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Summary (Abstract) 

Background: The method to generate bioengineered skin constructs was pioneered 

several decades ago, and nowadays these constructs are used regularly for the treatment 

of severe burns and non-healing wounds.  Commonly, these constructs are comprised of 

skin fibroblasts within a collagen scaffold, forming the skin dermis, and stratified 

keratinocytes overlying this, forming the skin epidermis.  In the past decade there has 

been a surge of interest in bioengineered skins, with researchers searching for alternative 

cell sources, or scaffolds, from which constructs can be established, and for more 

biomimetic equivalents with skin appendages.   

Objectives: In this manuscript we wanted to evaluate whether human hair follicle dermal 

cells can act as an alternative cell source for engineering the dermal component of 

engineered skin constructs.   

Methods:  We established in vitro skin constructs by incorporating into the collagenous 

dermal compartment either primary interfollicular dermal fibroblasts, hair follicle dermal 

papilla, or hair follicle dermal sheath cells.  In vivo skins were established by mixing dermal 

cells and keratinocytes in chambers on top of immunologically compromised mice.   

Results:  All fibroblast subtypes were capable of supporting growth of overlying epithelial 

cells, both in vitro and in vivo. However, we found hair follicle dermal sheath cells to be 

superior to fibroblasts in their capacity to influence the establishment of a basal lamina.   

Conclusions: Human hair follicle dermal cells can be readily interchanged with 

interfollicular fibroblasts, and used as an alternative cell source for establishing the dermal 

component of engineered skin both in vitro and in vivo. 
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Introduction 

In its simplest form, human skin is essentially comprised of two layers, an outer layer of 

ectoderm (multilayered epidermis), and an inner layer of mesenchyme (dermis).  However, 

the integument is actually strikingly complex, being both richly innervated and 

vascularized, in addition to housing a complex immune system.  It is also populated with 

hair follicles, sebaceous, eccrine and apocrine glands, all of which arise from skin cells 

during development.  Indeed, the skin has a range of functions additional to its primary 

role, which is that of a covering, or barrier 1.  It is the outer layer of the epidermis, the 

stratum corneum that provides this barrier function.  This barrier not only acts as an 

immune defense to external pathogens, but also maintains homeostasis of water and 

electrolytes within the body. 

When the skin barrier function is compromised, after a wound or a burn, there are four 

consecutive but overlapping phases to wound repair; hemostasis, inflammation, 

proliferation, and remodeling, modulated by synergistic interactions between the dermis 

and epidermis.  However, there are many instances where wounds do not heal after injury, 

for example, in the case of diabetic or chronic venous non-healing ulcers 2.  Often this is as 

a result of one of the four stages of the healing process going awry 3.  These non-healing 

wounds account for 2-4% of the health care budget in industrialized counties, with 1% of 

the population affected by such a wound at any time 4, and as such, development of 

effective treatments is a major unmet medical need.  The current gold standard treatment 

for a full thickness wound such as a burn is a split thickness autograft, harvested from a 

healthy, uninjured donor site on the patient 5.  However, many people with diabetic ulcers, 



or other chronic wounds have underlying healing defects, and so autografts are not a 

suitable option.  Moreover, there is a small subset of patients with congenital diseases that 

cause aberrant wound healing, or blistering of the skin, where again, autografts are not a 

viable treatment option 6.  Grafting of bioengineered skin substitutes is currently an 

alternative treatment, when autografts are not optimal. 

Over the last three decades, development of bioengineered skin substitutes has rapidly 

advanced and using bioengineered skin to treat chronic wounds is now a reality 7.  

Nevertheless, progress is still limited as no bioengineered skin can completely replicate 

the anatomy and physiology of an autograft 8.  In the 1970’s Rheinwald and Green 

developed a method to isolate and culture keratinocytes from the epidermis 9, and this 

initial discovery promoted the development of skin substitutes such as EpiCel® that 

provide an epidermal covering to a wound, acting as a temporary barrier replacement 

while promoting skin repair 10.  Factors present within the dermal component of the wound 

bed are crucial for recovery from full thickness wounds, and commercial products such as 

Transcyte®, or Dermagraft® have been developed that replace the dermis, providing 

essential growth factors and extracellular matrix to the wound bed 8.  There are limited 

bioengineered skin products that replace both the epidermis and dermal layers of the skin 

although Apligraf® is one such FDA approved product, composed of neonate-derived 

fibroblasts cultured in a bovine collagen matrix, over which neonate-derived keratinocytes 

are seeded to produce a differentiated epidermis 11.  There are now detailed protocols on 

composite skin establishment 12, 13, and an expanding network of researchers are able to 

establish skin models within their laboratories.   

