈ Y and R > 0, define

ξP(y,R) :=
#{y′ ∈ Y | P(y′, r) = P and ỹ′ − ỹ ∈ [−R,R]d × Rk−d}

#{y′ ∈ Y | ỹ′ − ỹ ∈ [−R,R]d × Rk−d}
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In other words, ξP(y,R) is the ratio of the number of occurrences of
P in Y in a box of size R around y (with some points of Y carefully
chosen in or out of the box near its boundary) relative to the total
number of points of Y in this box.

The frequency of P is defined to be

ξP := lim
R→∞

ξP(y,R).

It is a consequence of total irrationality of E and, consequently, unique
ergodicity of the Lebesgue measure, that the above limit is always well-
defined and does not depend on the choice of s ∈ Rk or y ∈ Y (see,
for example, [16, Lemma 3.1]). Our first theorem concerns the typical
rate of convergence of the estimates ξP(y,R) to the asymptotic patch
frequencies ξP . Its proof is given in Section 3.

Theorem 1.1. Fix ε > 0. Then for almost all linear maps L : Rd →
Rk−d, for the corresponding cubical cut and project sets we have the
bound

|ξP(y,R)− ξP | ≤ C · (logR)k+ε

Rd
,

for all R ≥ 1 for all equivalence classes of patches P. The constant
C > 0 depends on L, ε and π.

We note that in the Sturmian case of k = 2, d = 1, in fact, it follows
from Kesten’s Theorem [18] that the discrepancy is bounded, that is,
|ξP(y, I)−ξP | ≤ CPR

−1, although the constant may depend on P . (See
also Grepstad and Lev [12] for related theory in the case d = 1, k−d >
1.) The above theorem shows that the discrepancy of patches in typical
cubical cut and project sets is in good control, while we do not expect
our results to be optimal. We emphasize that the constant C in the
above result does not depend on the particular equivalence class of
patch P in question. One may ask how these estimates change if the
shapes of patches or search regions are altered; variants such as this are
discussed in Section 5. The above estimate in fact allows one to give
good bounds for more general patch types, over more general search
regions.

Given ϕ : R+ → R+, we shall say that Y is ϕ-repetitive if, for
sufficiently large r, for any equivalence class of r-patch P and any
y ∈ Y , there exists some y′ in the ball B(y, ϕ(r)) with P(y′, r) = P . In
other words, for every r-patch that occurs somewhere in the pattern
one may find a translate of it within ϕ(r) of any point of the pattern.
Every cut and project set Y is repetitive, which means that it is ϕ-
repetitive for some ϕ. In [15] the question of which cubical cut and
project sets are linearly repetitive (LR) was investigated. LR means



6 HAYNES, JULIEN, KOIVUSALO, WALTON

that Y is ϕ-repetitive with ϕ(r) = Cr for some C > 0. The results of
[15] show that this property is rare, in that a typical cut and project
set is not LR (and for some choices of d and k there are no non-trivial
examples of LR cut and project sets). The following theorem, proved
in Section 4, gives a bound for the repetitivity function of a typical cut
and project set.

Theorem 1.2. Fix c, ε > 0. For Lebesgue almost all linear maps
L : Rd → Rk−d, the corresponding cubical cut and project sets are
ϕ-repetitive for

ϕ(r) ≥ Crk−d(log r)
2k−1

d
−1+ε

but are not ϕ-repetitive for

ϕ(r) ≤ crk−d(log r)1/d.

The constant C depends on L, ε and π.

For the Sturmian case k = 2, d = 1, a more detailed analysis of the
repetitivity function using continued fractions is possible, and sharp
bounds can be obtained, see [13, 25].

Repetitivity measures the largest gap between consecutive appear-
ances of the same r-patch. Another measure of the regularity of pat-
terns, which in some sense is dual to this, is repulsivity: what is the
smallest gap between consecutive appearances of the same r-patch?
We say that Y is ϕ-repulsive for some ϕ : R+ → R+ if, for suffi-
ciently large r, whenever P(y, r) = P(y′, r) for distinct y, y′ ∈ Y then
d(y, y′) > ϕ(r). So if Y is ϕ-repulsive for a ‘large’ function ϕ, then any
two occurrences of an r-patch of Y are forced to be far apart, relative
to r. It is common in the literature to refer to Y as repulsive if Y
is ϕ-repulsive with ϕ(r) = cr for some c > 0 [9, 27]. It is known that
Y being repulsive is a necessary condition for Y to be LR (see [29,
Lemma 2.4]), and for d = k − d = 1, Y being LR is equivalent to Y
being repulsive. The following theorem, proved in Section 4, studies
repulsivity of typical cut and project sets.

Theorem 1.3. Fix c, ε > 0. For Lebesgue almost all linear maps L :
Rd → Rk−d, the corresponding cubical cut and project sets are not ϕ-
repulsive for

ϕ(r) ≥ crk−d

(log r)1/d

but are ϕ-repulsive for

ϕ(r) ≤ crk−d

(log r)(1/d)+k−d+ε
.
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In Section 2 we give a precise definition of a patch and gather together
the lemmas and observations on cut and project sets and Diophantine
approximation that will be necessary for our proofs. Sections 3 and 4
contain the proofs of the main theorems. In Section 5 we consider other
types of r-patches and discrepancy counts.

1.3. Notation. For x ∈ R, x ∈ Rm, denote

• ‖x‖ distance to the nearest integer.
• |x| absolute value.
• bxc integer part.
• |x| = maxi=1,...,m|xi|.
• ‖x‖ = maxi=1,...,m‖xi‖.

We use the symbols� and� for the standard Vinogradov notation.
When using this notation, if the implied constants depend on the vari-
ables involved, unless otherwise noted, this will be indicated by the use
of subindices. For a measurable set A ⊆ Rm, |A| denotes the Lebesgue
measure of A.

2. Toolbox

2.1. Patches in cut and project sets. For A ⊆ Rm, we define AZ :=
A ∩ Zn. We let C(r) := ([−r, r]d ×Rk−d)Z, that is, C(r) is the cylinder
of lattice points of the total space Rk whose first d coordinates lie in
the box [−r, r]d. In addition to the internal space Fπ we will often be
working with a reference space, defined as Fρ := {0}d × Rk−d. The
decomposition Rk = E + Fρ defines the projections ρ and ρ∗ onto E
and Fρ, respectively. LetW = ρ∗(S), which we shall also refer to as the
window. It will often be necessary to consider linear maps as maps to
the torus, and in these instances we use the corresponding calligraphic
letters; for a linear map L : Rm → R`, say, we denote by L the mapping
L mod 1 : Rm → R`/Z`.

