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17 ABSTRACT. Mock modular forms are central objects in the recent discoveries of new

18 instances of Moonshine. In this paper, we discuss the construction, of mixed mock

;'g modular forms via integrals of theta series associated tofindefinite quadratic forms.

o1 In particular, ip this geome‘?ric setting,‘we realize Zwegers’ mock theta functions of

29 type (p, 1) as line integrals in hyperbolic p-space.

23

24

25 &

26 1. INTRODUCTION

% Theta series are a very important tool for the eonstruction of automorphic forms
29 with many and significant applications ranging from number theory to physics. While
30 positive definite theta series are well understood, the scope and possibilities of indefi-
31 nite theta series are still developing.»As antexample we mention Borcherds’ celebrated
gg construction of automorphic productsfor Hermitian domains arising from a regular-
34 ized theta lift for an indefinite,quadratic space of signature (p, 2) [4]. These ideas also
35 play a central role in the proof of.the umbral moonshine conjecture given in [7]. Of
36 course, mock modular forms are in general central objects in the recent discoveries of
37 instances of moonshine.

gg Indefinite theta functions play an important role in the construction of mixed mock
40 modular forms and their. completions. In 2002, Zwegers [38] constructed mock theta
41 functions of weightu(p + 1)/2.associated to quadratic spaces of signature (p, 1) whose
42 non-holomorphic completion involves the error function. In recent months, [2] (signa-
43 ture (p,2)) and then [29] (general signature (p, q), already indicated in [2]) employing
jg the same methed extended Zwegers’ construction to arbitrary signature. One obtains
46 so-called “higher depth” (mixed) mock modular forms. The input data depends on
47 a certain gollection of time-like vectors in the underlying indefinite quadratic space,
48 and the completion involves generalized error functions. Westerholt-Raum [37] used
49 similap‘methodssto obtain analogous results for different configurations of time-like
50 vectors. For his earlier work in this context, see [36]. It should be mentioned that
51 . . .

50 Zagier and Zwegers had previously announced some of the aforementioned results.
53 Indefinite theta series (of signature (1,2)) also occur in the Gromov-Witten theory of
54 elliptic orbifolds [5].

35 Throughout the 1980’s [24, 25, 26], the second author in joint work with J. Millson
o6 employed the Weil representation and the theta correspondence to systematically con-
g; struct holomorphic (Siegel) modular forms associated to indefinite quadratic forms.
59 More precisely, they obtain a lift from the (co)homology of the underlying locally

60 symmetric space to the space of holomorphic modular forms. The first author jointly
1
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with Millson [10, 11, 13, 14] has since studied the non-compact situation and alse
considered local coefficient systems to construct modular forms of higher weight. The
second author [23] employed this machinery to recover the results of [2]\from a more
geometric point of view. For the relationship to cycles on modulifspaces of K3 sur-
faces, see [21].

In this note, we first outline the representation theoretic baekground/in the con-
struction of theta series stressing the role of the Weil representation:"We then give an
introduction to the theory developed in [24, 25, 26]. The key @bject is the indefinite
theta function (7, z, ¢k ),which as a function of 7 € H, thesupper half plane, is a
modular form of weight (p + ¢)/2, while as function of.z € D, the symmetric space
associated to V', defines a closed differential g-form. For ascompact ¢-chain C in D
and 7 a (not necessarily closed) differential (p —1)g-formon D with compact support,
we consider the theta integrals

I(,0) = /C 6.z o) and  (I(#n) :=’/D 0 A0 1),

which, by construction, are then (non-holomerphic) modular forms of weight (p+¢q)/2
for a certain level. For those forms we then give amatural splitting into a holomorphic
‘mock theta’ part with a geomettie interpretation and its non-holomorphic modular
completion. We then discuss the hyperbolic case explicitly and recover Zwegers’ theta
series in this setting.

In a separate paper [9] (following [22]), we will explain in detail how the results of
[29] and [37] can also be obtained im, this setting.

Some of the new results in this paper stem from stimulating discussions during the
LMS-EPSRC Durham Symposium<on New Moonshines, Mock Modular Forms and
String Theory in August 2015.

24 THE. WEIL. REPRESENTATION AND THETA SERIES

In this sectiony we recall the (Segal-Shale)-Weil or oscillator representation over R
and explaindhow it prevides a representation-theoretic framework for the construction
and properties/of thetaiseries. A good reference is Shintani’s treatment [32].

2.1. Weil representation. Let V' be a rational vector space over Q with a non-
degenerate bilinear form (, ) of signature (p, ¢) and dimension m = p+¢. We pick an
ordered orthogonal basis {v;} of V(R) = V®gR such that (v,,v,) = 1fora=1,...,p
and (v,,vy) = —1for p=p+1,...,p+q. We denote the corresponding coordinates
for a'wector x by x;.

We let Mp,(R) be the metaplectic cover of SLy(R) and let w = wy,, be the Weil
representation of Mp,(R) x O(V(R)) associated to the additive character ¥(t) =
e?™ acting on S(V(R)), the space of Schwartz functions on V(R). For m even, the
representation factors through SLy(R). The orthogonal group acts linearly, that is,

Page 2 of 20
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w(g)e(z) = p(g ' x). For matrices in SLy(R), there are preimages in Mps(R) so that

w((§1)) plz) = e D0p(a),
w((§o2)) o) = a™Pp(az) (a>0),
w(( 1 0))e() = v ().

27ri(;t

P—4q
Here vy = e*™ 8 and ¢ fv W dy is the Fourier transform.

