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Abstract

The range-separation parameter in tuned, range-separated exchange–correlation

functionals is investigated in two contexts. First, the system-dependence of the pa-

rameter is investigated for a series of systems obtained by successively ionising a single

species, paying particular attention to the degree of linearity in the energy versus

electron number curve. The parameter exhibits significant system-dependence and so

achieving near-linearity in one segment of the curve leads to strong non-linearity in

other segments. This provides a challenging test case for the development of new func-

tionals designed to overcome the known problems of this class of functional. Next, the

study considers whether a range-separation parameter tuned to a Koopmans energy

condition is also applicable for the analogous density condition. This is tested by com-

paring two formulations of the Fukui function of conceptual density functional theory,
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for three representative systems. Both formulations yield the same general features and

are not highly sensitive to the range-separation parameter. However, the agreement

between the two is near-optimal when the energy-tuned parameter is used, indicating

that this parameter is applicable for the analogous density condition.

1 Introduction

In recent years, there has been significant interest in the use of range-separated (RS)1–4

exchange–correlation functionals in Kohn–Sham density functional theory (DFT).5 These

functionals partition the r−1
12 operator in the exchange term into short- and long-range com-

ponents, with a range-separation parameter, µ, controlling the rate at which the long-range

behaviour is attained. The value of µ can be fixed or it can be ‘tuned’ on a system-by-system

basis by minimising some tuning norm.6–20 Whether the parameter is fixed or tuned, it is

well established that such functionals yield improvements in many long-range properties,

most notably charge-transfer excitation energies, and they have become the functional of

choice in many studies.

In Ref. 15, we investigated a wide range of norms for use in tuned, range-separated

functionals. The norms were largely based on Koopmans conditions, which arise from the

piecewise linearity21 of the exact electronic energy, E, as a function of electron number,

N . We assessed the quality of frontier orbital energies, orbital energy differences, ionisation

potentials and electron affinities. We also quantified the linearity of the E vs N curves and

highlighted a fortuitious error cancellation between the failure to reproduce the Koopmans

conditions and errors in calculated ionisation potentials and electron affinities.

The key feature of tuned range-separated functionals is that µ is determined on a system-

by-system basis. As noted by Karolewski et al.14 this can lead to problems, particularly the

violation of size-consistency. It is therefore of interest to quantify the degree of system-

dependence of µ; examples of strong system-dependence may provide challenging test cases

for the development of new functionals designed to overcome the problems highlighted in
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Ref. 14. The first aim of the present study is to consider this system dependence. Rather

than considering a series of different atoms and molecules, however, we consider systems

obtained by successively ionising a single species, paying particular attention to the degree

of linearity in the segments of the E vs N curve.

The second aim of the study is to consider whether a value of µ determined using a regular

energy-based norm is also applicable for the determination of non-energy-based quantities.

Specifically, the exact electron density is also piecewise linear21 in N and so we investigate

whether a value of µ tuned to a Koopmans energy condition is also applicable for the anal-

ogous density condition. We test this using the Fukui function,22–26 which is a key quantity

in conceptual DFT.27

2 Results

We use a tuned version of the CAM-B3LYP functional,4 with modified parameters α = 0

and β = 1, meaning the fraction of exact exchange increases from zero to 100%, at a rate

controlled by µ. The cadpac28 and Gaussian 0929 programs were used.

2.1 Successive ionisations

First, we consider the variation of µ for successive ionisations of a single species using a

standard tuning norm based on the HOMO Koopmans condition. In the context of an

E vs N curve with fixed external potential v, the HOMO energy of an integer N -electron

system is the slope of the curve30–32 on the electron-deficient side of the integer N ,

εhomo =

(
∂E

∂N

)−

v

, (1)

where we have assumed that the usual generalised Kohn–Sham approach33 is used. The

piecewise linearity21 of the exact E vs N curve means that the derivative in eq. (1) should

be identical to the finite-difference derivative obtained from the N and N−1 integer energies,
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which is just the negative of the vertical ionisation potential

−I = EN − EN−1 , (2)

and so the tuning norm is

H = |εhomo + I| . (3)

We perform calculations at a range of µ values and define the optimal value, denoted µ∗, to

be the one that minimises H.

