The Ecology and Evolution of Alien Plants

Mark van Kleunen^{1,2}, Oliver Bossdorf³ and Wayne Dawson⁴

¹Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; email: <u>mark.vankleunen@uni-konstanz.de</u> ²Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany ³Plant Evolutionary Ecology, Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany; email: <u>oliver.bossdorf@uni-tuebingen.de</u> ⁴Department of Biosciences, Durham University, South Road, Durham, DH1 2LF, United

Kingdom; email: wayne.dawson@durham.ac.uk

Running title: Ecology and Evolution of Alien Plants Corresponding author: Mark van Kleunen, <u>mark.vankleunen@uni-konstanz.de</u>

1

Keywords

biotic interactions, exotic plant, invasive, macro-ecology, naturalized, rapid evolution

Abstract

We review the state-of-the-art of alien plant research with emphasis on conceptual advances, and knowledge gains on general patterns and drivers, biotic interactions and evolution. Major advances include the identification of different invasion stages and invasiveness dimensions (geographic range, habitat specificity, local abundance), and the need for appropriate comparators while accounting for propagule pressure and introduction historyyear of introduction. Developments in phylogenetic and functional-trait research, and hybrid modelling bear great promise for better understanding of the underlying mechanisms. Global patterns are emerging with propagule pressure, disturbance, increased resource availability and climate matching as major invasion drivers, but species characteristics also play a role. Biotic interactions with resident communities shape invasion outcomes, with major roles for species diversity, enemies, novel weapons and mutualists. There is mounting evidence for rapid evolution of invasive aliens and evolutionary responses of natives, but a mechanistic understanding will require better integration of molecular and phenotypic approaches. We hope the open questions identified will stimulate further research on the ecology and evolution of alien plants.

1 1. INTRODUCTION

The study of alien organisms, and their biotic interactions and varying invasion success is a 2 3 major research area in ecology and evolutionary biology. Its motivation has always been twofold: On the one hand, scientists and conservation managers have been concerned about 4 5 negative impacts of alien organisms on native biodiversity and economy. On the other hand, since alien organisms often experience novel ecological contexts, and there is large variation 6 in invasion success, which is at least partly explained by ecological and evolutionary 7 processes, the study of alien species greatly advances our fundamental ecological and 8 evolutionary understanding (Sax et al. 2007). The initial research agenda for invasion biology 9 was set by two seminal books on the ecology (Elton 1958) and genetics (Baker & Stebbins 10 1965) of invasive species. Research has grown exponentially particularly in the second half 11 of the previous century (Gurevitch et al. 2011), and invasion biology is now a mature 12 13 discipline. 14 Within invasion biology, the study of alien plants has been particularly strong, with its findings summarized in numerous reviews (e.g., Rejmánek 1996, Pyšek & Richardson 2007). 15 16 Nevertheless, our understanding of alien plant invasions, and invasion biology more broadly, 17 has long been hampered by unclear and inconsistent use of definitions (Pyšek et al. 2004), 18 failure to account for year of introduction and propagule pressure (and a lack of appropriate 19 null models (Colautti et al. 2006), and use of comparator groups comparisons of invasive 20 species (or populations) to reference species (or populations) that do not address the research 21 question (van Kleunen et al. 2010a). Moreover, there has sometimes been a lack of 22 understanding of how different hypotheses in plant invasion biology are related (Catford et al. 2009). In recent years, there has been much progress in this regard. 23 In this review, we describe some of the major conceptual and methodological 24

25 advances, and empirical studies that have improved our understanding of plant invasions. We

26	do not provide a systematic, exhaustive review, but a series of rather an overview of selected	
27	key topics where progress has been made, from macro-ecology and biotic interactions to	
28	evolution and genetics. Our review is accompanied by a visual summary in Figure 1 where	
29	we indicate, for each topic, how well it has been studied so far, how consistent the results	
30	were and how many open questions there still are in ithave been from study to study, and how	
31	many questions remain open. Although this figure is clearly somewhat subjective, we hope	
32	that together with the 'way-forward' sections below, it will stimulate and guide future	
33	research on the ecology and evolution of alien plants.	
34		
25		
35	2. CONCEPTUAL AND METHODOLOGICAL ADVANCES	
36	With the rapid increase in research on alien plants, our understanding of the processes that	
37	drive plant invasions has increased considerably. Several conceptual and methodological	
38	advances have contributed to this.	
38 39	advances have contributed to this.	
	advances have contributed to this. 2.1. The Invasion-stages Framework	
39		
39 40	2.1. The Invasion-stages Framework	
39 40 41	2.1. The Invasion-stages Framework Invasion biology has developed a large vocabulary with multiple terms for the same things	
39 40 41 42	2.1. The Invasion-stages FrameworkInvasion biology has developed a large vocabulary with multiple terms for the same things (e.g., alien, exotic, non-native, non-indigenous), and multiple definitions for the same terms	
 39 40 41 42 43 	 2.1. The Invasion-stages Framework Invasion biology has developed a large vocabulary with multiple terms for the same things (e.g., alien, exotic, non-native, non-indigenous), and multiple definitions for the same terms (e.g., invasive; see below). To increase clarity and consistent use of terminology, Richardson 	
 39 40 41 42 43 44 	2.1. The Invasion-stages Framework Invasion biology has developed a large vocabulary with multiple terms for the same things (e.g., alien, exotic, non-native, non-indigenous), and multiple definitions for the same terms (e.g., invasive; see below). To increase clarity and consistent use of terminology, Richardson et al. (2000) proposed an invasion-stages framework with a sequence of barriers that a plant	
 39 40 41 42 43 44 45 	2.1. The Invasion-stages Framework Invasion biology has developed a large vocabulary with multiple terms for the same things (e.g., alien, exotic, non-native, non-indigenous), and multiple definitions for the same terms (e.g., invasive; see below). To increase clarity and consistent use of terminology, Richardson et al. (2000) proposed an invasion-stages framework with a sequence of barriers that a plant species has to overcome to become invasive <u>(Figure 2)</u> . In this framework, aliens are plant	
 39 40 41 42 43 44 45 46 	2.1. The Invasion-stages Framework Invasion biology has developed a large vocabulary with multiple terms for the same things (e.g., alien, exotic, non-native, non-indigenous), and multiple definitions for the same terms (e.g., invasive; see below). To increase clarity and consistent use of terminology, Richardson et al. (2000) proposed an invasion-stages framework with a sequence of barriers that a plant species has to overcome to become invasive <u>(Figure 2)</u> . In this framework, aliens are plant species that have passed a biogeographic barrier (e.g., an ocean) with help of humans. The	

4

50	over multiple life cycles, are considered naturalized. The <u>subset of</u> naturalized species that
51	have overcome the dispersal barrier and produce reproductive offspring, often in very large
52	numbers, at considerable distance from parent plants (>100 m within <50 years; Richardson
53	et al. 2000) within the non-native range and subsequent environmental barriers they
54	encountered-are considered invasive.
55	While the Richardson et al. framework is widely applied (3042 citations in Google
56	Scholar, accessed 11 January 2018), definitions of 'invasive' vary. The Richardson et al.
57	(2000) definition is neutral with respect to ecological and economic impacts, whereas the
58	Convention on Biological Diversity (CBD 2000) defines invasive species as those whose
59	introduction and/or spread threatens biological diversity. Problematic is that the latter is
60	frequently unknown. Other definitions of 'invasive' are used less frequently, although they
61	consider interesting aspects. For example, (Alpert et al. (2000) proposed decoupling
62	'invasive' from being alien, and Hufbauer & Torchin (2007) proposed defining a species
63	invasive when its demographic performance is higher in the invaded than in the native range.
64	While many alien species might qualify as invasive under all these definitions, there are
65	exceptions. Parker et al. (2013) showed that plants among '100 of the world's worst invasive
66	alien species', which follows the CBD (2000) definition, perform on average better in their
67	non-native than in their native ranges, thus meeting the Hufbauer & Torchin (2007)
68	'invasive' definition. However, there was high variability among these species in this regard.
69	Although none of the 'invasive' definitions is necessarily better than the others, the use of
70	multiple definitions has resulted in confusion, and might explain some of the apparently
71	conflicting findings among studies. Therefore, we call for researchers to always state clearly
72	which definition of 'invasive' is used. Here, we use the Richardson et al. (2000) definitions of
73	alien, naturalized and invasive, unless stated otherwise.
74	

75 2.2. The Multiple Dimensions of Invasiveness

76	The multiple 'invasive' definitions demonstrate that iInvasive species, as described in the	
77	literature, are not a homogeneous group. While the Richardson et al. (2000) definition of	
78	invasive primarily focusses on spread of the naturalized species, it also implicitly also	
79	assumes that the species are locally abundant (i.e., produce reproductive offspring in large	
80	numbers). Species show continuous variation in spread (i.e., range size) and abundance,	
81	and which means that invasiveness is not binary, but is instead therefore a continuous	
82	<u>variableand multidimensional.</u> rather than a binary (yes/no) variable. Moreover, wWMhile	
83	some <u>naturalized</u> alien species are <u>wide-spread</u> , they have a low locally abundantabundance,	
84	they might have a small non-native range or be restricted to few habitats, whereas others	
85	might have a large-small range and occur in many habitats but have sparse populationshave a	
86	high local abundance. In other words, invasiveness has multiple dimensions (Figure 2). For	Formatted: Font: Bold
87	the related concept of The idea that rarity and commonness (or rarity), Rabinowitz (1981)	
88	proposed, have three dimensions – in addition to geographical range, and habitat specificity,	
89	local population size (i.e., abundance), to also consider the range of habitats in which a	
90	species occurs (i.e., habitat generality). This idea of multiple dimensions of a species'	
91	distribution or commonness	
92	recently been applied to invasiveness of alien plants (Dawson et al. 2013, Catford et al.	
93	2016).	
94	The different invasiveness dimensions are likely to be associated with different main	Formatted: Indent: First line: 1.27 cm
95	barriers (Figure 2). Range size (spread) may be mainly determined by one or more dispersal	Formatted: Font: Bold
96	barriers, local abundance by one or more competition barriers, and habitat generality by one	
97	or more environmental barriers. Depending on the specific research question, one could also	
98	considerPotential additional further dimensions, such as of invasiveness are the rate of	
99	spread-rate (Catford et al. 2016), and different categories of ecological and economic impacts.	