Additionally, efforts have focused on replacing the animal derived dermal matrix 14, or 

incorporating vascular networks into the dermal tissue to promote anastomosis, which 



would improve survival chances of the grafted tissue 15, 16. Several epidermal and dermal 

populations can be isolated from the skin for use in skin regeneration 17.  However, in an 

effort to improve on the current bioengineered skin models, other researchers have sought 

to identify alternate tissue sources, for isolation of stem cells and generation of autologous 

skin substitutes. These include mesenchymal stem cells 18, adipose cells 16, 19, and 

amniotic mesenchyme 20. Another strategy has been to refine the subpopulation of skin 

fibroblasts being used, for example by focusing on those derived from the upper papillary 

layer of the dermis 21 or by using fibroblasts derived from human embryonic stem cells 22. 

An alternative fibroblast cell source for use in skin constructs is hair follicle dermal cells, 

which are specialized fibroblasts.  There are two populations of fibroblasts in the follicle, 

the dermal papilla and dermal sheath.  Arising from the dermal condensate, papilla and 

sheath are derived from the same intermediate progenitors as papillary fibroblasts 23.  

When isolated from the follicle and expanded by growth in culture, hair follicle dermal cells 

display multipotency and plasticity, and can differentiate down several mesenchymal 

lineages 24.  Moreover, in the presence of TGF-β1 (which is expressed at high levels in 

wounded skin), rat dermal papilla cells transform and become more fibroblast-like 25, 26.  

We have previously hypothesized that hair follicle dermal cells have an alternate function 

to their role within the hair follicle (which is to promote hair growth), and can also act in a 

wound healing capacity in the skin 27.  Additionally, the presence of hair follicles within skin 

has long been theorized to promote healing, as rodent skin heals faster after injury when 

follicles are in an active growth phase, rather than their resting phase 28, 29.  Observations 

on recovery times after full thickness wounds in hair bearing mammals indicates that 

animals with higher hair densities heal faster with less scar formation, while grafting of hair 

follicles into chronic leg ulcers has been shown to promote wound closure 30.  With these 

clinical observations the hair follicle disappears while promoting wound closure, 



suggesting that the cells are incorporated into the wound 31.  It addition to providing a 

source of cells for re-epithelialization, it is likely that the hair follicle also promotes dermal 

remodeling, aiding wound closure 32.  This remodeling may be in the form of matrix 

deposition, or perhaps the follicle may promote neovascularization.  After all, VEGF is an 

angiogenic factor expressed at highest levels within dermal cells of the follicle 33, while in 

vitro dermal papilla cells promote significantly more tubulogenesis of human microvascular 

endothelial cells compared to non-follicle fibroblasts 34.   

We recently demonstrated that human hair follicle dermal cells act as a superior support 

for human keratinocytes in monolayer cultures, compared to human fibroblasts or 

irradiated 3T3 cells 35.  Additionally, hair follicle dermal papilla cells incorporated into a 

dermal matrix are capable of promoting contraction in skin wounds in nude mice 36.  We 

hypothesize that incorporation of hair follicle dermal cells into skin constructs used for 

wound covering will result in an improved bioengineered skin, as the dermal cells will act in 

a supporting role for the overlying keratinocytes, in addition to promoting integration, and 

vascularization at the wound site.  Previously, hair follicle outer root sheath (epithelial), or 

bulge stem cells have been incorporated into skin constructs 37-39, and even form the basis 

of bioengineered epithelial sheets that have been used for clinical application 40.  However, 

hair follicle dermal cells are an untapped source of cells for use in living bioengineered 

skins, and their use is potentially a stepping stone to establishing hair follicles within 

bioengineered skin 41.  Indeed recent studies have shown that human dermal papilla cells are 

capable of inducing hair follicles in skin constructs 42.  Uniquely, hair follicle dermal cells 

possess immunosuppressive properties, protecting them from rejection after 

transplantation 43.  This property alone confers an active benefit over other bioengineered 

skins, as it opens up the possibility of utilizing hair dermal cells for allogenic transplants 

with reduced concern of rejection.  In this manuscript we investigate the first, but 



fundamental steps in this approach, specifically: a) can human hair follicle dermal cells 

support growth of overlying epithelial cells in a three dimensional skin model, b) how does 

their capacity to support epidermal keratinocytes compare with interfollicular dermal 

fibroblasts and c) do they retain any follicle specific characteristics such as the  ability to 

induce follicular structures?  

Materials and Methods 

Establishment of cell cultures 

Occipital scalp skin samples were obtained as discarded tissue, after receiving an ethical 

approval, and Institutional Review Board exemption from Columbia University Medical 

Center.  To isolate hair follicle cells, follicle endbulbs were transected, and then inverted 

using 27G needles, enabling microdissection of the dermal papilla and dermal sheath 44.  