The carbon atom is the archetypal system for the study of E vs N curves and so we

consider the systems from C– to C5+, containing seven to one electrons, using the aug-cc-

pCVTZ basis set. Figure 1 plots the value of εhomo +I as a function of µ, for each species. In

all cases, the value reduces smoothly with increasing µ. The minimum of the absolute value

of each curve gives the µ∗ values, which are listed in table 1. It is immediately apparent that

there is significant variation in µ∗ for the different systems. The curves in fig. 1 for C–, C,

C+ and C4+ each cross H = 0 at finite, but different values of µ∗. The curves for C2+ and

C5+ merely approach zero as µ tends to infinity, whilst the C3+ curve tends asymptotically

to a positive value.

Table 1: Optimal parameters, µ∗, obtained by minimising the norm, H.

Species µ∗/a0
−1

C– 0.37
C 0.66
C+ 1.00

C2+ ∞ (H → 0)

C3+ ∞ (H → +ve)

C4+ 5.89

C5+ ∞ (H → 0)

Next, E vs N curves were generated for each adjacent pair of species. This was achieved

by incrementing the occupation of the relevant frontier orbital from zero to one in steps of
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Figure 1: Variation of εhomo + I, as a function of µ.

0.05, and computing the energy at each point with a fixed value of µ. In order to intuitively

compare the E vs N data for each pair of species on a single plot, and to avoid large

differences in scale, we actually consider an E vs N deviation curve, plotting ∆E against

∆N . ∆E is the difference between the computed energy and the desired behaviour—an

interpolated straight line between the integer-N points. ∆N is the fractional occupancy

of the relevant frontier orbital, such that the system with smaller integer N is described

by ∆N = 0, and the system with larger integer N is ∆N = 1. In this way, the closer a

plot is to a straight line along zero, the closer it is to being a linear E vs N segment. By

construction, the interpolated and calculated energies agree at integer. A horizontal line

along zero indicates a linear E vs N curve, whilst a positive/negative deviation indicates a

concave/convex curve. The first two rows of fig. 2 show the E vs N deviation curves for

each of the µ∗ values in table 1 (we choose µ = 1000 a0
−1 as effectively infinite). Each curve

is labelled by the system corresponding to ∆N = 1, with colours consistent with fig. 1.
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Figure 2: E vs N deviation curves for adjacent species using the µ∗ values in table 1, together with non-tuned functionals and
Hartree-Fock theory. Each curve is labelled by the system corresponding to ∆N = 1.
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In the context of fig. 2, the condition H = 0 corresponds to a limiting slope of zero, as

∆N approaches unity, and this is clearly reflected in the plots. For C–, C, C+ and C4+, where

a well-defined, finite µ∗ is obtained giving H = 0, the limiting slope is zero when µ = µ∗.

For C2+ and C5+, where H decays to zero towards infinite µ, the behaviour is approached

when computed using very large µ. For C3+, where H decays to a positive asymptote, the

behaviour is not observed.

The behaviour of the unconstrained end (∆N = 0) is less intuitive. If the functional

were exact, the slope here would be equal to that at ∆N = 1, and remain constant between

0 < ∆N < 1. For several of the systems, this is approximately the case and the curves are

near-linear. For others, the curves are more S-shaped.

The plots in fig. 2 illustrate the significant dependence of E vs N curves on the precise

value of µ, and reinforce previous observations that it is not possible to enforce linearity

on two segments of the curve with a single value of µ. This is particularly relevant for the

calculation of fundamental gaps, which involves slopes in adjacent segments.