100	which would then also include the CBD (2000) definition of invasive. We believe that	
101	consideration of these different invasiveness dimensions in research on alien plants may	
102	provide more consistent results among studiesprevent researchers from mistakenly	
103	concluding that results are in conflict.	
104		
105	2.3. Comparative Approaches for Assessing Determinants of Invasion Success	
106	The variety in approaches used to study alien plants and their invasion success is enormous.	
107	While there are many descriptive studies on <u>individual</u> invasive species, the question of what	
108	determines invasion success requires a comparative approach. Such studies are most powerful	
109	when they include many species, populations and sites (van Kleunen et al. 2014). The	
110	comparator choice is pivotal to whether the question of interest can be answered (van	
111	Kleunen et al. 2010a). Although most studies on traits associated with invasiveness have	
112	compared invasive alien to native species (Pyšek & Richardson 2007, van Kleunen et al.	
113	2010b, Davidson et al. 2011), this cannot reveal why alien species differ in invasiveness. This	
114	requires a comparison between alien species that differ in their degree of	
115	invasivenessbetween invasive and non-invasive alien species, either along a single dimension	
116	or along multiple dimensions of the invasiveness continuum (Figure 2). When these	Formatted: Font: Bold
117	comparisons include non-invasive alien species, , though-it is also-important to realize that	
118	the latter may be at different invasion stages. Some non-invasive aliens; some might not-are	
119	not found outside of cultivation, some are just casuals and others are naturalized but not	
120	invasive have been introduced, and others might be introduced but not naturalized (van	Formatted: Font: Bold
121	Kleunen et al. 2015bFigure 2). As different traits might be associated with each of these	
122	stages (Dietz & Edwards 2006, Dawson et al. 2009, van Kleunen et al. 2015b), the results of	
123	the comparison between invasive and non-invasive aliens may strongly depend on the	
124	invasion stage of the latter.	

126 2.4. Introduction History as a Null ModelAccounting for propagule pressure and year 127 of introduction It seems almost trivial that alien species introduced in greater numbers or more frequently are 128 129 more likely to naturalise and become invasive, and thus should be accounted for. 130 Nevertheless, the need to account for this so-called propagule pressure has been formalized as a 'null model' for invasion successrecognized only recently (Colautti et al. 2006). Similarly, 131 alien species that were introduced earlier should have had more opportunities to naturalize 132 133 and become invasive (Rejmánek 2000). We will discuss the importance of propagule pressure 134 and year of introduction in more detail below. However, accounting for the introduction 135 historypropagule pressure and year of introduction of an-alien species has been important for disentangling the ecological and evolutionary processes that contribute to plant invasions. 136 137 2.5. Darwin's Naturalization Conundrum, Scale Dependency and Coexistence Theory 138 139 There has been long-standing interest in how differences between alien and native plants 140 determine invasion success. (Darwin (1859) hypothesised that alien plants distantly related 141 from the native communities are more likely to naturalize. A mechanism underlying Darwin's naturalization hypothesis (Rejmánek 1996) could be stronger niche differentiation 142 143 between resident natives and more distantly related aliens (Thuiller et al. 2010). In addition, the more distantly related the alien plant is, the less likely it is that herbivores and pathogens 144

145 will spill over from native residents (see Enemy Release section below). Darwin (1859) also hypothesised that alien species from genera that occur in native regional floras may be more 146 147 likely to naturalize because they share the the same pre-adaptations as the related natives. These seemingly contradictory hypotheses are now referred to as 'Darwin's naturalization 148 conundrum' (Thuiller et al. 2010).

125

149

150	The realization that different ecological processes act at different spatial scales is
151	helpingmight help to resolve this conundrum and as well as the apparent discrepancies
152	between studies that found positive, negative or no significant relationships between
153	naturalization success of alien plants and their the mixed findingsphylogenetic relatedness to
154	native plants -(Thuiller et al. 2010). Whereas abiotic environmental filtering, which requires
155	pre-adaptation, acts at all spatial scales, biotic filtering acts only at the small scales where
156	species interact (Thuiller et al. 2010, Gallien & Carboni 2016). Therefore, Darwin's
157	naturalization hypothesis (i.e., the hypothesis that alien species distantly related to native
158	species are more likely to naturalize) should only operate at small spatial scales. As the
159	different processes might act simultaneously, the relationship between invasion success and
160	phylogenetic distance might actually be non-linear and depend on the phylogenetic scale
161	(Thuiller et al. 2010, Gallien & Carboni 2016). These ideas, however, still need to be tested
162	explicitly.
163	Another potential reason for the mixed findings is that the expected relationship
164	between phylogenetic distance and invasion success rests on the assumption that
165	phylogenetic distance reflects niche differentiation due to trait differences. However, not all
166	traits are phylogenetically conserved. Moreover, once a species has passed the abiotic
167	environmental filter, the outcome of competition is not only determined by niche differences
168	but also by fitness differences (Chesson 2000, Mayfield & Levine 2010). The latter also
169	depend on trait differences (Mayfield & Levine 2010). This modern coexistence theory has
170	only recently been extended to biological invasions and linked to Darwin's Naturalization
171	naturalization Conundrum conundrum (MacDougall et al. 2009, Thuiller et al. 2010). While
172	empirical studies are still rare, the recent advances in theory, tools and data for phylogenetic
173	and functional trait analysis bear great promise to better understand invasions into plant
174	communities.

175

176	2.6. Modelling Plant Invasions	
177	Once an alien species has been introduced in sufficient numbers, its invasion success is	
178	contingent uponStudies on invasion success usually focus either on invasibility of the	
179	environment and or invasiveness of the species (Richardson & Pyšek 2006). In recent	
180	decades, more data has become available on regional differences in numbers of species	
181	invading, and species differences in invasion success. Together with data on environmental	
182	and socio-economic variables, species characteristics and introduction history, this	
183	information has revealed some general patterns providing insights into processes underlying	
184	plant invasions.	
185		
186	3.1. A Global Overview of the Naturalized Alien Flora	
187	A recent compilation of >800 regional naturalized alien floras revealed that globally >13,000	
188	plant species have become naturalized (van Kleunen et al. 2015a, Pyšek et al. 2017). In other	
189	words, ~4% of the extant vascular flora has expanded beyond species' native ranges with	
190	help of humans. Most of these naturalizations occurred in the last two centuries, and although	
191	the rate at which newly naturalized alien species are discovered has plateaued, it is not	
192	decreasing yet (Seebens et al. 2017). We can thus expect many more new naturalizations in	
193	the next decades, and a major research question is, how will they will be distributed around	
194	the globe is one of the main questions (Figure 1)?	F
195	North America has the highest number of naturalized plants, Antarctica has the lowest	
196	number, and the highest density occurs on the Pacific islands (van Kleunen et al. 2015a). The	
197	Northern Hemisphere continents are the major donors of naturalized species. Europe has even	

198 donated 288% more species than would be expected considering its small native flora (van

199	Kleunen et al. 2015a), probably as a consequence of European colonialism. Hotspots of plant
200	invasions are found on islands and in coastal regions (Dawson et al. 2017, Pyšek et al. 2017).
201	For mainland regions, naturalized plant species richness increases with decreasing mean
202	annual temperature, and with increasing mean annual precipitation, human population density
203	and per capita gross domestic product (Dawson et al. 2017). The importance of economic
204	factors, specifically past bilateral trade, leads to the forecast that emerging economies, such
205	as India and China, will see a rise in plant naturalizations in the next two decades (Seebens et
206	al. 2015), and are also likely to become more important donors of naturalized species.
207	For invasive plants sensu Richardson et al. (2000)(i.e., rapidly spreading alien plants;
208	see section 2.1), few data on global patterns are currently available. A global analysis of
209	invasive trees and shrubs showed, as for naturalized plants in general, that the highest
210	numbers are found in North America and the Pacific Islands (Rejmánek & Richardson 2013).
211	For invasive plants sensu CBD (2000)(i.e., alien species threatening native biodiversity; see
212	section 2.1), Pyšek et al. (2017) similarly showed that there is a strong correlation between
213	the numbers of invasive and naturalized species in a region. Nevertheless, more data on
214	invasive species sensu Richardson et al. (2000) and the different dimensions of invasiveness
215	(Figure 2) are needed to better understand the global patterns and drivers of plant
216	invasiveness.

Formatted: Font: Bold

217

218 **3.2. Propagule Pressure**

219 Propagule pressure – a composite measure of the number of release events and the number of

220 individuals released per event – is considered the most consistent driver of invasion success

- 221 (Lockwood et al. 2005, 2007, Simberloff 2009). Theoretically, a high propagule pressure
- 222 increases the likelihood of overcoming Allee effects, and demographic and environmental
- stochasticity (e.g., Shea & Possingham 2000). Empirical studies on propagule pressure of

224	alien plants mostly use proxies such as sales or planting frequencies of ornamental plants
225	(Dehnen-Schmutz et al. 2007, Feng et al. 2016, Maurel et al. 2016), and are correlative in
226	nature. Introduction experiments, on the other hand, have the disadvantage that the y lastir
227	duration is too short to capture the full invasion process. Nevertheless, the few available
228	introduction experiments confirm that propagule pressure has a strong positive effect on early
229	establishment of alien plants (e.g., Von Holle & Simberloff 2005, Kempel et al. 2013).
230	Despite the importance of propagule pressure, little is known about the roles of its
231	elements. In theory, many released individuals per introduction event should help
232	overcoming demographic stochasticity and Allee effects, whereas many introduction events
233	should facilitate overcoming environmental stochasticity (Shea & Possingham 2000,
234	Simberloff 2009). Experimental studies separating these propagule-pressure elements are rare
235	and restricted to animals (e.g., Sinclair & Arnott 2016). Genetic variation, which is likely to
236	increase with each additionally introduced individual, is another element of propagule
237	pressure, and has been shown to play a role in Spartina alterniflora invasion in China (Wang
238	et al. 2012). More experimental studies are needed that consider the roles of propagule
239	pressure's different elements in alien plant invasions (Figure 1), and also how they interact
240	with other drivers.

241

242 **3.3. Human disturbance**

Disturbance <u>by humans</u> is thought to be another major driver of plant invasions (Lockwood et al. 2007). Disturbance is defined as any relatively discrete event in time that disrupts
ecosystem, community or population structure, and changes resources, substrate availability
or the physical environment (White & Pickett 1985). Many disturbances are naturally
recurring events, and a change in disturbance regime <u>by humans</u> rather than the disturbance
event itself may promote invasions (Hobbs & Huenneke 1992). This complexity makes

249	generalizing across disturbance types difficult (Lockwood et al. 2007). Nevertheless, global
250	(Dawson et al. 2017) and regional (e.g., McKinney 2001) analyses show that richness of
251	naturalized and invasive plants are usually strongly associated with human-population
252	density, which is arguably a good surrogate for associated with human disturbance.
253	In a review, Colautti et al. (2006) showed that the majority of plant studies found that
254	disturbance, usually involving the destruction of biomass, increases invasibility of plant
255	communities. Most studies considered only invaders already in the system, which can
256	obviously invade (Lockwood et al. 2007), and manipulated disturbances natural to the
257	system. Recent experiments in which locally non-occurring species were introduced to native
258	grassland communities showed that establishment from seed is considerably higher after
259	tilling of the soil (i.e., a human disturbance; e.g., Kempel et al. 2013). Overall, there is thus
260	good evidence that human disturbances promote biological invasions. However, which alien
261	species benefit the most from disturbance and why, remains an open question (Figure 1).

