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ABSTRACT 

A lack of well resolved biostratigraphic data has prevented robust regional and global 

correlation of lower Cambrian successions from South Australia. A new early Cambrian 

biostratigraphy, based on data derived from 21 measured stratigraphic sections and drill cores 

(11 described herein) reveals the abundance and diversity of shelly fauna from the Arrowie 

Basin, and the value of early Cambrian “small shelly fossils” (SSF) to biostratigraphic 

studies. Here we examine shelly fauna associated with the youngest of three recently 

established biozones, the Dailyatia odyssei Taxon Range Zone (hereafter D. odyssei Zone), 

and their correlative potential. The D. odyssei Zone features a diverse suite of tommotiids, 
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organophosphatic brachiopods, bradoriid arthropods, molluscs and phosphatic problematica. 

This fauna permits strong correlation (often at species-level) with other major early Cambrian 

terranes, particularly Antarctica, South China and Laurentia, and suggest a Cambrian Series 

2, Stages 3–4 age for the D. odyssei Zone. Bradoriids have proven to be useful 

biostratigraphic tools. Four new species and three new genera are described herein: 

Manawarra jonesi gen. et sp. nov., Eozhexiella adnyamathanha gen. et sp. nov., Acutobalteus 

sinuosus gen. et sp. nov. and Mongolitubulus decensus sp. nov. The description of 

Eohadrotreta sp. cf. zhenbaensis represents the first occurrence of the acrotretoid brachiopod 

Eohadrotreta from Australia.  

 

Keywords: Tommotiid, timescale, chronostratigraphy, biostratigraphy, small shelly fossils. 
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1. INTRODUCTION 

 Early Cambrian shelly faunas are abundant, diverse and well preserved in the Arrowie 

Basin of South Australia. Betts et al. (2016b) formally defined three new biozones based on 

abundant shelly fossil material collected from 10 stratigraphic sections in the Arrowie Basin. 

These new shelly fossil zones range from Terreneuvian, Stage 2 to Series 2, Stages 3–4 (Betts 

et al., 2016b). The lowermost and entirely pre-trilobitic Kulparina rostrata Zone is succeeded 

by the Micrina etheridgei Zone. Overlying the M. etheridgei Zone is the Dailyatia odyssei 

Zone. The base of the oldest trilobite zone in Australia, the Abadiella huoi Zone (herein 

called the Parabadiella huoi Zone), occurs within the upper part of the M. etheridgei Zone. It 

is important to note that there is taxonomic and nomenclatural uncertainty surrounding the 

generic assignment of Abadiella huoi from South Australia. Jell (in Bengtson et al., 1990) 

considered Abadiella and Parabadiella to be synonyms, but we agree with Landing et al. 

(2013, p. 159) that the more appropriate name for this index species from Australia and South 

China is Parabadiella huoi (see also Betts et al., 2017), at least until the type species of 

Abadiella, A. bourgini, is restudied (including new, better preserved specimens from the type 

locality). Thus, the oldest trilobite zone in South Australia should now be referred to as the P. 

huoi Zone.  

The base of the Dailyatia odyssei Zone and the faunal composition of the zone was 

originally based on range data compiled from four stratigraphic sections (Betts et al., 2016b, 

figs 2, 5, 8-9). This paper presents new biostratigraphic data from an additional nine 

measured stratigraphic sections and core data from two drill cores to more clearly define the 

boundaries and improve the correlative potential of the D. odyssei Zone. This biozone can 

now be clearly identified in subsurface drill cores and outcropping stratigraphic sections from 

the Stuart Shelf (west of the Arrowie Basin), as well as thick carbonate dominated 

successions across the central wedge of the Arrowie Basin, and the Benagerie Ridge in the 

east (Fig. 1). These new data provide a robust and comprehensive biostratigraphic database 

for defining the D. odyssei Zone in South Australia. In addition to AJX-M, MMT, WILK and 
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MOG (see Betts et al., 2016b), the D. odyssei Zone is present in (from west to east) the 

SCYW-791A drill core (Fig. 2), ER9 (identified with accessory taxa) (Fig. 3), DBS (Fig. 4), 

MMF (Fig. 5), 10MS (Fig. 6), BHG (Fig. 7), RC (Fig. 8), LMNB (Fig. 9), NB (Fig. 10), PIN 

(Fig. 11) sections, and the Yalkalpo-2 drill core (Fig. 12). Sections in the Donkey Bore 

Syncline (DBS, Fig. 4) and Ten Mile Creek (10MS, Fig. 6) are selected as reference sections 

for the biozone. 

Diversity of shelly fauna in the D. odyssei Zone is high (for example, 53 taxa occur in 

the MMF section; Appendix 4). However, some of the accessory taxa common to the D. 

odyssei Zone (including key tommotiids, brachiopods, molluscs and bradoriids) range up 

from the underlying M. etheridgei Zone. Apart from the eponym, the first occurrence of the 

enigmatic taxon Stoibostrombus crenulatus Conway Morris and Bengtson in Bengtson et al., 

1990 (see Skovsted et al., 2011b) is also used to define the base of the new biozone. Other 

accessory taxa in the D. odyssei Zone include the tommotiid Kelanella sp., the brachiopod 

Curdus pararaensis Holmer and Ushatinskaya in Gravestock et al., 2001, and the oldest 

acrotretoid in Australia, Eohadrotreta sp. cf. E. zhenbaensis (10MS section). Bradoriid 

arthropods also provide a very useful supplementary biostratigraphic signal. The M. 

etheridgei Zone and the overlying D. odyssei Zone can be readily discriminated based on 

distinctive assemblages of bradoriids associated with each zone (Fig. 13). Some of these taxa 

have wide geographic distributions that have great potential for intercontinental correlation. 

 

2. MATERIALS AND METHODS 

 Samples from the nine sections and two drill cores studied herein (Fig. 1) were 

processed using methods described in detail by Betts et al. (2016b). The Yalkalpo-2 drill 

core, located on the Benagerie Ridge, has been extensively investigated by previous authors 

for shelly fossils (including trilobites), acritarchs (Gravestock et al., 2001; Zang et al., 2001; 

Jago et al., 2002; Zang et al., 2007), and for lithological analyses (Gravestock, 1995). Drill 

core SCYW-791A intersects 70 m of fossiliferous Andamooka Limestone, but 

palaeontologically has only been the subject of an unpublished Honours thesis (Casey, 2005). 

Faunas from these drill cores have been reappraised as part of the biostratigraphic assessment 

herein. The remainder of the stratigraphic sections target the Mernmerna Formation at 

localities across the Arrowie Basin (Fig 1), including the Elder Range (ER9, Fig. 3), Donkey 

Bore Syncline (DBS, Fig. 4), Bunkers Range (MMF, Fig. 5), Bunkers Graben (10MS, Fig. 6), 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

5 

 

Arrowie Syncline (BHG and RC, Figs. 7 and 8) and Mt. Chambers Gorge area (LMNB, NB 

and PIN, Figs. 9-11). 

3. STRATIGRAPHIC CONTEXT 

This section discusses aspects of the relationships and lithologies of the key stratigraphic 

units intersected by the nine stratigraphic sections and two drill cores that are relevant to the 

D. odyssei Zone (documented herein). Betts et al. (2016b) provided a stratigraphic overview 

relating to the underlying K. rostrata and M. etheridgei zones. For more comprehensive 

reviews of the stratigraphy and lithology of the Cambrian deposits of the Hawker Group in 

the Arrowie Basin, see Haslett (1975), Clarke (1986a, b, c, 1990a, b, c), Gravestock and 

Hibburt (1991), Gravestock (1995), Zang et al. (2001, 2004), Ceglar et al. (2004), Jago et al. 

(2012) and Brock et al. (2016a,b).  

 

3.1 Wirrapowie Limestone and adjacent units 

In defining the Wirrapowie Limestone type section, Haslett (1975, p. 217) stated that 

the “Wirrapowie Limestone…is overlain by Parara-type limestones. The topmost limit of the 

Wirrapowie Limestone is selected at the top of the uppermost algal stromatolite bed”. 

However, Haslett (1975, p. 214, fig. 2) also noted that the “uppermost boundary of the 

Wirrapowie Limestone is somewhat gradational into the Parara Limestone [= Mernmerna 

Formation]”. Critical in distinguishing these two units is the presence of stromatolitic 

horizons that are typically facies dependent, hence identification of the boundary between the 

Wirrapowie Limestone and the Mernmerna Formation outside of the type section is often 

ambiguous. In places such as the Chace Range, Elder Range (ER9, Fig. 3) and Arrowie 

Syncline (RC, Fig. 8), the fine grained, thin “ribbon” carbonates of the Wirrapowie 

Limestone transition into the darker, more flaggy carbonates of the lower Mernmerna 

Formation (Haslett, 1975). Where the iron-rich microstromatolitic beds that define the 

Flinders Unconformity (FU) on the platform are absent, the basal package of the Mernmerna 

Formation can interfinger with, or onlap the underlying Wilkawillina or Wirrapowie 

limestones (e.g. MOG section, Betts et al., 2016b, fig. 5).  

Previous mapping in the Angepena, Nepabunna and Arrowie synclines in the northern 

Flinders Ranges showed that the Mernmerna Formation hosts two finer-grained siliciclastic 

shale/siltstone members called the Midwerta Shale and the Nepabunna Siltstone (Coats et al., 
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1973; Gravestock, 1995; Zang et al., 2004).  Detailed sampling through the Wirrapowie 

Limestone and Mernmerna Formation in the BHG (Fig. 7) and RC (Fig. 8) sections indicates 

that some of the carbonates originally mapped as Parara Limestone (= Mernmerna 

Formation) in the southern and eastern Arrowie Syncline (Coats et al., 1973) potentially 

belong to the Wirrapowie Limestone based on lithologies. Whilst more detailed 

sedimentological study is required to confirm this, one of the key regional implications of this 

revision is that the Midwerta Shale could be a member of the Wirrapowie Limestone and not 

the Mernmerna Formation. 

The boundary between the Wirrapowie Limestone and Mernmerna Formation occurs 

~1150 m above the base of the BHG section, in the southern part of the Arrowie Syncline 

(Figs. 1, 7). In this section, the upper boundary of the M. etheridgei Zone is at BHG/1301.0, 

1191.9 m above the base of the section (Appendix 6). The assemblage below this level is 

typical of the M. etheridgei Zone (including the eponym, Askepasma toddense Laurie, 1986, 

Dailyatia ajax Bischoff, 1976, D. macroptera (Tate, 1892) and D. bacata Skovsted, Betts, 

Topper and Brock, 2015) and is restricted to Wirrapowie, Wilkawillina, Ajax limestones 

elsewhere in the Arrowie Basin.  The RC section on the eastern limb of the Arrowie Syncline 

consists of ~400 m of Wirrapowie Limestone and ~500 m of overlying Mernmerna 

Formation (Figs 1, 8). The Midwerta Shale is not developed in this region. The M. etheridgei 

Zone is manifest in the lower 498 m of the Wirrapowie Limestone and the D. odyssei Zone is 

278.9 m thick (Fig. 8). Micrina etheridgei is usually restricted to the M. etheridgei Zone, but 

in the RC section, it occurs at RC/913.0, 123.4 m above the first occurrence of D. odyssei. 

This is the only occurrence of M. etheridgei within the D. odyssei Zone throughout all 

sections across the Arrowie Basin. This horizon is a heterogenous mix of mostly fragmentary 

and chaotically oriented skeletal grains that strongly suggests a degree of reworking (i.e., 

time averging) at this stratigraphic level in the RC section. 

 

3.2 Mernmerna Formation and adjacent units 

The Mernmerna Formation is interpreted as a carbonate ramp-slope facies, with 

dominant lithologies including dark coloured, often flaggy, calcareous mudstones and 

wackestones, with common spiculitic (mainly hexactinellid) horizons (Clarke, 1990b). 

Coarser-grained facies are usually rare, but do occur near shallow platform facies and can be 

laterally extensive (Clarke, 1990b). Large (decimetre-scale) allochthonous blocks derived 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

7 

 

from older collapsed platform deposits (mainly Wilkawillina Limestone) are recorded in the 

Mernmerna Formation in the Bunkers Range at Donkey Bore Syncline (Clarke, 1986b; 

Gravestock & Cowley, 1995; Ceglar et al., 2004; Topper et al., 2007). No biohermal build-

ups are recorded from the Mernmerna Formation, although the overlying Moorowie 

Formation in the Mt. Chambers region in the eastern Arrowie Basin has small archaeocyath-

microbial bioherms associated with early coralomorphs (Lafuste et al., 1991; Fuller and 

Jenkins, 2007). Archaeocyaths are rare in the Mernmerna Formation and, when present, are 

usually transported or reworked from the older platformal deposits of the Wilkawillina 

Limestone (Clarke, 1990b). 

Clarke (1986b, 1990b) originally described and defined three members of the 

Mernmerna Formation in the Bunkers Graben and Range (in ascending order): Six Mile Bore, 

Linns Springs and Third Plain Creek members; see Gravestock and Hibburt (1991), 

Gravestock (1995), and Brock and Paterson (2004). These members are variably developed 

across the Arrowie Basin, which, in part, relates to the FU (see Fig. 1; e.g., DBS, MMF, 

MMT and BALC [in Betts et al., 2016b]) (Gravestock and Cowley, 1995; Gravestock and 

Shergold, 2001). For example, in the DBS section (Fig. 4), the Six Mile Bore Member is 

absent and the Linns Springs Member rests disconformably on the Winnitinny Creek Member 

of the Wilkawillina Limestone. Further south, the Six Mile Bore and overlying Linns Springs 

members are both absent in the MMF section (Fig. 5) and the Third Plain Creek Member 

(being P. bunyerooensis trilobite Zone in age) rests disconformably on the Winnitinny Creek 

Member of the Wilkawillina Limestone (Fig. 5; see Paterson and Brock, 2007). In the BALC 

section (Betts et al., 2016b, fig. 7) in Balcoracana Creek (located 1 km north of MMF), the 

entire Mernmerna Formation and overlying Oraparinna Shale are missing and the red beds of 

the Billy Creek Formation rest disconformably on the Wilkawillina Limestone. 

 In the Arrowie Syncline, basinal highstand deposits also include the Nepabunna 

Siltstone, which in the BHG section is poorly fossiliferous, but contains taxa that range up 

from the underlying Wirrapowie Limestone and lower parts of the Mernmerna Formation 

(Fig. 7) (Gravestock and Hibburt, 1991).  In the Mt. Chambers area in the eastern Flinders 

Ranges, the lower part of the Mernmerna Formation is relatively thin and rests with apparent 

conformity on the Wilkawillina Limestone (LMNB section, Fig. 9). In the LMNB section, the 

Mernmerna Formation is conformably overlain by highstand siliciclastic deposits of the 

Bendieuta Formation (Gravestock, 1995). The NB section (Fig. 10) intersects ~174 m of 
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Mernmerna Formation, overlain with apparent conformity by the Moorowie Formation, an 

archaeocyath-rich, oolitic sandy limestone (Fuller and Jenkins, 2007).  

The lower part of the Mernmerna Formation is overlain by a variably developed 

arkosic unit, the Bunkers Sandstone, in the central and eastern parts of the Arrowie Basin 

(Gravestock and Cowley, 1995; Ceglar et al., 2004). In the DBS and 10MS sections located 

in the central part of the basin (Figs. 4, 6), the upper part of the Mernmerna Formation 

overlies the Bunkers Sandstone with apparent conformity. The upper Mernmerna Formation 

develops as typical dark, flaggy, micritic limestones with gradually increasing siliciclastic 

input. To the east and north, the Bunkers Sandstone is not developed and the upper 

Mernmerna Formation is overlain by the Oraparinna Shale (10MS, Fig. 6) (Gravestock and 

Hibburt, 1991). The Andamooka Limestone on the Stuart Shelf, west of the Arrowie Basin is 

a relatively thin micritic limestone. Drill core SCYW-791A intersects 169 m of Andamooka 

Limestone (Fig. 2). 

 

4. DAILYATIA ODYSSEI ZONE  

 The Dailyatia odyssei Zone is present in the Andamooka Limestone, Mernmerna 

Formation and upper Ajax Limestone (Arrowie Basin), in addition to temporal equivalents 

(Parara Limestone and Heatherdale Shale) in the Stansbury Basin. The D. odyssei Zone has 

the highest shelly fossil diversity of any of the defined shelly fossil zones in South Australia 

(sensu Betts et al., 2016b), with up to 53 taxa in some sections (MMF, Appendix 4). 

 

4.1 Lower boundary 

Betts et al. (2016b) formally defined the lower boundary of the Dailyatia odyssei 

Zone at the first appearance of Dailyatia odyssei Evans and Rowell, 1990 (Fig. 14. A-L) or 

Stoibostrombus crenulatus (Fig. 14. J-M), whichever is lowest. The lower boundary of the D. 

odyssei Zone is also coincident with the upper boundary of the underlying M. etheridgei Zone 

(Betts et al., 2016b). The D. odyssei Zone is best represented in sections DBS (Fig. 4), where 

it occurs over 429 m of stratigraphic thickness, and 10MS (Fig. 6), where it is 500 m thick. 

These two sections are chosen as reference sections for the D. odyssei Zone. 
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Species of Dailyatia Bischoff, 1976 represent key faunal elements of the regional 

biostratigraphic scheme developed by Betts et al., (2016b), as they are abundant, well 

preserved and readily identifiable in the Arrowie Basin (Skovsted et al., 2015a). Ranges of D. 

odyssei and S. crenulatus have stratigraphic ranges that do not overlap with older Dailyatia 

species (see Skovsted et al., 2015a; Betts et al., 2016b) and so the first appearance of either 

can confidently be used to define the D. odyssei Zone. 

The regional hiatus represented by the FU can obscure the relationship between the D. 

odyssei Zone and the preceding M. etheridgei Zone (Betts et al., 2016b). Key shelly taxa 

associated with the M. etheridgei Zone do not occur stratigraphically above the FU (see Betts 

et al., 2016b for discussion about the FU) and the D. odyssei Zone extends down to the top of 

the FU in those sections in which it is developed (e.g. DBS, Fig. 4; MMF, Fig. 5 and 10MS, 

Fig. 6 herein). The FU is not apparent everywhere across the Arrowie Basin, and in sections 

where it is not developed (e.g. ER9, Fig. 3; BHG, Fig. 7; RC, Fig. 8; Yalkalpo-2, Fig. 12 and 

AJX-M, fig. 2 in Betts et al., 2016b), the boundary between the M. etheridgei and D. odyssei 

zones occurs in transitional facies. 

Betts et al. (2016b) demonstrated that the incoming of D. odyssei overlaps with the 

uppermost 3.4 m of the P. huoi trilobite Zone in the AJX-M section. Dailyatia odyssei ranges 

through the entire Pararaia tatei and Pararaia bunyerooensis trilobite zones, and into the 

lowermost part of the Pararaia janeae Zone in the DBS section (Fig. 4). The first appearance 

of S. crenulatus occurs in strata belonging to the P. tatei Zone in the AJX-M (Betts et al. 

2016b, fig. 2), DBS (Fig. 4), 10MS (Fig. 6) and possibly the RC sections (Fig. 8). No 

specimens of S. crenulatus have been recovered from the P. huoi Zone. 