On the Lie algebra level the act10ns of the standard basis elements H = (9 '),

R=1(17),and L=1( z:}) of sl,(C) are given by
1
w(H) = —mr? + —A,
4dm
w(L)=Tr2+ Loy May
2 8m g2 G4’
s 1 1 an
R)=——-r'— —A+F P F—
W) = =5 G R
Here r? = 377 a2 — 7" . a7 is themetric of VA = 370 18902 D 5122 is

the Laplace operator, and £ =", xi% is the.Euler operator.

We let K’ be the inverse image 6fsSO(2),~ U(1) in Mp,(R) under the covering
map. Then K’ admits a one-dimensional character x;,, whose square descends to
the map <_C(;Slg?g) 22%) s @os(0) + isin(@) = e on SO(2). We say ¢ € S(V(R))
has weight +r € 17 if w(k')p= Xiyo (k') for k' € K'. Note that in terms of the Lie
algebra action this is equivalent to

r
(2.1) (- H)p = 5 ¢

In particular, ¢ is aneigenfunction under the Fourier transform. Given ¢ € S(V(R)),

it will be convenient to set
' (z) = " p(x).

Then a quick calculation shows that (2.1) is equivalent to

(2:2) -2 = (57) ¢

4m
see also34]. For example, the standard Gaussian ¢y on V(R) given by
2:3) o) = ewlo

with'(z, ®)g= > """ v has weight (p — ¢)/2 under the action of K’

Remark 2.1. Roughly speaking, the local theta correspondence or Howe duality cor-
respondence for SLy(R) x O(V(R)) is concerned with the question which irreducible
representations m ® 7' of Mpy(R) x O(V(R)) occur as quotients of the Weil repre-
sentation, that is, Homequiv(wy.y, @ ® ') is non-zero (as (g, ')-modules or unitary
representations), see [19] or also [1]. The main result is that the space of intertwining
homomorphisms is always at most one-dimensional and hence one obtains a bijection
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between certain irreducible representations of Mp,(R) and of O(V(R)). This bijection
is called the Howe duality correspondence.

For V' positive definite so that O(V(R)) is compact, an explicit déseription of the
correspondence is given by the theory of spherical harmonics. In that case,let H,(V)
be the space of homogenous harmonic polynomials p(z) on V' of degreé /, that is,
Ap(z) = 0. Then H,(V) is an irreducible representation of "O(W.(R)) of highest
weight (1,0,...,0). On the other hand, for n € %Z, let Df | be the holomorphic
(limit of) discrete series representation for Mpy(R) with holemorphic/lowest vector
of weight n for K’. Then, as a unitary representation of Mp,(R)x Q(V(R)), L*(V (R))
is a Hilbert space direct sum of the representations H,(#) ® DZM v The irreducible

2

summands are generated by the vectors p(x)po(z)f€rS(VA(R)) for p(z) € Ho(V).
Note that p(z)@o(x) is holomorphic (w(L)p(z)ge(r) ="0),and has weight £ + ¢:
w(—H)p(x)po(x) = (5 +¢)p(z)po(x). This completely describes the theta corre-
spondence for the dual pair SLy(R) x O(V(R)) in_the pgsitive definite case.

In the indefinite case when O(V(R)) is non-compact, the situation is more com-
plicated. The space L*(V(R)) then hasiboth a discrete and a continuous spectrum
and it is necessary to formulate the correspondence in terms of quotients, as above.
Duality was proved in full generality in terms of \Harish-Chandra modules, [19]. For
a detailed description, see e.g. [18,31430].

Remark 2.2. The Weil representation exists in a much larger context, see Weil’s
original paper [35]. For example, the corresponding p-adic groups O(V(Q,)) and
SLy(Q,) act on S(V(Q,)), the space of Bruhat-Schwartz functions on V(Q,), which
consists of the locally constant funetions on V(Q,)). For us (see below), such a
function arises by the choice of (a coset of) a lattice L on V(Q), which is associated
to the characteristic funétion ofia-translate of L, = L ®; Z, for each prime p. The
local theta or local Howe cerrespondence can be studied in this setting as well.

2.2. Theta Series:(Let v €.5(V (R)) be an eigenfunction of weight 3r € 37 under
the action of K’. Wethen set

plafr, 2) 2y (0, ) Pw(gn)p(a) = v/ 2y fo)em @O,
Here ¢/ is any element in SLy(R) moving the basepoint i of the upper half plane H
to 7 = u +v € Hand j(g.,7) denotes the usual automorphy factor. This does not
depend on thé choice of ¢/, but we can take g/ = (}¥) (”10/2 qum)' Given an even
lattice! L and a‘eoset h € L¥ /L we define the associated theta series by
(24),0(r,0) = 0(r, 0, L, h) = > ola,7,2) = v AN Oy fp)em @),

z€L+h z€L+h

Then, by Poisson summation, one shows that 6(7, ¢) transforms like a modular form
of weight r/2 for the principal congruence subgroup I'(N) and for I'¢(V) if h = 0.

IByen means that (z,z) € 2Z for all x € L. In particular, L C L#, where L* is the dual lattice
L#={xcV|(x,L)CZ}

Page 4 of 20
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For an outline of the argument, see for example p99-100 in [17]. Here Niis the level
of the lattice L; that is, the smallest positive integer N such that N(x,z) €2Z for
all v € L#.

For example, if V' is positive definite and p(z) € H,(V') harmoni¢ of degree ¢, then
0(7, ppo) = > perin P(@)e™ ™97 is a holomorphic modular form of weight 2 + ¢, and
is cuspidal if £ > 0.

However, in general, 0(7, ¢) is not holomorphic. We let (L, :\—QiUQ% be the
Maass lowering operator which lowers the weight of forms,by 2. Then a little calcu-
lation shows that the action of L, , on theta series corresponds, tosthe Weil represen-
tation action of L € sly(C) on S(V(R)), that is,

(2.5) Ly y20(7, ) = 0(7,w(L)p).