Formatted: Font: Bold

262 **3.4. Responses to Additional Resources**

263 Many disturbance events and anthropogenic global change drivers may-change resource availabilities. As predicted by the fluctuating-resource-availability hypothesis (Davis et al. 264 265 2000), increases in resource availability make plant communities more susceptible to plant 266 invasion (Seabloom et al. 2015). However, not all alien plants take advantage of increased resources; so successful alien plants may be those that capitalize most strongly on increased 267 268 resources. (Davidson et al. 2011) showed in a meta analysis that invasive species were more plastic in growth, morphology and physiology than native species, but this did not result in 269 270 fitness advantages. However, aA multi-species experiment showed that among native and 271 among alien species in Switzerland, common species capitalized more on nutrient increases than rare species (Dawson et al. 2012a). Similarly, a meta-analysis showed that globally more 272 widespread alien species exhibited greater biomass responses to increases in resources 273

274	(Dawson et al. 2012b). So, although some alien plants invade low-resource environments
275	(Funk 2013), many invasive alien plants have a high capacity to capitalize on increased
276	resource levels.
277	Environmental change is frequently characterized by a change in variability as well as
278	in mean conditions. For example, floods and fires may temporarily increase nutrient
279	availability. Parepa et al. (2013) showed that invasive Fallopia spp. grown with native plants
280	benefited more strongly when supplied with nutrient pulses instead of a constant supply. In a
281	multi-species experiment, naturalized alien plants produced more biomass when nutrients
282	were provided as a single large pulse in the middle of the growth period compared to plants
283	with a constant supply (Liu & van Kleunen 2017). The reverse was true for native plants.
284	Thus, many successful alien plants are opportunists that take advantage of nutrient pulses.
285	The underlying mechanisms still need more research (Figure 1).
286	

Formatted: Font: Bold

287 3.5. Lag Phases and Invasion Debts

288 Species need time to move from one invasion stage to the next. Once an alien plant has been 289 introduced, there is a lag phase before it becomes naturalizesnaturalized, and one before it is 290 considered to be becomes invasive (i.e., starts to accelerate its spread) (Crooks 2005). 291 Unfortunately, few studies distinguish between the two lag phases, and no study quantified both. Lag phases may simply be an inherent characteristic of exponential population growth, 292 or they may result from Allee effects or time needed for evolutionary adaptation or 293 environmental change (Crooks 2005). A lack of hard data prevents us from understanding the 294 importance of these mechanisms. 295 For ornamental and forestry species, the introduction-naturalization lag phase ranges 296 from two to over 370 years (Kowarik 1995, Binggeli 2000, Caley et al. 2008, Daehler 2009). 297

298 The few studies that quantified this lag phase indicate that it is shorter in tropical (Binggeli

299	2000, Daehler 2009) than in temperate (Kowarik 1995, Caley et al. 2008) regions, possibly	
300	because of year-round growth in the tropics (Daehler 2009). These studies further clearly	
301	show that shorter generation times result in shorter lag phases, suggesting that differences in	
302	lag phases may diminish if measured in terms of generation times.	
303	The naturalization-invasion lag phase has been quantified using time series of	
304	herbarium records. Most of these lag phases are <50 years (Aikio et al. 2010, Larkin 2012).	
305	However, these lag phase estimates should be interpreted with caution as Hyndman et al.	
306	(2015) argued that several assumptions underlying the lag-phase-estimation approach were	
307	violated. For example, because the lag-phase estimation involves fitting models to cumulative	
308	numbers of herbarium records over time, the assumption of non-independence of the	
309	residuals is violated. Future studies on naturalization-invasion lag phases should aim to	
310	optimize statistical approaches, and then assess which factors drive variation in lag phases	
311	(Figure 1).	Formatted: Font: Bold
311 312	(Figure 1). The existence of lag phases implies that the current numbers of naturalized and	Formatted: Font: Bold
		Formatted: Font: Bold
312	The existence of lag phases implies that the current numbers of naturalized and	Formatted: Font: Bold
312 313	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011)	Formatted: Font: Bold
312 313 314	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011) demonstrated that current plant naturalization patterns in Europe are better explained by	Formatted: Font: Bold
312 313 314 315	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011) demonstrated that current plant naturalization patterns in Europe are better explained by socioeconomic factors from the year 1900 than from the year 2000. Research on such so-	Formatted: Font: Bold
312 313 314 315 316	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011) demonstrated that current plant naturalization patterns in Europe are better explained by socioeconomic factors from the year 1900 than from the year 2000. Research on such so-called invasion debts (Seabloom et al. 2006) will thus be useful for predicting future	Formatted: Font: Bold
312 313 314 315 316 317	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011) demonstrated that current plant naturalization patterns in Europe are better explained by socioeconomic factors from the year 1900 than from the year 2000. Research on such so-called invasion debts (Seabloom et al. 2006) will thus be useful for predicting future	Formatted: Font: Bold
312 313 314 315 316 317 318	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011) demonstrated that current plant naturalization patterns in Europe are better explained by socioeconomic factors from the year 1900 than from the year 2000. Research on such so- called invasion debts (Seabloom et al. 2006) will thus be useful for predicting future invasions.	Formatted: Font: Bold
312 313 314 315 316 317 318 319	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011) demonstrated that current plant naturalization patterns in Europe are better explained by socioeconomic factors from the year 1900 than from the year 2000. Research on such so- called invasion debts (Seabloom et al. 2006) will thus be useful for predicting future invasions. 3.6. Climatic Suitability	Formatted: Font: Bold
312 313 314 315 316 317 318 319 320	The existence of lag phases implies that the current numbers of naturalized and invasive alien species are determined by processes in the past. Indeed, Essl et al. (2011) demonstrated that current plant naturalization patterns in Europe are better explained by socioeconomic factors from the year 1900 than from the year 2000. Research on such so-called invasion debts (Seabloom et al. 2006) will thus be useful for predicting future invasions. 3.6. Climatic Suitability Plant distributions have long been thought to be primarily restricted by biogeographic barriers	Formatted: Font: Bold

323 studies reported that ~40% (Guisan et al. 2014) or even >65% (Atwater et al. 2018) of

324	invasive species have undergone climatic niche shifts. The reasons for these shifts require
325	more research (Figure 1), but they, call into questoning the assumption of climatic niche
326	conservatism-into question. This suggests that estimates of climatic suitability from the native
327	range may be poor predictors for invasion success. Surprisingly, few studies have explicitly
328	related the modelled climatic suitability of introduced alien plants to their actual invasion
329	success. The naturalization success of 449 Chinese woody species introduced to Europe was
330	significantly correlated with climatic suitability (Feng et al. 2016). However, in that study,
331	climatic suitability only explained 5% of the variance in naturalization success, possibly due
332	to the large geographical extent (Europe) considered. On the other hand, a study on the
333	garden flora of a small municipality in southern Germany found that climatic suitability was
334	very strongly related to local naturalization success (Mayer et al. 2017). So, overall climatic
335	suitability seems to be an important prerequisite for plant invasions.
336	

337 3.7. Species Characteristics

338 Baker (1965)'s list of 'ideal weed' characteristics was the starting point for research on species characteristics related to invasion success. Several reviews (Pyšek & Richardson 339 2007, van Kleunen et al. 2015b) and meta-analyses (van Kleunen et al. 2010b, Davidson et al. 340 341 2011) have summarized the results. Although some trends appear, results depend on whether 342 invasive aliens are compared to natives or non-invasive-aliens (van Kleunen et al. 2010b), 343 and on the invasion stage considered (Dietz & Edwards 2006, Dawson et al. 2009). 344 Nevertheless, a few characteristics are globally associated with naturalization success. Using a global database on breeding systems of 1752 plant species, Razanajatovo et al. (2016) 345 346 showed that species with an increase in greater self-fertilization ability, the number of were naturalized in more regions around the world globally in which a species is naturalized 347 increased. Furthermore, species listed in databases onas harmful invasive species (i.e., 348

349	following the CBD (2000) definition of invasive; see section 2.1) are characterized by Small-a small	
350	genomesizeandpolypbidy aeoherplantchanateisiesgloballyassociated wilhin usions uses s(Paraltetal 2014). Asgenomesizeandpolypbidyaeno	
351	functional traits, we will need approaches such as path analysis to separate direct and indirect	
352	effects of functional traits associated with genomic characteristics on invasion success.	
353	The general lack of consistent relationships between species characteristics and	
354	invasion success limits predictions of invasions based on those characteristics. This does not	
355	mean that species characteristics are unimportant. Predictive power may improve by	
356	considering invasion stage, invasiveness dimension, spatial scale and environmental context	
357	(van Kleunen et al. 2015b), by testing whether different species traits are associated with the	
358	different dimensions of invasiveness (Figure 1:, Catford et al. 2016). Studies also need to test	Forma
359	for interactions between traits, and for non-linear relationships between invasion success and	
360	traits. Moreover, they should account for introduction bias, i.e., the phenomenon that species	
361	with certain characteristics were introduced earlier or more frequently, and consequently have	
362	higher apparent invasion success (Lockwood et al. 2005, Colautti et al. 2006, Maurel et al.	
363	2016).	
364		
365	3.8. The Way Forward for Research on General Patterns and Drivers of Invasion	
366	Success	
367	Recently built databases describing the global distribution of naturalized and invasive alien	
368	plants allow researchers to address major macro-ecological questions on invasion success of	
369	alien plants. The geographical units for these databases are administrative regions of different	
370	sizes. Ideally, such data should include the habitat-affiliations within the regions, or should be	
371	collected for grid-cellsgeo-referenced units of equal size. Another step forward would be to	
372	integrate the distributional data of naturalized alien and native species. This would allow	
373	assessing assessment of the importance of habitat filtering, and how much invasions	
1		

374	contribute to homogenization of the global flora. Furthermore, to better understand the	
375	importance of species characteristics and historical factors in invasions, we need data on alien	
376	species that were introduced but failed to establishnaturalized (Dehnen-Schmutz et al. 2007,	
377	Maurel et al. 2016), at least until now. These data will also allow better quantification of	
378	invasion debt. Compilations of nursery catalogues and botanical garden inventories from	
379	around the world will be a good starting point for a global introduced alien flora.	
380	A major objective of invasion biology is to understand the mechanisms driving	
381	invasion success, but studies on global patterns are correlative, not causative. Thus, some of	
382	the identified apparent drivers of plant invasion patterns might not be true drivers. For	
383	example, because propagule pressure is a major driver of invasion success, it should be used	
384	as a null model accounted for when testing the roles of e.g. species characteristics. However,	
385	it could be that the propagule pressure only appears to be important because species with	
386	characteristics that promote invasion success have been introduced more frequently (Maurel	
387	et al. 2016). Structural equation modelling (Shipley 2000) offers a potential statistical	
388	solution to better separate the direct and indirect drivers of plant invasions. Causative tests for	
389	generality of invasion drivers could further be achieved by establishing research networks	
390	thatepicatesperimentsgibully; initroleNtiutNetwok(<u>htp/www.utetumedu</u>)mDoughtNet(<u>htp/wpmteicobsteab/doughtet</u>)Boood2014).	
391		