Papilla, or sheath were placed in 35mm culture dishes containing 20% FBS (Invitrogen) in 

dMEM containing 4.5mg/ml glucose (Invitrogen) with 1x Penicillin, Streptomycin, and 

Fungizone (Invitrogen).  They were allowed to settle in an incubator for 10 days, after 

which time the papilla, or sheath structures had collapsed, and cells had started to migrate 

out from them in an explant, starburst formation.  Medium was also changed to 10% FBS 

in dMEM with 1x Penicillin and Streptomycin.  Once 35mm dishes were filled with cells, 

they were passaged using 0.5% Trypsin-EDTA, and split at a 1:2 ratio.  To isolate 

fibroblasts, skin biopsies were transected using a scalpel blade just beneath the epidermis, 

roughly separating the papillary and reticular dermis.  Hair fibers were removed, and the 

papillary dermis was then chopped up into fine pieces using small scissors.  These small 

pieces were adhered to a 35mm dish, and once attached 20% FBS in dMEM with 1x 

Penicillin, Streptomycin, and Fungizone was added to the culture.  Fibroblasts cells 

migrated out of these explants, which were then passaged in a similar manner to the 



papilla and sheath cells.  Fibroblasts, dermal sheath, and dermal papilla cell lines that 

were matched (from the same skin donor), were then used for comparison against each 

other in later experiments.  Cells from three different donors were used in these 

experiments. 

Keratinocytes were subsequently isolated from discarded neonatal skin.  Neonatal skin 

samples were designated as nonhuman subject research under 45 CFR Part 46, and we 

therefore received an Institutional Review Board exemption at Columbia University to use 

these materials.  Briefly, skin was placed in 2.4mg/ml Dispase overnight at 4°C, after which 

time the epidermis and dermis were separated using forceps.  The epidermis was roughly 

minced, then placed into TrypLE® (Invitrogen) for 30 minutes at 37°C, after which time the 

reaction was stopped, and cells were passed through a 70µm cell strainer.  Isolated 

keratinocytes were grown in Epilife® (Invitrogen). 

Generation of in vitro bioengineered skin 

To establish skin constructs we followed the methods described in detail by Carlson et al., 12, 

with only slight modifications.  Instead of using bovine collagen from Organogenesis, we used 

3.7mg/ml rat tail collagen purchased from BD Biosciences.  Moreover, 010 medium was 

established using dMEM powder (Sigma-Aldrich, D5030) rather than DME powder from JRH 

Biosciences.   

Constructs were established in parallel from fibroblasts, dermal papilla cells and dermal sheath 

cells from matched donors.  After establishing dermal scaffolds, constructs were left to contract 

for 7 days prior to the addition of keratinocytes.  Keratinocytes used were at passage 1 or 2 

grown in serum free medium.  After adding keratinocytes, constructs were kept for 4 days in 

12mls Epidermalization I medium, 2 days in Epidermalization II medium, prior to feeding with 

Cornification medium 12.  Only 7mls cornification medium was used, enabling exposure of the 



construct surface to the air liquid interface.  Constructs were maintained in cornification 

medium for a further 11 days, meaning the total time between establishing the dermal layer 

and ending the experiment was 24 days. 

Generation of skin in vivo 

Dermal fibroblasts, dermal papilla cells, dermal sheath cells, or keratinocytes were trypsinized, 

counted and resuspended in PBS.   Ten million keratinocytes were then combined with either 

ten million fibroblasts, or ten million dermal papilla cells.  Cell mixtures were centrifuged, and 

resuspended in 100µl PBS.  This resultant cell slurry comprising of epidermal and dermal cells 

was then pipetted into a hole located on the top of a sterile silicone chamber (Renner GmbH, 

Germany), which had previously been inserted under the dorsal skin of a SCID mouse.  This 

work was performed after approval from the Institutional Animal Care and Use Committee at 

Columbia University.  After one week the silicone chamber was removed, and cells were left 

for a further two weeks.  Three weeks after cell grafting, skin structure could be observed.  

This was harvested for subsequent analysis. 

Histological and immunofluorescence analysis of bioengineered skin 

Skin constructs were placed in 2M sucrose overnight, prior to embedding in OCT compound, 

and freezing.  7µM sections were cut on a cryostat, and mounted onto positively charged glass 

slides.  Sections were air-dried at room temperature for 1 hour, then fixed with either 4% 

paraformaldehyde in PBS for 10 minutes at room temperature, or with chilled 

acetone:methanol 1:1 at -20°C, for 7 minutes.  Fixative was removed by washing slides in 

PBS 3 times, with 3 minute intervals at room temperature.  2% Fish Skin Gelatin (Sigma) in 

PBS was applied to sections for 1 hour, used to block non-specific binding.  Block was 

removed by tapping the edge of the slide gently, and primary antibodies (Table 1) were then 

applied to slides prior to them being left overnight at 4°C.  The next day, primary antibodies 



were removed by washing slides 3 times, with 3 minute intervals in PBS.  Secondary 

antibodies (goat anti-rabbit 488/594, or goat anti-mouse 488/594, Molecular Probes) were 

diluted 1:800, and then applied to slides and left for 1 hour at room temperature, shielded from 

light.  Secondary antibodies were washed off slides using three washes of PBS, and 

coverslips were mounted using vectashield containing DAPI (Vector labs).  Slides were 

visualized, and images taken, on a LCM Excitor Confocal microscope. 