 

4.2 Upper boundary 

The upper boundary of the D. odyssei Zone is defined by the last occurrence of either 

D. odyssei or S. crenulatus, whichever is higher. Stoibostrombus crenulatus has not been 

recovered from the eastern part of the Arrowie Basin (Mt. Chambers area) in sections LMNB, 

NB and PIN, nor in Yalkalpo-2 core material. In reference section DBS, the last occurrence 

of D. odyssei occurs at sample horizon 684 m (= 562.3 m true thickness above the base of the 

section; Appendix 3), which is 14 m above the first appearance of trilobites Atops rupertensis 

Jell, Jago and Gehling, 1992 and Serrodiscus gravestocki Jell in Bengtson et al., 1990 that are 
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associated with the P. janeae Zone (Jell in Bengtson et al., 1990; Jago et al., 2006). The first 

occurrence of the trilobite Hebediscina yuqingensis (Zhang in Yin and Lee, 1978) occurs at 

the same stratigraphic level as the last occurrence of D. odyssei in the DBS section (Fig. 4). 

Whilst P. janeae has not been recovered from DBS, the presence of trilobites typically 

associated with this zone suggests the top of the D. odyssei Zone occurs in the lower part of 

the P. janeae Zone. 

Limited data from the Stansbury Basin indicate that S. crenulatus may potentially 

range higher into younger (Toyonian-equivalent) beds, but these rare instances require further 

investigation and corroboration. For instance, Brock and Cooper (1993, fig. 5, fig. 8.4-8.6) 

illustrated a single sclerite of S. crenulatus [SADMW 10454] from Stansbury Town 1 drill 

core 10. 981.5-984.5 on Yorke Peninsula in “dark grey mottled limestone”. This unit was 

identified as the Ramsay Limestone (Daily, 1968), as it contained Redlichia sp., “Hyolithes”, 

“Lingulella”, and “Obolella”, which Brock and Cooper (1993) correlated with the Cambrian 

Stage 4 (Toyonian-equivalent) Wirrealpa Limestone in the Arrowie Basin. Gravestock et al. 

(2001, fig. 13) also recorded rare S. crenulatus from the Ramsay Limestone in the Cur-D1B 

core, as well as in the Stansbury and Coobowie limestones in the Port Julia 1A core 

(Gravestock et al., 2001, fig. 8). 

 

4.3 Accessory taxa 

4.3.1 Tommotiids, cambroclaves and problematic forms 

 Tommotiids are relatively common in the D. odyssei Zone, the majority of which 

range from the underlying M. etheridgei Zone. However, certain taxa occur exclusively 

within the D. odyssei Zone and so can be used as accessory taxa to identify the zone. For 

example, the camenellan tommotiid Kelanella sp. occurs within the D. odyssei Zone in DBS 

(Fig. 4), MMF (Fig. 5), BHG (Fig. 7) and RC (Fig. 8). Kelanella possesses a multi-element 

scleritome made up of five separate coniform and septate sclerite morphs (Devaere et al., 

2014) (Fig. 14N-U). In the Arrowie Basin, Kelanella is represented by relatively rare but 

distinctive sclerite morphotypes that may be restricted to a single horizon (e.g. DBS, Fig. 4, 

MMF, Fig. 5, BHG, Fig. 7 and AJX-M, Betts et al., 2016b, fig. 2). Whilst fragmentary, this 

sclerite morphotype is interpreted as an element of the scleritome of an undescribed species 

of Kelanella (Fig. 14N-U). In the RC section, Kelanella sp. occurs in three horizons with a 
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total range of 50.6 m (all stratigraphic thicknesses are true thicknesses unless otherwise 

specified) within the Mernmerna Formation (Fig. 8, Appendix 7). In the BHG section, the 

horizon in which Kelanella sp. occurs is 18.8 m above the lower boundary of the D. odyssei 

Zone, equivalent to the P. tatei trilobite Zone. Kelanella sp. also occurs in P. tatei Zone-

equivalent strata in the DBS section (Fig. 4). In the MMF section, Kelanella sp. co-occurs 

with the trilobite, P. bunyerooensis. This suggests that ithe entire range of Kelanella sp. 

overlaps with D. odyssei and spans most of the P. tatei and P. bunyerooensis trilobite zones. 

  In all but one of the sections documented here (i.e., 10MS, Fig. 6, Appendix 5), the 

stratigraphic range of Cambroclavus absonus Conway Morris in Bengtson et al., 1990 

coincides with that of D. odyssei. In 10MS, C. absonus first occurs 9.3 m below the incoming 

of D. odyssei, at a poorly exposed level just above the FU that includes some faunal elements 

from the underlying M. etheridgei Zone. The mixed faunal signature and fragmentary nature 

of skeletal material suggests a degree of reworking at this level (Fig 6). In the AJX-M section 

(Betts et al., 2016b, fig. 2), the first occurrence of C. absonus occurs in the same horizon as 

D. odyssei. Cambroclavus absonus also occurs in the P. bunyerooensis Zone in the MMF 

section (Fig. 5) (Topper et al., 2009), and overlaps with trilobites of the P. janeae Zone in the 

DBS section (Fig. 4) (Topper et al., 2007). Cambroclavus absonus also has a short range of 

2.9 m in the D. odyssei Zone in the Andamooka Limestone on the Stuart Shelf (SCYW-791A, 

Fig. 2). 

The tubular form, Anabarites sexalox Conway Morris and Bengtson in Bengtson et 

al., 1990 is restricted to the D. odyssei Zone in the MMF (P. bunyerooensis Zone), 10MS and 

NB sections, while other problematic taxa often associated with the D. odyssei Zone include a 

number of unidentified protoconodont taxa (Fig. 16R-U; 16Y-AA). These spinose forms need 

formal taxonomic treatment and most range from the underlying M. etheridgei Zone (e.g., 

ER9, Fig. 3). 

 

4.3.2 Brachiopods 

Brachiopod taxa that first appear in the preceding M. etheridgei Zone are also 

common in the D. odyssei Zone. In particular, Eoobolus, Karathele (=Schizopholis) 

yorkensis, Kyrshabaktella davidii, Eodicellomus elkaniformiis and Minlatonia tuckeri Holmer 

and Ushatinskaya in Gravestock et al., 2001 (see Betts et al. 2016b, figs 16-17). Eoobolus is a 
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common faunal component of both the M. etheridgei and D. odyssei zones. The genus is 

widespread and long-ranging (up to Stage 5) (Ushatinskaya and Korovnikov, 2014). 

Currently, Eoobolus is a “wastebasket” taxon (Betts et al., 2016b), and specimens recovered 

for this study probably represent more than one species. Re-evaluation of Eoobolus from 

South Australia is required to establish species, and any biostratigraphic signals they may 

have. Eoobolus, Karathele yorkensis and Kyrshabaktella davidii range throughout much of 

the D. odyssei Zone, and extend beyond the upper boundary of the zone in the DBS reference 

section. Askepasma toddense from the preceding M. etheridgei Zone also ranges into the D. 

odyssei Zone (e.g. 10MS section – Appendix 5; NB section – Appendix 9; MOG section in 

Betts et al., 2016b, fig. 5), although the rarity of these occurrences in allodapic carbonates 

typical of the Mernmerna Formation could be the result of transport by turbidites. 

 While shell remains are usually fragmentary, the stem-group brachiopod Mickwitzia 

sp. (Skovsted et al., 2009b) occurs exclusively within the D. odyssei Zone in three sections 

(AJX-M, SCYW-791A and MMF). The total range of Mickwitzia sp. in the AJX-M section is 

33.6 m (true thickness) and approximates that of the trilobite P. tatei (Betts et al., 2016b, fig. 

2). Occurrence in the MMF section extends the range of Mickwitzia sp. into the P. 

bunyerooensis Zone (Fig. 5). Mickwitzia sp. also occurs in a single layer of the Andamooka 

Limestone, 99.15-99.25 m below the top of the SCYW-791A drill core (Fig. 2). 

Additionally, Curdus pararaensis (Fig. 15P-V) has a range that is also consistently 

restricted to the D. odyssei Zone (or inferred D. odyssei Zone) in five stratigraphic sections: 

AJX-M (Betts et al., 2016b, figs 2 and 21P-S), SCYW-791A (Fig. 2), DBS (Fig. 4), MMF 

(Fig. 5) and 10MS (Fig. 6). In the AJX-M section, it has a range through the Ajax Limestone 

that is identical to Mickwitzia sp. (33.6 m true thickness) and approximates the P. tatei Zone. 

Curdus pararaensis is most abundant in the MMF section where its total range is 22.14 m 

true thickness (P. bunyerooensis Zone; Appendix 5), and its first appearance occurs in the 

same horizon as that of Stoibostrombus crenulatus. In the SCYW-791A drill core, C. 

pararaensis extends 1 m above the apparent upper boundary of the zone, although the zone is 

likely to extend higher in this core (Fig. 2). In the 10MS reference section, C. pararaensis is 

restricted to the D. odyssei Zone and ranges over 83.3 m, through the Linns Springs and 

Third Plain Creek members of the Mernmerna Formation (Fig. 6, Appendix 5). 

The oldest acrotretoid taxon known from Australia, Eohadrotreta sp. cf. E. 

zhenbaensis (Fig. 15A-O) is only known from the 10MS section (Appendix 5). In this 
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section, Eohadrotreta sp. cf. E. zhenbaensis occurs within the upper parts of the D. odyssei 

Zone, and extends 80.4 m above the top of the zone (Fig. 6). 

 

4.3.3. Molluscs 

Many taxa have long ranges that encompass much of the M. etheridgei Zone and 

overlying D. odyssei Zone. These include species of Pelagiella, Mackinnonia, Anabarella 

(Betts et al. 2016b, fig. 18) and abundant hyoliths. Halkieriid sclerites are also common in the 

D. odyssei Zone. The isolated cap-shaped shells of the halkieriid Oikozetetes mounti Jacquet, 

Brock and Paterson, 2014 have been recovered from sections MMF (Fig. 5) and NB (Fig. 10) 

at levels that correlate with the P. bunyerooensis trilobite Zone and D. odyssei Zone (Jacquet 

et al., 2014). Distribution of molluscan steinkerns is strongly affected by taphonomic filters 

associated with phosphate accumulation that lead to a bias in preservation and therefore 

stratigraphic occurrence (Jacquet and Brock, 2015; Betts et al., 2017). Some carbonate layers 

especially those associated with hardgrounds/firmgrounds  have excessive phosphate which 

dramatically skews preservation potential in favour of  steinkern production leading to very 

high abundance and/or diversity (e.g. in section MMF, Fig. 5, Appendix 4). Adjacent strata 

devoid of phosphate rarely preserve molluscan material. Molluscs may also be preserved as 

replaced (phosphatised or silicified) shells or with phosphatic coatings (Fig. 17A-C, E-F; 

Betts et al. 2016b, fig. 18). The episodic nature of helcionelloid (plus hyolith and halkieriid) 

preservation and the difficulty of accurately identifying morphospecies based predominantly 

on steinkern material raises considerable challenges for use in early Cambrian biostratigraphy 

(see discussion by Jacquet and Brock [2015] and Betts et al. [2016b]). Despite this, it is true 

that some distinctive stem-group molluscs (including helcionelloids) are extremely 

widespread in the early Cambrian (e.g. Watsonella, Pelagiella, Anabarella, Yochelconiella) 

and may prove important in defining chronostratigraphic boundaries (Peng et al., 2012). 

However, in the current regional scheme, they are utilised as accessory taxa only. 
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4.3.4 Bradoriids 

 Bradoriids restricted to the D. odyssei Zone include many of the taxa described by 

Topper et al., (2007), such as Hipponicharion australis Topper, Skovsted, Brock and 

Paterson, 2007, Mongolitubulus squamifer Missarzhevsky, 1977, Mongolitubulus unispinosa 

Topper, Skovsted, Brock and Paterson, 2007, and Onagrocharion tuberosis Topper, 

Skovsted, Brock and Paterson, 2007. However, most of these taxa have been recovered only 

from the DBS section, so appraisal of their true stratigraphic ranges is difficult. 

Specimens assigned to Zepaera are often extremely abundant in strata associated with 

the D. odyssei Zone; for instance, in the AJX-M (Topper et al., 2011b, fig 7H) and MMF 

sections (Skovsted et al., 2006, fig. 11A-G). Close inspection of the shields reveals the likely 

presence of at least two separate taxa, but detailed taxonomic assessment is required to 

confirm this suggestion. At this stage, a conservative approach is taken and we follow 

Skovsted et al. (2006) and Topper et al. (2011b) in simply referring to these shields as 

Zepaera sp. 

Other bradoriid taxa associated with the D. odyssei Zone include Acutobalteus 

sinuosus gen. et sp. nov. (Fig. 19A-G), which is found in single horizons in the 10MS 

reference section (10MS/130.0, 109.7 m, true thickness above the base of the section; Fig. 6), 

and the MMF section (MMF/49.7, 28.51 m above the base of the section; Fig. 5). Material of 

A. sinuosus from the NB section in Chambers Gorge is well preserved (Fig. 19A-G), and 

specimens occur over a stratigraphic range of 0.5 m in the upper Mernmerna Formation 

(NB/66.6, 47.0 m to NB/67.3,47.5 m, true thickness; Fig. 10). This taxon also occurs at 

10MS/130.0 (118.8 m above the base of the section) in the Linns Springs Member of the 

Mernmerna Formation (Fig. 6). These occurrences suggest the total stratigraphic range of A. 

sinuosus gen. et sp. nov. in the Arrowie Basin encompasses the P. tatei and P. bunyerooensis 

zones within the D. odyssei Zone. 

 Specimens of Jixinlingella sp. occur in three sections. Material from MOG/551.5 

(Betts et al., 2016b, appendix 4 as “Haoiid indet.”; Fig. 19M) and LMNB/35.3 and 

LMNB/45.9 (Figs. 9, 19H, J) is restricted to the D. odyssei Zone. The single specimen 

recovered from DBS/102.0 (Figs. 4, 19I) occurs 43.9 m below the first occurrence of D. 

odyssei, in strata relatively barren of age-diagnostic fossils, but likely to represent the D. 

odyssei Zone. Further sampling through these lower beds is required to accurately identify the 
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lower boundary of the zone at the DBS section and the total stratigraphic range of 

Jixinlingella sp. 

Some bradoriid taxa have a first occurrence in the M. etheridgei Zone and range up 

into the overlying D. odyssei Zone. Albrunnicola bengtsoni Hinz-Schallreuter, 1993, for 

example, ranges from the upper part of the M. etheridgei Zone in the RC section (Fig. 8), but 

is known from the overlying D. odyssei Zone in sections MMF (Fig. 5; see also Skovsted et 

al., 2006), 10MS (Fig. 6), MOG, BALC (Betts et al. 2016b, figs 5, 7) and DBS (Topper et al., 

2007; Fig. 14). Albrunnicola bengtsoni typically co-occurs with Lapworthella fasciculata, 

Eoobolus, and Karathele yorkensis, as well as steinkerns of Pelagiella sp. and Mackinnonia 

sp., which all range from the M. etheridgei Zone into the D. odyssei Zone.  

A single specimen of Spinospitella coronata occurs in the M. etheridgei Zone in the 

ER9 section (Fig. 3, Topper et al., 2011b, Fig. 7N), but ranges into the D. odyssei Zone in the 

ER9, BALC, 10MS, MMF, and DBS sections. In reference section 10MS, S. coronata has a 

total range of 168.9 m, with a first occurrence at 10MS/86-87, 60.3 m (true thickness) above 

the lower boundary of the D. odyssei Zone. 

Manawarra jonesi gen. et sp. nov. was previously described as Euzepaera sp. by 

Skovsted et al. (2006) and Topper et al. (2007), based on fragmentary material from the 

MMF and DBS sections, respectively. Most of the previously illustrated specimens from the 

MMF and DBS sections are clearly conspecific with abundant material from seven other 

sections (ER9, BHG, RC, NB, PIN, 10MS, MOG). However, close examination of all shields 

reveals that a small number of subtriangular shields from the MMF section referred to as 

Euzepaera sp. (e.g., Skovsted et al., 2006, fig. 12A,B) are not conspecific with M. jonesi gen. 

et sp. nov. and probably represent a separate taxon (see Taxonomic discussion below). 

Topper et al. (2007) noted the long stratigraphic range of M. jonesi gen. et sp. nov.in the DBS 

section. Additional data presented herein suggest that the range of M. jonesi gen. et sp. nov. is 

even longer, extending from the M. etheridgei Zone into the D. odyssei Zone. The 

stratigraphic range of M. jonesi gen. et sp. nov. in the DBS reference section is 503.3 m true 

thickness, with the lowermost and uppermost occurrences extending beyond the defined 

lower and upper boundaries of the D. odyssei Zone, respectively (Fig. 4). In the ER9 section, 

M. jonesi gen. et sp. nov.is restricted to the M. etheridgei Zone (Fig. 3; Topper et al., 2011b). 

It also occurs in the M. etheridgei Zone in the BHG section (BHG/293.0, 154.5 m true 

thickness above the defined lower boundary of this zone) ranging up to the lower boundary of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

16 

 

the D. odyssei Zone (Fig. 7; Appendix 6). In the RC section, M. jonesi gen. et sp. nov. ranges 

through both the M. etheridgei and the D. odyssei zones (RC/140.5 – RC/1119.0, a total range 

of 687.7 m) (Fig. 8). 

 

5. CORRELATION 

5.1 Regional correlation 

5.1.1 Western Stansbury Basin, Yorke Peninsula 

Skovsted et al. (2015a, p. 63) noted that fragmentary specimens referred to Dailyatia 

sp. by Skovsted and Brock (in Paterson et al., 2007) from the Koolywurtie Limestone 

Member of the Parara Limestone in Horse Gully are probably D. odyssei based on their 

ornament and the overhanging crest of the central plica. Stoibostrombus crenulatus has been 

reported in the Parara Limestone from the SYC-101, CD-2, and Port Julia-1A drill cores 

(Gravestock et al., 2001) where it occurs with taxa commonly from the D. odyssei Zone in 

the Arrowie Basin sections, such as the helcionelloid molluscs Mackinnonia rostrata (Zhou 

& Xiao, 1984) and Pelagiella subangulata (Tate, 1892) and brachiopods such as Eoobolus, 

Minlatonia tuckeri and Eodicellomus elkaniiformis. Gravestock et al. (2001, fig. 7) reported 

rare occurrences of Dailyatia ajax in the Parara Limestone above the disconformity surface 

(in horizons HG1 and HG9) at Horse Gully, but none of the specimens were illustrated and 

re-collection and detailed examination of samples through this interval of the Parara 

Limestone did not reveal any specimens of Dailyatia. It seems likely that if Dailyatia is 

present in the Parara Limestone above the regional disconformity at Horse Gully, it is more 

likely to represent D. odyssei. The lower 1–2 m of Parara Limestone immediately above the 

disconformity also contains Stoibostrombus crenulatus (in sample 6429RS106) and the 

trilobite Yorkella australis (Jell in Bengtson et al., 1990), strongly suggesting that the lower 

part of the Parara Limestone at Horse Gully correlates with strata of D. odyssei Zone age in 

the Arrowie Basin, and that the karstic microstromatolitic disconformity is time-equivalent to 

the FU in the Arrowie Basin. 