392 4. BIOTIC INTERACTIONS OF ALIEN PLANTS

Alien plants interact with native resident plants and other organisms. The resulting effects on alien plant performance and fitness determine whether a species is able to establish in a local community (Levine et al. 2004, MacDougall et al. 2009). Biotic interactions occur at the individual plant scale, but should affect invasion success at larger scales. For instance, altered biotic interactions in the introduced compared to the native range may modulate the realised 398 niches of invasive plants in the introduced range, possibly leading to habitat expansion or

- climatic niche shifts (Guisan et al. 2014, Atwater et al. 2018).
- 400

401 4.1. Diversity of Resident Communities

402 Areas with high native species richness frequently also have high alien richness (Stohlgren et 403 al. 2003). This likely results from habitat heterogeneity covarying with both native richness and alien richness at landscape scales (Levine et al. 2004). In contrast, at local scales - as 404 405 predicted by Elton (1958)'s diversity-invasibility hypothesis - more species-rich communities are frequently more resistant to invasions (Levine et al. 2004). Most likely, this 406 407 is because a more species-rich community occupies more of the available niche space. Although even the most diverse communities cannot resist invasions completely, there is 408 409 strong support for the diversity-invasibility hypothesis (Levine et al. 2004). However, we still 410 require studies involving communities not dominated by herbaceous species to assess the 411 generality of the pattern, and studies testing the importance of phylogenetic and functional 412 diversity to better understand the mechanisms underlying the pattern (Figure 1).-413

414 4.2. Enemy Release

415 Alien plants may be released from herbivores and pathogens, especially from specialists that

- 416 <u>have not been co-introduced</u>, resulting in a competitive advantage over natives. This so-called
- 417 enemy-release hypothesis (Elton 1958, Keane & Crawley 2002) is perhaps the best known
- 418 hypothesis in invasion ecology. Indeed, some invasive alien plants have fewer enemies
- 419 associated with them and incur less damage in the introduced than in the native range (e.g.,
- 420 Mitchell & Power 2003, Meijer et al. 2016). However, results from studies comparing enemy

421	damage on alien and co-occurring native species are equivocal, and many studies do not	
422	link assess how damage affects fitness of the to-alien plant performances (Chun et al. 2010).	
423	Most enemy-release studies focus on aboveground enemies, but the role of soil	
424	pathogens has gained attention (Dawson & Schrama 2016). Some European native plants	
425	invasive in North America grow better in sterilized than in non-sterilized soils, but only for in	
426	European soils, and but not in North American soils, after soil sterilisation (Maron et al.	
427	2014). This suggests that the European plants do not suffer from soil pathogens in North	
428	America. Such 'plant-soil-feedback' studies, however, treat soil as a black box. One	
429	exceptional example is a study on Prunus serotina, which in its native North American range	
430	suffers from high seedling mortality due to infection by specific oomycete pathogens, while	
431	in Europe these are less virulent (Reinhart et al. 2010). We need more such studies that verify	
432	which microbes have negative effects on plants and are absent in the introduced range.	
433	Enemy release might decrease with time as enemies in the invaded range may shift	
434	hosts and start to utilise the invader (Diez et al. 2010). There are reports, however, that some	
435	generalist soil pathogens that increased in abundance under invasive plants, spill over to	
436	i <mark>di pulkyhiratkin <i>Geodeeli</i> itik Agtii Shiri placen jilegihet da itik opig Agriminin Metrickell Aphal aproeverie in indue<u>llege</u>piel<mark>ietz</mark>e</mark>	Commented [WD1]: I think elsewhere we use 'alien' rather than 'introduced', but either way, I guess we should be
437	However, new encounters at the expanding edges of invasions may also result in temporary	consistent.
438	enemy release, if the natural enemies there do not utilise the invader immediately. So,	
439	whether alien plants escape or recruit enemies at the range edges remains an open question	
440	[fuelCorbitidyodumixallkided/metriadefleetenedreendeertrinken/franzelighth <u>lluxeenterre</u> fer_	Formatted: Font: Bold
441	example, generalist soil pathogens thacant increased in abundance under invasive plants, spill	
442	over to infect native plants and thereby enhance invader dominance (e.g., Chromolaena	
443	odorata in India; Mangla et al. 2008). Therefore, the outcome of these novel encounters with	
444	enemies is unknownharddifficult to predict for many alien plants.	
445		

446 4.3. Novel Weapons

447	The novel weapons hypothesis posits that some chemical compounds of an alien species can	
448	negatively affect naïve native species (Callaway & Ridenour 2004). These novel weapons	
449	may be released as root exudates, or as leachates from living or dead plant material. The most	
450	famous example is the European plant Centaurea stoebe, which has allelopathic effects on	
451	native plants in the North American grasslands it invades, but not on competing plants in its	
452	native European range (Thorpe et al. 2009). The allelopathic effect of C. stoebe has been	
453	demonstrated in the field (Thorpe et al. 2009), but such field tests of the novel weapons	
454	hypothesis are rare.	
455	Novel biochemistry may also have impacts on other organisms (Cappuccino &	
456	Arnason 2006). For example, novel defence chemicals may reduce herbivory by naïve	
457	herbivores (Macel et al. 2014), but there is no evidence that invasive alien plant are generally	
458	more deterrent to generalist herbivores than native plants are (Lind & Parker 2010). Some	
459	novel chemicals can also suppress mycorrhizal fungi beneficial to native competitors but not	
460	required by the invader, as shown for Alliaria petiolata in North America (Stinson et al.	
461	2006). Over time, the novelty of these weapons may wear offthe native organisms may adapt	
462	to the novel chemicals (Lankau et al. 2009), but more research is needed to understand	
463	ecological and evolutionarythe processes involved. Another question that deserves research	
464	attention is whether novelty of native plant chemical compounds of native plants are novel to	
465	alien plants and contribute to increases resistance against invasion (Figure 1; Cummings et	_
466	al. 2012).	

Formatted: Font: Bold

467

468 4.4. Mutualists

469 Mutualisms of plants with soil microbes, pollinators and seed dispersers may influence

470 invasions, but have received less attention than enemies (Traveset & Richardson 2014).

471 Therefore, their relative importance remains unknown (Figure 1). Nitrogen-fixing microbes 472 and mycorrhizal fungi are the two main groups of soil mutualists. Some invasive-alien plants 473 have profited from are likely to have become invasive due to their ability of having nitrogen-474 fixing root symbionts, particularly when N-fixing is absent in the native plant-species pool 475 (Vitousek & Walker 1989). Alien plants may acquire the N-fixing microbes through co-476 introduction or 'ecological fitting' of alien plants to native N-fixers-fixing microbes (Le Roux et al. 2017), leading to shifts in N-fixer community composition between the native and alien 477 478 ranges. The latter is indicated by differences However, it is unclear if these shifts in N-fixing 479 rhizobial community composition between native and alien ranges of plantshinder or enhance <u>iziariya ter 77 n Styll () Alas das a flation fir light dia taka ya flatiya dan ya da da di finana fidir mudagti in taka fidir ta</u> 480 481 As most plants have mycorrhizal fungal associations that help with the uptake of nutrients (Wang & Qiu 2006), invasion success may depend on mycorrhiza. Indeed, some 482 483 tree invasions in South America depended upon the co-introduction of ectomycorrhizal fungi (Hayward et al. 2015). In Germany, mycorrhizal, and particularly facultative mycorrhizal, 484 485 alien plants have a wider distribution than non-mycorrhizal species (Menzel et al. 2017). It is 486 not yet known whether this relationship holds globally. The vast majority of flowering plant species are pollinated by animals (Ollerton et al. 487 488 2011), but surprisingly few studies have explicitly assessed the importance of plant-pollinator mutualisms for plant invasions (Stout & Tiedeken 2017). Pollen limitation is relatively 489 490 uncommon among invasive plants (Pyšek et al. 2011), possibly because of high autofertility 491 self-fertilization ability (Razanajatovo et al. 2016) and ability to integrate in native plant-

pollinator networks (Vilà et al. 2009). Surprisingly, Razanajatovo & van Kleunen (2016)
found that non-naturalized alien species are also not pollen-limited. More studies are needed
to test whether this is a general phenomenon. Few studies of plant-pollinator interactions
(e.g., Stout et al. 2006) and selfing self-fertilization rates (e.g., Ollerton et al. 2012) have

22

compared reproductive success in native and alien range populations. <u>More s</u>Such studies <u>would are</u>
 <u>needed to</u> shed light onto whether shifts in pollinators or <u>selfing self-fertilization</u> in the alien range
 contribute to invasion success.

Alien plants are more likely to spread into (semi-)natural habitats if they recruit native 499 500 fruit-consuming animals as seed dispersers (e.g., Cordeiro et al. 2004). However, the general 501 importance of dispersal relative to other factors, and how plant-disperser dynamics change 502 over time are still poorly understood. In a The results of a study in rare dispersal experiment in Canada suggest that the 503 invasive ant Myrmica rubra, as well as the native ant Aphaenogaster rudis, contribute to seed dpestaduspedoleinaiseptatOrdaninmiistepeneefaaddpeiginaiseatpenetelemineefinaiseilegtateseanise(Pinetel2014) 504 505 Introduced seed-dispersing animals can also facilitate invasions by alien plants in Hawai'Hawai'i, where 506 fruits of Myrica faya are dispersed by the alien bird Zosterops japonica (Vitousek & Walker 507 1989). Thus currently non-naturalized plants may still pose a future invasion risk if a suitable 508 disperser gets is subsequently introduced, leading to 'invasional meltdown' (Simberloff & Von Holle 1999). 509

510 4.5. The Way Forward for Research on Biotic Interactions of Alien Plants

511 Most research on biotic interactions as drivers determinants of alien plant success has focused 512 on single interaction types, when in reality, multiple interactions occur simultaneously. There have been calls to consider multi-trophic interactions centred on alien plants (Harvey et al. 513 2010), though we have yet to move beyond the use of model interactors (often generalists) 514 under greenhouse conditions (Kempel et al. 2013). While research on the role of plant-soil 515 feedbacks in invasions is expanding, we often do not know which types of micro-organisms 516 are the most important 'players' contributing to net soil-biota effects (Dawson & Schrama 517 2016). Progress here requires detailed studies that involve isolation, identification and re-518 inoculation of plants with putative soil pathogens and mutualists. We also recommend that 519

520	more attention be paid to the role of mutualists of all types in invasions, in order to rebalance		
521	the current bias toward natural enemies.		
522	Biotic interactions do not operate in a vacuum, and are contingent upon the traits and		
523	evolutionary history of both the alien plant and its putative interactors in the introduced		
524	range. Interactions may change over time as a result of ecological or-and evolutionary		
525	processes. Thus, to better understand how biotic interactions have affected and will continue		
526	to affect invasions, we need to consider both evolutionary history, and current eco-		
527	evolutionary dynamics.		
528			
529	5. EVOLUTION AND GENETICS OF INVASIVE PLANTS		
530	There is considerable potential for evolution resulting from plant introductions to new ranges.		
531	Alien plants are less adapted to their new environments than to their native environments,		
532	they may experience novel conditions, and thus selection pressures, -lack a history of		
533	coevolution with many interacting species, and may experience demographic bottlenecks or		
534	genomic admixture of distant sourcessource populations. Thus, adaptive and random		
535	evolutionary processes are likely intensified in introduced populations, and our understanding		
536	of alien plants is incomplete without studying their genetics and evolution. Although this has		
537	long been recognised (Baker & Stebbins 1965, Brown & Marshall 1981), genetic and		
538	evolutionary studies of alien plants have increased only relatively recently (Bossdorf et al.		
539	2005, Colautti & Lau 2015).		
540			
541	5.1. Phenotypic Evolution of Alien Plants		

If introduced populations experience novel conditions, these will exert selection pressures on 542 543 plant phenotypes that may result in rapid evolution, provided there is genetic variation.