In particular, this ‘explains’ the holomorphigity of thegtheta series with harmonic
coefficients from a representation-theoretic perspective.

Note that the Weil representation exténds to the Hilbert space L*(V (R)) and hence
L2-eigenfunctions under the Fourier transforim can be also used to construct modular
objects. However, in order to obtain modularity one needs to ensure that Poisson
summation holds (which is automatiesfor Schwartz functions but not for square inte-
grable functions). We can summarize,our diseussion with the following theorem due
to Vigneras [34]:

Theorem 2.3. Let p(x) be alfunction on V(R) such that o(z) := p(x)e @) and its
first and second partial deriatives are in L*(V(R)) N LY (V(R)). Assume (2.2), that
is, (£ — ﬁA)p = \p forsomeNc Z. Then

U= v 3 plevo)er@s

zeL+h

transforms likexa modular form of weight r/2 + X of level N as above.

We give/now/onesexample where Theorem 2.3 can be applied. This often amounts
to the clever/choice of a function p(z) which (partially) restricts the summation of
the theéta series'to the positive cone. For the general philosophy of this approach, see
also section 23 in [17].

Example 2.4. [Zwegers’ mock theta function, [38]]

Let V be of signature (p,1) and let ¢1,c € V(R) be two non-collinear vectors of
negative length with (c1, o) < 0. For simplicity, we assume (c¢1,¢1) = (¢, ¢2) = —1.
We let
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be the (modified) error function. We then set

p(o) = 5 (B3, e0) — B3, )

1
=3 (sgn(z, c1) —sgn(z, c2))
2\1/% [sgn(z, o)L (3,27 (z, ¢2)%) — sgn(z, o) (327(x, ¢1)%)] .

Here I'(s,a) = faoo e~'t*71dt is the incomplete I-function, andywe mSe the convention

sgn(0) = 0. Then p(x) satisfies the hypothesis of Theorem 2.3 with A = 0, and we
conclude that

92(7—7 61762> = % Z (E(\/%<$,Cl)) Za E(\/%(x,02))) em’(:v,m)-r

reL+h

+

is a non-holomorphic modular form of level N of aveight*m /2.
Now (sgn(z,¢;) —sgn(z, cp) = 0 for all x of non-positive length. Hence we can view

1 A
— sgn(z, co) (2, 270 (x, ¢3)2) —sgn(z, )T (%, 270 (2, ¢1)? ei(@z)T
2ﬁx§h[g( 2)T (3, 2mu(w, %) =sgu(e, c)T (5, 2mo(x, 1))

as the non-holomorphic modular completion of the mock theta function

1 .
5 Z (sgn(z, cy) =sgn(x, cg)) e @7,
r€L+h
(z,2)>0
obtained by summation overithe positive cone. Furthermore, for the shadow, we
easily compute the actign of the lewering operator L,,» and obtain

v3/2

Ly 20z (7, 1, 09) = E Z ((x, 02)67%(%02)2” — (z, cl)e’Qﬂ(w’cl)Qv> emi@a)T
xeL+h

which defines a/non-helemorphic form weight m/2 — 2.

2.2.1. Siegel’sutheta series. Indefinite theta series go back to Siegel [33] (and of course
Hecke) and originally arose in a more geometric setting which we now describe.

We let G ='SO(V/(R)) be the special orthogonal group, and let K be the compact
subgrotip of Gistabilizing the oriented negative g-plane 2z := span{v,; p+1 < pu <
p+ q}. Thenthe symmetric space D = D(V) associated to V' is given by D ~ G/K.
Notesthat D = D[] D~ has two connected components and has dimension pg. We
can realize D as the Grassmannian of oriented negative g-planes in V(R):

D ~ {z C V(R); z oriented; dimz = ¢; (, )|, < 0}.

Indeed, by Witt’s theorem G acts transitively on this Grassmannian, and the stabilizer
of the base point zy is by definition K. We let I' C G be a congruence subgroup
stabilizing L + h (or even acting trivially on L#/L). Then X = Xr = I'\D is a
locally symmetric space of finite volume.

Page 6 of 20
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g Example 2.5. (i) For signature (p,1), D is hyperbolic p-space. Then the con-
10 nected component of the base point is given by

7 D* =~ {2 € V(R (2,2) = —1; (2, ) < 0},

13 We will make this identification henceforth.

14 (ii) For signature (p,2), D has a Hermitian structure and X#is & quasi-projective
ig variety. For (1,2), we have D™ ~ H and X is a modularor Shimura curve;
17 for (2,2), we have DT ~ H x H and X is a Hilbert,modular gurve; for (3,2),
18 we have Dt ~ H,, the Siegel upper half space of genus,2.

19

20 We associate to z € D the standard majorant (, ), given by

21

> (x,2), = (z,0,2,0) — (2, )

23 Here z = z, + z,. € V(R) is given by the orthogonal.decomposition V(R) = 2+ @ 2.
gg The standard Gaussian on V(R) is given by 5

28 In particular, at the base point zy € D we have ©o(, z0) = @o(z) = e ™21 %% see
ég (2.3) above. Note that ¢g(x,2) = @o(g; ' x), where g. € G is any element moving 2,
31 to z. In this way, we can view

> (2.6) o € S(V(R))" & [S(V(R)) ® C=(D)]°.