For reference, the final row of fig. 2 presents E vs N deviation curves determined using a

typical, fixed-µ, range-separated functional (µ = 0.40 a0
−1), together with the conventional

B3LYP functional34–38 and Hartree-Fock theory. The curves from the typical range-separated

functional are, of course, very similar to those from µ = 0.37 a0
−1, and they are a notable

improvement over those from B3LYP, which are highly convex. The Hartree-Fock curves are

concave, except for the curve labelled C5+, which is exactly horizontal because the electron

number varies between zero and one and so Hartree-Fock theory is exact. We note that the

functional with µ = 1000 a0
−1 is effectively equivalent to using the Hartree–Fock functional

with correlation added. The difference between the µ = 1000 a0
−1 and Hartree-Fock curves

can therefore be traced to the correlation functional.

We make one final comment. The quantity H involves the calculated I, rather than

the experimental value, I0. Hence, enforcing H = 0 will only satisfy the exact condition

εhomo = −I0 if the additional condition, I = I0, is also satisfied. In our previous work,
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we highlighted a convenient cancellation of errors between the failure to satisfy H = 0 and

I = I0. It is therefore pertinent to ask which values of µ yield I values closest to I0. Results

are presented in table 2. Consistent with our earlier work, the values are not the same as

the values in table 1, facilitating possible error cancellations.

Table 2: Optimal parameters, µ∗, obtained by minimising the difference between I and I0.

Species µ∗/a0
−1

C– 0.61
C ∞
C+ 0.12

C2+ 0.61

C3+ 3.0

C4+ 0.06 or 2.71

C5+ 5.80

2.2 Extension to electron densities: the Fukui function

Next, we consider the extension to the electron density in the context of the Fukui function,

defined as the first derivative of the electron density with respect to N , at fixed external

potential,

f(r) =

(
∂ρ(r)

∂N

)
v

. (4)

Specifically, we consider the Fukui function evaluated on the electron-deficient side of the

integer N ,

f−
deriv(r) =

(
∂ρ(r)

∂N

)−

v(r)

. (5)

where we have added the subscript ‘deriv’ to emphasise that the quantity is explicitly eval-

uated as a derivative. This Fukui function corresponds to a generalisation22,23 of Fukui’s

frontier molecular orbital reactivity index,24–26 measuring the reactivity of a site towards

electrophilic attack, provoking the loss of an electron. The piecewise linearity21 of the ex-

act electron density with N means that the derivative in eq. (5) should be identical to the
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finite-difference (FD) value determined from densities of integer systems,

f−
fd(r) = ρN(r)− ρN−1(r) (6)

There is therefore a direct analogy between the equivalence of eqs. (5) and (6), which involve

the electron density, and the equivalence of eqs. (1) and (2), which involve the electronic

energy. Given that the µ∗ obtained by minimisation of the norm H in eq. (3) maximises

the agreement between the energy quantities in eqs. (1) and (2), it is natural to investigate

the extent to which it also maximises the agreement between the Fukui functions in eqs. (5)

and (6).

We therefore need to compare the Fukui function calculated in two ways. The FD

expression in eq. (6) is easily evaluated by calculations on integer systems. For eq. (5), we

use the numerical approximation

f−
deriv(r) =

ρN(r)− ρN−0.01(r)

0.01
(7)

involving calculations on integer and fractional electron number systems. We note that Yang

et al.39 recently presented the theory for the analytic evaluation of this derivative. See Refs.

40–42 for related studies.

Following Yang et al.,39 we consider the Fukui functions in the He and Be atoms, together

with the H2CO molecule, using the cc-pVQZ basis set. We plot the Fukui functions in eqs. (6)

and (7), together with their difference

∆f−(r) = f−
deriv(r)− f−

fd(r) . (8)

For the atoms, all three quantities are spherically symmetric and are plotted along the radial

coordinate, r. For H2CO, the quantities are plotted along the principal axis, z, containing

the C−−O bond. The values of µ∗ were calculated to be 1.09, 0.82, and 0.46 a0
−1 for He, Be,
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and H2CO, respectively.