544	Identifying phenotypic divergence between native and introduced populations requires
545	approaches where offspring from different origins are grown in uniform environments, so
546	that a genetic basis to phenotypic differences can be confirmed. In recent decades, there has
547	been an explosion of common-garden studies with alien plants (reviewed in Bossdorf et al.
548	2005, Colautti et al. 2009, Felker-Quinn et al. 2013). These studies most often test the
549	evolution of increased competitive ability (EICA) hypothesis, which proposes that some alien
550	plants may have become invasive because of evolutionary shifts from of reduced resource
551	allocation to defenses and increased allocation to growth and reproduction (Blossey &
552	Nötzold 1995). Some general patterns emerging from these studies are that (1) few studies
553	found results that are completely in line with the predictions of full support for EICA remains
554	rare (Felker-Quinn et al. 2013), but (2) significant differentiation often occurs in some growth
555	or defense traits between native and introduced plant populations (Bossdorf et al. 2005,
556	Colautti et al. 2009, Felker-Quinn et al. 2013, Colautti & Lau 2015). Thus, rapid phenotypic
557	evolution appears to be common in introduced plant populations after introductions of plant
558	species into a new range.
559	Given the importance of herbivores and pathogens for plant evolution (Strauss &
560	Zangerl 2002) and the often observed release from specialist enemies (Mitchell & Power
561	2003, Meijer et al. 2016), shifts in allocation of resources from specialist to generalist enemy

568 pyrrolizidine alkaloids and defense against generalists are increased in introduced populations

found in Senecio jacobaea where resistance to specialists is decreased but levels of

562

563

564

565

566

567

defenses have been predicted in alien plants (shifting-defense hypothesis; Müller-Schärer et

al. 2004). Feeding experiments and chemical analyses of common-garden plants confirmed

that there are often differences in plant defenses between native and introduced populations,

and that defenses is are reduced against specialists but not generalists (Doorduin & Vrieling

2011, Felker-Quinn et al. 2013)._Full support for the shifting-defense hypothesis has been

569	(Joshi & Vrieling 2005). In most cases the results are more complex, with evolutionary	
570	changes in some aspects of defense but not others, shifts from constitutive to induced	
571	defenses, or vice versa, and often large geographic variation within introduced and native	Commented [WD2]: D
572	ranges (Orians & Ward 2010, Doorduin & Vrieling 2011, Felker-Quinn et al. 2013).	
573	However, when looking at the actual damage incurred by plants, a recent meta-analysis	
574	showed that while resistance against specialist herbivores decreased in introduced	
575	populations, resistance against generalist herbivores increased (Zhang et al. 2018). Taken	
576	together, the evidence indicates that defense traits are key targets of selection and are	
577	evolving rapidly in alien plants. This is <u>also</u> supported by experiments showing that exclusion	
578	of herbivores can indeed lead to strong evolutionary responses within few generations (e.g.,	
579	Agrawal et al. 2012).	
580	The common garden approach has limitations that were sometimes overlooked in	
581	earlier studies. Many of the early studies on evolutionary change in invasive plants suffer	
582	from several weaknesses. Comparisons often involved low numbers of populations (Bossdorf	
583	et al. 2005), and some comparisons were less meaningful as they confounded introduced and	
584	native ranges with latitude or climate (Colautti et al. 2009). Comparisons were also often	
585	made without knowing the sources of introduction, which can be misleading particularly for	
586	species with one or few introductions. These pitfalls are now more widely recognized and	
587	accounted for. Recent studies have used molecular data to identify sources of introductions	
588	and then measured the phenotypic divergence between the source(s) and descendant	
589	populations (e.g., Liao et al. 2014).	
590	Simple common-garden studies can provide evidence for evolution but not adaptation.	
591	and whether trait changes are really adaptive remains an open question (Figure 1). The latter	Formatted: Font: Bold
592	requires reciprocal transplant experiments or the combination of experiments with selection	

requires reciprocal transplant experiments or the combination of experiments with selection 592

593 measurements in wild populations. Both approaches are so far rare in the study of alien plants Commented [WD2]: Do we want to use 'introduced' or 'alien' throughout?

594	(Colautti & Lau 2015). A recent analysis of published selection coefficients suggests that on
595	average, selection differentials are stronger in introduced than native populations, though data
596	for introduced species were few (Colautti & Lau 2015). Moreover, very few studies tested for
597	adaptive differentiation between ranges by transplanting plants between their native and
598	introduced ranges, and the few that did (e.g., Maron et al. 2004, Williams et al. 2008) found
599	little clear-cut evidence. All of these studies worked with only one or few sites per range,
600	limiting their power to draw general conclusions.
601	More studies (reviewed in Colautti & Lau 2015. Oduor et al. 2016) reciprocally
602	transplanted plants within the introduced range. Out of these studies, only one (Colautti &
603	Barrett 2013) on Lythrum salicaria found local adaptation in all study sites, whereas others
604	found no or only partial or no support for local adaptation. Nevertheless, a meta-analysis of
605	such-reciprocal transplant experiments within the introduced range of invasive species and
606	within the native range of native species the available evidence indicates that adaptive
607	evolutionary processes are at least as common and as strong in in introduced plant
608	populations as in native onesinvasive as in native species (Oduor et al. 2016). This is
609	surprising given that populations of invasive species had less time to adapt than populations
610	of native species, and supports the idea of an increased rate of evolutionary change in
611	invasive plants.
612	

613 5.2. Evolutionary Impacts on Native Species

Alien plants can also cause evolutionary responses in native residents. In particular, invasive
species are expected to exert selection on native species and cause evolutionary changes in
invaded communities (Strauss et al. 2006). While evolutionary studies on alien plants initially
focused entirely on alien evolution, recently attention has shifted toward evolutionary
responses of native species. For instance, native plants growing together with spotted

619	knapweed (Centaurea maculosa) in North America have evolved greater resistance to
620	knapweed allelopathy (Callaway et al. 2005). A combination of selection analyses and
621	reciprocal transplants in California showed that the exotic legume Medicago polymorpha
622	alters selection and adaptation of the native Lotus wrangelianus (Lau 2006, 2008). Perhaps
623	the most intriguing example of rapid evolution of a native species in response to an invasive
624	plant is the coevolutionary dynamic between invasive Alliaria petiolata and native
625	competitors in North America. It was shown that the level of the glucosinolate sinigrin
626	rapidly evolves in invasive Alliaria populations in response to native competitors, but the
627	native Pilea pumila equally rapidly evolves greater resistance to these this allelochemicals
628	(Lankau 2012). This could explain why glucosinolate concentrations decline with population
629	age in Alliaria populations in North America (Lankau et al. 2009). Rapid evolution in
630	response to invasive plants is common in native plants, as shown by a recent meta-analysis
631	(Oduor 2013). Broadening evolutionary studies of alien plants to their native competitors and
632	antagonists, and the coevolution between aliens and natives, is a promising and important
633	area for future research (Figure 1).

Formatted: Font: Bold

634

635 5.3. Molecular Genetics of Invasions

In addition to traits, the <u>ecology and</u> evolution of alien plants has also been studied through
molecular genetic analyses. Initially, these were mainly used for identifying pathways and
numbers of introductions, and genetic bottlenecks (reviewed in Bossdorf et al. 2005,
Dlugosch & Parker 2008). General insights from these studies are (1) contrary to
expectations, genetic diversity is often only moderately reduced in introduced populations,
(2) multiple introductions are common, and (3) admixture between different introductions can
even increase genetic diversity in the introduced range. Since these earlier studies were

usually done with neutral markers, they were often disconnected from trait-based studies.
More recently, however, researchers have combined molecular with trait data, yielding more
powerful evolutionary studies.

646 Molecular data can provide knowledge of introduction pathways, allowing better 647 matching of alien populations with native ones for comparisonto the most 648 likely native source populations as comparators for the invasive populations (e.g., Liao et al. 2014). One can also incorporate population structure and stochastic processes into trait 649 650 analyses (Keller & Taylor 2008), analyse trait evolution along an invasion chronosequence (Barker et al. 2017), test for phenotypic consequences of population admixture (Keller & 651 652 Taylor 2010), or compare specific hybrids or cytotypes of alien species (Hovick & Whitney 653 2014, Parepa et al. 2014).

654 Combining molecular and trait data can also uncover help to answer questions about the genetic basis of evolving traits, i.e., the genes or genomic regions associated with 655 phenotypic changes in alien plants (Figure 1)-. Recent advances in sequencing technologies 656 657 allow high-resolution genomic data generation for any alien plant species, which can then be 658 used to construct genetic maps for Quantitative Trait Loci (QTL) or genome-wide association 659 studies. For example, Whitney et al. (2015) used a single-nucleotide-polymorphism map to 660 identify QTLs underlying fitness variation in invasive sunflowers. Gould & Stinchcombe 661 (2017) used whole-genome sequencing to show that flowering-time variation is associated with different genes in the introduced versus native range of Arabidopsis thaliana. The use of 662 663 high-resolution genomic methods in invasion biology should be increased from now on. 664

665	5.4. The Way Forward for Research on the Evolution and Genetics of Invasive Plants	
666	Much progress has been made in studying alien plant genetics and evolution. Rapid trait	
667	evolution is common in aliens as well as their native neighbours, but support for the EICA	
668	hypothesis is limited. Common garden studies have limitations, and are unlikely to further	
669	our understanding of alien plant evolution on their own. Future evolutionary studies of alien	
670	plants should (1) study selection and adaptation in the native versus introduced range, (2)	
671	explore coevolution between alien and native species, and (3) make combinations of trait and	
672	molecular data the standard for more targeted and mechanistic evolution studies (Figure 1).	Formatted: Font: Bold
673	Most evolutionary studies of alien plants have been done on contemporary individuals individuals representing	
674	the present generation of the populations rather than past generations, and were based on	
675	DNA sequence or trait data. However, two new research areas beyond these limits deserve	
676	mentioning, as they have the potential to greatly increase our understanding of alien plant	
677	evolution. First, with several hundred million specimens worldwide, herbaria represent huge	
678	historical archives of alien plant-evolutions. DNA sequence variation of herbaria specimen can be	
679	analysed with standard methods (see Vandepitte et al. 2014) for <u>an</u> example with alien plants)	
680	and with specific ancient DNA methods (Suchan et al. 2016). Future research should attempt	
681	to take more advantage of this treasure. Second, individuals of the same species can also	
682	differ epigenetically, and there is currently much speculation about the role of epigenetic	
683	processes in rapid adaptation (Richards et al. 2017). Recent studies on Alternanthera	
684	philoxeroides (Gao et al. 2010) and Fallopia japonica (Zhang et al. 2017) found that	
685	genetically identical populations in the introduced ranges are often epigenetically	
686	differentiated, and that epigenetic variation can be associated with environment or phenotype.	
687	The paucity of studies precludes general conclusions, but they suggest epigenetic variation	
688	may contribute to the invasion success of these species. This should motivate researchers to	
689	study this possibility more thoroughly in future.	