Curdus pararaensis occurs in the D. odyssei Zone of the Ajax Limestone (Betts et al. 

2016b, fig. 1), Andamooka Limestone (SCYW-791A, Fig. 1) and the Mernmerna Formation 

(MMF, Fig. 5; 10MS, Fig. 6). Paterson et al. (2007, fig. 3F-J) also reported an indeterminate 

obolid brachiopod from the Koolywurtie Limestone Member (Parara Limestone), which is 
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considered synonymous with C. pararaensis herein. In addition, the presence of probable D. 

odyssei and S. crenulatus in the Koolywurtie Limestone Member at Horse Gully (Paterson et 

al., 2007; Skovsted et al., 2015a), in addition to S. crenulatus in the Cur-D1B core (at 278.5 

m) reported by Gravestock et al. (2001, fig. 13) confirms correlation with the D. odyssei 

Zone. 

Cambroclavus absonus is reported from the Parara Limestone in the Horse Gully 

section by Bengtson et al. (1990) and Gravestock et al. (2001). Bengtson et al. (1990, fig. 4) 

record a short range for C. absonus approximately 17 m above the disconformable surface 

that separates the Kulpara and Parara limestones. Here it occurs with the trilobite P. tatei and 

an abundant shelly fauna including Lapworthella fasciculata, Anabarites sexalox, 

Mackinnonia davidii, Stenotheca cf. drepanoida, Anabarella australis, Pelagiella 

subangulata, hyoliths such as Triplicatella disdoma Conway Morris in Bengtson et al., 1990, 

and halkieriid sclerites. Gravestock et al. (2001, fig. 7) reported C. absonus from sample 

HG0, less than a metre above the disconformity surface in Horse Gully (Gravestock et al., 

2001, fig. 7). Betts et al. (2016b) correlated this horizon with the D. odyssei Zone. The record 

of S. crenulatus from the Parara Limestone at Horse Gully in horizon 6429RS106 by 

Bengtson et al. (1990), immediately above the disconformity surface, is strongly indicative of 

the D. odyssei Zone at this level.  

The globally distributed macromollusc Marocella mira Geyer, 1986 (see discussion 

below), occurs sporadically across numerous localities in the Arrowie Basin, within the mid-

upper D. odyssei Zone in sections MMF (Fig. 5; Topper et al., 2009), ER9 (Fig. 3) and CR2 

(Jacquet and Brock, 2015). Topper et al. (2009) discussed the reported occurrence of 

Marocella australica (=M. mira) in the upper Parara Limestone in Horse Gully (Stansbury 

Basin) at a level that also contained P. tatei (Gravestock et al., 2001); this would also fall 

within the D. odyssei Zone. 

 

5.1.2 Amadeus Basin, central Australia 

Bengtson et al. (1990, fig. 68A, B) illustrated a single (conjoined) specimen of C. 

absonus from the Todd River Dolostone in the Amadeus Basin. This specimen is severely 

abraded, and is missing diagnostic features such as a spine or spine base, making assignment 

to C. absonus questionable. Presence of M. etheridgei and A. toddense, in addition to D. ajax 

and Eccentrotheca sp. (Laurie, 1986), correlate the Todd River Dolostone with strata 
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containing faunas of the M. etheridgei Zone in the Arrowie Basin (Betts et al., 2016b). 

Cambroclavus absonus is restricted to the D. odyssei Zone in the Arrowie Basin, so the 

occurrence in older strata in the Amadeus Basin remains questionable. Further sampling is 

required to clearly identify the taxon and define its biostratigraphic range. 

 

5.2 Global correlation 

Tommotiids, brachiopods, molluscs, and bradoriids documented from the D. odyssei 

Zone in South Australia, in addition to previously documented, contemporaneous trilobite 

assemblages (Jell in Bengtson et al., 1990; Paterson & Brock, 2007), provide some measure 

of correlation with strata in Antarctica, Avalonia, Baltica, China, Laurentia, Siberia and West 

Gondwana. Reliable correlations are enabled by more globally distributed species by this 

time in the Cambrian. However, sustained provincialism and difficulties associated with 

identification of taxa that bore multi-element scleritomes makes fine-scale biostratigraphic 

correlation very difficult at regional and especially global scales. We emphasise the 

integration of multi-proxy data to strengthen biostratigraphic correlation. These 

biostratigraphic data (herein) are complimented by carbon isotope chemostratigraphy from 

the same sections and calibrated CA ID-TIMS radiometric dates that will be presented in a 

separate study. 

 

5.2.1 South China 

The Dailyatia odyssei Zone spans an interval from the uppermost P. huoi trilobite 

Zone through the P. tatei and P. bunyerooensis zones and into the basal part of the P. janeae 

Zone in the Arrowie Basin (Fig. 13). Paterson and Brock (2007) established clear correlation 

of the P. tatei and P. bunyerooensis zones with the Wutingaspis-Eoredlichia Interval Zone 

(Qiongzhusian) in South China, based on the co-occurrence of Eoredlichia Chang in Lu and 

Dong 1952 (including the presence of E. shensiensis in both regions), Wutingaspis, and 

Yunnanocephalus (Fig. 21); see additional discussion by Betts et al. (2017). 

Brachiopods also enable correlation between South Australia and South China 

(Steiner et al., 2007; Yang et al., 2015; Zhang et al., 2015). In Zhenba County, South Shaanxi 

Eoobolus aff. viridus and Kyrshabaktella? sp. occur in the Xihaoping Member of the 
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Dengying Formation and in the Shuijingtuo Formation (Cambroclavus fangxianensis-

Rhombocorniculum cancellatum Assemblage Zone) (Li and Holmer, 2004; Yang et al., 

2015). In the Arrowie Basin, Eoobolus and Kyrshabaktella davidii occur throughout the 

upper M. etheridgei Zone and into the D. odyssei Zone. Eohadrotreta zhenbaensis also occurs 

in the Shuijingtuo Formation in the Three Gorges area in western Hubei and in southern 

Shaanxi (Zhang et al., 2015). Zhang et al. (2015) state that lingulid-acrotretoid assemblages 

are not evident in the Qiongzhusian and instead suggest a Stage 4/Canglangpuian age for this 

part of the Shuijingtuo Formation. This is consistent with the occurrence of Eohadrotreta sp. 

cf. E. zhenbaensis and lingulids such as K. yorkensis and K. davidii in the upper D. odyssei 

Zone in the 10MS section (Fig. 6). 

Microdictyon effusum, Cambroclavus fangxianensis and the mollusc Beshtashella 

tortillis also occur in the Shuijingtuo Formation in southern Shaanxi (Cambroclavus 

fangxianensis-Rhombocorniculum cancellatum Assemblage Zone) (Yang et al., 2015). 

Microdictyon sclerites are associated with both the M. etheridgei and D. odyssei zones in 

South Australia (Betts et al., 2016b), whereas Cambroclavus absonus and Beshtashella 

tortillis only occur within the D. odyssei Zone (AJX-M, Betts et al., 2016b; SCYW-791A, 

Fig. 2; DBS, Fig. 4; MMF, Fig. 5; 10MS, Fig. 6; MMF, Topper et al., 2009). In South China, 

the C. fangxianensis-R. cancellatum Assemblage Zone is equivalent to the Pelagiella 

subangulata Taxon-range Zone and the Parabadiella huoi and Wutingaspis-Eoredlichia 

trilobite zones which equates to the Parabadiella huoi, Pararaia tatei and Pararaia 

bunyerooensis zones in South Australia. The Chinese zonesare broadly equivalent to the 

upper M. etheridgei and D. odyssei zones (Yang et al., 2015; Fig. 21 herein). In Shaanxi, 

Rhombocorniculum cancellatum has been recovered from the Xihaoping Member and the 

Shuijingtuo Formation (Yang et al., 2015), further reinforcing correlation between the D. 

odyssei Zone in South Australia and the R. cancellatum – C. fangxianensis Assemblage Zone 

in China. 

At the generic level, bradoriid assemblages from South Australia also share close 

similarities with those from South China (Shu, 1990; Shu and Chen, 1994; Hou et al., 2002; 

Zhang, 2007; Topper et al., 2011b; Yang et al., 2015). Albrunnicola, Haoia, Hipponicharion, 

Jixinlingella, Liangshanella, Mongolitubulus, and Zepaera are all recorded from the D. 

odyssei Zone of South Australia, as well as from the Eoredlichia-Wutingaspis Zone of South 

China (Hou et al., 2002; Zhang, 2007; Topper et al., 2011b). However, in South Australia, 
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Albrunnicola, Jixinlingella, Liangshanella, Mongolitubulus, and Zepaera have first 

occurrences (albeit different species, except Albrunnicola bengtsoni) in the underlying M. 

etheridgei Zone (Fig. 13), with Liangshanella circumbolina in particular occurring in pre-P. 

huoi trilobite Zone strata. This demonstrates that many of these long-ranging bradoriids have 

limited use as correlative tools at the generic level, and that the endemic species from the M. 

etheridgei Zone in South Australia are likely to be some the oldest representatives of these 

genera, at least in Gondwana. 

Other generic level connections between South China and Australia include the 

bradoriids Neokunmingella and Hipponicharion. In South China, Neokunmingella cf. minuta 

ranges from the Eoredlichia-Wutingaspis Zone (Qiongzhusian) to the Palaeolenus Zone 

(Canglangpuan) (Hou et al., 2002); the latter zone equates to the P. janeae trilobite Zone in 

South Australia (Paterson & Brock, 2007). Neokunmingella shuensis is also recorded from 

the Eoredlichia-Wutingaspis Zone in South China (Zhang, 2007). In the Arrowie Basin, 

Neokunmingella moroensis is restricted to the M. etheridgei Zone in the MORO and MOG 

sections (Betts et al., 2016b; Fig. 13). Other hipponicharionid taxa from South China include 

Hipponicharion cuii from the Shuijintuo Formation (Eoredlichia-Wutingaspis Zone) (Zhang, 

2007) and Hipponicharion qianensis from the mid-Cambrian Gaotai Formation (Pagetia 

Biozone) (Zhang, 2007). Hipponicharion australis occurs in the P. janeae Zone (= upper D. 

odyssei Zone) in the DBS section, although it is rare (Topper et al., 2007). Thus, 

Neokunmingella and Hipponicharion appear to have long stratigraphic ranges and are 

therefore unsuitable for high-resolution biostratigraphic correlation. 

Haoiid bradoriids also provide broad-scale correlations. Jixinlingella was known only 

from South China before J. daimonikoa was recently described from South Australia (Betts et 

al., 2014). The type species, J. clithrocosta, was described from the Shuijingtuo Formation 

(Eoredlichia-Wutingaspis Zone), Shaanxi (Lee, 1975; Zhang, 2007). In the Arrowie Basin, J. 

daimonikoa is restricted to the M. etheridgei Zone, although a second species, Jixinlingella 

sp. (Fig. 19H-M), occurs in the MMF, DBS, MOG and LMNB sections within the D. odyssei 

Zone. Haoia shaanxiensis is the only bradoriid reported from the Xihaoping Member, 

Dengjing Formation (C. fangxianensis – R. cancellatum Assemblage Zone) in southern 

Shaanxi (Yang et al., 2015). A comparable form (Haoia cf. shaanxiensis) was recovered from 

the D. odyssei Zone (= P. bunyerooensis trilobite Zone) in the MMF section (Fig. 5, Skovsted 

et al. 2006, fig. 13A-D). 
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A bradoriid-phosphatocopine assemblage from the Shuijingtuo Formation in Zhenba 

County, Shaanxi (C. fangxianensis – R. cancellatum Assemblage Zone) (Yang et al., 2015) 

permits species level correlation with South Australian faunas. This includes the 

phosphatocopid Dabashanella hemicyclica (MMF, Topper et al., 2009, fig. 3; AJX-M, 

Topper et al., 2011b, fig. 7O; Fig. 5) and the bradoriid Beyrichona chinensis Shu, 1990. 

According to Topper et al. (2011b, p. 317), specimens of B. chinensis illustrated by Zhang 

(2007, pl. 17, figs. 9-16) are considered to be conspecific with Albrunnicola bengtsoni. 

However, in South Australia, these species are not restricted to the D. odyssei Zone, but range 

from the upper M. etheridgei Zone in numerous sections (AJX-M, ER9, DBS, BALC, 

MMT/MMF, 10MS, RC, PIN; see Fig. 13). The assemblage from the Shuijingtuo Formation 

(Yang et al., 2015) also includes Parahoulongdongella bashanensis (Shu, 1990). In the 

Xiaoyangba section in Zhenba County, P. bashanensis co-occurs with Tsunyidiscus 

niutitangensis, which correlates with the lower Wutingaspis-Eoredlichia Interval Zone of 

South China (Steiner et al., 2007). In the Arrowie Basin, P. bashanensis is restricted to the M. 

etheridgei Zone, including the P. huoi trilobite Zone (Fig. 13). 

 

5.2.2 North China 

A diverse fauna of micromolluscs and small shelly fossils is known from the Xinji 

Formation of North China (He et al., 1984; Zhou and Xiao, 1984; Li et al., 2015; Hao et al., 

2016 and references therein). Li et al. (2015) and Hao et al. (2016) reported Cambroclavus 

absonus Conway Morris in Bengtson et al., 1990 from the Xinji Formation. In the AJX-M 

section (Betts et al., 2016b, fig. 2), C. absonus and D. odyssei first occur in the same horizon 

(which overlaps with the P. huoi Zone), and range into the P. tatei Zone. In MMF (Fig. 5, 

Topper et al., 2009), C. absonus occurs within the P. bunyerooensis Zone. In the DBS section 

(Fig. 4), C. absonus occurs 6.6 m above the first occurrence of Atops rupertensis and 

Serrodiscus gravestocki, suggestive of the P. janeae Zone. These South Australian 

occurrences span the D. odyssei Zone and allow strong correlation with the C. fangxianensis 

– R. cancellatum Assemblage Zone on the North China Platform (Li et al., 2015, fig. 5). The 

shelly fauna from the Xinji Formation also includes a range of other taxa similar or 

conspecific with South Australian forms (Hao et al., 2016). This includes the micromolluscs 

Anabarella drepanoida, Pelagiella madianensis, Mackinnonia rostrata, Yochelcionella 

chinensis, Pojetaia runnegari, Marocella sp. and Xianfengella sp., in addition to the 
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tianzhushanellid Apistoconcha siphonalis and the trilobite Estaingia sp. (Zhou & Xiao 1984; 

Hao et al., 2016), all of which permit correlation with the D. odyssei Zone. 

Cupitheca holocyclata has recently been described from South Australia and North 

China (Skovsted et al., 2016). In North China, C. holocyclata has been recovered from the 

Xinji Formation in the Shangwan section (Luonan County, Shaanxi) and in the Sanjianfang 

section (Yexian County, Henan) on the North China Platform (Pan et al., 2016, Skovsted et 

al., 2016). Cupitheca holocyclata is now known from several Cambrian palaeocontinents 

during Cambrian Stages 3-4 (Skovsted et al., 2016). However, accurate species determination 

may be difficult due to inconsistent preservation of the calcium carbonate shell (Jacquet and 

Brock, 2015), hence the stratigraphic ranges of some Cupitheca taxa remain to be elucidated. 

 

5.2.3 Siberia 

Kouchinsky et al. (2015) described a diverse shelly fauna from the lower Cambrian 

Emyaksin Formation in northern Siberia. This assemblage shares many similarities with the 

South Australian faunas, at least at the generic level, but additional proxies are required to 

establish robust correlation. The upper part of the Emyaksin Formation contains a fauna that 

includes the molluscs Mackinnonia anabarica, Triplicatella spp., and Yochelcionella cf. Y. 

greenlandica, in addition to the tommotiid Lapworthella dentata, and the ecdysozoans 

Hadimopanella knappologica, Microdictyon cf. rhomboidale, and Mongolitubulus spinosus. 

The age of this assemblage is equivalent to the Delgadella, Judomia and Erbiella zones 

(Atdabanian to earliest Botoman). Rhombocorniculum cancellatum was also recovered from 

upper levels in Sections 3, 6 and 7 (= Judomia Zone) in the Emyaksin Formation 

(Kouchinsky et al. 2015, fig. 2), permitting a correlation with the C. fangxianensis – R. 

cancellatum AZ in China and, in turn, with the D. odyssei Zone in South Australia. The 

tommotiids Camenella garbowskae and Lapworthella cf. L. tortuosa are part of a low 

diversity assemblage in the lower parts of the Emyaksin Formation (equivalent to the 

Tommotian Dokidocyathus regularis archaeocyath Zone) (Kouchinsky et al., 2015, fig. 2). In 

the Arrowie Basin, Camenella reticulosa and Lapworthella fasciculata occur in both the M. 

etheridgei and D. odyssei zones. Thus, it is reasonable to suggest that the “lower” 

(Tommotian; D. regularis Zone) and “upper” (Atdabanian–Botoman; Delgadella to Erbiella 

zones) shelly assemblages of the Emyaksin Formation are approximately age-equivalent to 
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the South Australian M. etheridgei Zone and D. odyssei Zone assemblages, respectively (Fig. 

21).  

The bradoriid Liangshanella? sayutinae and a suite of micromolluscs similar to those 

from South Australia have been recorded from the Bystraya Formation (Atdabanian – 

Botoman) in the Trans-Baikal region (Melnikova, 1988; Melnikova et al., 1997; Parkhaev, 

2004). The micromolluscs include forms such as Anabarella tshitaensis Parkhaev, 2004, 

Pelagiella adunca Missarzhevsky, 1966, Pojetaia runnegari, Stenotheca transbaikalica 

Parkhaev, 2004, and Yochelcionella crassa Zhegallo in Esakova and Zhegallo, 1996. In South 

Australia, Pojetaia runnegari and species of Anabarella and Pelagiella occur in both the M. 

etheridgei and D. odyssei zones, but Yochelcionella sp., Stenotheca drepanoida and the 

bradoriid L. sayutinae are restricted to the latter zone (Figs. 5, 6, 10, 12, 13). Confident 

correlation with the Australian zones is problematic as both regions share mostly molluscan 

genera. However, occurrence of L. sayutinae suggests that the Bystraya Formation 

assemblage may be age-equivalent to that of the D. odyssei Zone in South Australia. 

The bradoriid Sinskolutella was first described from the Botoman Sinsk Formation on 

the Siberian Platform (Melnikova, 1998). Sinskolutella also occurs with a diverse shelly 

fauna of early Botoman (Bergeroniellus gurarii Zone) age at the Achchagy-Tuoydakh 

locality, Yakutia, eastern Siberia (Ivantsov and Wrona, 2004). Recently, Betts et al. (2014) 

described S. cuspidata from South Australia where it is particularly abundant in the M. 

etheridgei Zone (Betts et al., 2016b, appendix 3), but ranges up from the K. rostrata Zone 

(Betts et al., 2016b, appendix 7). Shield fragments with the distinctive micropulvinate 

microornament of this species also occur in the D. odyssei Zone (Figs 7, 9). Thus, 

Sinskolutella has limited biostratigraphic utility, especially for intercontinental correlation 

(Figs 13, 21). 