Given y ∈ Y and r ∈ R+, we define the r-patch at y to be

P (y, r) := {y′ ∈ Y | ỹ′ − ỹ ∈ C(r)}

where, for y ∈ Y , ỹ is the unique element of Zk + s for which π(ỹ) = y.
So P (y, r) consists of the points of Y which are projections of points
whose first d coordinates differ from ỹ by at most r. While there are
more geometrically intuitive notions of r-patches from the perspective
of Y as a Delone set, this definition is natural in terms of the cut
and project scheme and will be technically simple to work with. As it
turns out, we will show in Section 5 that many of our results are not
dependent upon the precise notion of r-patch used.
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With the above notation, the estimate ξP(y,R) of the frequency of
equivalence class of r-patch P at a point y ∈ Y to distance R is given
as

ξP(y,R) :=
#{y′ ∈ Y | P(y′, r) = P and ỹ′ − ỹ ∈ C(R)}

#{y′ ∈ Y | ỹ′ − ỹ ∈ C(R)}
.

As with our definition of r-patch, the ‘search-region’ about y of points
y′ ∈ Y with ỹ′ − ỹ ∈ C(R) has a somewhat extrinsic definition in
terms of the cut and project scheme (note also that the number of such
points is precisely (2bRc + 1)d). We prove results for their intrinsic
counterparts in Section 5.

The integer lattice Zk acts on Fρ by n · w := ρ∗(n) + w for n ∈ Zk
and w ∈ Fρ. For r ∈ R+ define the set of r-singular points as

sing(r) =W ∩ (C(r) · ∂W).

The r-regular points are defined to be reg(r) = W \ sing(r). For
y ∈ Y , we define y∗ := ρ∗(ỹ). The map y 7→ y∗ is sometimes called
the star map. It is instructive to observe that the lift of an r-patch
P (y, r) to the total space does not intersect the boundary of the strip S
precisely when y∗ is r-regular. The following result relates the connected
components of reg(r) to the collection of patches of size r, and will be
an essential ingredient in the proofs of Theorems 1.1, 1.2 and 1.3. The
lemma is formulated in [15], and the proof can be found in [16, Lemma
3.2].

Lemma 2.1 (Lemma 2.4 of [15]). For a regular, cubical cut and project
set, for every equivalence class P of r-patches there is a unique con-
nected component Q of reg(r) such that, for any y ∈ Y ,

P(y, r) = P if and only if y∗ ∈ Q.

We call Q the acceptance domain of the patch P . Through this
lemma, and E being totally irrational, an application of the Birkhoff
Ergodic Theorem gives the following lemma.

Lemma 2.2 (Lemma 3.2 of [16]). The frequency ξP of an equivalence
class P of r-patches is equal to |Q|, where Q is the acceptance domain
of the patch P from Lemma 2.1.

We record one more fact on acceptance domains in the cubical case.

Lemma 2.3. For a regular, cubical cut and project set, every accep-
tance domain (that is, every connected component of reg(r)), is an axes
parallel box.
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This lemma is due to the fact that, because the window is a cube, the
points of sing(r) arise only from translates of vertical and horizontal
lines. It can be gleaned from the proof of [16, Theorem 1.1], or as a
special case of Theorem 5.4 which is why we do not give the details
here.

2.2. Discrepancy. For a sequence (xn)n∈N of Rm and a measurable
set A ⊆ Rm, we define the discrepancy

DN(A) =

∣∣∣∣∣
N∑
n=1

χA(xn)−N |A|

∣∣∣∣∣
where χA stands for the characteristic function of A. The proof of The-
orem 1.1 hinges on estimates of this quantity. The following theorem
is proved as [14, Theorem 5.21], or in the current form [19, p. 116].

Lemma 2.4 (Erdös–Turan–Koksma inequality). Let (xn)n∈N be a se-
quence in Rm. For any L,N ∈ N,

sup
A

(DN(A)

N

)
≤ Cm

 1

L
+

∑
0<|h|≤L
h∈Zm

r(h)

∣∣∣∣∣ 1

N

N∑
n=1

exp(2πi〈h, xn〉)

∣∣∣∣∣
 ,

where the supremum is taken over all axes parallel boxes A,

r(h)−1 =
m∏
j=1

max{1, |hj|}

for h ∈ Rm, and Cm is a constant only depending on m.

2.3. Diophantine approximation. Let ψ : N→ R+ be a decreasing
function. We say that a linear map L : Rm → Rn is ψ-badly approx-
imable, and write L ∈ B(ψ), if for some constant C > 0

‖L(q)‖ ≥ Cψ(|q|) for all q ∈ Zm \ {0}.
On the other hand, we say that it is ψ-well approximable, and
write L ∈ E(ψ), if ‖L(q)‖ ≤ ψ(|q|) for infinitely many q ∈ Zm. The
Khintchine–Groshev theorem below connects the measure of E(ψ) to
the speed of decay of ψ. The proof may be found in [5, Section 12.1].

Lemma 2.5 (Khintchine–Groshev). The set E(ψ) has either full Lebesgue
measure or measure 0 according to whether the sum

∞∑
r=1

rm−1ψ(r)n

diverges or converges, respectively.
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Notice that this gives the corresponding zero-one law for B(ψ) as
well. The property of L being ψ-badly approximable can be converted
to well-distribution properties of the orbit of L via the following trans-
ference principle:

Lemma 2.6 (Theorem VI of Section V in [8]). Suppose that for some
ψ and X > 0, there is no n ∈ Zd \ {0} satisfying simultaneously

‖L(n)‖ ≤ ψ and |n| ≤ X.

Then for all γ ∈ Rk−d, there is n ∈ Zd with

‖L(n)− γ‖ ≤ c and |n| ≤ R,

where

c = 1
2
(h+ 1)ψ, R = 1

2
(h+ 1)X, and h = bX−dψd−kc.

3. Quantitative estimates for frequencies of patterns

In this section we prove Theorem 1.1, which bounds the rate of con-
vergence of the estimates ξP(y,R) to the asymptotic frequencies ξP .
The proof will incorporate tools from discrepancy theory, reviewed in
Section 2. We start with a technical lemma.

Lemma 3.1. For almost every matrix (αij) ∈ Rd(k−d), for any ε > 0,
we have that

(3.1)
∑

0<|h|≤H
h∈Zk−d

r(h)
d∏
i=1

‖〈h, (αij)k−dj=1〉‖−1 �ε,α (logH)k+ε,

where 〈h, (αij)j〉 denotes the inner product of the vector h ∈ Zk−d with
the i-th row of (αij), and r is defined as in the statement of Lemma 2.4,

r(h)−1 =
m∏
j=1

max{1, |hj|}.

Proof. For h ∈ (R+)k−d define

J(h) :=

∫
Rk−d/Zk−d

(
‖〈h, β〉‖ ·

∣∣log ‖〈h, β〉‖
∣∣1+δ)−1dβ.