690

691 6. CONCLUSIONS

692	In a time of rapid environmental and biotic change, understanding why certain alien species	
693	can successfully naturalize and become invasive has become a major objective in ecology	
694	and evolution. At the same time, because alien organisms experience novel ecological	
695	contexts, they provide study systems that advance our ecological and evolutionary	
696	understanding. The ecology and evolution of alien plants is a very broad field crossing	
697	different spatial and temporal scales, and with a plethora of hypotheses. We have highlighted	
698	some of the major conceptual and methodological advances, as well as empirical results, that	
699	we argue moved the field forward in the last decades or will do so in the near future.	
700	Although we did not discuss modelling approaches, there have also been major advances in	
701	developing more mechanistic models that bear great promise in predicting invasion risks	
702	(e.g., Carboni et al. 2018). We call for more transparency on which 'invasive' definition	
703	people use, and for a dissection of the different dimensions of invasiveness (Figure 2). Using	Forma
704	the right comparators and accounting for introduction history may result in more consistent	
705	findings. By integrating modern theories on plant coexistence and applying phylogenetic and	
706	functional-trait approaches, by integrating mechanistic processes into modelling approaches,	
707	by studying the interplay between different biotic interactions, and by combining molecular	
708	with experimental evolutionary approaches, we will advance our understanding of alien	
709	plants and improve predictions on which aliens might invade in the future.	

710

711 DISCLOSURE STATEMENT

712	The authors are not aware of any affiliations, memberships, funding, or financial holdings	
713	that might be perceived as affecting the objectivity of this review.	
714		
	A CENOWI EDCIMENTS	
715	ACKNOWLEDGMENTS	
716	We thank Mark Vellend for inviting us to write this review. MvK, OB and WD thank the	
717	German Research Foundation (DFG; projects KL 1866/9-1 and 10-1, BO 3241/1-1 and 8-1,	
718	DA 1502/1-1) for funding.	
719		
/19		
720	LITERATURE CITED	
721	Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen JP. 2012. Insect herbivores	
722	drive real-time ecological and evolutionary change in plant populations. Science	
723	338:113-16	
724	Aikio S, Duncan RP, Hulme PE. 2010. Lag-phases in alien plant invasions: separating the	
725	facts from the artefacts. Oikos 119:370-78	
726	Alpert P, Bone E, Holzapfel C. 2000. Invasiveness, invasibility and the role of environmental	
727	stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3:52-66	
728	Atwater DZ, Ervine C, Barney JN. 2018. Climatic niche shifts are common in introduced	
729	plants. Nat. Ecol. Evol. 2:34-43	
730	Baker HG. 1965. Characteristics and modes of origins of weeds. In The genetics of colonizing	
731	species, ed. HG Baker, GL Stebbins. New York, USA: Academic Press	
732	Baker HG, Stebbins GL. 1965. The Genetics of Colonizing Species. New York: Academic	
733	Press	

734	Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM. 2017. Population genomic			
735	analyses reveal a history of range expansion and trait evolution across the native and			
736	invaded range of yellow starthistle (Centaurea solstitialis). Mol. Ecol. 26:1131-47			
737	Binggeli P. 2000. Time-lags between introduction, establishment and rapid spread of			
738	introduced environmental weeds. Presented at Proceedings of the Third International			
739	Weed Science Congress; 2000 June 6-11; Foz do Iguassu, Brazil			
740	Blossey B, Nötzold R. 1995. Evolution of increased competitive ability in invasive			
741	nonindigenous plants - a hypothesis. J. Ecol. 83:887-89			
742	Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom, Smith MD. 2014. Finding			
743	generality in ecology: a model for globally distributed experiments. Methods Ecol.			
744	<u>Evol. 5:65-73</u>			
745	Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. 2005. Phenotypic and			
746	genetic differentiation between native and introduced plant populations. Oecologia			
747	144:1-11			
748	Boulangeat I, Georges D, Thuiller W. 2014. FATE-HD: a spatially and temporally explicit			
749	integrated model for predicting vegetation structure and diversity at regional scale.			
750	Global Change Biol. 20:2368-78			
751	Caley P, Groves RH, Barker R. 2008. Estimating the invasion success of introduced plants.			
752	Divers. Distrib. 14:196-203			
753	Callaway RM, Ridenour WM. 2004. Novel weapons: invasive success and the evolution of			
754	increased competitive ability. Front. Ecol. Environ. 2:436-43			
755	Callaway RM, Ridenour WM, Laboski T, Weir T, Vivanco JM. 2005. Natural selection for			
756	resistance to the allelopathic effects of invasive plants. J. Ecol. 93:576-83			
757	Cappuccino N, Arnason JT. 2006. Novel chemistry of invasive exotic plants. Biol. Lett.			
758	2:189-93			

759	Carboni M, Guéguen M, Barros C, Georges D, Boulangeat I, et al. 2018. Simulating plant				
760	invasion dynamics in mountain ecosystems under global change scenarios. Global				
761	<u>Change Biol. 24:e289-e302</u>				
762					
763	Catford JA, Jansson R, Nilsson C. 2009. Reducing redundancy in invasion ecology by				
764	integrating hypotheses into a single theoretical framework. Divers. Distrib. 15:22-40				
765	CBD. 2000. Alien Species that Threaten Ecosystems, Habitats or Species.,				
766	UNEP/CBD/COP/5/8, Secretariat of the Convention on Biological Diversity, Nairobi,				
767	Kenya				
768	Chesson P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol., Evol.				
769	Syst. 31:343-66				
770	Chun YJ, van Kleunen M, Dawson W. 2010. The role of enemy release, tolerance and				
771	resistance in plant invasions: linking damage to performance. Ecol. Lett. 13:937-46				
772	Colautti RI, Barrett SCH. 2013. Rapid adaptation to climate facilitates range expansion of an				
773	invasive plant. Science 342:364-66				
774	Colautti RI, Grigorovich IA, MacIsaac HJ. 2006. Propagule pressure: a null model for				
775	biological invasions. Biol. Invasions 8:1023-37				
776	Colautti RI, Lau JA. 2015. Contemporary evolution during invasion: evidence for				
777	differentiation, natural selection, and local adaptation. Mol. Ecol. 24:1999-2017				
778	Colautti RI, Maron JL, Barrett SCH. 2009. Common garden comparisons of native and				
779	introduced plant populations: latitudinal clines can obscure evolutionary inferences.				
780	Evol. Appl. 2:187-99				
781	Cordeiro NJ, Patrick DAG, Munisi B, Gupta V. 2004. Role of dispersal in the invasion of an				
782	exotic tree in an East African submontane forest. J. Trop. Ecol. 20:449-57				

783 Crooks JA. 2005. Lag times and exotic species: the ecology and management of biological

784 invasions in slow-motion. *Ecoscience* 12:316-29

- 785 Cummings JA, Parker IM, Gilbert GS. 2012. Allelopathy: a tool for weed management in
- 786 forest restoration. *Plant Ecol.* 213:1975-89
- Daehler CC. 2009. Short lag times for invasive tropical plants: evidence from experimental
 plantings in Hawai'i. *PLoS One* 4:e4462
- Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or, the
 Preservation of Favoured Races in the Struggle for Life. London: Murray
- 791Davidson AM, Jennions M, Nicotra AB. 2011. Do invasive species show higher phenotypic
- plasticity than native species and, if so, is it adaptive? A meta-analysis. *Ecol. Lett.*14:419-31
- Davis MA, Grime JP, Thompson K. 2000. Fluctuating resources in plant communities: a
 general theory of invasibility. *J. Ecol.* 88:528-34
- Dawson W, Burslem D, Hulme PE. 2009. Factors explaining alien plant invasion success in a
 tropical ecosystem differ at each stage of invasion. *J. Ecol.* 97:657-65
- 798 Dawson W, Fischer M, van Kleunen M. 2012a. Common and rare plant species respond
- differently to fertilisation and competition, whether they are alien or native. *Ecol. Lett.*15:873-80
- 801 Dawson W, Keser LH, Winter M, Pyšek P, Kartesz J, et al. 2013. Correlations between
- global and regional measures of invasiveness vary with region size. *NeoBiota* 16:59-803
- 804 Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, et al. 2017. Global hotspots and
- 805 correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1:0186

806 Dawson W,	Rohr RP, van Kleune	n M, Fischer M. 2012b. Alie	n plant species with a wider
---------------	---------------------	-----------------------------	------------------------------

- global distribution are better able to capitalize on increased resource availability. *New Phytol.* 194:859-67
- Dawson W, Schrama M. 2016. Identifying the role of soil microbes in plant invasions. *J. Ecol.*104:1211-18
- Behnen-Schmutz K, Touza J, Perrings C, Williamson M. 2007. A century of the ornamental
 plant trade and its impact on invasion success. *Divers. Distrib.* 13:527-34
- Bitz H, Edwards PJ. 2006. Recognition that causal processes change during plant invasion
 helps explain conflicts in evidence. *Ecology* 87:1359-67
- 815 Diez JM, Dickie I, Edwards G, Hulme PE, Sullivan JJ, Duncan RP. 2010. Negative soil
- 816 feedbacks accumulate over time for non-native plant species. *Ecol. Lett.* 13:803-09
- B17 Dlugosch KM, Parker IM. 2008. Founding events in species invasions: genetic variation,
 adaptive evolution, and the role of multiple introductions. *Mol. Ecol.* 17:431-49
- 819 Doorduin LJ, Vrieling K. 2011. A review of the phytochemical support for the shifting
- defence hypothesis. *Phytochem. Rev.* 10:99-106
- Bullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, et al. 2012. Extinction
 debt of high mountain plants under twenty-first-century climate change. *Nat. Clim. Change* 2:619–22
- Essl F, Dullinger S, Rabitsch W, Hulme PE, Hulber K, et al. 2011. Socioeconomic legacy
 yields an invasion debt. *Proc. Natl. Acad. Sci. USA* 108:203-07
- Felker-Quinn E, Schweitzer JA, Bailey JK. 2013. Meta-analysis reveals evolution in invasive
 plant species but little support for Evolution of Increased Competitive Ability (EICA). *Ecol. Evol.* 3:739-51
- 829 Feng YH, Maurel N, Wang ZH, Ning L, Yu FH, van Kleunen M. 2016. Introduction history,
- 830 climatic suitability, native range size, species traits and their interactions explain