34 Here G acts diagonally and theiinverse map is given by restriction at the base point
gg 2p. Since the actions of S Ly (R) andO(V (R)) commute, we also see immediately that
37 wo(x, z) is an eigenfunction for K’ of weight (p — ¢)/2 as well. Hence

gg 9(7-7 z, 900) — /2 Z €—>R(z,z)ve7ri(a:,x)7 c NonholM(p,q)/g(F(N)) Q Coo<D)F

40 xzel+h

j; defines a non-holomerphic moedular form of weight (p — ¢)/2 and level N, taking
43 values in the C*=functions on X. Here R(z, 2) := —(2.,2.) = 3((z, ). — (z,)), so
44 that ©)(z, 2) = e~ 2"7@2) "Note that R(z, z) is non-negative and zero if and only = is
45 perpendicular‘to the negative ¢g-plane z.

46 One can then use (7, z, o) as an integral kernel to lift objects (automorphic forms)
j; for SLy to theforthogonal group for V and vice versa. The celebrated Siegel-Weil
49 formula(elassically and its extensions) asserts that

50

51 E(rop) i= [ 807,z 00)du2),

52 X

53 (in an adelic setting up) gives an Eisenstein series for SLy. Here du(z) is the G-
gg invariant/measure on D. For an overview, see e.g. [20].

56 Conversely, the equally celebrated singular Borcherds lift arises by considering, for
57 signature (p,2), the appropriately regularized theta integral

58 reg

59 B f)i= [ oln s f(r)du(r),

60 T(N)\H
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where f € M 1!7p /o(I'(V)) is a weakly holomorphic modular form (or moré generally a
weak Maass form) of weight 1 —p/2, see [4, 15, 6]. The associated Boréherds preduct
is roughly given by exponentiating ®(z, f).

As another example, the Shimura-Shintani correspondence between helemorphic
modular forms of weight 2k and k£ + 1/2 can be realized via integration against a
certain theta series 0(7, z, ) for signature (2, 1), see [28, 32].

These theta liftings exist in much greater generality. For thefgencral case, one
considers the general theta series

09,90, L,h) = Y wlghelg'z) (g€ Q(V(R)),ghE Mpy(R))

z€L+h

as integral kernel. As one varies ¢ (and L and h) on¢ obtains the theta correspondence
between automorphic forms/representations of the two groups involved.

Remark 2.6. The global Weil representation acts on. SV (A)) = ®;J§oo S(V(Qy)).
Then the global Howe correspondence is concerned with a correspondence between
automorphic representations in a similar fashion agindhe local case, and typically this
correspondence can be realized by the above,theta liftings/integrals. For example,
the Shimura correspondence was studied from a pepresentation-theoretic perspective

by Waldspurger in the early 1980’s.

36.SPECIAL SCHWARTZ FORMS

3.1. More on the orthogonal symmetric space. Let g be the Lie algebra of GG
and g = p @ ¢ its Cartan decomposition. Then p ~ g/¢ is isomorphic to the tangent
space T, (D) at the base pointiof D; and with respect to the given basis of V(R) we
have

(3.1) fred HoM(zo,dl ) = {(tg( )0() X € Mp,q(R)} |

We let X, (1 €a<p, pF1 < p <p+q) denote the elements of the obvious basis

of p in (3.1), and let wyy be the elements of the dual basis which pick out the ap-th

coordinate ofgps For any point 2 € D we have T,(D) ~ Hom(z, z1). We orient z*

such that its orientation followed by the given one of z gives the orientation of V.

This then givés an orientation for Hom(z, z+) and thus for D as in [26], p. 130/131.
For @ € V(R)pwith (x,z) > 0, we let

D,={z€D; z Lz}

Note that D, is a subsymmetric space of type D,_;, attached to the orthogonal
group G, the stabilizer of z in G. Note that R(x,z) = 0 exactly when z € D,.
Againnfollowing [26], page 130/131, we orient the cycles D,. Namely, we first orient
the subspace x+ in V(R) such that z followed by an oriented basis of z+ gives an
oriented basis of V(R) and then follow the procedure for D. Note that with these
conventions we obtain D_, = (—1)?D,. We let I', be the stabilizer of z in I'. Then
we define the special cycle C, as the image of I';\D, in X =T'\D.

Page 8 of 20
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Example 3.1. If D is hyperbolic and (x, ) > 0, the cycle D} = {z € D®(z, x) =0}
divides D7 into two components defined by the sign of (z,z). On thé other hand if
(z,z) < 0, then (by definition) (z, z) doesn’t change signs on each of the,components
D% and D~. The same holds for z isotropic.

3.2. Special Schwartz forms. The second author and Millson (see [24, 25, 26]) con-
structed (in more generality) Schwartz forms @y on V(R) taking walues in A?(D),
the differential ¢-forms on D. More precisely,

(3.2) i € [S(VR) @ \'(09)]F = [S(V(R)) © AYD)E.

The isomorphism in (3.2) generalizes the one indicated'in,(2.6) and can be described
explicitly as follows. Let g, € G be any element moying the base point zo to z. Then
g. defines an isomorphism from 7,(D) = Hom(zz2") to pi= T,, (D) = Hom(zo, 25)
in the usual way, that is, for ' € Hom(z, 2*) we.have (¢;'7)(v) := g, 'T(g.,v). We
denote the dual map by (g;')*. We (initially) view.pgn as a map from V(R) to
A?Hom(z, 257 )* =~ A%*. Then

pron (2, 2) = (950) (@ ).
By K-invariance this is independent of the choiee of g, € G.