The macromollusc Marocella mira (Fig. 17D) has been documented from both 

Australia and an unnamed unit on the Anabar Anticline, Siberia (“Lenan Stage” of 

Vostokova, 1962, now Toyonian, Peng et al., 2012). In the Arrowie Basin, M. mira is 

restricted to the D. odyssei Zone in the MMF, ER9 and CR2 sections (Topper et al., 2009; 

Jacquet and Brock, 2015). However, M. mira has a very long stratigraphic range and is 

therefore unsuitable for high-resolution correlation. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

24 

 

5.2.4 Laurentia 

Skovsted and Peel (2007) described a shelly fossil assemblage from the Forteau 

Formation in the Bonne Bay region of western Newfoundland, and noted the strong faunal 

connection between Laurentia and other regions such as East Gondwana (Australia and 

Antarctica), North China, Mongolia and Siberia. Taxa from the Forteau Formation include a 

number of genera and some species that are also found in South Australia, including 

Cupitheca holocyclata (Skovsted et al., 2016), Eoobolus, and Pojetaia runnegari (Bengtson 

et al., 1990). In the Arrowie Basin, Eoobolus has a long range from the upper M. etheridgei 

Zone through to the D. odyssei Zone. Pojetaia runnegari is most common in the M. 

etheridgei Zone, but does occur in the D. odyssei Zone in the MMF (Fig. 5), NB (Fig. 10) and 

PIN sections (Fig. 11), and C. holocyclata occurs in the AJX-M section, also ranging from 

the M. etheridgei Zone to the D. odyssei Zone (Skovsted et al., 2016). The Forteau Formation 

also contains Lapworthella shodakensis, Mackinnonia sp., Pelagiella sp., Stenotheca sp., 

Yochelcionella americana Runnegar and Pojeta, 1980, and Yochelcionella cf. chinensis 

(Skovsted and Peel, 2007, table 1). In the Arrowie Basin, Pelagiella and Mackinnonia range 

from the upper M. etheridgei Zone to the D. odyssei Zone (Betts et al., 2016b, fig. 18A-H, N-

U), as does Lapworthella fasciculata (Betts et al., 2016b, fig. 21A-G). Stenotheca drepanoida 

is found in the MMF and NB sections (D. odyssei Zone) and Stenotheca steinkerns occur in 

the Yalkalpo-2 drill core (Fig. 17G-I, M). Yochelcionella sp. occurs in the Mernmerna 

Formation in the MMF and 10MS sections (D. odyssei Zone) (Fig. 17N). The occurrence of 

the trilobites Olenellus and Bonnia in the Forteau Formation indicate a Dyeran age 

(correlated with Series 2, Stages 3-4 by Peng et al. 2012, fig. 19.11), indicating that the 

Forteau Formation shelly fauna is more likely to be age-equivalent with the D. odyssei Zone 

in South Australia. 

Broad correlation between South Australia and Laurentia is also made possible by the 

occurrence of Mickwitzia in both regions. In the Arrowie Basin and on the Stuart Shelf, 

occurrences of Mickwitzia are restricted to the D. odyssei Zone in sections AJX-M (also 

within the P. tatei trilobite Zone; Betts et al., 2016b, appendix 1) and MMF (= P. 

bunyerooensis trilobite Zone; Fig. 5), as well as the SCYW1-791A core (Fig. 2). Mickwitzia 

muralensis Walcott, 1913 occurs in the lower Cambrian Mural Formation in the southern 

Canadian Rocky Mountains, along with abundant trilobites, hyoliths, and linguliform and 

obolellid brachiopods (Balthasar, 2004). This unit covers both the Nevadella and Bonnia-

Olenellus zones, which is broadly equivalent to the P. tatei, P. bunyerooensis and P. janeae 
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zones in Australia (Jell in Bengtson et al., 1990). Mickwitzia occidens Walcott, 1908 occurs 

in the Indian Springs Lagerstätte (Poleta Formation) in Nevada, which is of Nevadella Zone 

age (English and Babcock, 2010). Thus, these occurrences support tentative correlation of the 

D. odyssei Zone in South Australia with the Nevadella to Bonnia-Olenellus zones in 

Laurentia. Recovery of better preserved Mickwitzia specimens from South Australia would 

allow for accurate species identification and may permit more robust correlations in the 

future. 

Landing and Bartowski (1996) documented an assemblage from the Browns Pond 

Formation in the Taconic allochthon in eastern New York that contains Lapworthella 

shodakensis, abundant echinoderm ossicles, hyoliths (including Conotheca laurentiensis) and 

diverse micromolluscs. The Browns Pond molluscs include Fordilla troyensis, Helcionella 

subrugosa, Mackinnonia obliqua, Mackinnonia taconica, Pelagiella primaeva and 

Yochelcionella sp. (Landing and Bartowski, 1996). The Browns Pond fauna also contains 

Calodiscus lobatus and Elliptocephala asaphoides and is assigned to the lower 

Elliptocephala asaphoides trilobite assemblage (= Olenellus Zone; Williams et al., 2015).  

The Olenellus zone correlates in part with the P. janeae Zone in South Australia (Fig. 21). 

These molluscan occurrences also support correlation of the D. odyssei and Olenellus zones, 

at least in part.   

Skovsted (2004) described a mollusc assemblage from the Bastion Formation in 

Greenland that has similarities to the Browns Pond fauna (Landing and Bartowski, 1996). 

The Bastion Formation is broadly correlated with the Dyeran, based on the presence of 

trilobites typical of the Bonnia–Olenellus Zone (Skovsted, 2004). Many of the mollusc taxa 

are conspecific with those from South Australia, including Anabarella australis Runnegar in 

Bengtson et al., 1990, Mackinnonia rostrata, Pelagiella subangulata, and Pojetaia runnegari. 

Congeners of both regions include Emargimantus (Skovsted et al., 2012), Stenotheca, and 

Xianfengella, further supporting the connection between the D. odyssei Zone assemblages of 

South Australia and the Bastion Formation fauna of Greenland. 

Other shelly fossils from the Bastion Formation were described by Malinky & 

Skovsted (2004), Skovsted et al. (2004), Skovsted (2006) and Skovsted and Holmer (2005). 

Close faunal similarities enabled Skovsted (2006) to correlate this assemblage with the South 

Australian Bemella communis and Stenotheca drepanoida zones of Gravestock et al. (2001). 

In addition to the molluscs mentioned above, other shelly taxa common to both regions 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

26 

 

include the lingulid brachiopod Eoobolus, the lobopodian Microdictyon, species of the 

tommotiid Lapworthella, as well as a range of hyoliths such as Conotheca australiensis 

Bengtson in Bengtson et al., 1990, Cupitheca holocyclata (Bengtson in Bengtson et al., 

1990), C. hemicyclata (Bengtson in Bengtson et al., 1990), Hyptiotheca karraculum Bengtson 

in Bengtson et al., 1990, Microcornus eximius Duan, 1984, M. petilus, Parkula bounites 

Bengtson in Bengtson et al., 1990, and species of Triplicatella (Skovsted et al., 2004). Many 

of the taxa common to both regions have ranges that, in South Australia, span both the M. 

etheridgei and D. odyssei zones (e.g., Lapworthella, Mackinnonia, Microdictyon, Pelagiella, 

Pojetaia). 

Bradoriids from the Bastion Formation, such as Albrunnicola spp. (likely to include A. 

bengtsoni), Liangshanella sayutinae (Melnikova, 1988), and Mongolitubulus henrikseni 

(Skovsted and Peel, 2001; Skovsted, 2006) also occur in the D. odyssei Zone in South 

Australia (Fig. 13). However, while A. bengtsoni is mostly confined to the D. odyssei Zone, it 

does occur in the upper M. etheridgei Zone in the RC, ER9 and BALC sections (Fig. 13).  

 

5.2.5 Avalonia 

The Lower Comley Limestones Formation in Shropshire, England is reported to 

contain Eccentrotheca kanesia, Lapworthella cornu, Lapworthella nigra and Pelagiella 

lorenzi (Brasier, 1989). The presence of E. kanesia in this unit (horizon Ac2 = Callavia Zone) 

represents the youngest occurrence of the genus and indicates a remarkably long range for the 

species. Sclerites ascribed to E. kanesia are reported to co-occur with Watsonella crosbyi—

the latter suggested to be a key species in the definition of the base of Stage 2 [Peng et al., 

2012]—in Member 4 of the Chapel Island Formation in Newfoundland (Placentian Series) 

(Landing et al., 1989). This suggests that either E. kanesia has an extremely long stratigraphic 

range, or the sclerites of Eccentrotheca from the Lower Comley Limestones Formation and 

the Chapel Island Formation belong to different taxa. In the Arrowie Basin, Eccentrotheca 

helenia is restricted to the M. etheridgei Zone, and so is older than the occurrence of E. 

kanesia from the Lower Comley Limestones Formation (Brasier, 1989). The enigmatic shelly 

fossil Rhombocorniculum cancellatum also occurs in the Comley Limestones Formation, 

from horizons Ac2 to Ad (Brasier, 1989, fig. 5.7). This permits correlation of the Callavia 

Zone with the Cambroclavus fangxianensis – Rhombocorniculum cancellatum AZ in South 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

27 

 

China, which, in turn, can be correlated with the D. odyssei Zone (as discussed in Section 

5.2.1). 

Avalonian successions in Newfoundland are difficult to correlate globally because 

many shelly taxa that have restricted stratigraphic ranges in other terranes have apparently 

much longer ranges in Avalonia (Landing, 1988). For example, Watsonella crosbyi has a 650 

m composite range from the Chapel Island Formation to the Fosters Point Formation within 

the Camenella baltica Zone, just beneath the unconformity with the overlying Brigus 

Formation (Callavia broeggeri Zone = ~P.bunyerooensis Zone) (Landing and Benus, 1988; 

Landing et al., 2013; Landing and Kouchinsky, 2016). However, in all other lower Cambrian 

terranes, W. crosbyi occurs close the the base of Stage 2 (Jacquet et al., 2016).  

Tentative correlation of the Callavia Zone in Newfoundland and the D. odyssei Zone 

in South Australia can be made using bradoriid and trilobite genera. The bradoriids 

Beyrichona and Hipponicharion have been reported from the Somerset Street Member of the 

Hanford Brook Formation (Westrop and Landing, 2000). In the Arrowie Basin, 

Hipponicharion australis and Albrunnicola bengtsoni (= Beyrichona chinensis, sensu Topper 

et al., 2011b) co-occur in the upper D. odyssei Zone (= P. janeae Zone) in the DBS section 

(Figs 4, 13; Topper et al. 2007). The eodiscoid trilobite Serrodiscus is reported from the St. 

Mary’s and Jigging Cove members of the Brigus Formation, Avalon Peninsula, 

Newfoundland (Westrop and Landing, 2011). In South Australia, Serrodiscus gravestocki 

occurs in the P. janeae trilobite Zone (= upper D. odyssei Zone) in the Arrowie Basin (DBS 

section, Fig. 4; see also Jell in Bengtson et al., 1990; Paterson and Brock, 2007; Topper et al. 

2007).  

 

5.2.6 Baltica 

The early Cambrian shelly fossil record in Scandinavia is sparse, probably due to a 

lack of suitable facies – shallow water siliciclastics dominate until the late early to middle 

Cambrian (Nielsen and Schovsbo, 2011). Pre-trilobitic faunas include Mobergella, 

Volborthella, ‘Torellella’ laevigata and Platysolenites, which are long-ranging and of limited 

use for correlation (Nielsen and Schovsbo, 2011); see also Ahlberg (1989) for similar fossils 

recovered from the lower Cambrian File Haidar Formation in Gotland. However, the 

presence of Aldanella attleborensis in the Lontova Formation of Estonia and a drill core in 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

28 

 

southeastern Poland, allows correlation with the lower part of Cambrian Stage 2 (Isakar & 

Peel 2007; Parkhaev & Karlova 2011). Bergström and Ahlberg (1981) described a shelly 

fauna from the lower Cambrian Gislöv Formation in Scania, southern Sweden that includes 

the trilobites Calodiscus lobatus (Hall, 1847) and Holmia sulcata Bergstrom, 1973, probable 

helcionelloid molluscs, phosphatic brachiopods, the bradoriid Indiana? sp., and Lapworthella 

cornu, suggesting possible correlation with the D. odyssei Zone assemblages in the Arrowie 

Basin. This correlation is further corroborated by the presence of Rhombocorniculum 

cancellatum in the Gislöv Formation (CBS personal observation). 

In the Mickwitzia Sandstone of south-central Sweden, Mickwitzia monilifera 

(Linnarsson, 1869) and M. pretiosa Walcott, 1908 (which are probably synonyms) co-occur 

with shelly fossils such as Mobergerella sp., Volborthella tenuis Schmidt, 1888 and 

Torellella laevigata (Linnarsson, 1873), in addition to a variety of ichnotaxa (Jensen, 1990; 

1993). The Mickwitzia Sandstone has been placed in the Schmidtiellus mickwitzi or Holmia 

inusitata biozones (Jensen, 1990), which Zang et al. (2007) correlated with pre-trilobitic to P. 

janeae Zone strata in South Australia based on acritarchs. Occurrences of Mickwitzia in the 

Arrowie Basin are restricted to the D. odyssei Zone (AJX-M, Betts et al., 2016b, fig. 2; 

SCYW-791A, Fig. 2). However, fragmentary material precludes species assignment, thus 

direct correlation of the Mickwitzia Sandstone faunas with those of the D. odyssei Zone 

remains uncertain. 

 

5.2.7 Antarctica 

On the East Gondwanan margin, diverse assemblages of shelly fossils from the upper 

Shackleton Limestone in the Transantarctic Mountains can be easily correlated with those of 

the D. odyssei Zone in South Australia. Dailyatia odyssei, D. braddocki Evans and Rowell, 

1990 and Kennardia spp. were recovered from the central Transantarctic Mountains (Evans 

and Rowell, 1990). Also, a recently recovered fauna from the Holyoake Range includes D. 

odyssei, Cambroclavus absonus, the linguliformean brachiopods Eodicellomus elkaniiformis, 

Eohadrotreta sp., Eoobolus spp., and Karathele yorkensis, and fragmentary remains of the 

spinose bradoriid Spinospitella coronata (Brock et al., 2012). Additional faunal elements 

include the helcionelloid molluscs Figurina sp., Parailsanella sp., Pelagiella sp., Pojetaia 

runnegari Jell, 1980, Obtusoconus sp., and Yochelcionella sp., as well as abundant hyoliths, 

especially Cupitheca holocyclata Bengtson in Bengtson et al., 1990. This assemblage 
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provides direct correlation with the D. odyssei Zone faunas in the Arrowie Basin (particularly 

those from the MMF and 10MS sections).  

This newly discovered assemblage from the Holyoake Range (Brock et al., 2012) is 

also remarkably similar to a fauna described from exotic limestone clasts within the Miocene 

Cape Melville Formation on King George Island, West Antarctica (Holmer et al., 1996; 

Wrona 2003, 2004, 2009). This fauna includes the tommotiids D. odyssei (= D. ajax sensu 

Wrona, 2004; synonymised by Skovsted et al. [2015a]), and Kelanella (= L. fasciculata sensu 

Wrona 2003, 2009; synonymised by Devaere et al. [2014]). Bradoriids such as Albrunnicola 

bengtsoni, Liangshanella birkenmajeri Wrona, 2009, and Mongolitubulus squamifer were 

also recovered from these erratics, in addition to a diverse molluscan assemblage, including 

Anabarella cf. argus Runnegar in Bengtson et al., 1990, Beshtashella tortilis Missarzhevsky 

in Missarzhevsky and Mambetov 1981, Paraconus cf. staitorum Runnegar in Bengtson et al., 

1990, Pelagiella madiensis (Zhou and Xiao, 1984), and Yochelcionella sp., as well as 

abundant hyoliths and halkieriid sclerites (Wrona, 2009).  

Wrona (2009) recognised the close similarity of the King George Island fauna to 

assemblages described from the Stansbury Basin (Gravestock et al., 2001), and suggested that 

its age was approximately equivalent to the P. tatei Zone (= lower D. odyssei Zone). 

However, based on the stratigraphic ranges of some conspecifics in the Arrowie Basin, for 

example, Beshtashella tortilis in the MMF and NB sections, it is likely that the age of the 

King George Island fauna extends into the P. bunyerooensis Zone portion of the D. odyssei 

Zone. Notwithstanding, it is important to note that the shelly fossils from the various erratic 

boulders of the Cape Melville Formation may represent a mix of assemblages from different 

biozones.  

Evans (1992) reported the macromollusc Marocella mira from the Shackleton 

Limestone in the Transantarctic Mountains. Marocella mira occurs in the Mernmerna 

Formation and Oraparinna Shale (mid-upper D. odyssei Zone) in the Flinders Ranges 

(Skovsted et al., 2007; Topper et al., 2009; Jacquet and Brock, 2015). In the MMF section, M. 

mira has a range of 27.8 m through the P. bunyerooensis Zone (Fig. 5, Appendix 4; Topper et 

al., 2009). In the CR2 (Jacquet and Brock 2015, fig. 2) and ER9 (Fig. 3) sections, M. mira co-

occurs with P. janeae, Serrodiscus gravestocki and Atops rupertensis, indicating a P. janeae 

Zone age.  
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5.2.8 West Gondwana 

The Cambrian shelly fossil record of Morocco has rather limited faunal ties with 

South Australia. A notable exception includes Marocella mira  from the upper Tatelt 

Formation (Hupeolenus Zone) and the Brèche à Micmacca Member (Marocconus notabilis 

Zone) in the Jbel Wawrmast Formation in the High Atlas Mountains (Geyer and Landing, 

2006; Betts, personal observation). Lapworthella vandali Landing, Geyer and Heldmaier, 

1995 was also recovered from the Brèche à Micmacca Member in the Jbel Wawrmast 

Formation (Landing et al., 1995). The age of these occurrences is likely to be closer to the 

Cambrian Series 2–3 boundary (see Landing et al., 2013), hence are younger than 

occurrences of M. mira and Lapworthella fasciculata in South Australia.  

Shelly faunal connections between the lower Cambrian of Spain and South Australia 

are also sparse. Topper et al. (2009) noted that Marocella morenensis from the Sierra Morena 

in Spain (Marianian Stage; in part, equivalent to the Banian in Morocco, the Dyeran in 

Laurentia and the Botoman in Siberia; Liñán et al., 2015) (Yochelson and Gil Cid, 1984) may 

be a junior synonym of M. mira. Interestingly, the Spanish localities that have produced 

specimens of M. morenensis also host the trilobites Alanisia guillermoi and Serrodiscus cf. S. 

speciosus (Yochelson and Gil Cid, 1984). In South Australia, A. guillermoi is restricted to the 

P. huoi and P. tatei trilobites zones, whereas Serrodiscus gravestocki occurs only in the P. 

janeae trilobite Zone (Figs 3, 4; Jell in Bengtson et al., 1990). Marocella also occurs in the 

Marianian-Bilbilian Láncara Formation in north-west Spain with other molluscs including 

Mackinnonia cf. rostrata, Pelagiella subangulata and Yochelcionella (Liñán et al., 2004; 

Wotte, 2006). Other shelly fossils from this succession include Hadimopanella oezgueli 

(Liñán et al., 2004). In South Australia, Mackinnonia and Pelagiella range into the D. odyssei 

Zone from the M. etheridgei Zone, however Yochelcionella and Hadimopanella are restricted 

to the D. odyssei Zone (Figs. 4-6). These trilobite, mollusc and other shelly fossil 

occurrences, coupled with the known stratigraphic range of M. mira from the Arrowie Basin 

(discussed above), provides a tentative and relatively broad correlation of part of the 

Marianian Stage with the D. odyssei Zone in South Australia.  