We claim first of all that J(h) � 1. Indeed, given h = (hj)j, let i be
fixed, such that hi ≥ hj for any j 6= i. Consider the change of basis
defined by ui := 〈h, β〉 and uj := βj for i 6= j. This change of basis
has Jacobian determinant h−1i , and the domain [0, 1)k−d transforms to
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a region contained in the box B = [0, l1)× · · · × [0, lk−d), where lj = 1
for i 6= j and li = (k − d)hi. It follows that

J(h) ≤
∫
B

(
hi · ‖ui‖ · | log ‖ui‖|1+δ

)−1
du

= (k − d)

(∫ 1/2

0

(−ui · (log ui)
1+δ)−1dui

+

∫ 1

1/2

(−(1− ui) · (log(1− ui))1+δ)−1dui
)

= 2(k − d)δ−1(log 2)−δ.

From J(h)� 1 we may deduce that

∞∑
h1=1

· · ·
∞∑

hk−d=1

(h1(log h1)
1+δ · · ·hk−d(log hk−d)

1+δ)−1
d∏
j=1

J(h) <∞.

Exchanging the order of summation and integration, the quantity

X :=
∞∑

h1=1

· · ·
∞∑

hk−d=1

(h1(log h1)
1+δ · · ·hk−d(log hk−d)

1+δ)−1·

d∏
j=1

(‖〈h, α〉‖ · | log ‖〈h, α〉‖)1+δ|−1

is bounded for almost every choice of α = (αj) ∈ Rk−d. For such an α,
we then have that

A′(H) :=
H∑

h1=1

· · ·
H∑

hk−d=1

(h1 · · ·hk−d)−1
d∏
j=1

‖〈h, α〉‖−1

≤ X · max
0<|h|≤H

(
(log h1 · · · · log hk−d)

1+δ

d∏
j=1

| log ‖〈h, α〉‖|1+δ
)

�δ,α (logH)(k−d)(1+δ)
d∏
j=1

max
0<|h|≤H

∣∣log ‖〈h, α〉‖
∣∣1+δ.

By the Khintchine–Groshev theorem (Lemma 2.5) applied to one linear
form in k−d variables, there is a full measure set of α ∈ Rk−d for which,
for all ε > 0, there exists C > 0 with

‖〈h, αj〉‖ ≥
C

|h|k−d+ε
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for all non-zero h ∈ Zk−d. It follows that for almost all α we may bound

A′(H)� (logH)(k−d)(1+δ)+d(1+δ) � (logH)k+ε

for any ε > 0 by setting δ sufficiently small. The implicit constant
depends on ε and α.

The above calculation may be repeated for the sums analogous to
A′(H) but where certain indices run over negative values. For non-
empty S ⊆ {1, . . . , d}, let AS be the sum given by Equation (3.1),
but where we only sum over vectors h which are non-zero in those
coordinates belonging to S. By the above, the quantity AS is bounded
by 2#S · A′(H) � (logH)k+ε. Since the sum which we want to bound
is equal to

∑
S∈2{1,...,d} AS � (logH)k+ε, the lemma follows. �

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1. Let L : Rd → Rk−d and a corresponding regular,
cubical cut and project set Y = Ys be given. For any equivalence class
of r-patch P and y ∈ Y , by Lemma 2.1 we have that P(y, r) = P
if and only if y∗ ∈ Q, where Q is the connected component of reg(r)
corresponding to P , which is an axes parallel box by Lemma 2.3. By
Lemma 2.2 we have that ξP = |Q|. For N ∈ N, let

χP(y,N) := {y′ ∈ Y | P(y′, r) = P and ỹ′ − ỹ ∈ C(N)},
so that we wish to bound the quantity

DN(P) := |#χP(y,N)− (2N + 1)d · ξP |.
Since the cubical window W with some boundary points removed is

a fundamental domain for {0}d×Zk−d in Fρ, we may identify χP(y,N)
with the set

(3.2) {n ∈ [−N,N ]dZ | L(n) + y∗ ∈ Q}.
By Lemma 2.4, there is a uniform constant C > 0, independent of P ,
for which

DN(P)

(2N)d
≤ C

( 1

H
+

∑
0<|h|≤H

r(h)

(2N + 1)d
|S|
)

for any H ∈ N, where

S =
∑
n∈Zd

|n|≤N

exp(2πi〈h,L(n)〉),

and

r(h)−1 =
k−d∏
j=1

max{1, |hj|}.
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An upper bound for the exponential sum may be given as

|S| =

∣∣∣∣∣
N∑

n1=−N

· · ·
N∑

nd=−N

exp(2πi〈h,L(n1, . . . , nd)〉)

∣∣∣∣∣
≤

d∏
i=1

2

|1− exp(2πi〈h,L(ei)〉)|

=
d∏
i=1

2

2 |sin(π〈h,L(ei)〉)|
≤

d∏
i=1

(
2‖〈h,L(ei)〉‖

)−1
,

using the concavity inequality |sin(πx)| ≥ 2 |x| on [−1/2, 1/2]. This
reveals how the discrepancy may be controlled by restricting the Dio-
phantine properties of L. By Lemma 3.1∑

0<|h|≤H

r(h)
d∏
i=1

‖〈h,L(ei)〉‖−1 �δ,L (logH)k+δ

for any δ > 0 for almost every L. Hence

DN(P)�δ,L
Nd

H
+ (logH)k+δ.

Letting H = Nd, we have that

DN(P)�ε,L (logN)k+ε

for any ε > 0. It easily follows that there exists some C > 0 for which
DR(P) < C(logR)k+ε for any R ≥ 1. �

Remark 3.2. Notice that in order to use Lemma 2.4 in the proof of
Theorem 1.1 it is only necessary to know that the appearance of an
r-patch P corresponds to a visit under L to some axes parallel box, as
in (3.2). This fact will be needed in Section 5.

The proof of low discrepancy established in the above argument may
be used to bound the repetitivity function for typical cut and project
sets. We deduce the following corollary to Theorem 1.1, which gives a
slight weakening on the first bound of the repetitivity function given
in Theorem 1.2:

Corollary 3.3. Fix ε > 0. For Lebesgue almost all linear maps L :
Rd → Rk−d, the corresponding cubical cut and project sets are ϕ-
repetitive for

ϕ(r) ≥ Crk−d(log r)
2k
d
−1+ε.

The constant C depends on L, ε and π.
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Proof. To obtain a lower bound for typical repetitivity, we wish to
firstly bound the sizes of the regions Q of Lemma 2.1 from below.
This will dictate the long-term behaviour of appearances of patches
across the resulting cut and project sets. To this end, let ψ(n) :=
(nd(log n)1+ε1)−1 and consider L = (L1, . . . , Lk−d), written as (k − d)
linear forms in d variables, with each Lj ∈ B(ψ). The set of such L
is full measure by the Khintchine–Groshev Theorem 2.5. For n1, n2 ∈
[−N,N ]dZ, since each Li ∈ B(ψ), we have that |Lj(n1) − Lj(n2)| ≥
‖Lj(n1 − n2)‖ ≥ Cψ(r), where C only depends on L. It follows that
the volumes of the connected components of reg(r) are bounded from
below by a function that grows at least as fast as (rd(log r)1+ε1)−(k−d).