We define a differential operatomacting on'S(V(R)) by D; = z; —
is given by

27r 8:1: Then @x s

1 p
PEKM = 575 Z [Dal T Daq]g&o ® Wayp+1 ARRRNA Wagptq-

(This is 29/2 times the correspondmg quantity in [26].) A bit more explicitly, we have

(3.3) Crenr(@ Z o(z ~ErR() @ Warp+1 N+ N Wagptqs

where P% (x) is a‘polynomial of degree ¢ and a = (o4,...,q,) € {1,. ..,p}q de-
notes a multi index.nIn fact, for o = (a, @), P(q( ) is given by P ( ) =
(47)~92H, (V27z,), where H,(t) = (—1)%" %e*t is the ¢g-th Hermite polynomial.
For ‘mixed @, P(q)( )is a product of Hermite polynomials in the z,.
It is easy togee thatigy ), is K-invariant. Its key (non-trivial!) properties are

(1) wrrr(®, 2) ds a closed I',-invariant differential form on D for all z € V(R).

(2) prm(z, 2) is an eigenfunction of K’ of weight

(3) %1/ (2, 2) is a ‘Thom form’ for the cycle C,

that is,
/ n/\sO%M(x,Z)Z/ n
I \D .

for any closed differential (p — 1)g-form n on I';,\ D with compact support.

S

[, \D, on the ‘tube’ I';\D,

We also define another form

Yrm = € | ) A\ (p [S(V(R)) ® A*(D)]“
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by
(3.4)

1 q p .
b= DD Dl

=1 ai,..,ag—1=1
—_—
& Waip+1 VAR wajpﬂ- N Y VAN waq_1p+q.

We can write
(3.5)

7 Z Z 1)/~ xp+]p(q U (g)e=2rElw:20)

® Way g A - AW pr A+ A Way_ipigs
where the sum extends over all multi-indices a/= (... ‘aq_l)‘ The key relationship
between px s and 1, see [26], is given by
(4) v is an eigenfunction of K’ with weight 3 —2.
(5) Let L,, = —22’1}2% be the Maass lowering operator and let d denote the exterior
differential in A®*(D). Then
Leoprala, 7, 2)0=dy(x, 7, 2).
Explicitly, this means

0
(3.6) o= Bleag(1+/0) = A (2/0).
3.3. A singular Schwartz form. For x # 0, we set
(3.7) 00 (z,%2) = / VO (z tz—.

Note that 120 has singularities when R(x, z) = 0, that is, exactly along the cycles D,.

In particular, for (z, <0, QZO it is smooth. More precisely, a little calculation gives
(at the base p6int)

38) ¥z, 4) ZQa ZPaqg V(@) (2nR(x, )~ V2T (4,27 R(x, 20))
with

I - —
Qul®) = 9472 Z(_l)j 15Up+j @ Warpr1 A+  AWagptj N N Way_1ptq:

Here Pg(?g (z) denotes the homogeneous component of degree ¢ of Py (= 1)( ). In

pagticular, R(x,z)?*)"(x, z) extends to a smooth form on D.
In line with our conventions for Schwartz functions we also define

zZ(x, z) = 1;0 (z, z)e’”(m’x) )

Page 10 of 20
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While ¢ is not a Schwartz function on V(R), we can still define
@Z(m,r, z) = @Zo(x v, z)em(””’x)T

for 7 € H as if it was an eigenfunction under K’ of weight m /2 (whi€h'it isnet). Note

la,rz) = - ( A w<m>%> itz

From the definition (3.7) of the singular form we immediately obtain

Proposition 3.2. Outside the singularities we have
(i) ~
d(x,7,2) = erum(z, 7 2).
(i)
Lo(x, 1, 2) = (@a2):

~ L
Note that (ii) motivates to consider ¢ as if it had weight x. The key geometric

property of v is given as follows.

Theorem 3.3. The singular differential form J(m) is a differential character (or
spark) for the cycle D, (see [16] )i That is, ¥(x) is locally integrable, and we have

/ 0 A Penr(,2) = / N G / dn A 3z, 2).
D D, D

for any (not necessarily closed) n € Aﬁp‘”q(D), the space of (p—1)q-forms on D with
compact support. Here we set D, =W0uf (z,z) <0.

The theorem will be prov& innSection 5 using the general Lie theoretic setting
explained above.

Remark 3.4. Note that thetheorem also implies a ‘dual’ statement for the integral
Jo €%, 2) over-a compact g-chain C' in D with piecewise smooth boundary. For
example, if C' and D, intersect transversely in the interior of C', we have

/ Sens(@,2) = [C. D)+ [ P, 2).
C oC

Here [C, Dg] is the appropriately defined (local) intersection number of C' and D,.

For ¢ =2, suchpa'statement can be found in [23] for a particular geodesic square in
D.

Example3:5. For D hyperbolic p-space, all this can be seen explicitly. Namely, we
naturally_ have T, (D) ~ z*. Unraveling the definitions and basic formulas we see

@KM(xv Z) = \/5(:67 _)e*ﬂ(x,l“)z

1

as functional on z—, and

1
2/m

1 2 ~
Y(2,2) = —=(2,2)e” @ and  ¢0(x,2) =

V2

sgn(z, 2)I (1, 27(z, 2)?) .
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In particular, 150(:(:, z) has a singularity of type 1 sgn(z, z) along the cyele,.D,, thas
is, ¥0(z, z) — L sgn(z, z) extends to a smooth function on D. From that Theorém 3.3
is quite straightforward, see also Section 4.3 below.

4. GEOMETRIC THETA INTEGRALS

In this section, we consider the theta series ~

01,2, o) Z Croar(zv/v)e T — Z Z P (V) | ¢

rEL+h neQ rE€L+h
(z,x)=2n

associated to @iy and use this theta series asgan integral kernel. By the above
discussion we immediately see

0(7, 2, orm) € Nonhol M, is(T(N)) & A?(D)",

that is, 6(7, z, ¢k ar) is a non-holomorphieamodular.form of weight (p—¢)/2) and level
N taking values in the closed differential ¢g-forms on X.