Cambrian shelly faunas containing tommotiids (e.g., Kelanella), brachiopods (e.g., 

Eoobolus), trilobites (e.g., Serrodiscus), bradoriids, and a variety of micromolluscs (including 

Pelagiella subangulata and Pojetaia runnegari) have also been documented from the 

southern Montagne Noire in France (Devaere et al., 2014) and the Görlitz Syncline of eastern 
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Germany (Elicki, 1994, 1996, 2007). However, similarities with South Australian 

assemblages from the D. odyssei Zone are largely at the generic level, thus making 

correlation difficult. 

 

6. CONCLUSION 

This study emphasises the importance of detailed stratigraphic sampling and rigorous 

taxonomic work to underpin a robust and repeatable biostratigraphy. Extensive recent 

palaeobiological and systematic investigations into early Cambrian shelly fossils from South 

Australia have laid the foundation for introducing the new biostratigraphic scheme (Brock 

and Paterson, 2004; Skovsted et al., 2006, 2008, 2009a,b,c, 2011a,b, 2014, 2015a, b, 2016; 

Topper et al., 2007, 2009, 2010, 2011a, b, 2013a; Larsson et al., 2014; Betts et al., 2014, 

2016a). Herein, we add to the known diversity of shelly taxa from the Arrowie Basin and 

describe the oldest known acrotretoid brachiopod from Australia, Eohadrotreta sp. cf. E. 

zhenbaensis, which is also the first record of the genus in Australia. Four new bradoriid 

species and three new genera are documented:  Acutobalteus sinuosus gen. et sp. nov., 

Eozhexiella adnyamathanha gen. et sp. nov., Manawarra jonesi gen. et sp. nov., and 

Mongolitubulus decensus sp. nov. 

Stratigraphic ranges of key tommotiids, brachiopods, molluscs, arthropods and 

problematic forms have been determined from across the Arrowie Basin and have enabled 

development of three well-resolved shelly fossil biozones that span the Terreneuvian, Stage 2 

to Series 2, Stages 3–4: the Kulparina rostrata, Micrina etheridgei and Dailyatia odyssei 

zones (Betts et al. 2016b,c; herein). These shelly fossil zones allow robust correlation of 

strata across the Arrowie Basin and with strata in neighbouring basins such as the Stansbury, 

Georgina, Officer and Amadeus basins. In addition, despite significant provincialism of 

faunas, global correlation of the succession in the Arrowie Basin is now dramatically 

improved. Terranes such as Avalonia and Baltica have a sporadic early Cambrian fossil 

record, which limits opportunities for correlation. Correlations with these and other regions 

(e.g., Siberia) are based mostly on genera, and thus must be reinforced with additional fossil 

data or other temporal proxies (e.g. isotope chemostratigraphy). However more robust, 

species-level correlation is possible between lower Cambrian strata in South Australia and 

successions in North and South China, Antarctica, West Gondwana and Laurentia. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

32 

 

This study (in conjunction with Betts et al., 2016b) represents the first broad-scale, 

temporally controlled, biostratigraphic analysis of early Cambrian shelly fauna from the 

Arrowie Basin, South Australia. Synthesised data from a total of 21 measured stratigraphic 

sections and drill cores (Betts et al. 2016b and herein) illustrate the vast wealth of information 

preserved in the lower Cambrian successions in the Arrowie Basin. The biostratigraphic 

scheme demonstrates unequivocally the correlative value of early Cambrian shelly faunas, 

and provides a reliable means of correlating South Australian lower Cambrian successions for 

the first time. 

 

7. SYSTEMATIC PALAEONTOLOGY 

Figured specimens have been allocated SAM P numbers and are housed in the South 

Australian Museum (palaeontological collections). Eohadrotreta sp. cf. E. zhenbaensis is 

described by GAB and all bradoriids are described by MJB, except for Acutobalteus sinuosus 

gen. et sp. nov. and Liangshanella sayutinae, which are described by SMJ and MJB. 

 

Phylum BRACHIOPODA (Duméril, 1806) 

Order ACROTRETIDA Kuhn, 1949 

Superfamily ACROTRETOIDEA Schuchert, 1893 

Family ACROTRETIDAE Schuchert, 1893 

Eohadrotreta Li and Holmer, 2004 

Type species. Eohadrotreta zhenbaensis Li and Holmer, 2004, p. 204 from the lower 

Shuijingtuo Formation, Qiongzhusian Stage, Xiaoyang section, South Shaanxi, China. 

Other species included. Eohadrotreta zhuijiahensis Li and Holmer 2004, p. 208, fig. 14A-O, 

from the Guojiaba Formation, Fucheng section southern Shaanxi, PR China. Eohadrotreta sp. 

cf. E. zhenbaensis from the upper Mernmerna Formation, 10MS section, central Flinders 

Ranges, South Australia. 

Diagnosis. See Li and Holmer, (2004, p. 204). 
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Discussion. The taxon recovered from South Australia shares very similar dimensions, 

external ornament and other gross morphological features of Eohadrotreta Li and Holmer 

(2004) from the Lower Cambrian of Shaanxi Province in China. However, the presence of 

apical pits in the ventral valve and a poorly developed median septum that does not appear to 

extend beyond 50% valve length in the Australian taxon differs slightly from the concept of 

Eohadrotreta as outlined by Li and Holmer (2004). In addition, no specimens in the 

Australian collections display the open, unrestricted notch-like foramen characteristic of 

juvenile specimens of E. zhenbaensis, though the foramen has a very similar shape, cuts the 

posterior portion of the larval shell to the same extent and has a similarly shallow intertrough 

(compare fig 15A-D, H with Li and Holmer 2004, fig. 12A-D, F-G).  

 

Eohadrotreta sp. cf. E. zhenbaensis Li and Holmer, 2004 (Fig. 15A-O) 

Material. 20 dorsal valves and 12 ventral valves from 10MS/515.0, 10MS/541.0, 

10MS/547.3, 10MS/551.5, 10MS/571.2 in the upper Mernmerna Formation and Oraparinna 

Shale, ranging from 476.3 to 526.8 m true thickness above the base of the section.  

Description. Shell weakly ventribiconvex, subcircular to slightly transversely ovoid in 

outline. Larval shell poorly preserved in most specimens, averaging 0.18 mm in width with 

tiny non-overlapping, concave, circular pits about 1-2 µm across. External ornament of shell 

with well-developed, closely packed concentric growth filae giving a wrinkled effect to the 

surface of larger specimens. In mature specimens the concentric ornament becomes more 

imbricated with step-like concentric lamellae developed towards shell margin. Ventral valve 

79% as long as wide (n = 5); maximum width near midvalve. Ventral valve low, broadly 

conical with steeply to moderately procline pseudointerarea hosting a broad, shallow 

intertrough. Pedicle foramen elongately oval to pyriform in shape, not enclosed within larval 

shell; foramen with average width 0.08 mm, length 0.10 mm. Ventral valve interior with a 

pair of small, shallow apical pits; apical process lacking.  

Dorsal valve gently convex, on average 85% as long as wide. Pseudointerarea short, 

orthocline, occupying 40% of shell width. Median groove broad, shallow, well defined with 

distinct flexure lines, occupying on average 80% of pseudointerarea width. Dorsal median 

buttress well developed, originating directly below median groove and extending anteriorly to 

approximately 45-55% shell width as a very low median ridge; the anterior half of the ridge is 
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often little more than a low swelling. Cardinal muscle scars large, elongately ovoid, 

extending 30-35% shell length.  

Shell structure. Shell structure is typical acrotretid columnar structure (Fig. 15O). 

Discussion. Eohadrotreta zhenbaensis occurs with an endemic assemblage of phosphatic 

lingulifornean taxa including Palaeobolus liantuoensis Wang, Lingulellotreta malongensis 

(Rong), and Botsfordia minuta sp. nov. from the lower member of the Shuijingtuo Formation, 

Xiaoyang section, Shaanxi Province. Disconformably underlying this package in the 

Xiaoyang section is the Xihaoping Member which includes Eoobolus aff. viridis (Cobbold), 

Eoobolus? shaanxiensis, and Kyrshabaktella? sp., along with sponge spicules, molluscs, 

cambroclaves and hyolithelminths. A similar fauna derived from the Mernmerna Formation 

and Andamooka Limestone in South Australia was referred to as the “Eoobolus aff. viridus 

assemblage” by Jago et al. (2006) and included abundant Kyrshabaktella davidi with 

Eoobolus aff. viridis and Minlatonia tuckeri along with tommotiids and cambroclaves. This 

association is typical of the D. odyssei Zone fauna. This taxon represents the oldest acrotretid 

recovered from the lower Cambrian succession of South Australia.  

In erecting Eohadrotreta, Li and Holmer (2004) described two species: E. 

zhenbaensis (type species) from the lower Shuijingtuo Formation in the Xiaoyang section and 

E. zhujiahensis from the upper Guojiaba and basal Xiannudong formations from the Fucheng 

section, south Shaanxi, China. Both taxa are very similar in overall dimensions and shape, but 

E. zhujiahensis is distinguished by having a closed foramen at later ontogenetic stages, a 

lower conical ventral valve, and vestigial intertrough. It is possible that such minor 

differences could be within the range of normal intraspecific variation and if so, these taxa 

may prove to be synonymous. 

Eohadrotreta sp. cf. E. zhenbaensis from the Mernmerna Formation in the 10MS 

section is very similar in size, shape and ornament to the type species, E. zhenbaensis. The 

type species is described as “lacking a well-defined apical process and pits” (Li and Holmer 

2004, p. 207) and whilst Eohadrotreta sp. cf. E. zhenbaensis from South Australia lacks an 

apical process, it does possess a pair of shallow apical pits (Fig. 15B) (often filled and 

obscured by sedimentary material). 

The original diagnosis of E. zhenbaensis reports that the dorsal medium septum is 

“low” (Li and Holmer 2004, p. 204), but the corresponding description of the type species 
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indicates that the dorsal medium septum is “distinct” (Li and Holmer 2004, p. 207). In 

addition, the median septum of Eohadrotreta (based on E. zhenbaensis) is described as “well 

developed” by Holmer and Popov (2007). The Chinese and Australian taxa have a well-

developed median buttress (see dorsal valve interiors of E. zhenbaensis Li and Holmer 2004, 

fig. 11I-L and E. sp. cf. E. zhenbaensis from South Australia (Fig. 15E-F,I, K-L). In both 

species, the anterior half of the median ridge becomes little more than a low swelling, often 

only perceptible in oblique view. The median ridge in the Chinese species does appear to 

extend a little further beyond mid-valve than in the Australian species, but this is unlikely to 

be a taxonomically significant feature. 

There are very strong morphological similarities between the Australian taxon and the 

Chinese type species, with the only apparent difference being the presence of shallow apical 

pits in the Australian material. Whilst apical pits are clearly absent in the juvenile specimen 

of E. zhenbaensis illustrated by Li and Holmer (2004, fig. 12A-B), no interiors of mature 

ventral valves are illustrated, making direct comparison with the mature Australian shells 

difficult.  

Distribution. Dailyatia odyssei Zone; P. janeae trilobite Zone, upper Mermmerna Formation 

(10MS section), Bunkers Graben, Flinders Ranges, South Australia. 

 

Phylum EUARTHROPODA Lankester, 1904 (see Ortega-Hernández, 2014) 

Order BRADORIIDA Raymond, 1935 

Family ?COMPTALUTIDAE Öpik, 1968  

 

Manawarra gen. nov. 

 

Type species. Manawarra jonesi gen. et sp. nov. 

Diagnosis. Shields up to 3.5 mm in length with a straight or slightly curved dorsal fold. 

Shields weakly to strongly postplete with pronounced V-shaped anterior sulcus. Circular to 

sub-circular anterior node sometimes present. Well-developed border, rounded or flat with 

smooth margin. Shields bear circular pits that do not penetrate carapace. Pits absent on 

anterior sulcus. 
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Etymology. From the Adnyamathanha Aboriginal language. Manawarra = native plum, in 

reference to the very round, inflated shields. 

Discussion. Manawarra gen. nov. from South Australia displays a suite of features 

characteristic of the Comptalutidae, such as a well-defined hinge line, a strong sulcus, 

continuous lateroadmarginal ridge, and strongly inflated shields with pitted ornament. 

However, the large size of these shields (up to ~3.5 mm) places them outside the maximum 

size range of comptalutids (2-2.5 mm long) (Hou et al., 2002). Hence, Manawarra gen. nov. 

is only tentatively assigned to this family. 

Manawarra gen. nov. exhibits a well-developed anterior sulcus and pitted shields that 

are also apparent in Euzepaera hunanensis Shu, 1990 (Shu, 1990, fig. 20). However, 

specimens of the latter are small (length under 1 mm), while the specimens from the Arrowie 

Basin attain ~3.5 mm in length. In addition, the Chinese material is not as strongly postplete 

as the specimens from South Australia. These differences may be ontogenetic, but E. 

hunanensis is Furongian in age and therefore unlikely to be related to Manawarra jonesi gen. 

et sp. nov.  

 

Manawarra jonesi gen. et sp. nov (Fig. 18A-K) 

?2006 Euzepaera sp.; Skovsted et al., p. 32, fig. 12C-H, non fig. 12A, B. 

2007 Euzepaera sp.; Topper et al., p. 90, fig. 12A-H. 

2011 Euzepaera sp.; Topper et al., fig. 7M. 

 

Holotype. Right shield SAM P53697 from NB/58.75, (Fig. 18J). 

 

Paratypes. Damaged right shield SAM P53692 from NB/66.6, (Fig. 18D, I) and conjoined 

specimen from NB/29.0, SAM P53691, (Fig. 18C). 

 

Type locality and horizon. Mernmerna Formation, NB section, Mt. Chambers area, eastern 

Flinders Ranges (Fig. 1), horizon NB/58.75, located 41.7 m above the base of the section 

(Fig. 10). 

 

Diagnosis. Shields large, dorsal fold straight or slightly curved in median part. Cardinal 

corners taper to points. Postplete with inflated shields. Anterior V-shaped sulcus well-

developed. Except for anterior sulcus, surface of shield covered by circular pits up to 29 µm 
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in diameter. Pits do not penetrate shell. Shield with wide border and smooth margin. Small 

spine on posterodorsal margin. 

 

Etymology. In recognition of Dr Peter Jones, for his contributions to study of Australian 

bradoriids and ostracods. 

 

Description. Large (up to 3.5 mm in length and 2.6 mm in height) inflated, postplete shields. 

Prominent V-shaped anterior sulcus gives a very rounded shape to the “body” of the shield 

(Fig. 18A-C, F, G, I-K). Dorsal fold is usually straight, sometimes with a slight cusp. 

Cardinal corners taper to points. Anterior cardinal spine joins convex anteroventral margin, 

and posterior cardinal spine joins concave posterodorsal margin. Ventral margin and 

posteroventral margin rounded. Short spine is present on posterodorsal margin (Fig. 18G). 

Wide border (~200 µm width) with a smooth margin that connects anterior and posterior 

cardinal corners. External ornament consists of circular pits (up to 29 µm in diameter) (Fig. 

18D). Pits do not completely penetrate shield and do not occur on the anterior sulcus. 

Internally, bottom of pits covered by domed “phosphatic pads” (Topper et al. 2007, p. 90, 

(fig. 18H). 

 

Material. 289 isolated shields, in addition to two articulated specimens, and an abundance of 

fragmentary material. Stratigraphic range extends from the M. etheridgei Zone (ER9, BHG, 

RC sections) to the D. odyssei Zone (MMF, DBS, BHG, RC, 10MS, NB and PIN sections). 

In the DBS section, M. jonesi gen. et sp. nov. occurs with trilobites indicative of the P. janeae 

Zone. See Table 1 for specimen counts. 

 

Discussion. The fragmentary nature of previously illustrated material by Skovsted et al. 

(2006) and Topper et al. (2007, 2011b) precluded definitive taxonomic identification of M. 

jonesi gen. et sp. nov. Additional material available for the present study is also often 

fragmentary due to the fragile nature of the large shields. However, the large number of 

specimens recovered from seven separate stratigraphic sections now allows a full description 

of the taxon. 

Many bradoriid species exhibit pitted ornament. However, pits in M. jonesi gen. et sp. 

nov. are different to those in Bradoria scrutator (Matthew, 1899), for example, where they 

are only visible after the diagnostic, concentrically striated external ornament is sloughed 
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away (Siveter and Williams, 1997, pl. 1, figs 1-14). Analysis of over 280 acid-processed 

specimens from the Arrowie Basin has not revealed additional carapace layers covering the 

pits in M. jonesi gen. et sp. nov. and thus is likely to be the true exterior texture of the shields.  

Siveter and Williams (1997, pl. 2, fig. 3) described a bradoriid from the Hanford 

Brook Formation in New Brunswick with pits covering an inflated shield and assigned it to 

Bradoria? oculata (Matthew, 1895). The specimen is incomplete, but shows a straight dorsal 

fold and a small spine at the posterodorsal margin. It also seems to show a smooth anterior 

sulcus, similar to that in M. jonesi gen. et sp. nov. Bradoria? oculata was described as 

bearing a small anterodorsal node, although this may be an artefact resulting from the style of 

preservation and method of recovery (crack-out). In addition, the size of this specimen (~3.5 

mm length) is similar to that of M. jonesi gen. et sp. nov. Siveter and Williams (1997) noted 

that this specimen is from strata of Protolenus Zone (= Botoman) age in New Brunswick 

(older than occurrences of Bradoria scrutator). Manawarra jonesi gen. et sp. nov. occurs 

with P. janeae Zone trilobites (DBS section) and is approximately the same age as B.? 

oculata from New Brunswick; however, different styles of preservation and the limited 

number of specimens from New Brunswick makes further comparison difficult. 

Topper et al. (2007) included “sub-triangular” within the range of possible shield 

outlines of Euzepaera sp. (= M. jonesi gen. et sp. nov. herein) in the DBS section; however, 

this was the result of incorrectly extrapolating shape from fragmentary material. In addition, 

the specimen of Euzepaera sp. illustrated by Skovsted et al. (2006, fig. 12A, MMF section) 

has a complete ventral margin (dorsal fold not preserved), which is distinctly angular. While 

the margin is smooth, the border is narrow and exhibits a weak anterior lobe (also seen in 

Skovsted et al., 2006, fig. 12B). Hence, these specimens do not fit into the concept of M. 

jonesi gen. et sp. nov. However, fragments with pits, strong sulcus, internal phosphatic pads, 

and a straight dorsal margin (Skovsted et al., 2006, fig. 12C-H) indicate that M. jonesi gen. et 

sp. nov. possibly occurs in the MMF section. Better material needs to be recovered before 

this can be ascertained. 

 

Distribution. Micrina etheridgei to D. odyssei zones; Parabadiella huoi to Pararaia janeae 

trilobite zones. South Australia: Arrowie Basin, Flinders Ranges (Ajax and Wirrapowie 

Limestones, Mernmerna Formation). 