By the discrepancy estimate of Theorem 1.1, there exist constants
c1, c2, which do not depend on P , y or R, for which ξP(y,R) satisfies
the estimate

(3.3) ξP − c2
(logR)k+ε2

Rd
≥ c1(r

d(log r)1+ε1)−(k−d) − c2
(logR)k+ε2

Rd
,

where we use the fact that the frequency ξP is given by the volume
of a connected component of reg(r). Recall that ξP(y,R) counts the
number of occurrences of P in a region of size R about y. If we pick
R = rk−d(log r)(2k/d)−1+ε, where ε is some positive number that can be
made arbitrarily small by setting ε1, ε2 sufficiently small, we deduce
that the quantity of (3.3) is eventually strictly positive as r grows. �

4. Repulsivity and repetitivity

In this section we prove Theorems 1.2 and 1.3. Very heuristically
speaking, the proofs in this section have two key steps.

(Step 1) Obtain information on the size of the acceptance domains (from
Lemma 2.1) for the cut and project sets corresponding to a
Lebesgue typical choice of linear forms. This is possible through
choosing an appropriate approximation function, and applying
Lemma 2.5.

(Step 2) Obtain information on the density of orbits of L for Lebesgue
typical linear forms L. This can again be done through an ap-
propriate choice of the approximation function. Lemma 2.6 is
often useful because it translates information on Diophantine
properties into information on density of the orbit.

Given these strategies, to prove, for example, that a certain repetitivity
function grows fast enough to apply to cut and project sets arising from
a Lebesgue typical linear form, is simple. In Step 1, choose the approx-
imation ψ carefully so that it is Lebesgue typical but guarantees quite
large acceptance domains. In Step 2, make sure that the typical choice
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of approximation function ψ also guarantees quite a dense orbit of L.
Fit the ‘quite large’ together with the ‘quite dense’ so a certain orbit of
L visits every acceptance domain. By Lemma 2.1 this is equivalent to
all of the patches appearing in a certain region, which is exactly what
repetitivity function measures. A similar philosophy applies to all the
proofs in this section.

Proof of Theorem 1.2. As in the previous proof, we will first want to
investigate the sizes of the connected components of reg(r). Let L =
(L1, . . . , Lk−d) be a system of k − d linear forms Li of d variables,
where each Li ∈ B(ψ) with ψ(r) := (rd(log r)1+ε)−1. By Lemma 2.5,
a set of full measure of L’s satisfies this condition. By the Diophan-
tine conditions on each Li and Lemma 2.1, the connected components
Q corresponding to r-patches of Y are boxes whose side lengths are
bounded below by a constant times (rd(log r)1+ε)−1.

Limiting the long-term frequency of appearances of a patch does not
preclude it appearing multiple times in a smaller region than expected,
and then not appearing at all in larger regions. To curtail this sort of
behaviour, in addition to the conditions above, we also wish to enforce
well-distribution of L in [0, 1)k−d. So we suppose that L ∈ B(ψ) where

ψ(ϕ) := (ϕ
d

k−d (logϕ)
1+ε′
k−d )−1 for any ε′ > 0. By Lemma 2.5, this prop-

erty (in conjunction with the property above on each Li) applies to a
full measure set of linear forms. By transference, L applied to a box of
integers of side length ϕ has density a constant times

ϕ−
d

k−d (logϕ)
d−1
k−d

+1+δ

in [0, 1)k−d, where δ > 0 can by made arbitrarily small by setting ε′

sufficiently small.
By Lemma 2.1, there is a constant C depending only on E for which,

whenever each ϕ-orbit x + L([−ϕ, ϕ]dZ) of x ∈ [0, 1)k−d intersects each
connected component Q of reg(r), then we have that every r-patch of
Y occurs within distance ϕ of every point y ∈ Y . By the calculations
above, given r > 0, it is sufficient to set ϕ = ϕ(r) so that

ϕ−
d

k−d (logϕ)
d−1
k−d

+1+δ ≤ C(rd(log r)1+ε)−1,

for some constant C > 0 (depending only on E and ε). A quick calcu-
lation shows that we may choose

ϕ(r) = crk−d(log r)
2k−1

d
−1+δ′

for constants c, δ′ > 0 which only depend on E and ε, and for which δ′

can be made arbitrarily small by setting ε sufficiently small.
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For the other bound on the typical behaviour of the repetitivity
function, let ψ(r) = c1r

−d(log r)−1 and L be such that L1 ∈ E(ψ) and
each of the Li have trivial kernels. The set of such linear forms is full
measure by Lemma 2.5. It follows that for infinitely many values of r,
there exists some acceptance domain Q for an r-patch P which is a
box with first side length less than c1r

−d(log r)−1 and other sides, by a
simple counting argument, of length less than r−d. It will follow that
any cubical cut and project set associated to L is not ϕ-repetitive so
long as ϕ is chosen so that the orbit of L applied to a box of integers
of size ϕ(r) has gaps larger than these boxes.

Given h, v > 0, let ϕ = (h · vk−d−1)1/d. Then for any positive α < 1,
for sufficiently large ϕ we may subdivide [0, 1)k−d into more than αϕd

boxes whose first side lengths are bounded below by h, and others are
bounded below by v. So there exists c2 for which the orbit under L
over a box of integers of size c2ϕ must fail to visit some box whose
first side is v and others are h. Set v = c1r

−d(log r)−1 and h = r−d,

so that ϕ = ϕ(r) = c
−1/d
1 rk−d(log r)1/d. Choosing appropriate starting

points in the cut and project set (the positions of which correspond to a
dense subset ofW , by irrationality), we may arrange for the orbit of L
under a box of integers of size c2ϕ(r) to miss the acceptance domain of
r-patches P , for infinitely many values of r. Since the constant c1 was
arbitrary and c2 is fixed, it follows that almost every cut and project
set is not ϕ-repetitive with ϕ(r) = Crk−d(log r)−1/d, for any C > 0. �

Remark 4.1. Notice that in Theorem 1.2 the upper and lower bound
for the repetitivity function differ by a power of a logarithm. The bound
for the lower bound is likely to be far from optimal for k− d > 1, since
the argument only exploits Diophantine properties of the linear forms
in a single direction, implementing trivial bounds in the others, but we
could not improve it with a simple geometric argument.

We now turn our attention to repulsivity.