4.1. The cohomological lift. For.p a (p'= 1)¢-form on X with compact support
and C' a compact g-chain on X, we set

(4.1) I(T,n):/xn/\H(T,z,ngM) and I(T,C'):/CQ(T,Z,@KM).

Then the n-th Fourier coefficient I(7ys) for n # 0 is given by

0
nA P (T ‘/ 1A Oear (0, 2).
/F RIDYe = 3 [

x€L+h I€L+h
(myx) =21
mod F

Here in the last step. werunfolded the integral and used the fact that I' acts for n # 0
on the set {x €L + h;(a, ) = 2n} with finitely orbits. Then we set

Co= > C.€Hyn, (X, 0X,2).
zeL+h
(z,2)=2n
mod I

By thé Thom property of ¢©Y%,, (Key property (3) above, or also by Theorem 3.3) one
then obtains

Theorem 4.1 ([26]). Let n as above be a closed (p — 1)q-form and C' be q-cycle on
X Then,

Hﬂm:i/nAe¢+§:</ ) and (T, /e¢+§:(70

n>0 n>0

Here e, = @i (0) is the Euler form for D, a certain closed G-invariant g-form on
D (which is zero for q odd) and [C,C,] is the cohomological intersection number of
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the cycles C' and C,,. In particular, these two geometric theta integrals®(4.1) define
holomorphic modular forms of weight m/2.
In conclusion, we obtain (co)homological maps

Hy(X,Z) = Mo (D(N))  and  HP DX, R) — M,,/»(T(N)),
where the Fourier coefficients are given by periods respectively interseetion numbers.

Results of this kind were first famously found by Hirzebruch-Zagier/ [17] for Hilbert
modular surfaces.

Remark 4.2. (i) Note that after integration all Fourier coefficients of negative
index vanish. Hence after integration the resulting theta function is given by
summation over the positive cone in the indefinite space V. However, in this
construction one obtains these series veryudifferently by employing some kind
of ‘universal’ theta kernel arising from‘a Schwartg function.

(ii) The holomorphicity of the (co)homological theta integral can be seen directly
by the following amusing calculation, see [26]4p. 122: Using Ly = dip and
Stokes’ theorem we see

Lyl (7,C) = / L b (PR / d6(r,z0) = | 6(r,2,1) = 0.

c c aC
Here in the last stepawe used that € is a closed cycle. This highlights the role
of the “auxiliary” Schwartz form v for the theory.

Remark 4.3. In joint work with Millson, the first author has been studying gener-
alizations of the theory. Wermention two main aspects.

(i) It is a natural question to investigate the case when 7 is no longer of compact
support respectively C' is no longer compact. This natural question is partic-
ularly motivated by the original Hirzebruch-Zagier paper where this was also
consideredi?Fhis has'been studied extensively in [10, 13, 12, 14].

(ii) In [11], the theory is extended to cycles and (co)homology with local coeffi-
cients in large generality. In the setting of this paper, the coefficient system
involved is H4V), the harmonic polynomials of degree ¢. This can be viewed
as the analogue to the positive definite theta series with harmonic coefficients.
The generating series of intersection numbers then gives rise to modular forms
of higher weight m/2 + ¢. In particular, in [12] Section 6, the classical Eisen-
stein series

Eu(r)=C(1—k)+ Z ph—1leZminmr

n,m>0
is explicitly realized as a theta series for signature (1,1).
Remark 4.4. We also mention one significant application of the theory. In [3], the

authors use the above construction to establish new cases of the Hodge conjecture
when X arises from a space of signature (p, 2).
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4.2. The general theta integral. We now consider the theta integral for more
general input. We work on the symmetric space D itself.

on D. Then
(z,2)>0
2#0

Theorem 4.5. Letn € AE”‘”‘I(D) be a compactly supported differential (p—1)q-form
Hro) = [ wnotrzenn) = [ ane+ 3
D xz€L+h

N 1
+ (_1)(p71)q+1 Z (/ dn/\wO(x\/E)) qg(x,x)
ze RN P
is a (non-holomorphic) modular form of weight m/f2. In particular, if n is a closed
form, then I(7,n) is holomorphic. Finally,

&
Lol (7,11) = /D DA (T, b)),

Proof. By the compact support of n we ean ¢oempute the integral termwise and see

(4.2) /nAQngoKM Yo (/UW%M(J; v,z))q”.

neEQunaeL+h
(zym)=2n

Now for = 0, we have ¢} = e,. For all other terms we first use Theorem 3.3
and then use the following result to justify the splitting into holomorphic and non-
holomorphic part. O

Proposition 4.6. Let g€ AP NYD). Then

1
e (/ 77) 2 ="
Do n>0

zEL+h

Z/nq

xGL—i—h
(z,@

15 termwise absolutely convergent.
Proof. Let/S be the compact support of . Then there exists a constant C' such that
‘fDl- n‘ < @\for alllx € V. By Lemma 4.11 of [23] (which is valid for any signature)

there @xists a_positive definite inner product (, )s on V such that (z,z)s < (z,x),
for allx € V and z € S. Now consider z € V with SN D, # 0, say 2z € SN D,, so
ineparticularR(x, zo) = 0. Then

(x,2) = (z,2), — 2R(z,20) = (2,2), > (z,2)s.