Figure 3 plots f−
fd(r) and f−

deriv(r) for the He atom for selected values of µ. We consider

µ = µ∗, which is the value obtained by minimising H. For comparison, we also consider µ =

0 a0
−1, which is a generalised gradient approximation (GGA) functional, and µ = 0.40 a0

−1,

which again represents a typical fixed-µ, range-separated functional. On the scale plotted,

the f−
fd(r) Fukui functions for the different µ values are essentially indistinguishable, whereas

differences between the f−
deriv(r) functions are evident. This is similar to the analogous

energy quantities, where ionisation potentials computed from integer energies are generally

less sensitive to µ, than HOMO energies are. Figure 4 plots the differences between the two

Fukui functions. The agreement between the functions is notably better when µ = µ∗, than

when µ = 0 a0
−1 (GGA) or µ = 0.40 a0

−1 (range-separated).

Figures 5 and 6 present plots for the Be atom where analogous results are obtained. The

improved agreement when µ = µ∗ is particularly pronounced in the valence region of fig. 6.

Finally, figs. 7 and 8 present results for the H2CO molecule. Although the extent to

which the two Fukui functions agree in fig. 8 depends on the precise choice of spatial region,

the agreement is generally better with µ = µ∗ than with µ = 0 a0
−1 (GGA). The agreement

is similar for µ = µ∗ and µ = 0.40 a0
−1 (range-separated) due to the similar µ values. The

trends indicate that whilst the agreement in some regions of space would improve by further

increasing µ, it would degrade in other regions.

Overall, for these representative systems, the Fukui functions f−
fd(r) and f−

deriv(r) exhibit

the same general features and are not highly sensitive to the choice of µ. However, the

agreement between the two functions is indeed near-optimal when µ = µ∗, indicating that

this energy-tuned parameter is applicable for the analogous density condition.
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Figure 3: Fukui functions for the He atom
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Figure 4: Fukui function differences for the He atom

3 Conclusions

The parameter µ is a key feature in tuned, range-separated exchange–correlation functionals

and we have investigated the system-dependence and transferability of this parameter. For

C– to C5+, the optimal µ values differ significantly and so achieving near-linearity in one

segment of an E vs N curve leads to strong non-linearity in other segments. This provides

a challenging test case for the development of new functionals designed to overcome the

deficiencies highlighted in Ref. 14. For the Fukui functions of three representative systems,

both formulations yield the same general features and the results are not highly sensitive to

µ. However, the agreement between the two is near-optimal when µ = µ∗, indicating that

this energy-tuned parameter is applicable for the analogous density condition.
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Figure 5: Fukui functions for the Be atom
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(16) Karolewski, A.; Stein, T.; Baer, R.; Kümmel, S. J. Chem. Phys. 2011, 134, 151101.

17



(17) Körzdörfer, T.; Parrish, R. M.; Sears, J. S.; Sherrill, C. D.; Brédas, J.-L. J. Chem.

Phys. 2012, 137, 124305.

(18) Sun, H.; Autschbach, J. ChemPhysChem 2013, 14, 2450–2461.

(19) Agrawal, P.; Tkatchenko, A.; Kronik, L. J. Chem. Theory Comput. 2013, 9, 3473–3478.

(20) Garza, A. J.; Osman, O. I.; Asiri, A. M.; Scuseria, G. E. J. Phys. Chem. B 2015, 119,

1202–1212.

(21) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. 1982, 49, 1691–1694.

(22) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049–4050.

(23) Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353–360.

(24) Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722.

(25) Kato, S. Theor. Chem. Acc. 2000, 103, 219–220.

(26) Fukui, K. Science 1982, 218, 747–754.

(27) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793–1874.

(28) Amos, R. D.; Alberts, I. L.; Andrews, J. S.; Cohen, A. J.; Colwell, S. M.; Handy, N. C.;

Jayatilaka, D.; Knowles, P. J.; Kobayashi, R.; Laming, G. J.; Lee, A. M.; Maslen, P. E.;

Murray, C. W.; Palmieri, P.; Rice, J. E.; Simandiras, E. D.; Stone, A. J.; Su, M.-D.;

Tozer, D. J. Cadpac 6.5, The Cambridge Analytic Derivatives Package. 1998.

(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.;

Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnen-

berg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;

Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.;

18



Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Bu-

rant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.;

Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-

mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;

Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannen-

berg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.;
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