Proof of Theorem 1.3. Almost every linear form L : Rd → Rk−d is ψ-
well approximable with

ψ(r) = cr−
d

k−d (log r)−
1

k−d ,

for any c > 0, and almost every linear form L also has the property
that each Li has trivial kernel. Given such an L, let non-zero n ∈ Zd
satisfy ‖L(n)‖ ≤ ψ(|n|) and set r := 2−

1
dψ(|n|)− 1

d . By a simple counting
argument, for any positive α < 1, for sufficiently large r there exists
a connected component Q of reg(r) which is a box with side lengths
bounded below by r−d = αψ(|n|).
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It follows that for m ∈ Zk + s projecting sufficiently close to the
centre of Q (which exists by total irrationality), we have P(π(m), r) =
P(π(m+ n+ f), r) for some f ∈ Fρ ∩ Zk. This gives us the bound

d(π(m), π(m+ n+ f))� |n| � rk−d log(r)−1/d.

It follows that a cubical cut and project set corresponding to L is not
ϕ-repulsive with ϕ(r) := crk−d log(r)−1/d, for any c > 0.

For the other bound on the repulsivity function, we want to use typ-
ical Diophantine properties for L to bound, firstly, the sizes of the con-
nected components of reg(r) from above and, secondly, ‖L(n)‖ from be-
low. For the latter we may impose that L is ψ-badly approximable with

ψ(r) = cr−
d

k−d log(r)−
1+ε
k−d for all c, ε > 0, a condition which is satisfied

by almost all linear maps L. For the former, we may impose that each
Li is ψ-badly approximable for ψ(r) = cr−d log(r)−(1+ε) for all c, ε > 0,
which again applies to almost all linear maps Li : Rd → R. By the
transference principle of Lemma 2.6, for all ε > 0 the connected com-
ponents of reg(r) have side lengths bounded above by cr−d log(r)d(1+ε)

for some c = cε > 0.
We wish to show that, for sufficiently large r, whenever d(y, y′) <

crk−d log(r)−1/d−(k−d)−ε for distinct y, y′ ∈ Y , then P(y, r) 6= P(y′, r).
So let m 6= n ∈ Zd+s with |m−n| ≤ C ′rk−d log(r)−1/d−(k−d)−ε for some
constant C ′ and L(m + s) and L(n + s) both belonging to the same
connected component Q of reg(r). By the above bounds on the side
lengths of Q, we see that ‖L(m− n)‖ ≤ cr−d log(r)d(1+ε). We may now
use our badly approximable hypothesis on L to conclude that |m− n|
must be larger than some constant times rk−d log(r)−1/d−(k−d)−ε. �

5. Intrinsically defined patches and search regions

5.1. Other patch types. In the above proofs it was advantageous to
use a specific choice of notion of a patch. However, versions of Theorems
1.1, 1.2 and 1.3 hold true for many other choices as well.

Notice that a choice of notion of r-patch is essentially a choice of
equivalence relation'r on the points of Y for each r ∈ R+. Say that two
such choices'1

∗ and'2
∗ are linearly equivalent if there exist constants

A, c > 0 such that, for every r ∈ R+, the conditions '1
Ar+c⊆'2

r and
'2
Ar+c⊆'1

r hold. Here we interpret an equivalence relation on Y as a
subset of Y × Y . For '1

∗ and '2
∗ linearly equivalent, it is easy to see

that if Y is ϕ-repetitive with respect to '1
∗, then it is ϕ′-repetitive

with respect to '2, for ϕ′(r) = ϕ(Ar + c), and similarly in the other
direction. A similar statement holds for ϕ-repulsivity. So Theorems 1.2
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and 1.3 hold for any notion of r-patch linearly equivalent to the one
introduced in Section 2.

In this section, we shall focus on the following two natural definitions
for a patch of size r at y ∈ Y :

rΩ + y

y

ỹ
rΩ + ỹ

Figure 1. Comparison of type I (on the left) and type
II (on the right) patches. Notice that the definitions only
differ near the boundary of the patch.

PI(y, rΩ) :={y′ ∈ Y | y′ − y ∈ rΩ};
PII(y, rΩ) :={y′ ∈ Y | ỹ′ − ỹ ∈ ρ−1(rΩ)}.

We call these types of patches type I and type II patches, respec-
tively. See Figure 1 for a comparison of the definitions. Here Ω is some
bounded convex subset of E containing a neighbourhood of the origin.
For X ⊆ E, let Nκ(X) denote the κ-neighbourhood of X of points
of E within κ of X ⊆ E. Assuming that Ω is convex (amongst many
other weaker conditions) we have the bound |Nκ(∂rΩ)| ≤ crd−1, for
sufficiently large r. This is required in the proof of Lemma 5.4 below.

The patches of Section 2 are given by

P (y, r) = PII(y, (r[−1, 1]d + Fρ) ∩ E)).

Hence patches of type II and patches from Section 2 are linearly equiv-
alent, and Theorems 1.2 and 1.3 apply to them. It was noted in [16] as
Equation 4.1 that there is a constant c > 0 such that for any y ∈ Y
and r > 0 large enough,

PI(y, (r − c)Ω) ⊆ PII(y, rΩ) ⊆ PI(y, (r + c)Ω).

By this observation Theorems 1.2 and 1.3 also apply directly to the
intrinsically defined patches of type I.

In the following, we sometimes use the subindices to distinguish be-
tween patch types, and I/II when the statement holds for both type
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I and type II. The objects P , ξP and ξP(y,R) for type I and type II
patches are defined as in Section 2, and for the most part the same no-
tation is used, which should not be a cause of confusion. For example,
two r-patches PI/II(y1, rΩ) and PI/II(y2, rΩ) of either type I or type II
are equivalent if PI/II(y1, rΩ) − y1 = PI/II(y2, rΩ) − y2, and we denote
the corresponding equivalence class by PI/II(y1, rΩ).

The rest of this subsection is devoted to proving the following version
of Theorem 1.1 for patches of types I and II. It may be paraphrased as
saying that the same discrepancy estimates hold for generalised patch
types, but that for type I patches of size r the constant term depends
on r.

Theorem 5.1. Let ε > 0. Then for almost all choices of linear maps
L : Rd → Rk−d, for the corresponding cubical cut and project sets
Y , there is a constant C that only depends on L, ε and π such that
the following holds: Fix a bounded convex set Ω ⊆ E containing a
neighbourhood of the origin. Let r > 0, and let y′ ∈ Y . Then for type
II patches PII = PII(y

′, rΩ), for all y ∈ Y , and for all R ≥ 1

|ξPII
(y,R)− ξPII

| ≤ C · log(R)k+ε

Rd
.

Furthermore, for r large enough, for type I patches PI = PI(y
′, rΩ), for

all y ∈ Y , and for all R ≥ 1

|ξPI
(y,R)− ξPI

| ≤ C · log(R)k+εr(d−1)(k−d−1)

Rd
.