 

Eozhexiella gen. nov. 
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Type species. Eozhexiella adnyamathanha gen. et sp. nov. 

 

Diagnosis. Small laminated shields (under 1 mm) with straight dorsal fold. Circular pits (~5-

10 µm diameter) do not penetrate shields, and cover entire shield except for border or anterior 

node. Border up to ~50 µm wide with smooth margin. Weakly to strongly postplete. Anterior 

node variably developed. 

 

Etymology. Eo = early, and Zhexiella = similar-looking genus from the early Ordovician of 

the Zhejiang Province, South China (Shu, 1990, p. 44). 

 

Discussion. Eozhexiella gen. nov. from the Arrowie Basin has a similar pitted ornament to 

Manawarra gen. nov., but is much smaller and only weakly postplete (rather than clearly 

postplete), and does not have a prominent V-shaped anterior sulcus. Eozhexiella gen. nov. is 

similar to Zhexiella described by Shu (1990) from the early Ordovician of Zhejiang, South 

China, which is also a small, amplete to weakly postplete bradoriid bearing pits over the 

shields. Shu (1990, p. 44) described the free margin of Zhexiella as without a border; 

however, the figured material, whilst poorly preserved, shows evidence for a shallow furrow 

inside the margin (Shu, 1990, pl. 4, figs 1a, 2). 

Shu (1990) also noted that the pits in the shield of Zhexiella have an inverted conical 

shape, which is not the case in the South Australian material. In addition, Shu (1990) counted 

four layers in the carapace wall, which are not apparent in the specimens from South 

Australia. Transverse sectioning through the shields showed that they are only composed of 

two layers (Betts et al., 2016a, fig. 5). Sectioning also showed that the pits do not penetrate 

the shield and so are unlikely to be “capillary pores” as suggested by Shu (1990). In addition, 

Zhexiella is from the Lower Ordovician Yinzhubu Formation (Tremadocian), and is much 

younger than the specimens from South Australia (Cambrian Series 2, Stages 3-4). Hence, 

they are unlikely to be closely related, and specimens from the Arrowie Basin are referred to 

Eozhexiella gen. nov. 

Bradoria duyunensis Zhang, 2007 from the mid-Cambrian Gaotai Formation of 

Guizhou has an inflated shield and pitted ornament like species of Euzepaera (Zhang, 2007, 

pl. 20, fig. 4-9), as well as Manawarra jonesi gen. nov., but an anterior sulcus is only very 

weakly developed in one specimen of B. duyunensis (Zhang, 2007, pl. 20, fig. 6), and is not 

readily apparent in other figured material. The pitting in B. duyenensis appears to cover the 
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majority of the shield, similar to that in Eozhexiella adnyamathanha gen. et sp. nov. The 

holotype of Bradoria duyunensis is only 1.57 mm long, which is much shorter than the 

maximum length cited for other members of the Bradoriidae (6–7 mm) (Siveter and 

Williams, 1997), but is larger than Eozhexiella adnyamathanha gen. et sp. nov. (which is <1 

mm in length). Bradoria duyunensis is also distinctly amplete with a sub-triangular outline, 

rather than weakly postplete and rounded like in Eozhexiella adnyamathanha gen. et sp. nov. 

Additionally, the anterior lobation in B. duyunensis is unclear. This is normally a diagnostic 

feature of Bradoria, suggesting that B. duyunensis may not be readily accommodated in this 

genus, nor Eozhexiella gen. nov. (based on the differences mentioned above).  

Melnikova (2003) described Euzepaera foveata Melnikova, 2003 from the middle and 

upper Cambrian of Kazakhstan. The illustrated specimens feature the distinctive pitting seen 

in other species of Euzepaera, as well as Eozhexiella and Zhexiella (Melnikova, 2003, pl. 11, 

figs. 1-3). However, E. foveata does not bear the distinctive, smooth, V-shaped sulcus 

characteristic of other Euzepaera species. One specimen figured by Melnikova (2003, pl. 11, 

fig. 1) has a structure that could be interpreted as an anterior sulcus, but this appears to be 

pitted and it is probably the result of damage to the shield, rather than representing a true 

morphological feature. Specimens of E. foveata from Kazakhstan do feature important 

characteristics also seen in Eozhexiella and Zhexiella, such as a ‘lip-like’ border and smooth 

margin, a pitted carapace, obtuse angles at the cardinal corners, and a very round outline.  

 

Eozhexiella adnyamathanha gen. et sp. nov. (Fig. 18L-W) 

2016a Euzepaera sp.; Betts et al., figs. 2A-K, 3A-H. 

 

Holotype. Conjoined specimen SAM P53272 from MOG/667.4, (Fig. 18Q). 

 

Paratypes. Conjoined specimens SAM P53271 and SAM P53703 from MOG/667.4 (Fig. 

18P, U). 

 

Type locality and horizon. Mernmerna Formation, MOG section, Flinders Ranges (Fig. 1), 

horizon MOG/667.4, located 393.4 m above the base of the section (Betts et al., 2016b, 

appendix 4). 
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Diagnosis. Small bradoriids with straight dorsal fold. Weakly amplete to postplete. Smooth, 

slightly rounded border entire between cardinal corners. Margin smooth. Well-developed 

duplicature. Pits (~5-10 µm diameter) cover shields except border. Pits do not penetrate 

carapace. Weak anterior node present or absent. 

 

Etymology. To honour the indigenous Adnyamathanha People of the Flinders Ranges. 

Adnyamathanha translated means “hills or rock people”. Pronounced “Uhdt-na-mut-na”. 

 

Description. Small bradoriids (length ~700 µm, height ~500 µm) with a straight dorsal fold. 

Weakly (almost amplete) to strongly postplete in outline. Obtuse angles at both cardinal 

corners. Anterior cardinal corner weakly obtuse, joining rounded anteroventral margin. 

Obtuse angle at posterior cardinal corner joins rounded posterodorsal margin. Ventral margin 

and posteroventral margin rounded. Border smooth (~50 µm wide). Duplicature well-

developed (Betts et al., 2016a, fig. 3C). Pits ~5–10 mm diameter occur over shield, except on 

border, and do not penetrate shield (Betts et al. 2016a, figs 2G, 3D, F). A round node is 

variably developed at the anterior of the shield. If present, node does not bear pits (Fig. 18L-

O, V-W). 

 

Material. 13 specimens (eight conjoined and five separate shields) from the Mernmerna 

Formation (D. odyssei Zone), Flinders Ranges, South Australia (Fig. 18L-W, SAM P51224, 

SAMP53271-53274, SAM P53699-53703). 

 

Discussion. Most specimens of E. adnyamathanha from the Arrowie Basin are well-

preserved with conjoined shields closed, or with a ventral gape of up to 90⁰. Many specimens 

from the MOG section remain conjoined despite sustaining damage to the shields, which are 

often bent and dented (Fig. 19U, V). Morphologically, E. adnyamathanha gen. et sp. nov. is 

very similar to the early Ordovician Zhexiella venusta Shu, 1990 from South China (many 

specimens of which are also preserved with conjoined shields closed). However, important 

differences in shield structure and pit morphology (discussed above), in addition to their very 

disparate stratigraphic ranges, indicate that the South Australian specimens are better placed 

in a separate genus. 

Four specimens from the Arrowie Basin feature a circular anterior node (~100 µm 

diameter) (Fig. 18L-O). This node is weakly developed, and is delineated most clearly by the 

absence of circular surface pits (Fig. 18W). These specimens display all of the morphological 
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features that are otherwise characteristic of E. adnyamathanha gen. et sp. nov., which 

typically lack anterior nodes. As these four specimens are similar in size to other examples of 

E. adnyamathanha gen. et sp. nov., it is unlikely to be an ontogenetic feature of this taxon. It 

is possible that the anterior node is a sexually dimorphic character, but its function remains an 

open question. 

A similar taxon from the Arrowie Basin, assigned herein as Eozhexiella sp. (Fig. 20O-

R), features pitted ornament across the shield. The available material is fragmentary, but 

these specimens seem to have a smooth border and margin, and lack an anterior sulcus. The 

pitted ornament differs from that in Manawarra jonesi gen. et sp. nov. and Eozhexiella 

adnyamathanha gen. et sp. nov. Pits appear shallow (though most material is abraded), and 

bear a short, rounded protuberance at the base. Only six specimens with these features have 

been recovered (mostly from CR1 section, and one specimen from MOG; Betts et al., 2016b), 

and none are sufficiently well preserved to make a confident taxonomic assignment. Their 

occurrence is stratigraphically quite low (confined to the M. etheridgei Zone), and they may 

become an important correlation tool if better preserved specimens can be recovered. 

 

Distribution. Dailyatia odyssei Zone (early Cambrian Series 2, Stage 3), Mernmerna 

Formation, Bunkers Graben, Arrowie Syncline and Mt. Chambers region in the Flinders 

Ranges, South Australia 

 

Family HIPPONICHARIONIDAE Sylvester-Bradley, 1961  

Acutobalteus gen. nov. 

Type species. Acutobalteus sinuosus gen. et sp. nov. 

Diagnosis. Valves small, subamplete and laterally compressed. Well defined straight dorsal 

fold; lacking lateroadmarginal ridge. Sharp-edged, thin confluent anterior and posterior lobes 

with highest relief near dorsal margin and distinctly sinuous S-shaped bend in posterior lobe. 

Small spine present behind posterior lobe, adjacent to posterodorsal curve of valve margin. 

Outer surface covered by pustulose ornament. 

Etymology. Derived from the Latin acuto = sharp, and balteus = belt. In reference to the 

sharp-edged confluent lobation on the shield. 
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Discussion. Acutobalteus sinuosus gen. et sp. nov. displays diagnostic characteristics of the 

Hipponicharionidae Sylvester-Bradley, 1961, such as a subamplete outline and confluent 

lobation on the shields, but is unlike any of the established genera. It can be distinguished 

from other hipponicharionids by the presence of a characteristic S-shaped posterior lobe. 

Furthermore, most hipponicharionids exhibit at least one distinct central lobe, which may be 

present as a slight swelling, but this feature is not present in Acutobalteus sinuosus. 

 

Acutobalteus sinuosus gen. et sp. nov. (Fig. 19A-G) 

Holotype. Conjoined specimen SAM P 53704 from NB/67.3, (Fig. 19A). 

Paratypes. Left shields SAMP 53705 and 53706 from NB/66.6 (Fig. 19B-C). 

Type locality and horizon. Mernmerna Formation, NB section, Mt. Chambers area, eastern 

Flinders Ranges (Fig. 1), horizon NB/66.6, located 47.04 m above the base of the section 

(Fig. 10). 

Diagnosis. As for genus. 

Etymology. Latin, sinuosus = bent or curved. In reference to the characteristic S-shape of the 

posterior lobe. 

Description. Carapace compressed, small, maximum length ~900 µm and height ~700 µm. 

Subamplete with subtriangular outline in lateral view, straight dorsal fold. Anterior cardinal 

corner obtuse and anteroventral margin gently curved. Posterodorsal margin straight, slightly 

convex or concave, posteroventral margin rounded. Small rounded node at posterodorsal 

margin. Anterior and posterior lobes are narrow but well-developed and form a confluent 

ridge (average of 143.5 µm between lobe and valve margin). Anterior lobe is parallel with the 

valve margin and forms a sharp ridge with high relief, which gradually becomes less 

prominent ventrally. Ridge follows shield margin and becomes U-shaped ventrally, merging 

with the base of the posterior lobe at the most convex part of the posteroventral margin. 

Posterior lobe forms a sharp and narrow S-shaped ridge with higher relief than the anterior 

lobe. Shield surface between lobes mostly flat, with microornament consisting of closely 

spaced pustules. Larger pustules occur between the carapace margin and confluent lobation, 

and smaller pustules occur on central parts of the shields. Both anterior and posterior lobes 

are ornamented with larger, regularly spaced pustules along apex of ridge (Fig. 19G).  
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Material. Total of 12 specimens; two conjoined and six separate shields from NB/66.6, three 

conjoined specimens form NB/67.3, and a single shield from 10MS/130.0. All Mernmerna 

Formation (D. odyssei Zone). 

Discussion. Numerous hipponicharionid taxa display confluent anterior and posterior lobes, 

but Acutobalteus sinuosus gen. et sp. nov. is unique in possessing sharp, narrow, confluent 

ridges and a conspicuous S-shaped bend in the posterior lobe (Fig. 19A-D). Acutobalteus 

sinuosus gen. et sp. nov. bears some resemblance to Bicarinella evansi from lower Cambrian 

strata in the Schneider Hills, Antarctica (Rode et al., 2003, figs 2, 3). Bicarinella evansi has 

anterior and posterior lobes that form sharp, narrow ridges, and the posterior lobe shows very 

slight, sinuous flexure in some specimens. However, the carapace of the Antarctic species is 

more convex and lacks the confluent lobation present in A. sinuosus. Other bradoriids, 

including Albrunnicola bengtsoni Hinz-Schallreuter, 1993 from Antarctica (Wrona 2009) and 

A. bengtsoni, Hipponicharion australis and Neokunmingella moroensis from South Australia 

are similar to Acutobalteus sinuosus gen. et sp. nov. in that they have very compressed 

carapaces. However, lobation in these species is not confluent and so can be distinguished 

easily from the new taxon.  

Distribution. Mernmerna Formation (D. odyssei Zone). In the 10MS section, a single 

specimen occurs relatively low in the D. odyssei Zone (Linns Springs Member, probable P. 

tatei trilobite Zone). In the NB section, material is likely to occur within the P. bunyerooensis 

- P. janeae zones (based on a similar bradoriid assemblage to that in DBS) (Fig. 13). 

 

Family SVEALUTIDAE Öpik, 1968  

 

Liangshanella Huo, 1956 

 

Type species. Liangshanella liangshanensis Huo, 1956. 

 

Diagnosis. See Zhang (2007, p. 138). 

 

Discussion. Specimens from the NB section display a distinct marginal rim that is separated 

from the valve wall by a narrow furrow (Fig. 20B, D), which is a diagnostic feature of the 

Svealutidae Öpik, 1968. The Bradoriidae Matthew, 1902 are morphologically similar to the 
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Svealutidae, but lack a furrow inside the margin and are usually larger (up to 7 mm in length) 

(Siveter and Williams 1997; Zhang 2007). The specimens from the NB section reach a 

maximum length of 1.44 mm and are therefore closer to the smaller size range of svealutids 

(2–10 mm) (Williams et al., 2007; Zhang 2007).  

 

Liangshanella sayutinae (Melnikova, 1988) (Fig. 20A-H) 

 

1988 Bradoria sayutinae; Melnikova, p. 114, fig. 1a-d. 

1997 Liangshanella? sayutinae (Melnikova); Melnikova et al., pl. 2, fig. 7. 

2006 Liangshanella sayutinae (Melnikova); Skovsted, p. 1095, figs. 6.4-6.6, 7.8-7.10. 

 

Diagnosis. Ovate shields postplete with straight dorsal fold. Shields convex with continuous 

border around smooth free margin. Anterior and posterior cardinal corners oblique. 

Anteroventral margin curved, ventral margin straight or weakly curved. Posterodorsal margin 

straight or with weak curve, maximum convexity around posteroventral margin. Shield 

exterior smooth, or with faint wrinkles. Small spine at posterodorsal margin variously 

developed. 

 

Description. Lateral outline ovate, moderately postplete, maximum length 1443 μm and 

height 1225 μm, with a straight hinge line and strongly inflated carapace. Obtuse angle at 

both cardinal corners. Smooth curve from anterodorsal margin to posterodorsal margin. 

External surface smooth, although some specimens display wrinkle patterns or cancellate 

ridges. One specimen displays a weak, reticulate ornament on the flat portion of the border 

(Fig. 20D). Border demarcated by a continuous shallow furrow is widest at anteroventral and 

posterodorsal margins. The extravagant “duplicature-like” structure on the interior of a single 

specimen (Fig. 20C, H) exhibits the network of wrinkles as seen on the exterior borders of 

other specimens (Fig. 20D) and is hence more likely to be remains of the second valve still 

attached along the free margin. Internal valve surface covered in regularly distributed shallow 

sub-circular depressions (Fig. 20H).  

 

Material. 42 valves and an abundance of fragmentary material recovered from the NB 

section. Stratigraphic range extends from NB/1.0 (0.85 m above the base of the section) to 

NB/177.1 (147.8 m above the base) in the upper Mernmerna Formation (D. odyssei Zone). 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

46 

 

Discussion. The NB section material bears close morphological similarity to specimens 

assigned to L. sayutinae by Skovsted (2006, fig. 6.4-6.6, 6.8 - 6.10) from the lower Cambrian 

Bastion Formation. The specimens from Greenland display a straight dorsal fold, postplete 

outline, well-developed border and smooth shield with occasional wrinkles. However, the 

Greenlandic specimens possess a small spine on the posterodorsal margin (Skovsted 2006, 

fig. 6.8, 6.9). Specimens from the NB section with well-preserved margins are rare, although 

the few specimens with intact margins (Fig. 20A, C, F) do not show evidence of a 

posterodorsal spine. The posterodorsal margin is also not well-preserved in the figured type 

specimen of L. sayutinae (Melnikova et al., 1997, pl. 2, fig. 7), so the presence of a 

posterodorsal spine cannot be confirmed. 

Liangshanella sayutinae from the NB section can be distinguished from L. 

circumbolina Topper, Skovsted, Brock and Paterson, 2011 from the AJX-M section (Betts et 

al., 2016b, Appendix 1), the latter bearing distinctive shallow depressions with circular 

perforations surrounded by packed papillate structures on the external surface of the shield 

(Topper et al. 2011b, fig. 5). The external surface of L. sayutinae is smooth (although 

wrinkles may occur in the exterior layer of the shield), and weak reticulation can sometimes 

be observed on the lateroadmarginal border, neither of which is observed in L. circumbolina. 

Liangshanella sayutinae bears strong similarities with Liangshanella birkenmajeri 

Wrona, 2009 from glacial erratics on King George Island, Antarctica (Wrona 2009, fig. 10). 

Liangshanella sayutinae and L. birkenmajeri share similar overall shape and a well-

developed border around the free margin. However, the dorsal fold in L. birkenmajeri is 

curved, not straight as in L. sayutinae, and the furrow defining the border around the free 

margin appears better developed in L. birkenmajeri (though this may be a preservational 

artefact). The surface of the shield in L. birkenmajeri is also not well preserved, precluding 

comparisons of external ornament. 

 

Occurrence: Bystraya Formation, Eastern Trans-Baikal region in Siberia. Bastion Formation, 

north-east Greenland. Mernmerna Formation, Mt. Chambers region, eastern Flinders Ranges, 

South Australia; D. odyssei Zone (P. bunyerooensis trilobite Zone). 

 

Family MONGOLITUBULIDAE Topper, Skovsted, Harper and Ahlberg, 2013 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

47 

 

Mongolitubulus Missarzhevsky, 1977 

 

Type Species. Mongolitubulus squamifer Missarzhevsky, 1977. 

Amended Diagnosis. The diagnosis of Topper et al. (2013b, p. 73) is emended to include 

amplete within the range of possible valve outlines to accommodate Mongolitubulus 

decensus sp. nov. 