831	establishment of Chinese woody species in Europe. Global Ecol. Biogeogr. 25:1356-
832	66
833	Funk JL. 2013. The physiology of invasive plants in low-resource environments. Conserv.
834	Physiol. 1:cot026
835	Gallien L, Carboni M. 2016. The community ecology of invasive species: where are we and
836	what 's next? <i>Ecography</i> 40:335-52
837	Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W. 2010. Predicting potential
838	distributions of invasive species: where to go from here? Divers. Distrib. 16:331-42
839	Good RDO. 1931. A theory of plant geography. New Phytol. 30:149-71
840	Gould BA, Stinchcombe JR. 2017. Population genomic scans suggest novel genes underlie
841	convergent flowering time evolution in the introduced range of Arabidopsis thaliana.
842	Mol. Ecol. 26:92-106
843	Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift
844	studies: insights from biological invasions. Trends Ecol. Evol. 29:260-69
845	Guisan A, Zimmermann NE. 2000. Predictive habitat distribution models in ecology. Ecol.
846	Model. 135:147-86
847	Harvey JA, Bukovinszky T, van der Putten WH. 2010. Interactions between invasive plants
848	and insect herbivores: a plea for a multitrophic perspective. Biol. Conserv. 143:2251-
849	59
850	Hayward J, Horton TR, Pauchard A, Nuñez MA. 2015. A single ectomycorrhizal fungal
851	species can enable a Pinus invasion. Ecology 96:1438-44
852	Higgins SI, Richardson DM. 2014. Invasive plants have broader physiological niches. Proc.
853	Natl. Acad. Sci. USA 111:10610-14
1	

854	Hovick SM, Whitney KD. 2014. Hybridisation is associated with increased fecundity and
855	size in invasive taxa: meta-analytic support for the hybridisation-invasion hypothesis.

856 Ecol. Lett. 17:1464-77

- 857 Hufbauer R, Torchin M. 2007. Integrating ecological and evolutionary theory of biological
- 858 invasions. In *Biological invasions*, ed. W Nentwig, pp. 79-96. Berlin: Springer-Verlag
- Hyndman RJ, Mesgaran MB, Cousens RD. 2015. Statistical issues with using herbarium data
 for the estimation of invasion lag-phases. *Biol. Invasions* 17:3371-81

Joshi J, Vrieling K. 2005. The enemy release and EICA hypothesis revisited: incorporating
the fundamental difference between specialist and generalist herbivores. *Ecol. Lett.*

- 863 8:704-14
- Keane RM, Crawley MJ. 2002. Exotic plant invasions and the enemy release hypothesis.
 Trends Ecol. Evol. 17:164-70
- Keller SR, Taylor DR. 2008. History, chance and adaptation during biological invasion:
 separating stochastic phenotypic evolution from response to selection. *Ecol. Lett.*
- 868 11:852-66
- 869 Keller SR, Taylor DR. 2010. Genomic admixture increases fitness during a biological
- 870 invasion. J. Evol. Biol. 23:1720-31
- Kempel A, Chrobock T, Fischer M, Rohr RP, van Kleunen M. 2013. Determinants of plant
 establishment success in a multispecies introduction experiment with native and alien
- 873 species. *Proc. Natl. Acad. Sci. USA* 110:12727-32
- Kowarik I. 1995. Time lags in biological invasions with regard to the success and failure of
 alien species. In *Plant Invasions General Aspects and Special Problems*, pp. 15-38.
- 876 Amsterdam: SPB Academic Publishing
- 877 Lankau RA. 2012. Coevolution between invasive and native plants driven by chemical
- 878 competition and soil biota. *Proc. Natl. Acad. Sci. USA* 109:11240-45

879	Lankau RA, Nuzzo V, Spyreas G, Davis AS. 2009. Evolutionary limits ameliorate the
880	negative impact of an invasive plant. Proc. Natl. Acad. Sci. USA 106:15362-67
881	Larkin DJ. 2012. Lengths and correlates of lag phases in upper-Midwest plant invasions. Biol.
882	Invasions 14:827-38
883	Lau JA. 2006. Evolutionary responses of native plants to novel community members.
884	Evolution 60:56-63
885	Lau JA. 2008. Beyond the ecological: Biological invasions alter natural selection on a native
886	plant species. Ecology 89:1023-31
887	Le Roux JJ, Hui C, Keet JH, Ellis AG. 2017. Co-introduction vs ecological fitting as
888	pathways to the establishment of effective mutualisms during biological invasions.
889	New Phytol. 215:1354-60
890	Levine JM, Adler PB, Yelenik SG. 2004. A meta-analysis of biotic resistance to exotic plant
891	invasions. Ecol. Lett. 7:975-89
892	Liao ZY, Zheng YL, Lei YB, Feng YL. 2014. Evolutionary increases in defense during a
893	biological invasion. Oecologia 174:1205-14
894	Lind EM, Parker JD. 2010. Novel weapons testing: are invasive plants more chemically
895	defended than native plants? PLoS One 5:e10429
896	Liu Y, van Kleunen M. 2017. Responses of common and rare aliens and natives to nutrient
897	availability and fluctuations. J. Ecol. 105:1111-22
898	Lockwood JL, Cassey P, Blackburn T. 2005. The role of propagule pressure in explaining
899	species invasions. Trends Ecol. Evol. 20:223-28
900	Lockwood JL, Hoopes MF, Marchetti MP. 2007. Invasion ecology. Malden, USA: Blackwell
901	Publishing
902	MacDougall AS, Gilbert B, Levine JM. 2009. Plant invasions and the niche. J. Ecol. 97:609-
903	15

- 904 Macel M, de Vos RCH, Jansen JJ, van der Putten WH, van Dam NM. 2014. Novel chemistry
- 905 of invasive plants: exotic species have more unique metabolomic profiles than native
 906 congeners. *Ecol. Evol.* 4:2777-86
- Mangla S, Inderjit, Callaway RM. 2008. Exotic invasive plant accumulates native soil
 pathogens which inhibit native plants. *J. Ecol.* 96:58-67
- 909 Maron JL, Klironomos J, Waller L, Callaway RM. 2014. Invasive plants escape from
- 910 suppressive soil biota at regional scales. J. Ecol. 102:19-27
- Maron JL, Vila M, Bommarco R, Elmendorf S, Beardsley P. 2004. Rapid evolution of an
 invasive plant. *Ecol. Monogr.* 74:261-80
- 913 Maurel N, Hanspach J, Kühn I, Pyšek P, van Kleunen M. 2016. Introduction bias affects
- 914 relationships between the characteristics of ornamental alien plants and their
 915 naturalization success. *Global Ecol. Biogeogr.* 25:1500-09
- 916 Mayer K, Haeuser E, Dawson W, Essl F, Kreft H, et al. 2017. Current and future local
- 917 naturalization potential of ornamental species planted in public green spaces and
- 918 private gardens. *Biol. Invasions* DOI 10.1007/s10530-017-1594-y
- 919 Mayfield MM, Levine JM. 2010. Opposing effects of competitive exclusion on the
- 920 phylogenetic structure of communities. Ecol. Lett. 13:1085-93
- McKinney CL. 2001. Effects of human population, area, and time on non-native plant and
 fish diversity in the United States. *Biol. Conserv.* 100:243-52
- Meijer K, Schilthuizen M, Beukeboom L, Smit C. 2016. A review and meta-analysis of the
 enemy release hypothesis in plant-herbivorous insect systems. *PeerJ* 4:e2560v1
- Menzel A, Hempel S, Klotz S, Moora M, Pyšek P, et al. 2017. Mycorrhizal status helps
 explain invasion success of alien plant species. *Ecology* 98:92-102
- 927 Mitchell CE, Power AG. 2003. Release of invasive plants from fungal and viral pathogens.
- 928 Nature 421:625-27

933	Oduor AMO, Leimu R, van Kleunen M. 2016. Invasive plant species are locally adapted just
934	as frequently and at least as strongly as native plant species. J. Ecol. 104:957-68
935	Ollerton J, Watts S, Connerty S, Lock J, Parker L, et al. 2012. Pollination ecology of the
936	invasive tree tobacco Nicotiana glauca: comparisons across native and non-native
937	ranges. J. Pollinat. Ecol. 9:85-95
938	Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals?
939	Oikos 120:321-26
940	Orians CM, Ward D. 2010. Evolution of plant defenses in nonindigenous environments. Annu.
941	Rev. Entomol. 55:439-59
942	Pagel J, Schurr FM. 2012. Forecasting species ranges by statistical estimation of ecological
943	niches and spatial population dynamics. Global Ecol. Biogeogr. 21:293-304
944	Panetta FD, Mitchell ND. 1991. Homoclime analysis and the prediction of weediness. Weed
945	Res. 31:273-84
946	Parepa M, Fischer M, Bossdorf O. 2013. Environmental variability promotes plant invasion.
947	Nat. Commun. 4:1604
948	Parepa M, Fischer M, Krebs C, Bossdorf O. 2014. Hybridization increases invasive knotweed

Müller-Schärer H, Schaffner U, Steinger T. 2004. Evolution in invasive plants: implications

Oduor AMO. 2013. Evolutionary responses of native plant species to invasive plants: a

for biological control. Trends Ecol. Evol. 19:417-22

review. New Phytol. 200:986-92

929

930

931

932

- success. Evol. Appl. 7:413-20 949 950 Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C, et al. 2013. Do invasive species
- perform better in their new ranges? Ecology 94:985-94 951

952	Prior KM, Saxena K, Frederickson ME. 2014. Seed handling behaviours of native and
953	invasive seed-dispersing ants differentially influence seedling emergence in an
954	introduced plant. Ecol. Entomol. 39:66-74
955	Pyšek P, Jarošík V, Chytrý M, Danihelka J, Kühn I, et al. 2011. Successful invaders co-opt
956	pollinators of native flora and accumulate insect pollinators with increasing residence
957	time. Ecol. Monogr. 81:277-93
958	Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, et al. 2017. Naturalized alien flora of the
959	world: species diversity, taxonomic and phylogenetic patterns, geographic distribution
960	and global hotspots of plant invasion. Preslia 89:203-74
961	Pyšek P, Richardson DM. 2007. Traits associated with invasiveness in alien plants: where do
962	we stand? In Biological invasions, ed. W Nentwig, pp. 97-125. Berlin: Springer-
963	Verlag
964	Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J. 2004.
965	Alien plants in checklists and floras: towards better communication between
966	taxonomists and ecologists. Taxon 53:131-43
967	Rabinowitz D. 1981. Seven forms of rarity. In The Biological Aspects of Rare Plant
968	Conservation., ed. H Synge. Chichester: John Wiley & Sons
969	Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, et al. 2016. Plants capable of selfing
970	are more likely to become naturalized. Nat. Commun. 7:13313
971	Razanajatovo M, van Kleunen M. 2016. Non-invasive naturalized alien plants were not more
972	pollen-limited than invasive aliens and natives in a common garden. Funct. Ecol.
973	30:1511-20
974	Reinhart KO, Tytgat T, van der Putten WH, Clay K. 2010. Virulence of soil-borne pathogens
975	and invasion by Prunus serotina. New Phytol. 186:484-95