The proof of this claim will follow from the proof of Theorem 1.1,
along with some control on what we call acceptance domains asso-

ciated to type I and II patches, see Lemma 5.4. Set S̃ = (W−W) +E

and, given a fixed patch shape Ω, let ZI(rΩ) := Zk ∩ S̃ ∩ π−1(rΩ) and

ZII(rΩ) := Zk ∩ S̃ ∩ρ−1(rΩ). Recall the definition of the star map from
Section 2.

Lemma 5.2. Let PI/II(y, rΩ) be a patch of type I or II. We have that
y′ ∈ PI/II(y, rΩ) if and only if y′ = y+π(n) for n ∈ ZI/II(rΩ) satisfying
y∗ ∈ W − n∗.

Proof. Suppose that y′ ∈ PI/II(y, rΩ). Then y, y′ ∈ Y or, equivalently,

ỹ, ỹ′ ∈ S∩(Zk+s). It follows that n := ỹ′− ỹ ∈ S̃ ∩Zk. If y′ ∈ PI(y, rΩ)
then y′−y = π(n) ∈ rΩ, so n ∈ ZI(rΩ). Similarly, if y′ ∈ PII(y, rΩ) then
ỹ′−ỹ = n ∈ ρ−1(rΩ), so n ∈ ZII(rΩ). It follows that for y′ ∈ PI/II(y, rΩ)
it is necessary that y′ − y = π(n) with n ∈ ZI/II(rΩ). Assuming that
there is such an n, we have that y′ ∈ PI/II(y, rΩ) if and only if y′ =
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y + π(n) ∈ Y ; equivalently, ỹ + n ∈ S which is the case if and only if
y∗ ∈ W − n∗. �

The above allows us to construct acceptance domains for patches.
Given an equivalence class of patch P = PI/II(y, rΩ) of type I or II,
define

Z∈I/II(P) :={n ∈ ZI/II(rΩ) | n = ỹ′ − ỹ for some y′ ∈ PI/II(y, rΩ)},
and

Z /∈
I/II(P) :={n ∈ ZI/II(rΩ) | n 6= ỹ′ − ỹ for any y′ ∈ PI/II(y, rΩ)}.

Of course, these sets do not depend on the choice of representative
PI/II(y, rΩ) of P . Notice that Z∈I/II(P) and Z /∈

I/II(P) are complementary

subsets of ZI/II(rΩ). To explain the logic of the notation, notice that
the elements of Z∈I/II(P) determine which lifted points are in P , relative

to the central point of the patch, and Z /∈
I/II(P) determines which, of the

points which could be in P , are in fact not in P .
For a subset X of (an understood) space Ξ, we let Xc be the closure

of the complement of X in Ξ, that is, Xc := Ξ \X.

Corollary 5.3. Let P = PI/II(y1, rΩ) be a patch of type I or II. Then
there exists a subset A(P) of the window for which, for any y2 ∈ Y ,
we have that PI/II(y2, rΩ) = P if and only if y∗2 ∈ A(P). Moreover, we
may set

(5.1) A(P) =
⋂

n∈Z∈
I/II

(P)

W − n∗ ∩
⋂

n∈Z /∈
I/II

(P)

Wc − n∗.

Proof. Suppose that y2 ∈ Y with y∗2 ∈ A(P). So for all n ∈ Z∈I/II(P)

we have that y∗2 ∈ W − n∗, and hence y2 + π(n) ∈ PI/II(y2, rΩ) by
Lemma 5.2. Again by Lemma 5.2, for all y′ ∈ PI/II(y1, rΩ) we have
that y′ = y1 +π(n) for some n ∈ Z∈I/II(P). It follows that PI/II(y1, rΩ)−
y1 ⊆ PI/II(y2, rΩ)− y2. The opposite inclusion is similar, using Z /∈

I/II(P)

in place of Z∈I/II(P). Conversely, suppose that y∗2 /∈ A(P). It follows

that y∗2 /∈ W − n∗ for some n ∈ Z∈I/II(P) or y∗2 /∈ Wc − n∗ for some

n ∈ Z /∈
I/II(P). By Lemma 5.2, in the former case we have that y2+π(n) /∈

PI/II(y2, rΩ) but that y1+π(n) ∈ PI/II(y1, rΩ), and in the latter case we
have that y2+π(n) ∈ PI/II(y2, rΩ) but that y1+π(n) /∈ PI/II(y1, rΩ). �

We call the region A(P) constructed above the acceptance domain
of P . This is an extension of the definition in Lemma 2.1 to more
general patches. Exactly as in [16, Lemma 3.1], it is a consequence
of the total irrationality of E that ξP = |A(P)|. In order to prove
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discrepancy estimates for these regions, analogously to our proof of
Theorem 1.1, we need more control over the shapes of these regions.
This amounts to reducing the number of translates of the complement
of the window required on the right-hand side of the intersection of
(5.1). The following lemma shows that we may completely eliminate
these entries for type II patches, so that the corresponding acceptance
domains are axes parallel boxes, and for type I patches we only require
a number of translates which grows at the rate of the measure of a
neighbourhood of the boundary of rΩ.

Lemma 5.4. For a patch P = PI(y, rΩ) of type I, we have that

A(P) =
⋂

n∈Z∈
I/II

(P)

W − n∗ ∩
⋂
n∈Z′
Wc − n∗

where #Z ′ ≤ crd−1 for some constant c depending only on Ω, L and π.
For a patch P = PII(y, rΩ) of type II, we have that

A(P) =
⋂

n∈Z∈
I/II

(P)

W − n∗

and so A(P) is an axes parallel box.

Proof. SinceW is a fundamental domain for {0}d×Zk−d in Fρ, we may
express the closure of the complement of the window in W + (W−W)
via the identity

Wc ∩ (W + (W −W)) =
( ⋃
m∈K

W +m∗
)
∩ (W + (W −W)),

where K ⊂ {0} × Zk−d is a finite set (in particular, it is the set of

3k−d − 1 sums of the form
∑k−d

i=1 εi · ei+d where the εi ∈ {−1, 0,+1},
not all 0, and the ei+d are the k−d standard basis vectors of Fρ). Since
n∗ ∈ W −W for all n ∈ Z /∈

I/II(P) and A(P) ⊆ W , we may replace the

occurrences of Wc in (5.1) by the union above, giving

A(P) =
⋂

n∈Z∈
I/II

(P)

W − n∗ ∩
⋂

n∈Z /∈
I/II

(P)

( ⋃
m∈K

W − (n−m)∗
)
.