For histological analysis sections were stained using haematoxylin and eosin, prior to 

mounting coverslips with DPX. 

Transmission electron microscopy analysis  

Skin constructs were placed in freshly made Karnovsky fixative, comprising of 2% 

paraformaldehyle and 2.5% Glutaraldehyde in 0.1M phosphate buffer 45.  Specimens were 

then postfixed in 1% OsO4 (Agar Scientific) buffered in 0.2M Sodium Phosphate buffer, pH 

7.4.  After post fixing, they were dehydrated through a series of ascending grades of ethanol 

(70%, 95%) with 3 changes, each lasting 15 minutes followed by immersion in absolute 

ethanol, for three 30 minute intervals.  Following this, the samples were immersed in an 

intermediate solution consisting of a 50:50 mix of 100% alcohol and propylene oxide.  After 3 

changes, 10 minutes apart, they were moved to propylene oxide, again with 3 changes, and 

10 minute intervals.  They were then placed in a fresh 50:50 araldite resin:propylene oxide mix 

and left overnight for the resin to infiltrate and the propylene oxide to evaporate.  The resin was 

composed of (in 46.2 grams) 23 grams Araldite CY 212, 22 grams DDSA and 1.2 grams 

BDMA (Agar Scientific).   The next day specimens were placed in a fresh resin, for 30 minutes, 

then into rubber molds with fresh araldite, which was then left to polymerize for 48 hours at 

60°C.  Ultrathin sections were cut using a diamond knife on a Reichert Ultracut S 

Ultramicrotome and transferred to formvar coated grids.  Sections were then stained with 1% 



Uranyl acetate in 70% ethanol, washed in water, then stained with Reynolds Lead Citrate for 

visualizing.  Ultrathins were imaged on a Hitachi H7600 Transmission Electron Microscope.  

 

Results 

Differentiation, stratification and proliferation in bioengineered skins 

After establishment of in vitro skin constructs the morphology of the newly formed epidermis 

was assessed on haematoxylin and eosin stained sections. At the 24 day time point when skin 

constructs were embedded, they had been in cornification medium, raised to the air liquid 

interface and undergoing a program of differentiation for 11 days.  On each of the three dermal 

substrates, epidermal proliferation and differentiation had occurred to form a continuous 

epidermal covering. On top of all three dermal cell types, epidermal cells perpendicular to the 

dermal-epidermal junction formed a clear basal layer. (Fig. 1a-c).  Above this, a noticeable 

change in cell orientation was visible, resulting in more horizontally aligned cells, forming the 

stratum spinosum.  Above the spinous layer, the stratum granulosum layer was characterized 

by cells containing keratohyalin granules.  The outer layer of the epidermis, the stratum 

corneum was also present in all skin constructs, as a thickened non-nucleated layer. There 

were no obvious differences in the equivalents containing hair follicle dermal cells, when 

compared to a fibroblast support layer, indicating that hair follicle dermal cells are capable of 

supporting growth and differentiation of overlying epidermal cells, in a manner similar to 

regular interfollicular fibroblasts. 

Immunofluorescence was then used to assess whether the equivalents expressed specific 

differentiation markers, present within the various layers of normal epidermis.  The epidermis 

has a changing profile of keratins that provide stability to the epidermal cells, but also enable 



discrimination of differentiated layers.  Keratin 5 (K5) and keratin 1 (K1) were investigated as 

the former marks basal epidermis, while the latter demarcates keratins present within the 

suprabasal epidermis, not including the stratum corneum.  Loricrin (LOR) is a major 

component of the cornified cell envelope barrier and is present within the terminally 

differentiated stratum corneum.  While K5 was exclusive to the basal layer in control skin, 

within skin equivalents supported by all three dermal cell types K5 was seen both in the basal 

layer and at weaker levels in the suprabasal keratinocytes (Fig. 1d-g).  Comparatively, in both 

control skin and all skin constructs, K1 was exclusively within the suprabasal keratinocytes and 

was absent from the basal layer (Fig. 1h-k).  Moreover, LOR expression was restricted to the 

stratum corneum of control skin, and bioengineered skin constructs incorporating either 

fibroblasts, or hair follicle dermal cells, indicating that a normal program of differentiation and 

stratification was occurring in all cases (Fig. 1l-o).   

While the presence of cytokines within skin constructs has been shown to stimulate wound 

repair after skin construct grafting 46, an additional important factor is the viability of the graft. 

When the presence of KI67 was assessed a low number of proliferating basal keratinocytes 

was observed in the control skin and similar labeling was seen within all three skin construct 

types, in addition to the occasional proliferating dermal cell (Fig. 1p-s). 