Discussion. Spines of Mongolitubulus are often found in isolation and have previously been 

interpreted as protoconodonts (Missarzhevsky, 1977) hyolithelminths (Rozanov, 1986), 

lobopodians (Dzik, 2003; Caron et al., 2013), and trilobites (Li et al., 2012). The bradoriid 

origin of at least some of these spines was confirmed with the discovery of Mongolitubulus 

unispinosa Topper, Skovsted, Brock and Paterson, 2007, from the Mernmerna Formation in 

the Donkey Bore Syncline, central Flinders Ranges (Topper et al., 2007) (DBS section, Fig. 

4). This species bears a single spine emerging from the central portion of the shield, which is 

at least as long at the dorsal fold. Mongolitubulus spines possess scales, the arrangement of 

which is highly variable. Variation in spine shape and microornament, as well as the position 

and number of spines may be used to distinguish species, but such variation may also be 

ontogenetic.  

 

Mongolitubulus descensus sp. nov. (Fig. 19N-S) 

Holotype. Left shield with spine base SAM P53711 (Fig. 19N-P). 

Type locality and horizon. CR1/589.7 (Wirrapowie Limestone, M. etheridgei Zone) (Betts et 

al., 2016b, fig. 11, appendix 10). 

Diagnosis. Shield amplete or very weakly postplete. Dorsal fold straight. Margins smooth, 

entire between cardinal corners. Both cardinal corners obtuse. Single spine (~100 µm 

diameter) located near ventral margin where margin is most strongly convex. Spine at low 

angle to shield (<45°), curving down toward ventral margin and away from shield surface. 

Shield surface smooth. 

 

Etymology. Latin descensus = to decend; for the initial downward direction of the spine. 
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Description. Valves amplete to very weakly postplete; subtriangular in outline. Dorsal fold 

straight. Obtuse angles at both cardinal corners with convex anteroventral and posterodorsal 

margins. Single, hollow spine (~100 µm diameter) located near ventral margin. Spine with 

low angle to shield, curving away from shield margin and back toward dorsum. Shield 

beneath spine depressed, creating a V-shaped trough around spine base that decreases in 

depth toward the anterior and posterior. Shield smooth, slightly domed over central part. 

Spine base with pustulose ornament that smooths toward shield. 

 

Material. Two specimens from the Wirrapowie Limestone (Micrina etheridgei Zone) in the 

Flinders Ranges. Both specimens are single left shields, missing the majority of the single 

spine but retaining spine base. Specimens are derived from MOG/114.1 (63.7 m from the 

base of the section) and CR1/589.7 (approximate true thickness from base). See Betts et al. 

(2016b, figs 5, 11, appendices 4, 10). 

 

Discussion. The Mongolitubulidae is now well known from the early Cambrian of South 

Australia (Skovsted et al., 2006; Topper et al., 2007, 2011b; Betts et al., 2014). Taxa include 

globally distributed species such as M. squamifer (Topper et al., 2011b), M. henrikseni and 

Spinospitella coronata (Skovsted et al, 2006), linking strata from the Arrowie Basin with 

successions in Antarctica, South China, England, Greenland, Mongolia, and North America 

(Topper et al., 2007). Other species of Mongolitubulus currently restricted to Australia 

includes M. tunpere Smith, Brock, Paterson and Topper, 2014 from the Amadeus Basin 

(Stage 5), M. anthelios Betts, Topper, Valentine, Skovsted, Paterson and Brock, 2014, and M. 

unispinosa from the Arrowie Basin (Topper et al., 2007).  

Only two specimens of M. decensus are known (one each from the CR1 and MOG 

sections; M. etheridgei Zone; Betts et al., 2016b), and neither retain complete spines. 

Nevertheless, shield and spine base morphology are sufficiently distinctive to warrant 

recognition and description of a new species. Mongolitubulus decensus sp. nov. is similar to 

M. unispinosa in that both bear a single spine. They differ in the position of the spine on the 

shield; in M. unispinosa the spine is centrally located, whereas in M. decensus sp. nov. it is 

located closer to the ventral margin. However, it should be noted that the specimen illustrated 

by Topper et al. (2007, fig. 6A-F) exhibits some damage to the shield and the spine is bent 

back toward the dorsal fold, hence the natural position of the spine in relation to the shield is 

not well understood. 
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Mongolitubulus anthelios also has a single spine located centrally, but it extends 

perpendicularly from the shield, rather than at a low angle as in M. decensus sp. nov. (see 

Betts et al., 2014, fig. 8H). The free margin of the shields of Mongolitubulus anthelios is 

curved and bears a toothed ornament (Betts et al., 2014, fig. 8A, O). In contrast, the outline of 

M. decensus sp. nov. is sub-triangular and the shield margin is smooth. Mongolitubulus 

unialata Zhang, 2007 from the lower Cambrian Shuijingtuo Formation in central China also 

bears a single ornamented spine, although this is located behind an anterior node (Zhang, 

2007, 17, figs. 1-8), which is not present in the new taxon. Additionally, the shield outline of 

M. unialata is distinctly postplete, whereas the outline of M. decensus sp. nov. is sub-

triangular or very weakly postplete. 

As mentioned above, neither specimen of M. decensus sp. nov. has complete spines, 

so the distal morphology of which remains unknown. However, the spine base of the 

specimen from CR1 (Fig. 19N-P) is faintly pustulose. These pustules fade proximally, 

suggesting that the ornament may become more pronounced along the length of the spine. 

The specimen from MOG/114.1 was recovered with an isolated spine that bears well-

preserved ornament identical to that on spines of M. anthelios (larger rhomboid scales 

interspersed with more numerous stubby scales or pustules; see Betts et al. (2014, fig. 8). 

Whether this type of ornament also occurs in spines of M. decensus sp. nov. remains to be 

demonstrated with additional, more complete material. 

 

Distribution. Wirrapowie Limestone (M. etheridgei Zone), Chace Range CR1/589.7 

(approximate true thickness from base) and the Arrowie Syncline (MOG/114.1, 63.7 m from 

the base of the section) in the Flinders Ranges, South Australia. See Betts et al. (2016b, figs 

5, 11, appendices 4, 10). 

 

Family BRADORIIDAE Matthew, 1902 

Indiana Matthew, 1902 

Type species. Indiana lippa Matthew, 1902. 

Diagnosis. See Siveter and Williams (1997, p. 29). 

Indiana ?lippa (Fig. 20L-N) 
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Description. Elongate, postplete shields with gently rounded dorsal cusp. Medium-sized to 

large bradoriids (~3 mm length). Anterior cardinal corner acute, posterior cardinal corner 

obtuse. Shield with distinct retral swing. Anteroventral margin and ventral margin gently 

curved. Posterodorsal margin convex. Posteroventral margin strongly curved. Valve margin 

most convex at posterior. Short spine on posterior margin. Border and lateroadmarginal 

furrow both lacking. Shield surface is convex without nodes, lobes or sulci. External 

ornament covers the entire shield and appears to be granulose, though this may be a result of 

abrasion. 

Material. 46 specimens total; 43 shields and one specimen with both shields held together 

with matrix from MOG/240.0, two shields from MMT/138.2. 

Discussion. The concept of Indiana encompasses medium-sized to large, elongate bradoriids 

with evenly convex shields with a postplete outline and lacking any nodes. External ornament 

may vary from smooth to punctate or granulose (Siveter and Williams, 1997). The diagnosis 

of the genus given by Siveter and Williams (1997) defines adults as being c. 10-14 mm in 

length, although the figured lectotype of the type species, Indiana lippa Matthew, 1902, is 

only 5.1 mm long (Siveter and Williams, 1997, pl. 3, fig. 2). Specimens from the MOG and 

MMT sections are at most 3 mm in length, which is small for this genus. However, average 

shield size may be biased by style of preservation and method of specimen recovery. Very 

large shields are more likely to be noticed in hand sample (like much of the material 

examined by Siveter and Williams, 1997) and are also more likely to suffer breakage during 

the acid leaching process (for e.g., material examined herein), which may account for the 

smaller than average size of the specimens from the Arrowie Basin.  

 The abundant specimens from MOG/240.0 and MMT/138.2 share features with 

Indiana lippa, including the postplete outline, evenly convex shields lacking nodes or sulci, 

and a dorsal fold that is approximately two thirds of the valve length (Siveter and Williams, 

1997). They differ in having a clear dorsal cusp, which is not evident in the type species. 

Figured crack-out specimens of the type species are not well preserved, which limits 

morphological comparison (Siveter and Williams, 1997, pl. 3, figs. 2-4). External texture of 

Indiana ?lippa from the Arrowie Basin is granulose, though this may be the result of 

abrasion. Indiana ?lippa from the Arrowie Basin does not feature punctate shields as in I. 

secunda (Matthew, 1895) and I. dermatoides Walcott, 1887. Indiana secunda from the 
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Bastion Formation in north-east Greenland have an ornament of fine punctae that is apparent 

where external shield laminae have been removed (Skovsted, 2006, fig. 6.11).  

 

?Indiana sp. (Fig. 20I-K) 

Description. Large, postplete bradoriid (up to 6 mm in length) with straight dorsal fold. 

Margin on complete specimen is damaged, however anteroventral margin appears concave, 

ventral, posteroventral and posterodorsal margins are convex. Rounded posterior cardinal 

corner (anterior cardinal corner damaged). Shield outline rounded with shallow trough 

defining a wide border around free margin. Microornament consists of shallow depressions 

(~80 µm wide) each bearing a single pustule at their base (Fig. 20I). Microornament best 

developed on central, convex part of shield and becomes less pronounced toward borders. 

Material. One intact right shield SAM P53720, in addition to abundant fragments from 

RC/140.5. Wirrapowie Limestone, M. etheridgei Zone. 

Discussion. This taxon is the largest bradoriid recovered in this study. Material is abundant, 

but largely fragmentary (the largest specimen is a shield fragment ~5 mm in length). Shield 

morphology differs subtly from specimens of Indiana ?lippa from the MOG and MMT 

sections; the dorsal fold is straight rather than slightly curved, the shield is more strongly 

convex, and the outline is more rounded at the ventral and posteroventral margins, whereas 

the outline of Indiana ?lippa is more elongate. The shield margin, while poorly preserved, 

shows that these specimens bore an admarginal border, not seen in species assigned to 

Indiana. These features suggest that the RC specimens likely belong to a different genus, but 

they are unlike other large, postplete bradoriid genera (such as Bradoria) as they bear a 

border, and the external ornament consists of numerous shallow depressions with small raised 

pustules in the centre of each (Fig. 20I), rather than pits or concentric striae. Walcotella 

Ulrich and Bassler, 1931 reaches up to 7 mm in length, but bears anterocentral and 

anterodorsal nodes, neither of which are observed in the RC specimens. For the time being, 

these specimens are tenatively assigned to Indiana. 

Distribution. Wilkawillina Limestone (Winnitinny Creek Member); Arrowie Syncline, 

northern Flinders Ranges (MOG section), Bunkers Range, central Flinders Ranges (MMT 

section), South Australia, M. etheridgei Zone.  
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Family HAOIIDAE Shu, 1990 

Jixinlingella Lee, 1975 

Type species. Jixinlingella clithrocosta Lee, 1975. 

Diagnosis. The diagnosis of Zhang (2007, p. 136) is emended to include taxa possessing a 

smooth margin in addition to a marginal frill. 

Discussion. The Haoiidae Shu, 1990 originally united multilobate bradoriids from China 

(Shu, 1990). Haoiids now known from the early Cambrian of South Australia include Haoia 

cf. shaanxiensis Shu, 1990 (Skovsted et al., 2006) and Jixinlingella daimonikoa Betts, 

Topper, Valentine, Skovsted, Paterson and Brock, 2014. New specimens (herein) are 

fragmentary, but display the honeycomb network of connecting ridges over the shield and the 

fine, reticulate microornament on the areas between ridges characteristic of the Haoiidae. 

 

Jixinlingella sp. (Fig. 19H-M) 

Description. All specimens are fragmentary, but appear to be postplete in outline, gently 

convex with a smooth margin with narrow lip, and a shallow trough defining a slightly raised 

border (~150 µm thick). Maximum length of most complete specimen is ~1.80 mm. Dorsal 

fold is partially preserved in one (conjoined) specimen and seems to be straight. Smooth V-

shaped anterior sulcus below which an elongate, narrow node with short spine (tip broken or 

abraded) occurs. Slight sub-dorsal swelling occurs behind the anterior sulcus. Shield 

ornamented with smooth ridges forming a polygonal network. These ridges are raised only 

slightly from the shield surface. Microornament between ridges consists of a very fine 

reticulate pattern of fine ridges.  

Material. Four damaged shields (LMNB/35.3, SAM P53709, LMNB/45.9, SAM P53290 and 

DBS/102.0, SAM P53710) and one damaged conjoined specimen (MOG/551.5, SAM 

P53291). 

Discussion. These specimens, while poorly preserved, display features that distinguish them 

from existing species of Jixinlingella. The type species, J. clithrocosta Lee, 1975 bears a 

similar network of coarse reticulate ridges, though they are much more strongly expressed 
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than in Jixinlingella sp. Weak ridges with smooth crests may be a result of abrasion, but the 

relatively well-preserved ornament on the specimen from the MOG section (Fig. 20M) 

indicates that the feature is likely to be primary. In addition, the ridges in Jixinlingella sp. 

form a more tightly packed arrangement than in either J. clithrocosta or J. daimonikoa from 

the MORO section (Betts et al., 2014, fig. 7), and neither of these taxa bear a small spine on 

the anterodorsal node like that in the new material. Jixinlingella daimonikoa also bears a 

small posterodorsal spine and a frilled margin, not seen in the new specimens. 

The coarse ridges of Jixinlingella sp. have a more complex arrangement than those in 

species of Haoia. Total number of ridges running dorso-ventrally in Jixinlingella sp. is 

difficult to determine due to the fragmentary nature of the material, but may be up to 6 or 7, 

whereas Haoia shaanxiensis, H. cf. shaanxiensis (Skovsted et al. 2006) and Haoia primitiva 

only feature 4–5 major dorso-ventral lobes (Shu, 1990, pl. 1, figs. 1-8). This indicates that 

these specimens are more appropriately accommodated within Jixinlingella than Haoia. 

 Jixinlingella sp. from the Arrowie Basin may represent a new species as it displays a 

combination of morphological features not readily accommodated by either of the existing 

species of Jixinlingella. However, because the anterior of the shield and the dorsal fold are 

not well preserved in these specimens, they are left under open nomenclature. 

Distribution. Mernmerna Formation (D. odyssei Zone; approximate P. tatei trilobite Zone), 

Arrowie Syncline, Donkey Bore Syncline and Mt. Chambers Region in the Flinders Ranges, 

South Australia. 
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FIGURE CAPTIONS 

Figure 1. Extent of the Arrowie Basin, South Australia showing Cambrian outcrop and 

locations of all measured sections and drill cores used in present study and Betts et al. 

(2016b). Sections and drill cores included herein are denoted with an asterisk. 

Figure 2. SCYW-791A drill core through the Andamooka Limestone on the Stuart Shelf. 

Ranges of key shelly taxa through the Dailyatia odyssei Zone are shown. Abundance data are 

given in Appendix 1. Note: Key shows approximate stratigraphic relationships of geological 

units. For detailed stratigraphic information see Betts et al. (2016b, fig. 22), Paterson and 

Brock (2007, fig. 1) and Gravestock (1995, fig. 7.2).  

Figure 3. ER9 stratigraphic section through the Wirrapowie Limestone and Mernmerna 

Formation in the Elder Range, southern Flinders Ranges. Neither Dailyatia odyssei nor 

Stoibostrombus crenulatus occur in ER9 and the presence of the D. odyssei Zone is inferred 

from the ranges of other key taxa, e.g. A. guillermoi suggests P.tatei – P. bunyerooensis zone 

age. Note Pararaia janeae and associated trilobite taxa occur at the top of the section 

indicating the presence of the P. janeae Zone. Abundance data are given in Appendix 2. 

Figure 4. DBS stratigraphic section through the Wilkawillina Limestone and the Mernmerna 

Formation in the Donkey Bore Syncline, north-central Flinders Ranges. Ranges of key shelly 

taxa through the Micrina etheridgei and Dailyatia odyssei zones are shown. Note the 

presence of the Flinders Unconformity capping the Wilkawillina Limestone. The Linns 

Springs Member of the Mernmerna Formation rests directly on the Wilkawillina Limestone 

indicating the absence of the older Six Mile Bore Member due to the disconformity in the 

DBS section. Inferred D. odyssei Zone is therefore projected to the top of the disconformity 

surface (light green). Abundance data are given in Appendix 3. See also Topper et al. (2007) 

for stratigraphy and bradoriid fauna from the DBS section. 

Figure 5. MMF stratigraphic section through the Mernmerna Formation in the Bunkers 

Range, central Flinders Ranges. The lower two members of the Mernmerna Formation are 

missing at MMF due to the erosional/non-deposition surface represented by the Flinders 

Unconformity. Here, the Third Plain Creek Member (Pararaia bunyerooensis trilobite zone) 

rests directly on the Winnitinny Creek Member of the Wilkawillina Limestone. The D. 

odyssei Zone is indicated by the occurrence of Stoibostrombus crenulatus but does not 

represent the true base of the zone due to the FU, hence the D. odyssei Zone has been 
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projected to the top of the disconformity surface (light green) and further sampling is required 

to confirm the presence of taxa typical of D. odyssei Zone. Abundance data are given in 

Appendix 4. See also Brock and Paterson (2004), Skovsted et al. (2006, 2008, 2009a,c, 

2011), Paterson and Brock (2007), Topper et al. (2009, 2010), Larsson et al. (2014) and 

Jacquet and Brock (2015) for detailed descriptions of shelly fauna (including trilobites) from 

the MMF section. 

Figure 6. 10MS stratigraphic section through the Wilkawillina Limestone and the overlying 

Mernmerna Formation. The 10MS section is a continuation of the underlying 10MS-W 

section described by Betts et al. (2016b). Here the lowest member of the Mernmerna 

Formation (Six Mile Bore Member) rests directly on the Winnitinny Creek Member of the 

Wilkawillina Limestone; hence the hiatus represented by the FU is likely to be a relatively 

small time break. Further microstratigraphic sampling is required for confirmation. 

Abundance data are given in Appendix 5.  

Figure 7. BHG stratigraphic section through the Wirrapowie Limestone, Midwerta Shale, 

lower Mernmerna Formation, Nepabunna Siltsone, upper Mernmerna Formation and the 

Oraparinna Shale in the south-west Arrowie Syncline, northern Flinders Ranges. Ranges of 

key shelly taxa through the Kulparina rostrata, Micrina etheridgei and Dailyatia odyssei 

zones are shown. Note the FU is not developed in the BHG section and the section is 

interpreted to represent relatively continuous deposition. Distinguishing between the 

Wirrapowie Limestone and Mernmerna Formation in the field can be difficult (Haslett, 

1975). Here, the Midwerta Shale is interpreted as a member within the Wirrapowie 

Limestone, not the Mernmerna Formation (Gravestock, 1995) based on lithological and 

faunal data. Abundance data are given in Appendix 6. 