So, for all n ∈ Z /∈
I/II(P), there exists some m ∈ K for which A(P) has

non-trivial intersection with W− (n−m)∗. If (n−m) ∈ Z∈I/II(P), then

clearly removing n from Z /∈
I/II(P) does not change the intersection. By

(5.1), since A(P) ⊆ W − (n −m)∗, we may remove n from the list if
(n −m) ∈ ZI/II(rΩ). Since W intersects W − (n −m)∗, we have that
(n−m)∗ ∈ W −W , so it suffices to check that (n−m) ∈ π−1(rΩ) in
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the case of a patch of type I and that (n −m) ∈ ρ−1(rΩ) for a patch
of type II.

In the latter case we have that n ∈ ρ−1(rΩ) and, since m ∈ Fρ, we
still have that (n − m) ∈ ρ−1(rΩ). Therefore all elements of Z /∈

II(P)
may be removed in (5.1) without changing the intersection. In short,
the existence of certain points not being in PII is automatically ensured
by corresponding points being in PII.

For patches of type I, if (n−m) /∈ π−1(rΩ) then n ∈ π−1(rΩ)c +K.
Thus we wish to bound the size of the set

ZI(rΩ)∩ (π−1(rΩ)c +K) = Zk ∩ S̃ ∩π−1(rΩ∩ (rΩc +π(K))) = Zk ∩Xr

where Xr = S̃ ∩π−1(rΩ∩ (rΩc +π(K))). Consider the region X ′r given
as the union of unit boxes centred at the points of Zk intersecting Xr

non-trivially. The number of lattice points in Xr is bounded by the
measure of X ′r. Notice that

ρ∗(Xr) ⊆ W −W , and

π(Xr) ⊆ rΩ ∩ (rΩc + π(K)) ⊆ Nκ1(∂rΩ).

Since ρ∗ and π are complementary, and X ′r ⊆ Nκ2(Xr) (where κ2 is
simply the length of the diagonal of the unit cube in Rk), it follows
that

#(Zk ∩Xr) ≤ |X ′r| ≤ C|Nκ3(∂rΩ)|,
where C and κ3 are constants which depend only on Ω, L and π. It is
not difficult to show that for a convex set Ω, given κ > 0, there exists
some c for which |Nκ(∂rΩ)| ≤ crd−1 for sufficiently large r. Since we
need only include those elements of Zk∩Xr in Z /∈

I (P) in the intersection
defining A(P), and since #(Zk ∩Xr) ≤ cCrd−1, the result follows. �

Lemma 5.5. Let A0 ⊆ Rm be an axes parallel box with side lengths at
most 1, and let A be a region obtained by removing N translates of the
unit cube from A0, that is,

A = A0 \
N⋃
i=1

([0, 1)m + xi),

where xi ∈ Rm. Then A can be written as a union of (N + 1)m−1 axes
parallel boxes, only overlapping on their boundaries.

Proof. The claim may be proved inductively over the dimension m.
The statement is obvious when m = 1, since then A is an interval.
So suppose for the inductive step that the claim holds in dimension
m, and A ⊆ Rm+1. For each of the N translates of the cube there
is (at most) one face that is orthogonal to the (n + 1)st basis vector



TYPICAL STATISTICS 23

and has a non-empty intersection with A. Denote the corresponding
hyperplanes containing these faces by H1, . . . , HK . Let H0 and HK+1

be the bottom and top faces defining A0, respectively; there are at most
N + 2 hyperplanes in the collection {H0, . . . , HK+1}. Within each slice
between consecutive hyperplanes, up to a thickening by the distance
between them, the region A is effectively anm-dimensional axes parallel
box with (at most) N translates of the unit cube removed, so that,
inductively, there is a decomposition of them into at most (N + 1)m−1

axes parallel boxes. Since there are at most N + 1 slices, this leaves us
with a decomposition into at most (N + 1)m boxes. �

Proof of Theorem 5.1. For a type II patch, by Lemma 5.4, the accep-
tance domain is an axes parallel box, and hence, by Remark 3.2, the
proof of Theorem 1.1 applies, giving the claim. For a type I patch P =
PI(y, rΩ), by Lemma 5.4 the acceptance domain A(P) is a box with at
most crd−1 translates of the unit cube removed. By the above lemma,
we may thus decompose A(P) into a union of at most cr(d−1)(k−d−1)

axes parallel boxes. Applying the proof of Theorem 1.1 to each of these
finishes the proof. �

5.2. Other search regions. In Theorem 1.1 we were investigating
the number of occurrences of a fixed patch P within the box of points
about y ∈ Y whose lifts have first d coordinates differing from those
of y by at most R. Instead of taking a box, we may take any general
(bounded) shape in E. Given a search region A ⊆ E, we set

ξP(y, A) :=
#{y′ ∈ Y | PI/II(y

′, rΩ) = P and ỹ′ − ỹ ∈ A+ Fρ}
#{y′ ∈ Y | ỹ′ − ỹ ∈ A+ Fρ}

.

Define Ad to be the canonical projection of A to Rd × {0}k−d:

Ad := {x1 ∈ Rd | there exists x2 ∈ Fρ with (x1, x2) ∈ A}.

Set XA := Zd ∩ Ad, and note that the term of the denominator of
ξP(y, A) is precisely #XA. To estimate the quantity ξP(y, A), we shall
use the following theorem of Laczkovich.

Theorem 5.6 ([20, Theorem 1.3]). Let H ⊆ Rd be a region which is a
finite union of integer translates of cubes [−1/2, 1/2)d. Then there are
dyadic cubes Q1, . . . , Qn (i.e. cubes whose side lengths are powers of 2)
such that

H =

( l⋃
i=1

Qi

)
\
( n⋃
i=l+1

Qi

)
,
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where the Qi ∩Qj = ∅ whenever i, j ≤ l or i, j > l, and Qi ∩Qj = Qj

whenever i ≤ l < j. Furthermore, such a set of dyadic cubes can be cho-
sen so that the number of cubes of side length 2m is � |∂H|2−m(d−1),
where |∂H| is the (d−1)-dimensional Hausdorff measure of the bound-
ary of H, and the implies constant only depends on the dimension d.

Theorem 5.7. Let d ≥ 2. Consider a cubical cut and project set Y
such that for some ε > 0,

|ξP(y,R)− ξP | ≤ C · (logR)k+ε

Rd
,

for all R ≥ 1 for all equivalence classes of patches P. (By Theorem 1.1
this behaviour is Lebesgue typical.) Fix a patch P, a point y ∈ Y and
a bounded set A ⊆ E. Let H be the cube-complex covering XA, that is,
let H =

⋃
n∈XA

[−1/2, 1/2]d + n. Then

|ξP(y, A)− ξP | ≤ C
|∂H|
#XA

,

where the constant C depends on E, ε,P and π. In the case of type II
patches, C is independent of P.

Proof. Let (Qi) be as in Theorem 5.6, such that H is a union of the
(Qi)

l
i=1 minus the (Qj)

n
j=l+1. By a slight abuse of notation, we let #Qi

denote the number of integer points in Qi.
The fact that the Qi are either disjoint or included in one another

implies that

#XAξP(y, A) =
l∑

i=1

#QiξP(y,Qi)−
n∑

j=l+1

#QjξP(y,Qj).