(Thisis'basically Lemma 4.12 in [23]). Combining all this we conclude

Z </ ) %mx <C Z em}(:rx <C Z effrvxxs

zeL+h zeL+h zeL+h
D,NS#D D,NS#)
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The claim follows. N

Remark 4.7. Let C' be a compact g-chain in the symmetric space D with piecewise
smooth boundary. Then

(4.3) J(T,C):/CQ(T,Z,WM >y (/ oers ( U,z)) q"

neQ xz€L+h
(z,2)=2n =

defines a non-holomorphic form of weight m/2. If the image of C/in X defines a
closed cycle in C, then (7, C) is holomorphic. In general, we have

Lm/21<7—7 C) = 9(7-7271:0)'
ac
Of course, Theorem 3.3 and Remark 3.4 again ptevide a geometric formula. In [9],
we consider [ (7, C') for certain ¢g-cubes in D indétail te recover the results of [29] in
the same way as in [23]. We consider the cas¢ ¢ =1 i the next section.

Remark 4.8. One of the delicate techmical issues in constructing indefinite theta
series is the convergence of the series in question. The way presented here using
Schwartz functions and taking a geometrie point, of view avoids some of these diffi-
culties, see the proofs of Theorem4:5 and Proposition 4.6. In this context, for the
analogous results for I(7,C) it is important'te note that for n > 0, the ‘infinite cy-

cle’ [] zer+n D, is locally finite in D, that is, the intersection with any compact set
(z,x)=2n
involves only finite many cycles D,

4.3. Hyperbolic Space. We now explain how one can recover Zwegers’ mock theta
functions in this setting. ~

So let V' be of signature (p, 1) and let ¢1,co € V(R) be non-collinear as in Exam-
ple 2.4, that is, (c1,¢) =4Aca,c2) = —1 and (¢1,¢2) < 0. Then ¢; and ¢y define two
different points in the same @mponent of D, say D', which by abuse of notation we
also denote by cp.and €. Let D., ., be the geodesic arc segment in DT connecting
c1 with ¢o. Ong caninterpret D,, ., also as follows. The span of ¢; and ¢y defines
a subspace U4of signature (1,1) of V. Let Ut be its orthogonal complement in V
which is posifive definite of dimension p — 1. Then D}, := {z € D";z € U} defines
the infinite geodesi¢ inl) passing through ¢; and ¢, and

De, o, = {span(tc; + (1 — t)cp);t € [0,1]} C Dy

Consider z #0in V. If (x,z) < 0 or if (x,z) > 0 with D,ND,, ., = 0, then ©%,,(z, 2)
is ampexact form on D, .,, and we see by Stokes’ theorem

| e =) - P a)

Dcl,(;2

The hyperplane D, intersects D, ., transversely (in the interior of the arc) if and only
if (x,c1) and (z, cz) have opposite signs. In that case the (local) intersection number
of D, and D, ., is given by 1 (sgn(z,c;) —sgn(z, c2)). (This actually gives another
characterization of D,, ., in terms the hyperplanes D,). Assume D,ND,, ., = c and let



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-107343.R1

16 JENS FUNKE AND STEPHEN S. KUDLA

¢~ and ¢~ 4 be points on the arc with distance € > 0, say sgn(c, ¢1) = sgn(e, c.- ) and
sgn(c, ca) = sgn(c, c+). We then compute using the precise nature of the singularities

of ¢ (see Example 3.5)
@) [ ) = o) - P ) +lin P e - Ped)
D e—

c1,c9
~

= 1;0(1’, ca) — LZO(LE, )+ % (sgn(®,c)— sgn(x, cz)) .

Now this also holds if ¢ is equal to ¢; or ¢y if we use the usual'eonvention sgn(0) =0

and set ¥°(z,¢) = 0. Finally, if Dy. C D,, that is@e U+, then x € 2+ for all

z € Dy.. Hence the pullback of ¢ (2) to Dy is zerorand thusdf,  ¢%,(z,2) = 0.
c1,c9

In summary, (4.4) holds for all z # 0. We have shown

Theorem 4.9. The theta integral [, 0(T, z4@xs) ds.given by
C€1,¢2 &

/D 9(7‘, Z,QOKM) = Z Z % (sgn(:):,cl) - SgD(ZE,Cg)) qn

1,¢2 n>0 | z€L+h
(z,2)=2n

o Z <Z’E0(.T U,Cg) . JO( U,CQ)) eﬂi(:t7$)7'
r€L+h
x#0
and coincides with Zwegers/‘thetalseries 07(T,c1,c2). Moreover, the “holomorphic
coefficients” Y zern 3 (sgnla, c1) —sgn(z, c)) can be interpreted as the intersection

(z,x)=2n A
number of D, ., with the infinite eycle [ zer+n Da.

(z,2)=2n
Furthermore, assume (for simplicity) L+h = (LNU +hy) @ (LNUL+hyo). Then
we have the natural splitting

/D 67 2 i) = 6 04) [ 07,255

U
c1,co Dcl,cg

Here 0(1,U”*) = ZyELﬂUJ‘JrhUJ_ e™WT s the usual theta series of weight (p — 1)/2
for the positive definite space UL and fDU O(,2,0%,,) is the indefinite theta series
1,62

of signature (1, 1) for the space U = span(cy, o) and LNU + hy.

Remark 4.10. (i) The second part of the theorem follows from the pullback
formula o5,0%,, = @Y oy, where 1y : Dy < Dy is the natural embedding
of the symmetric space for U into the one for V. The splitting of course also
follows directly from considering the formula for Zwegers’ theta series.

(ii) One doesn’t have to pick D., . to be the connecting geodesic. Since DT
is simply connected and (7, z, pxs) is closed, any other piecewise smooth
curve connecting ¢; and ¢y would do. Hence we have computed the integral
I o 0(7, 2, 0K ar) over any compact piecewise smooth curve in D.