Figure 8. RC stratigraphic section through the Wirrapowie Limestone and the Mernmerna 

Formation in the southern Arrowie Syncline, northern Flinders Ranges. Key shelly taxa 

through the Micrina etheridgei and Dailyatia odyssei zones are shown. Note, horizon 

RC/913.0 contains a mixed and fragmentary shelly fauna and is interpreted to be reworked. 

Abundance data are given in Appendix 7. 

Figure 9. LMNB stratigraphic section through the lower Mernmerna and Bendiuta formations 

in the Chambers Gorge region, eastern Flinders Ranges. Ranges of key shelly taxa through 

the Dailyatia odyssei Zone are shown. Abundance data are given in Appendix 8. 
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Figure 10. NB stratigraphic section through the Mernmerna and Moorowie formations in the 

Chambers Gorge region, eastern Flinders Ranges. Ranges of key shelly taxa through the 

Dailyatia odyssei Zone are shown. Abundance data are given in Appendix 9. 

Figure 11. PIN stratigraphic section through the Mernmerna Formation in the Chambers 

Gorge region, eastern Flinders Ranges. Ranges of key shelly taxa through the Dailyatia 

odyssei Zone are shown. Recovery of Redlichia sp. at a spot locality approximately 70 m 

below the section suggests that the D. odyssei Zone extends below the base. Abundance data 

are given in Appendix 10. 

Figure 12. Yalkalpo-2 drill core through the Parachilna Formation, Woodendinna Dolostone, 

Wilkawillina Limestone and the Mernmerna Formation on the Benagerie Ridge, to the east of 

the Arrowie Basin (Fig 1). Key shelly taxa through the Micrina etheridgei and Dailyatia 

odyssei zones are shown. Abundance data are given in Appendix 11. See also Gravestock, 

(1995), Gravestock et al. (2001), Zang (2001), Jago et al. (2002), Zang et al. (2007) for 

additional palaeontological and lithological work on Yalkalpo-2. 

Figure 13. Stratigraphic ranges of bradoriids from the Arrowie Basin through the Kulparina 

rostrata, Micrina etheridgei and Dailyatia odyssei zones. Some bradoriid taxa are restricted 

exclusively to either the M. etheridgei or D. odyssei zone, while other taxa have ranges that 

span multiple zones. Stratigraphic range of Stoibostrombus crenulatus is also shown as it is 

diagnostic of the D. odyssei Zone in addition to the eponym (range shown in green). 

Figure 14. Shelly taxa of the Dailyatia odyssei Zone, Arrowie Basin; Dailyatia odyssei, 

Stoibostrombus crenulatus and Kelanella sp. A-I, Dailyatia odyssei all from the Mernmerna 

Formation. A, A1 sclerite, NB/58.75, SAM P53616. B, A2 sclerite, LMNB/35.3, SAM 

P53617. C, A1 sclerite, lateral view, NB/0.0, SAM P53618. D, A1 sclerite, NB/3.3, SAM 

P53619. E, dextral B sclerite, RC/758.5, SAM P53620. F, C1 sclerite, RC/753.5, SAM 

P53621. G, C2 sclerite, NB/1.0, SAM P53622. H, C2 sclerite, NB/0.0, SAM P53623. I, C1 

sclerite, 10MS/10.0, SAM P53624. J-M, Stoibostrombus crenulatus. J-L from the Mernmerna 

Formation, M from the Andamooka Limestone. J, RC/1057.0, SAM P53625. K, 

BHG/1513.0, SAM P53626. L, RC/1057.0, SAM P53627. M, SCYW-791A/70, SAM 

P53628. N-U, Kelanella sp., all from the Mernmerna Formation. N and P, RC/913.4, SAM 

P53629. O, Q, R, T-U, RC/852.0, SAM P53630. S, RC/913.4, SAM P53631.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

79 

 

Figure15. Eohadrotreta sp. cf. E. zhenbaensis and Curdus pararaensis from the D. odyssei 

Zone, Arrowie Basin. A-O, Eohadrotreta sp. cf. E. zhenbaensis, all from 10MS/571.2, 

Oraparinna Shale in the Bunkers Graben. A, D and H, ventral valve, SAM P53632. B, ventral 

valve, SAM P53633. C, ventral valve, SAM P53634. E, dorsal valve, SAM P53635. F and L, 

dorsal valve, SAM P53636. G, dorsal valve, SAM P53637. I, dorsal valve, SAM P53638. J, 

ventral valve, SAM P53639. K, dorsal valve, SAM P53640. M, larval shell, SAM P53641. N, 

close-up of pseudointerarea, SAM P53642. O, shell microstructure, SAM P53643. P-V, 

Curdus pararaensis, A-R, T-U all from AJX-M/415.0, Ajax Limestone, S, from the 

Andamooka Limestone and V, from the Linns Springs Member of the Mernmerna Formation. 

P, ventral valve, SAM P53644. Q-R, dorsal valve, with close-up of wrinkled ornament, SAM 

P53645. S, dorsal valve showing muscle field, SCYW-791A/56, SAM P53646. T, dorsal 

valve, larval shell, SAM P53647. U, external ornament, SAM P53648. V, interarea, 

DBS/250.0, SAM P53649. 

Figure 16. Shelly taxa from the Micrina etheridgei and Dailyatia odyssei zones in the 

Arrowie Basin. Cambroclavus absonus, A-G, and H from the Andamooka Limestone on the 

Stuart Shelf. G from the Mernmerna Formation, Donkey Bore Syncline. A, SCYW-791A/56, 

SAM P53650. B and H, SCYW-791A/62, SAM P53651. C, SCYW-791A/62, SAM P53652. 

D, SCYW-791A/64, SAM P53653. E, SCYW-791A/59, SAM P53654. F, SCYW-791A/59, 

SAM P53655. G, DBS/673.0, SAM P53656. I-L, Kennarida sp., both from RC/252.9, 

Wirrapowie Limestone, M. etheridgei Zone. I-J, SAM P53657. K-L, SAM P53658. M-P, 

Lapworthella sp. M, fused sclerites, RC/102.0, SAM P53659. N-P, specimens bearing raised 

processes on ridges, N-O from DBS/191.0, SAM P53660. P, P from PIN/99.0, SAM P53661. 

Q, Camenella reticulosa from the Mernmerna Formation, RC/852.0, SAM P53662. R-U, Y, 

Z, AA, Protoconodonts, R-S, both from ER9/16.5, Wirrapowie Limestone, M. etheridgei 

Zone SAM P53663, SAM P53664. T, RC/328.0, Wirrapowie Limestone, M. etheridgei Zone, 

SAM P53665. U, ER9/186.5, Mernmerna Formation, D. odyssei Zone, SAM P53666. Y, 

ER9/67.3, Wirrapowie Limestone, SAM P53670, Z, RC/1119.0, Mernmerna Formation, 

SAM P53671. AA, ER9/10.8, Wirrapowie Limestone, SAM P53672.V-X, and BB, 

Anabarites sexalox, all from the D. odyssei Zone. V, 10MS/462.3, from the Bunkers 

Sandstone, SAM P53667. W, X and BB, from the Mernmerna Formation, SAM P53668, 

SAM P53669, SAM P53673. 

Figure 17. Mollusc moulds, replaced shells and phosphatic coatings from the Micrina 

etheridgei and Dailyatia odyssei zones. A, Bemella sp., silicified shell, NB/177.1, Mernmerna 
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Formation, D. odyssei Zone, SAM P53674. B, Bemella sp., silicified shell, RC/913.4, 

Mernmerna Formation, D. odyssei Zone, SAM P53675. C, Tanuella sp., silicified shell, 

RC/852.0, Mernmerna Formation, D. odyssei Zone, SAM P53676. D, Marocella mira, 

internal mould, ER9/411.7, Mernmerna Formation, D. odyssei Zone, SAM P53677. E, 

Tanuella sp., silicified shell, BHG/1301.0, Mernmerna Formation, D. odyssei Zone, SAM 

P53678. F. Indeterminate helcionellid, phosphatic coating, RC/252.9, M. etherigei Zone, 

SAM P53679. G-I and M. Stenotheca drepanoida, steinkerns, NB/58.75, Mernmerna 

Formation, D. odyssei Zone, SAM P53680, SAM P53681, SAM P53682. M, S. drepanoida 

steinkern, Mernmerna Formation, D. odyssei Zone, SAM P53686. J, Indeterminate 

helcionellid steinkern, 10MS/407.2, Mernmerna Formation, D. odyssei Zone, SAM P53683. 

K, Beshtashella tortillis steinkern, NB/29.0, Mernmerna Formation, D. odyssei Zone, SAM 

P53684. L, Pelagiella cf. madiensis steinkern, NB/29.0, Mernmerna Formation, D. odyssei 

Zone, SAM P53685. N, Yochelcionella sp. steinkern, 10MS/440.0, Bunkers Sandstone, D. 

odyssei Zone, SAM P53687. O, Pojetaia runnegari steinkern, NB/29.0, Mernmerna 

Formation, D. odyssei Zone, SAM P53688. P-O, Yuwenia bentleyi steinkern, NB/58.75, 

Mernmerna Formation, D. odyssei Zone, SAM P53689. 

Figure 18. Manawarra jonesi gen. et sp. nov. and Eozhexiella adnyamathanha gen. et sp. 

nov. from the Micrina etheridgei and Dailyatia odyssei zones in the Arrowie Basin. A-K, 

Manawarra jonesi gen. et sp. nov., all from the Mernmerna Formation, D. odyssei Zone. A, 

left shield, DBS/300.0, SAM P42208. B, left shield, RC/753.5, SAM P53690. C, paratype, 

conjoined specimen, NB/29.0, SAM P53691. D and I, paratype, right shield and close up of 

pits, NB/66.6, SAM P53692. E, right shield, PIN/73.5, SAM P53693. F, right shield, 

RC/913.0, SAM P53694. G, conjoined specimen, 10MS/250.0, SAM P53695. H, phosphatic 

pads on internal shield surface, NB/66.6, SAM P53696. J, holotype, right shield, NB/58.75, 

SAM P53697. K, conjoined specimen, NB/29.0, SAM P53698. L-W, Eozhexiella 

adnyamathanha gen. et sp. nov., all from the Mernmerna Formation, D. odyssei Zone. L, 

conjoined specimen, 10MS/90.0, SAM P53699. M, right shield with anterior node, 

10MS/90.0, SAM P53700. N, right shield with anterior node, MOG/912.0, SAM P53273. O, 

conjoined specimen with anterior node, PIN/73.5, SAM P53701. P, paratype, conjoined 

specimen, MOG/667.4, SAM P53271. Q and S, holotype, conjoined specimen, MOG/667.4, 

SAM P53272. R, conjoined specimen, MOG/667.4, SAM P53274. T, abraded left shield, 

10MS/86-87, SAM P53702. U, paratype, conjoined specimen, MOG/667.4, SAM P53703. V-

W, conjoined specimen, MOG/667.4, SAM P51224. 
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Figure 19. Acutobalteus sinuosus gen. et sp. nov., Jixinlingella sp. and Mongolitubulus 

decensus sp. nov. from the Micrina etheridgei and Dailyatia odyssei zones in the Arrowie 

Basin. A-G, Acutobalteus sinuosus gen. et sp. nov., all from the Mernmerna Formation, D. 

odyssei Zone. A, holotype, conjoined specimen, NB/67.3, SAM P53704. B, left shield, 

NB/66.6, SAM P53705. C and G, left shield with close up of granulose microornament on 

shield, NB/67.3, SAM P53706. D, specimen with two shields displaced at midline, 

10MS/130.0, SAM P53707. E-F, ventral view of conjoined specimen, NB/66.6, SAM 

P53708. H-M, Jixinlingella sp., all from the Mernmerna Formation, D. odyssei Zone. H, K 

and L, damaged right shield with close up of spine on anterior node, LMNB/35.3, SAM 

P53709. I, probable left shield, margins damaged, DBS/102.0, SAM P53710. J, probable left 

shield, margins damaged, LMNB/45.9, SAM P53290. M, conjoined specimen, margins 

damaged, MOG/551.5, SAM P53291. N-S, Mongolitubulus decensus sp. nov., both from the 

Wirrapowie Limestone, M. etheridgei Zone. N-P, holotype, left shield with spine base, 

CR1/589.7, SAM P53711. Q-S, left shield with spine base, MOG/114.1, SAM P53712. 

Figure 20. Liangshanella sayutinae, ?Indiana sp. and Indiana ?lippa from the Arrowie Basin. 

A-H, Liangshanella sayutinae, all from the Mernmerna Formation, D. odyssei Zone. A, right 

shield, NB/68.5, SAM P53713. B and D, right shield, NB/66.6, SAM P53714. C and H, left 

shield with remains of right valve adhered to margin, internal view, NB/1.0, SAM P53715. E, 

close up of internal margin, NB/58.75, SAM P53716. F, right shield, internal view, 

NB/131.8, SAM P53717. G, abraded right shield, NB/58.75, SAM P53718. I-K, ?Indiana sp., 

both from RC/140.5, Wirrapowie Limestone, M. etheridgei Zone. I and J, broken right shield 

and close up of microornament, SAM P53719. K, intact but abraded right shield, SAM 

P53720. L-N, Indiana ?lippa. L-M, right and left shields, both from MOG/240.3, 

Wilkawillina Limestone, M. etheridgei Zone, SAM P53288, SAM P53289. N, abraded right 

shield from MMT/138.2, SAM P53286. O-R, ?Eozhexiella sp. with filled pits, all from the 

Wirrapowie Limestone, M. etheridgei Zone. O, left shield with damaged margins, CR1/476.0, 

SAM P53279. P, abraded right shield, CR1/457.0, SAM P53721. Q-R, abraded, damaged left 

shield, CR1/457.0, SAM P53722. 

Figure 21. Global correlation of the K. rostrata Zone (yellow), M. etheridgei Zone (purple) 

and D. odyssei Zone (green) utilising key cosmopolitan shelly taxa (genera and species). 

Shelly fauna link South Australia with successions in South China, Siberia, Laurentia and 

Avalonia. Figure adapted from Steiner et al., (2007, figs 11 and 12); Yuan et al., (2011, table 

2); Kouchinsky et al., (2012, fig. 3); Peng et al., (2012, fig. 19.11); Landing et al., (2013, fig. 
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4); Yang et al., (2013, fig. 5). Dashed lines indicate boundaries are uncertain. Undulating 

lines indicate unconformities. “Cang” = Canglangpuian. 

 

Table 1. Specimen counts for Eohadrotreta sp. cf. E. zhenbaensis from the 10MS section. 

Table 2. Specimen counts for Manawarra jonesi gen. et sp. nov. 

Table 3. Specimen counts for Eozhexiella adnyamathanha gen. et sp. nov. 

Table 4. Specimen counts for Acutobalteus sinuosus gen. et sp. nov. 

Table 5. Specimen counts for Liangshanella sayutinae. 

Table 6. Specimen counts for Mongolitubulus decensus sp. nov. 

Table 7. Specimen counts for Indiana ?lippa. 

Table 8. Specimen counts for Jixinlingella sp. 

 

Table 1. 

Eohadrotreta sp. cf. E. zhenbaensis 

Section Horizon Dorsal Ventral 

10MS 571.2 12 2 

10MS 551.5 8 6 

10MS 547.3 

 

2 

10MS 541 

 

1 

10MS 515 

 

1 

TOTAL 20 12 
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Table 2. 

Manawarra jonesi gen. et sp. nov. 

Section Horizon Count 
+ 

Fragments 
Section Horizon Count 

+ 

Fragments 

ER9 75.5 1 Y RC 1119 0 Y 

ER9 67.3 2 

 

RC 1057 2 

 

ER9 63.8 1 

 

RC 913 14 

 

ER9 53.5 1 

 

RC 852 1 Y 

ER9 45.5 1 Y RC 844 1 Y 

ER9 16.5 1 Y RC 753.5 1 Y 

ER9 10.8 2 

 

RC 145.3 0 Y 

ER9 8.7 1 

 

RC 140.5 0 Y 

ER9 2 1 

 

NB 201.2 16 

 

DBS 731 1 

 

NB 196.3 0 Y 

DBS 703 2 

 

NB 163.2 0 Y 

DBS 699.5 11 

 

NB 131.8 3 

 

DBS 689 11 

 

NB 68.5 1 

 

DBS 684 24 

 

NB 67.3 16 

 

DBS 673 27 

 

NB 66.6 10 

 

DBS 593.5 11 

 

NB 62.5 2 

 

DBS 589 10 

 

NB 58.75 32 
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DBS 392 3 

 

NB 36.8 3 

 

DBS 340 3 

 

NB 29 2 

 

DBS 300 1 

 

PIN 73.5 5 

 

DBS 290 6 

 

PIN 48 1 

 

DBS 191 6 

 

PIN 32 0 Y 

DBS 170 1 

 

PIN 26 1 Y 

DBS 151 2 

 

PIN 0 6 Y 

DBS 102 2 

 

10MS 440 2 

 

BHG 1301 1 

 

10MS 260 3 

 

BHG 1298.5 5 

 

10MS 250 1 

 

BHG 1238 0 Y 10MS 230 2 

 

BHG 1022 1 

 

MOG 
699.0 

(float) 
14 

 

BHG 293 1 

 

MOG 667.4 10 

 

Total 140 

 

Total 149 

 

TOTAL SPECIMENS 289 
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Table 3. 

Eozhexiella adnyamathanha gen. et. sp. nov. 

Section Horizon Count Shield/Conjoined 

MOG 699.0 (float) 1  shield 

MOG 667.4 6 conjoined 

10MS 86-87 1 shield 

10MS 90 1 conjoined 

10MS 90 3 shield 

PIN 73.5 1 conjoined 

TOTAL 13   
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Table 4.  

Acutobalteus sinuosus gen. et. sp. nov. 

Section Horizon Count Shield/Conjoined 

NB 67.3 3 conjoined 

NB 66.6 2 conjoined 

NB 66.6 6 shield 

10MS 130 1 shield 

TOTAL 12   
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Table 5. 

Liangshanella sayutinae 

Section Horizon Count Shield/Conjoined 

NB 177.1 2 shield 

NB 141.5 2 shield 

NB 131.8 2 shield 

NB 68.5 1 shield 

NB 67.3 4 shield 

NB 66.6 7 shield 

NB 58.75 19 shield 

NB 3.3 1 shield 

NB 1 4 shield 

TOTAL 42 
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Table 6.  

Mongolitubulus decensus sp. nov. 

Section Horizon Count Shield/Conjoined 

CR1 589.7 1 shield 

MOG 114.1 1 shield 

TOTAL 2   
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Table 7.  

Indiana ?lippa 

Section Horizon Count Shield/Conjoined 

MOG 240 43 shields 

MOG 240 1 conjoined 

MMT 138.2 2 shields 

TOTAL 46   
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Table 8. 

Jixinlingella sp. 

Section Horizon Count Shield/Conjoined 

LMNB 45.9 1 shield, damaged 

LMNB 35.3 1 shield, damaged 

MOG  551.5 1 conjoined, damaged 

DBS 102 1 shield, damaged 

TOTAL 4   
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Figure 1 
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Research Highlights 

 Highly diverse assemblage of early Cambrian tommotiids, brachiopods, molluscs, 

bradoriids and problematica from South Australia. 

 Shelly fauna enable global correlation of the Dailyatia odyssei Zone (Series 2, Stages 

3-4). 

 Four new bradoriid species and three new genera are described. 
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