Desmosomes are present throughout the basal and suprabasal epidermis, while 

corneodesmosomes are in the stratum corneum.  Desmosomes enable connection of 

adjacent cells within the epidermis and provide integrity, preventing shearing of the skin.  The 

expression of both desmoglein 3 (DSG3), and desmoplakin (DSP), was investigated to 

evaluate desmosomal protein synthesis within our bioengineered skins.  In control skin, DSG3 

was expressed within both the basal and suprabasal layers, with strongest expression 

observed in the stratum basale and stratum spinosum (Fig. 2a).  DSP was expressed in all 



basal and suprabasal cells, although strongest expression was observed within the stratum 

spinosum and granulosum.  Within skin constructs, with dermal fibroblasts, papilla, or sheath 

cells supporting the keratinocytes, DSG3 was observed in both the basal and suprabasal 

layers of skin, with the strongest expression seen in the basal layer (Fig. 2b-d).  DSP was 

observed at low levels in the basal layer, but increased in intensity within the stratum spinosum 

(Fig. 2e-h). Transmission electron microscopy showed that in constructs supported by all three 

cell types, numerous desmosomes were linking cells throughout the basal and suprabasal 

layers of the epidermis. (Fig. 2i-k). 

Basement membrane formation in bioengineered skins 

Immunofluorescence was used to assess the expression of basement membrane components 

within the bioengineered skin constructs.  This is predominantly comprised of extracellular 

matrix proteins, synthesized by the epidermal keratinocytes.  However, dermal cells are 

important here, as they stimulate the epidermis to deposit a basal lamina 47.  While levels of 

type VII collagen (COL7) staining were relatively similar in the basement membrane of 

different bioengineered constructs (Fig. 3a-d), type IV collagen (COL4) labeling was most 

intense in the basement membrane of constructs supported by dermal sheath cells from the 

hair follicle (Fig. 3e-h).  Quantification of membrane thickness by assessing COL4 expression 

revealed that dermal sheath supported constructs had significantly thicker basement 

membranes compared to the fibroblast and dermal papilla constructs (Fig 3i).    

The extent of basal lamina formation in skin constructs was then assessed using transmission 

electron microscopy. While some basal lamina could be detected in all three bioengineered 

skin constructs, within the fibroblast supported specimens the basal lamina was patchy, not 

showing continuity across the entire construct (Fig. 3j).  Moreover, the basal lamina, which has 

a clear three layered structure in electron micrographs, was often missing its most basal layer 



of the three.  Dermal papilla supported constructs had a largely consistent, three layered basal 

lamina, however, there were areas where it was not intact and resembled the basal lamina in 

the fibroblast supported constructs (Fig. 3k). Contrastingly, the basal lamina in hair follicle 

dermal sheath supported constructs was thickened, rarely showing areas of breakage, 

indicating a consistent deposition across the entire construct (Fig. 3l).  In dermal sheath 

supported constructs, anchoring fibril-like projections were observed from the constructs that 

made contact with the basal lamina (Fig. S1).  This was rarely observed within the constructs 

supported by either dermal fibroblasts, or dermal papilla cells. 

Dermal identity in bioengineered skins 

An interesting facet about hair follicles, is that the dermal sheath expresses alpha smooth 

muscle actin (αSMA), an actin isoform usually present in smooth muscle cells, or 

myofibroblasts 48.  In healing wounds, the transient presence of αSMA expressing 

myofibroblasts enables wound contracture to occur 49, 50.  Using antibodies specific to 

αSMA, we analyzed the expression in the dermis of our three different bioengineered skin 

constructs (Fig. 4a-d).  In control skin that is unwounded, αSMA is usually only located 

around blood vessels, and in hair follicle dermal sheath.  However, in culture αSMA switches 

on in dermal papilla cells, so it is expressed by both hair follicle fibroblast populations 48.  We 

did not observe αSMA within the dermis of constructs supported by fibroblasts, however, high 

expression levels were seen in constructs supported by both hair follicle dermal sheath and 

hair follicle dermal papilla cells.  This indicates that hair follicle dermal cells maintain their cell 

identity in engineered skin constructs.   

In addition to differences in expression, hair follicle dermal cells are unique from interfollicular 

fibroblasts in a number of ways.  In specific conditions, human dermal papilla cells have been 

shown to be capable of promoting hair follicle growth when combined with competent human 



epithelium or human epithelial cells 42, 51.  However, within our timeframe in vitro we did not 

observe any induction of hair follicles, or anomalous follicle-like structures. 