- 976 Rejmánek M. 1996. A theory of seed plant invasiveness: The first sketch. Biol. Conserv.
- 977 78:171-81
- 978 Rejmánek M. 2000. Invasive plants: approaches and predictions. Austral Ecol. 25:497-506
- 979 Rejmánek M, Richardson DM. 2013. Trees and shrubs as invasive alien species-2013 update
- 980 of the global database. *Divers. Distrib.* 19:1093-94
- 981 Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, et al. 2017. Ecological plant
- 982 epigenetics: Evidence from model and non-model species, and the way forward. *Ecol.*983 *Lett.* 20:1576-90
- 984 Richardson DM, Pyšek P. 2006. Plant invasions: merging the concepts of species
- 985 invasiveness and community invasibility. *Prog. Phys. Geog.* 30:409-31
- 986 Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. 2000.
- 987 Naturalization and invasion of alien plants: concepts and definitions. *Divers. Distrib.*988 6:93-107
- Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, et al. 2007. Ecological and
 evolutionary insights from species invasions. *Trends Ecol. Evol.* 22:465-71
- Seabloom EW, Borer ET, Buckley YM, Cleland EE, Davies KF, et al. 2015. Plant species'
 origin predicts dominance and response to nutrient enrichment and herbivores in
- global grasslands. *Nat. Commun.* 6:7710
- 994 Seabloom EW, Williams JW, Slayback D, Stoms DM, Viers JH, Dobson AP. 2006. Human
- 995 impacts, plant invasion, and imperiled, plant species in California. *Ecol. Appl.*
- 996 16:1338-50
- Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, et al. 2017. No saturation in the
 accumulation of alien species worldwide. *Nat. Commun.* 8

999	Seebens H, Essl F, Dawson W, Fuentes N, Moser D, et al. 2015. Global trade will accelerate
1000	plant invasions in emerging economies under climate change. Global Change Biol.
1001	21:4128-40
1002	Shea K, Possingham HP. 2000. Optimal release strategies for biological control agents: an
1003	application of stochastic dynamic programming to population management. J. Appl.
1004	<i>Ecol.</i> 37:77-86
1005	Shelby N, Duncan RP, van der Putten WH, McGinn KJ, Weser C, Hulme PE. 2016. Plant
1006	mutualisms with rhizosphere microbiota in introduced versus native ranges. J. Ecol.
1007	104:1259-70
1008	Shipley B. 2000. Cause and Correlation in Biology. A User's Guide to Path Analysis,
1009	Structural Equations and Causal Inference. Cambridge: Cambridge University Press
1010	Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol.,
1011	Evol. Syst. 40:81-102
1012	Simberloff D, Von Holle B. 1999. Positive ineractions of nonindigenous species: Invasional
1013	meltdown? Biol. Invasions 1:21-32
1014	Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, et al. 2006. Invasive plant
1015	suppresses the growth of native tree seedlings by disrupting belowground mutualisms.
1016	PLoS Biol. 4:727-31
1017	Stohlgren TJ, Barnett DT, Kartesz JT. 2003. The rich get richer: patterns of plant invasions in
1018	the United States. Front. Ecol. Environ. 1:11-14
1019	Stout JC, Parnell JAN, Arroyo J, Crowe TP. 2006. Pollination ecology and seed production
1020	of Rhododendron ponticum in native and exotic habitats. Biodivers. Conserv. 15:755-
1021	77
1022	Stout JC, Tiedeken EJ. 2017. Direct interactions between invasive plants and native
1023	pollinators: evidence, impacts and approaches. Funct. Ecol. 31:38-46

...

44

1024	Strauss SY, Lau JA, Carroll SP. 2006. Evolutionary responses of natives to introduced
1025	species: what do introductions tell us about natural communities? Ecol. Lett. 9:354-71
1026	Strauss SY, Zangerl AR. 2002. Plant-insect interactions in terrestrial ecosystems. In Plant
1027	Animal Interactions: an Evolutionary Approach, ed. CM Herrera, O Pellmyr, pp. 77-
1028	106. Oxford: Blackwell Publishing
1029	Stricker KB, Harmon PF, Goss EM, Clay K, Flory SL. 2016. Emergence and accumulation of
1030	novel pathogens suppress aninvasive species. Ecol. Lett. 19:469-77
1031	Talluto MV, Boulangeat I, Ameztegui A, Aubin I, Berteaux D, et al. 2016. Cross scale
1032	integration of knowledge for predicting species ranges: a metamodelling framework.
1033	Global Ecol. Biogeogr. 25:238-49
1034	Thuiller W, Gallien L, Boulangeat I, de Bello F, Munkemuller T, et al. 2010. Resolving
1035	Darwin's naturalization conundrum: a quest for evidence. Divers. Distrib. 16:461-75
1036	Traveset A, Richardson DM. 2014. Mutualistic interactions and biological invasions. Annu.
1037	Rev. Ecol., Evol. Syst. 45:89-113
1038	van Kleunen M, Dawson W, Bossdorf O, Fischer M. 2014. The more the merrier: multi-
1039	species experiments in ecology. Basic Appl. Ecol. 15:1-9
1040	van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, et al. 2015a. Global exchange and
1041	accumulation of non-native plants. Nature 525:100-03
1042	van Kleunen M, Dawson W, Maurel N. 2015b. Characteristics of successful alien plants. Mol
1043	<i>Ecol.</i> 24:1954-68
1044	van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M. 2010a. Are invaders
1045	different? A conceptual framework of comparative approaches for assessing
1046	determinants of invasiveness. Ecol. Lett. 13:947-58
1047	van Kleunen M, Weber E, Fischer M. 2010b. A meta-analysis of trait differences between
1048	invasive and non-invasive plant species. Ecol. Lett. 13:235-45

1049 V	andepitte K, I	De Meyer T,	Helsen K,	Van Acker K	, Roldan-Ruiz I, et al	. 2014. Rapid
--------	----------------	-------------	-----------	-------------	------------------------	---------------

- genetic adaptation precedes the spread of an exotic plant species. Mol. Ecol. 23:2157-1050 64
- 1051
- Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, et al. 2009. Invasive 1052 1053 plant integration into native plant-pollinator networks across Europe. Proc. R. Soc.
- Lond., Ser. B: Biol. Sci. 276:3887-93 1054
- Vitousek PM, Walker LR. 1989. Biological invasion by Myrica Faya in Hawai'i: plant 1055 demography, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59:247-65 1056
- Von Holle B, Simberloff D. 2005. Ecological resistance to biological invasion overwhelmed 1057 by propagule pressure. Ecology 86:3212-18 1058
- 1059 Wang B, Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299-363 1060
- Wang XY, Shen DW, Jiao J, Xu NN, Yu S, et al. 2012. Genotypic diversity enhances 1061 1062 invasive ability of Spartina alterniflora. Mol. Ecol. 21:2542-51
- White PS, Pickett ST. 1985. Natural disturbance and patch dynamics: an introduction. In The 1063
- Ecology of Natural Disturbance and Patch Dynamics, ed. ST Pickett, PS White. 1064 London: Academic Press Inc. 1065
- Whitney KD, Broman KW, Kane NC, Hovick SM, Randell RA, Rieseberg LH. 2015. 1066
- Quantitative trait locus mapping identifies candidate alleles involved in adaptive 1067
- 1068 introgression and range expansion in a wild sunflower. Mol. Ecol. 24:2194-211
- Williams JL, Auge H, Maron JL. 2008. Different gardens, different results: native and 1069 1070 introduced populations exhibit contrasting phenotypes across common gardens.
- Oecologia 157:239-48 1071
- 1072 Zhang YY, Parepa M, Fischer M, Bossdorf O. 2017. Epigenetics of colonizing species? A
- 1073 study of Japanese knotweed in Central Europe. In Invasion Genetics: the Baker &

1074 1075	Stebbins Legacy, ed. SCH Barrett, RI Colautti, KM Dlugosch, LH Rieseberg. Oxford: John Wiley & Sons	
1076 1077	Zhang Z, Pant X, Blumenthal D, van Kleunen M, Liu M, Li B. 2018. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. <i>Ecology</i>	Formatted: German (Germany) Formatted: Indent: Left: 0 cm, Hanging: 1.25 cm Formatted: English (United Kingdom)
1078	DOI:10.1002/ecy.2155	
1079	*	Formatted: Indent: Left: 0 cm, First line: 0 cm

1080 Figure caption

1081

1082 Figure 1

1083 Visual summary of research intensity, consistency of results and open questions in the study of alien 1084 plant ecology and evolution, including general patterns and drivers, biotic interactions, and the role of 1085 evolution and genetics. We use a four-level heat-colour scale for the different cells to indicate whether 1086 in our opinion, research intensity, consistency of results and open questions have low, moderate, high 1087 or very high values. With arrows, we indicate the trends (decreasing, continuing, increasing, rapidly 1088 increasing) in the rate of research on each topic. For each topic, we list our top question that needs to 1089 be answered to better understand the ecology and evolution of alien plants.

1090

1091 <u>Figure 2</u>

1092	The stages and barriers (red bars) of the invasion process (after Richardson et al. 2000) and the
1093	multiple dimensions of invasiveness (e.g. Catford et al. 2016). When a species has been introduced
1094	from it native range across a biogeographic barrier it is an alien. Those aliens that passed the
1095	environmental barrier and are sometimes found in the wild but do not persist are casuals. The
1096	ones Those that passed the environmental and reproductive barriers and thus form persistent
1097	populations are naturalized species. A subset of the naturalized aliens is considered invasive.
1098	Invasiveness, however, is not a binary variable but a continuous one and has multiple dimensions (i.e.,
1099	distributional characteristics) indicated by the axes of the cube. Each of these invasiveness dimensions
1100	is associated with some main barrier along the continuum. Invasive species can theoretically occur
1101	anywhere within this multidimensional space. For example, species A is an invasive species that is a
1102	habitat specialist with a small range size that can become locally very abundant, due to overcoming
1103	competition from natives. Species B is an invasive species that has a large range through overcoming
1104	dispersal barriers, but is also a habitat specialist but has a large range and with a low local abundance.

Formatted: Line spacing: Double

Formatted: Line spacing: Double

Species C in an invasive species that has high values for each of the three invasiveness dimensions

106 shown, and so has overcome competition, dispersal and environmental barriers.-