Since (
∑

i #Qi−
∑

j #Qj) = #XA, applying the triangle inequality we
obtain

#XA|ξP(y, A)− ξP | ≤
n∑
i=1

#Qi|ξP(y,Qi)− ξP |.

Each of the Qi’s is a square, and therefore we can apply Theorem 1.1
repeatedly for each Qi. For a dyadic Qi with side length 2m, we have
that #Qi = 2md, so we may write

|ξP(y,Qi)− ξP | ≤ C
(log 2m)k+ε

2md
= C

(log 2m)k+ε

#Qi

.
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Furthermore, there are at most |∂H|2−m(d−1) boxes Qi which have
length 2m. Therefore

#X|ξP(y,X)− ξP | ≤ C

∞∑
m=0

|∂H|
2m(d−1) · (log 2m)k+ε.

If d ≥ 2, this sum is finite and we get

|ξP(y,X)− ξP | ≤ C ′
|∂H|
#XA

.

�

Remark 5.8. The above proof does not apply when d = 1, but in that
case any convex set A ⊆ E is an interval I, so that Theorem 1.1 applies
directly.

Finally, we wish to express an intrinsic and more natural version of
these quantities. Again fix a bounded search region A containing the
origin, and an equivalence class of patch P of either type I or II, and
define

ξ′P(y, A) :=
#{y′ ∈ Y | PI/II(y

′, r) and y′ ∈ A+ y}
#(Y ∩ (A+ y))

.

The following theorem shows that for reasonable regions A this quantity
does not differ from ξP(y, A) by too much:

Lemma 5.9. Let Y be a cubical cut and project set, y ∈ Y , P be a
patch of type I or II, and A ⊆ E be a bounded search region containing
the origin. Then there exists a constant κ > 0, depending only on π,
for which

|ξP(y, A)− ξ′P(y, A)| ≤ 2
|Nκ(∂A)|

#XA

.

Proof. Consider the quantities #XAξP(y, A) and #(Y ∩(A+y))ξ′P(y, A).
They are given by the number of occurrences of P corresponding to
points of XA and to points of Y ∩ (A+ y), respectively. More precisely,
there is a canonical bijection between the points of XA and the elements
of the set

X ′A := {y′ ∈ Y | ỹ′ − ỹ ∈ A+ Fρ} = {y′ ∈ Y | ρ(ỹ′) ∈ A+ ρ(ỹ)},
and the quantity #XAξP(y, A) is precisely the size of the set

{y′ ∈ Y | P(y′, rΩ) = P and ρ(ỹ′) ∈ A+ ρ(ỹ)}.
So if y′ ∈ X ′A but y′ /∈ A + y, then ρ(ỹ′) ∈ A + ρ(ỹ) but y′ ∈ Ac + y.
Since y, y′ ∈ Y , there exists a κ > 0 for which this may only be the
case if y′ − y ∈ Nκ(∂A). We have a similar statement for the opposite
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inclusions, and upon restricting to points corresponding to P , we have
the inequalities

|#XA − (Y ∩ (A+ y))| ≤ |Nκ(∂A)|,
and

|#XAξP(y, A)−#(Y ∩ (A+ y)) · ξ′P(y, A)| ≤ |Nκ(∂A)|.
It follows that

|ξP(y, A)− ξ′P(y, A)| ≤
∣∣∣∣(#(Y ∩ (A+ y))−#XA)ξ′P(y, A)

#XA

∣∣∣∣+
|Nκ(∂A)|

#XA

≤ |Nκ(∂A)|(1 + ξ′P(y, A))

#XA

≤ 2
|Nκ(∂A)|

#XA

.

�

Finally, we deduce the following intrinsic version of Theorem 5.7.
Note that the region A ∩Nκ(A

c)c in its statement may be interpreted
as the set of points of A sufficiently far from ∂A.

Corollary 5.10. Let d ≥ 2. Consider a cubical cut and project set Y
such that for some ε > 0,

|ξP(y,R)− ξP | ≤ C · (logR)k+ε

Rd
,

for all R ≥ 1 for all equivalence classes of patches P. (By Theorem
1.1 this behaviour is Lebesgue typical.) Then there exists some κ > 0,
depending only on π, for which, for any patch P, point y ∈ Y , and
bounded set A ⊆ E, we have that

|ξ′P(y, A)− ξP | ≤ C
|Nκ(∂A)|

|A ∩Nκ(Ac)c|
.

In particular, for A convex, bounded and containing a neighbourhood
of the origin, we have that

|ξ′P(y,RA)− ξP | ≤ CR−1

for sufficiently large R. In each formula the constant C depends on
E, ε, π and, for type I patches, P.

Proof. It follows from Theorem 5.7 and the above lemma that

(5.2) |ξ′P(y, A)− ξP | ≤ C
|∂H|
#XA

+ 2
|Nκ(∂A)|

#XA

.

Firstly, we claim that there exists κ > 0 depending only on the di-
mension for which #XA ≥ |A ∩ Nκ(A

c)c|. In what follows, we shall
often identify A with Ad, and |A| with |Ad|, etc. Consider the set
X ′A ⊆ XA of lattice points which are further than distance κ1 from
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Ac
d, where κ1 is the length of the diagonal of a unit cube in Rd. The

cube-complex Q of unit cubes centred at the points of X ′A contains all
points of Ad which are further than distance κ1 from Ac

d. It follows that
#XA ≥ #X ′A = |Q| ≥ |A ∩Nκ1(A

c)c|.
Secondly, we claim that there exist c, κ > 0 depending only on the

dimension for which c|∂H| ≤ |Nκ(∂A)|. Construct a cube-complex Q
by placing cubes of side lengths 1/2 at the centres of each face of ∂H.
Since |∂H| is equal to the number of its faces, and each cube is disjoint,
we have that |Q| = (1/2)d|∂H|. A face of ∂H must be within some κ2
of the boundary of Ad, so Q ⊆ Nκ3(∂Ad) for some κ3 > 0. It follows
that |∂H| = 2d|Q| ≤ 2d|Nκ3(∂A)|.

Inserting this information into (5.2), we have that

|ξ′P(y, A)− ξP | ≤ (C ′ + 2)
|Nκ′(∂A)|
|A ∩Nκ′(Ac)c|

where C ′ is independent of P in the case of a patch of type II and
κ′ = max{κ, κ1, κ3} depends only on π. For any κ > 0 and A sufficiently
regular (e.g. convex and containing a neighbourhood of the origin),
there exist constants c1, c2 for which |Nκ(∂RA)| ≤ c1R

d−1 and |RA ∩
Nκ(RA

c)c| ≥ c2R
d for sufficiently large R, from which the claim follows.

�
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