Formation of de novo skin in vivo 

In addition to analyzing engineered skins assembled layer by layer in vitro, we also assessed 

whether all three fibroblast populations could support establishment and organization of 

human keratinocytes in vivo.  When we introduced a slurry of keratinocytes together with 

either fibroblasts, dermal papilla cells or dermal sheath cells, into chambers on the backs of 

mice, they quickly self-organized to form a skin structure. Histological analysis of these regions 

after 3 weeks showed that cells had reorganized with dermal cells on the inner surface, and 

keratinocytes exposed to the external air interface (Fig. S2a-c).  Further analysis was only 

performed comparing hair follicle dermal papilla, and interfollicular fibroblasts.  In epidermis 

supported by both fibroblasts, and dermal papilla cells, the keratinocytes had differentiated and 

formed stratified layers, creating a human skin on the back of a mouse (Fig. S2d-f).  K1 was 

expressed in the suprabasal layers of skins supported with both fibroblasts and dermal papilla 

cells, while DSG3 was clearly present within the basal and spinous layers (Fig. S3a-d).  

Basement membranes were also established, as indicated by the presence of COL7 (Fig. 

S4a-b) and COL4 (Fig. S4c-d) in the in vivo skins supported by both fibroblasts and dermal 

papilla cells.  Additionally, while in vitro constructs are established in a type I collagen (COL1) 

scaffold, in vivo the dermal cells have to produce the COL1 themselves.  COL1 deposition was 

observed in skins established using both fibroblasts and dermal papilla cells (Fig. S4e-f).  

Lastly, while skins established with dermal papilla cells did retain some hair follicle 

characteristics, by expressing αSMA within the dermis, there was a noticeable absence of hair 

follicle structures in any skins established in vivo at the 3 week time point when the experiment 

was completed. 



Discussion 

In this study our principal goal was to determine if human hair follicle derived dermal cells were 

capable of supporting the growth of epithelial cells in a three dimensional construct to form a 

viable bioengineered skin.  We have successfully demonstrated that both dermal papilla, and 

dermal sheath cells can replace interfollicular fibroblasts in skin constructs, and, in one specific 

feature, basement membrane formation, dermal sheath cells are superior to fibroblasts.  This 

supports the idea that hair follicle dermal cells have a dual capacity in the skin.  In addition to 

being integral to the hair follicle, and driving hair follicle cycling, they are also capable of 

switching to support epidermal growth and renewal in a regenerative context 52. In this regard 

they parallel to some extent the follicle epithelial outer root sheath progenitors, which can also 

display a dichotomy of activity within skin.  Indeed human hair follicle epithelial cells have 

already been used for skin replacement in a clinical context 40. We also show that follicle 

dermal cells are capable of constituting skin dermis as part of reconstituted skin dermis in vivo, 

but follicle dermal cells did not induce follicular structures either in vitro or in vivo. 

One predominant requirement of the dermal portion of a bioengineered skin is to support the 

overlying epidermis, and maintain the cells in a viable state.  The dermis and epidermis have a 

synergistic relationship, perhaps explaining why bioengineered skins with only an epidermis 

are not long lived.  The dermis provides structural support for the overlying keratinocytes, 

enabling production of key basement membrane components.  Interestingly, one area where 

the hair follicle dermal cells appeared superior to interfollicular fibroblasts was in their capacity 

to influence the establishment and maintenance of a basal lamina.  Dermal cells are capable 

of stimulating overlying keratinocytes to deposit a basal lamina 53.  In our skin constructs 

containing hair follicle dermal cells, in particular dermal sheath, we saw an increase in COL4 

expression compared to fibroblast supported constructs, coinciding with a formation of a 



robust and uniform basal lamina as shown by electron microscopy.  This capacity to stimulate 

basal lamina formation is perhaps not surprising, given that in situ the dermal sheath 

contributes to and stimulates the formation of, the substantial and complex basement 

membrane structure termed the glassy membrane, which separates dermal sheath from the 

epithelium around the hair follicle.  

One key role of a bioengineered skin is to promote wound closure after grafting, by providing a 

moist wound environment which will stimulate skin repair and replacement.  Skin constructs 

supported by hair follicle dermal cells had a well-stratified epidermis and cornified stratum 

corneum layer as indicated by LOR staining.  This will enable the bioengineered skin to form a 

barrier to external influences, while also trapping in water and solutes to create an 

environment that will promote healing.  Another key role of bioengineered skins is to produce 

cytokines that positively influence the healing process.  Interestingly, VEGF is expressed at 

very high levels within hair follicle dermal cells  33, allowing us to postulate that grafted skin 

constructs containing hair follicle dermal cells may in some way promote vascularization, and 

therefore integration of the skin construct to enable faster wound healing. 

One interesting feature of our hair follicle derived skin constructs was the presence of αSMA, a 

marker of myofibroblasts, within the dermis of skin constructs.  This demonstrated that the hair 

follicle derived cells, while assuming the role of dermal fibroblasts were, nevertheless, 

maintaining some follicle specific characteristics.  Hair follicle dermal sheath express αSMA in 

vivo, while both dermal papilla and dermal sheath express the marker in vitro 48.  There is a 

positive correlation with αSMA expression, and the contractile activity of fibroblasts 54.  We 

therefore hypothesize that the presence of αSMA within grafted skin constructs would aid to 

create an environment conducive to healing, by promoting contracture of the wound. 