Page 16 of 20
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(iii) Assume ¢; and ¢y are rational vectors. Then the geodesic Dy comnects tweo
rational cusps of D, represented by two isotropic vectors u; and us iml/. In
this case, the pointwise stabilizer of I'yy of U in I is either trivial or infinitely
cyclic. We let Cy be the image of I'y\Dy in X, whichsthen either is an
infinite geodesic in X connecting the two cusps or a closed geodesic defining
a class in H(X,Z). In the latter case, ¢; and ¢y could beT- equlvalent hence

Y wertn (X, T, C1) = D wcith U(z,7,¢s). Furthermoré, thefimage of D, ., in
x#0 x#0

X is an integral multiple of Cy, say kCy. Thus

I(1, D¢y ¢,) = I(1,kCy) = % Z (sgn(z, c;) @sgn(x, ap)) e @7,
xeL+h
(z,2)>0
In the first case, if Cy is infinite, then we‘can consider the limit case ¢; = uy
and ¢y = uy isotropic. This was done in'[10], see also Example 4.3 (i) above.
One again obtains a holomorphic modular/formrand

1 mi(x,T)T

I(r,Cy) = C}l_}IIiZI(T Deiey) = 5 E (sgnl@gte;) — sgn(z, ug)) e™@07,
c&L+h
(z,2)>0

(One now computes lim,, sy rebsh G(z,7,¢;) = 0).
x7#0

(iv) Following [11, 12], one can alsolequip the geodesic arc segment D., ., with
coefficients, see Example 4.3 (ii) above. This then yields higher weight ana-
logues of Zwegers’ theta function. For V' = U of signature (1, 1), one obtains
in the limit as ¢; — w; the classical holomorphic Eisenstein series.

Remark 4.11. The Schivartz form$ also exist for higher Siegel genus n in which case
the associated theta series/define closed differential ng-forms on X. One can then
consider integralsdvér compact ng-chains in D. For hyperbolic space this was done
in the recent TorontepPh.D. thesis of 1. Livinskyi [27]. It can be then viewed as a
higher genus analogue of Zwegers’ construction.

5., THE SINGULAR SCHWARTZ FORM AS A CURRENT

In this section, we prove Theorem 3.3. This result is already implicit in [6], Section
7, where the ¢orresponding statement for the singular theta lift of Borcherds type for
the Schwartz form v is given. We follow the line of reasoning given there. Since ¢ = 1
was already discussed in the previous section, we assume g > 2.

Gonsider a/top degree form ¢ € APY(D). We then have

J o= (i) v

where ¢ on the right hand side is considered as an element in [C®(G) @ AP p*]¥
Here 1, is a properly oriented basis vector for A" p ~ R of length one with respect to
the Killing form. Moreover, dg = dz dk, where dz is the measure on D coming from
the Killing form and vol(K, dk) = 1.
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We now pick appropriate coordinates for D. We set H = G,,,, the stabilizer in G of
the first basis vector v; of V. Let a; = exp(tX1,+4) for t € R, and let Al= {as;06.€ R}
be the associated one-parameter subgroup of G. We write A. = {ag5 it > ¢} We
have a decomposition G = HAK and, with a positive constant Cddepending on the
normalizations of the invariant measures, the integral formula (see [8], se€tion 2)

/qu(g)dg:C/AO/Hgb(hat)sinh(t)q1 cosh(t)?” ' dhdts

We first show that 1°(z) is locally integrable, i.c., S A Vo) < oo for any
compactly supported differential form 1 on D of degree.(p — 1)g41. We can assume
x = Ky/mu; for some m > 0 and k = +1. We have

(5.1) AmmAwwlﬁ%n@

= C/H/oon(hat) A io(ﬁaflh_lﬂvl)’sinh(t)q_l cosh(t)~ dt dh.
Now a; *h='/mu, = cosh[zt)\/ﬁvl — sinh(€)y/mu, 14 o that, see (3.8),
(5.2) 9°(ka; th vmvy) =
k(—1)2 a1

TIE v/msinh(t) Z (27misinh®(t)) ~EIR D (41, 2rm sinh®(t))
=0

X Z Pg(?f_l) (Rm COSh(t)Ul) @ Wapt1 A A Way_1prg—1-

Therefore the integrand ifi (5.1) i&bounded as ¢ — 0. On the other hand, ¢°(ka; 'h~v;)
is exponentially decreasingdn e’ (uniformly in h). Since n has compact support, we
conclude that (5.1), converges.

Now let n € Af}"l)"(D). Using di)° = Y, we have

N A Q)= (1) (n A &%@) + (=) Dy A g0 ().

Hence we only'need. tosshow

vmwméd@A%w):Aﬂ.

Again, we asstime x = rk+/muv;. For ¢ > 0, we let U. be the open neighborhood of D,,
defined in terms of the H AK-coordinates by {a;t < e}. Then by Stokes’ theorem

(6.3) [ d(nn i) = tim [ nn )

By the analogue for (5.1) (which follows from the considerations in [8], section 2), we
see that (5.3) is equal to

(54) C lir% n(ha.) AP (ka_.h~"v/mu) sinh(e)~" cosh(e)?~* dh (Lp/Rx1,0,) -
e=0 Jg
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8 for some universal constant C' # 0. We consider (5.2) (with t = ¢). Forn(5.4) only
20 the terms with ¢ = ¢ — 1 can contribute. But

11 q—1

1 Po(lq;fl)(m\/ﬁcosh(s)vl) _ (kvV2mecosh(e))” , « (1, lgw. ),

13 = 0, otherwise.

E' We obtain o

i? Clim [ n(ha.) A 90 (ka_h~y/muv:) sinh(e)?~! cosh(e):! dir '8 / n(h) dh
18 e—0 H H

19 with a constant C’. Therefore, the theorem holds with a certain,constant C” inde-
20 pendent of 7. (The factor k7 arises from the orientation of 2, ). The constant is equal
g; to 1 since this is the case for n closed by KM-theory.
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