We have previously shown in rodents that adult whisker follicle dermal cells can contribute to 

wounded skin dermis and form the dermis in a reconstructed skin model in vivo 55.  Here, we 

have demonstrated that likewise, human hair follicle dermal cells are capable of supporting 

overlying epidermal cells in a bioengineered skin.  While several groups are exploring the 

possibility of incorporating alternative cell types into skin constructs, it is still essential that we 

investigate alternative cell types within the skin as a novel cell source for engineering skin.   

Our findings within this manuscript support our previous observations that hair follicle dermal 

cells are superior to fibroblasts when used as a feeder layer to support keratinocytes in culture 

35.  With the recent explosion of interest in de novo hair follicle formation, we have to postulate 

if incorporation of hair follicle dermal cells within skin constructs will be a stepping stone to 

enable growth of hairy bioengineered skins.  Our bioengineered skins were maintained for 3-4 

weeks in culture, and at no point in time did we observe de novo follicle formation within our 

constructs.  Similarly, we did not observe any signs of hair follicle formation in our in vivo skins. 

Others have produced follicles in their skin constructs 42, 56 raising the question of why this did 

not occur here? This could be due to different methods; in other protocols in vitro skin 

constructs were established then grafted onto nude mice to ensure survival up to 15 weeks, 

while ours were only maintained for 3-4 weeks 42.  Alternatively, incorporating dermal papilla 

spheroids into the skin construct dermis can enable papilla inductivity 56, while in our study we 

only used dispersed hair follicle dermal cells.  Another possibility is that there are individual 

and/or site specific differences between the hair follicle populations used in different studies 42. 

Notwithstanding, incorporation of hair follicles into constructs by exploiting the inherent 

properties of the dermal cells to induce new hair structures is a first step to recreating a 

functional skin, however, controlling follicle depth and directionality are other obstacles which 

lie ahead 57.  Current bioengineered human skins are devoid of organized hair follicles, and 

indeed other structures that such as blood vessels and nerves, which together make a the skin 



a highly complex structure.  Introduction of various skin derived cell types into bioengineered 

constructs, will no doubt, over time, enable the creation of bioengineered skins that more 

closely recreate or mimic the complexity of human skin.   
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Antigen Source Species (raised 

in) 

Dilution used 

K5 Covance Rabbit 1:500 

K1 Covance Rabbit 1:500 

LOR Covance Rabbit 1:500 

DSG3 (Clone 

5H10) 

Gift from J. Wahl Mouse 1:3 

DSP (Clone 

20B6) 

Gift from J. Wahl Mouse 1:3 

COL7 Sigma Mouse 1:500 

COL4 Chemicon Mouse 1:500 

COL1 Chemicon Rabbit 1:100 

αSMA (Clone 

1A4) 

DAKO Mouse 1:30 

KI67 Abcam Rabbit 1:1000 

Human Nuclei 

(Clone 235-1) 

Millipore Mouse 1:100 

 

Table 1.  Primary antibodies used in this study. 

 

 

 

 



Figure legends 

 

Figure 1.  Differentiation and proliferation in skin constructs.  (a) H&E staining of skin 

construct with fibroblasts in dermal support layer, compared to dermal papilla cells (b), or 

dermal sheath cells (c).  Layers of the epidermis; stratum basale (SB), stratum spinosum 

(SS), stratum granulosum (SG), and stratum corneum (SC) can be seen in each construct.  

(d) K5 staining in normal human skin.  In constructs supported by fibroblasts (e), dermal 

papilla cells (f), and dermal sheath cells (g), K5 is observed in the basal layer of the 

epidermis.  (h) K1 staining in normal human skin.  In constructs supported by fibroblasts 

(i), dermal papilla cells (j), and dermal sheath cells (k), K1 is observed in the suprabasal 

layers of the epidermis.  (l) LOR staining in normal human skin.  In constructs supported 

by fibroblasts (m), dermal papilla cells (n), and dermal sheath cells (o), LOR is observed in 

the stratum corneum.  (p) Few basal keratinocytes are KI67 positive in normal human skin.  

Moreover, we see a similar expression pattern in basal keratinocytes supported by 

fibroblasts (q), dermal papilla cells (r), and dermal sheath cells (s).  

 

Figure 2.   Desmosomal junctions in skin constructs.  DSG3 expression in normal 

human skin (a) is observed within the basal and spinous layers of the epidermis.  In skin 

constructs supported by fibroblasts (b), dermal papilla cells (c), and dermal sheath cells 

(d), DSG3 expression is observed within the lower layers of the epidermis, however, the 

pattern is not as well defined as in control skin.  (e) In control skin, DSP expression is 

observed in the suprabasal layers of the epidermis, in a defined cell border pattern.  In 

epidermis supported by fibroblasts (f), dermal papilla cells (g), and dermal sheath cells (h), 

expression is observed in the suprabasal layers of the construct.  Using transmission 

electron microscopy to visualize fibroblast supported constructs (i), in addition to those 



supported by dermal papilla (j), or dermal sheath (k) cells, we observed several 

desmosomes present at the cell surface of keratinocytes, enabling cell-cell contact and 

adhesion. Scale bars: 10µm. 

 

Figure 3. Basal lamina formation in skin constructs.  (a) Within normal human skin, 

anchoring fibrils composed of COL7 are observed extending from the basal lamina into 

underlying collagen.  In skin constructs with a dermal fibroblast (b), dermal papilla cell (c), 

or dermal sheath cell (d) support layer, COL7 is also observed, and nicely demarcates the 

boundary between the dermis and epidermis.  (e) In normal human skin, the basal lamina 

is composed of COL4.  Likewise, expression is observed in skin constructs with a 

fibroblast support (f), and a dermal papilla cell (g) support.  In constructs supported by 

dermal sheath cells (h), high levels of collagen 4 were observed.  (i) Whisker box plot of 

COL4 thickness, showing DS constructs had significantly thicker membranes than DP and 

DFi skins.  (j) Transmission electron microscopy of the basal lamina (between arrows) of 

fibroblast supported constructs showed a thin lamella, often missing the most basal layer, 

and strewn with gaps.  In constructs supported by dermal papilla cells (k), the lamina 

(between arrows) was thicker, but there were often areas where it failed to fully form.  

However, in skin constructs supported by dermal sheath cells (l), the basal lamina 

(between arrows) was nicely formed, and showed its characteristic three layered pattern.  

Moreover, the lamina was consistently visible across the entire construct.  Scale bars: 

1µm. *** p<0.001. 

 

Figure 4.  Hair follicle identity in skin constructs. (a) In unwounded human skin, αSMA 

is usually only expressed in blood vessels, and in the dermal sheath of hair follicles.  In the 

dermis of skin constructs supported by fibroblast cells (b), we observe very little αSMA.  



Comparatively, in the dermis of constructs supported by both dermal papilla cells (c), and 

dermal sheath cells (d), αSMA is readily observed, produced by cells within the collagen 

scaffold. 



Supplementary Figures 

 

 

Figure S1. Electron microscopy of in vitro constructs supported by dermal cells.  (a,b) 

Skin constructs with a dermal fibroblast support had a disrupted basal lamina.  (c,d) 

Constructs with a dermal papilla support exhibited a number of hemi-desmosomes, and had 

more continuous basal lamina compared to the dermal fibroblast constructs. (e,f) In 

constructs with a dermal sheath support, a continuous basal lamina was observed across 

the length of the construct.  Anchoring fibrils (arrows) were observed attaching to the basal 

lamina and extending into the underlying dermis. Several hemi-desmosomes were visible at 

the dermal epidermal junction.  Scale bars: 1µm. 



 

 

Figure S2. Formation of human skin in vivo.  (a) H&E staining of skins established with 

a slurry of keratinocytes and fibroblasts, keratinocytes and dermal papilla cells (b), or 

keratinocytes and dermal sheath cells (c).  Cells within the slurry have self-organized, while 

keratinocytes have differentiated and stratified to form the stratum basale (SB), stratum 

spinosum (SS), stratum granulosum (SG), and stratum corneum (SC).  (d) Human Nuclei 

staining in skins comprised of keratinocytes supported by dermal fibroblasts, or dermal 

papilla (e) cells.  Within both the dermal papilla and fibroblast constructs many human cells 

are observed throughout the majority of the epidermis and dermis, with only a few infiltrating 

mouse cells.  In the dermal sheath constructs (f), there are less dermal cells remaining. 

 

 

 



 

Figure S3.  Differentiation of in vivo human skins.  In epidermis supported by dermal 

fibroblasts (a), and dermal papilla cells (b), K1 staining is absent in the basal layer, but 

present throughout the suprabasal epidermis.  (c) DSG3 expression is observed within the 

basal and spinous layers of epidermis supported by fibroblasts, and dermal papilla (d) cells, 

demonstrating a normal pattern of differentiation in vivo. 

 

 

 

 

 



 

Figure S4.  Collagen expression patterns in newly formed human skin in vivo.  In 

human skins established in vivo with dermal fibroblasts (a), or dermal papilla cells (b) 

supporting the overlying epidermis, COL7 is observed in the newly formed basement 

membrane.  Likewise, strong COL4 expression is observed in the basement membrane of 

skins with a fibroblast support (c), and a dermal papilla cell (d) support.  In de novo skins 

with both fibroblasts (e), or dermal papilla cells (f) within the dermis, these cells express 

COL1. 
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