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Abstract.  

Eclogites in the HP and UHP belts record subduction zone processes. Our current 

understanding of subduction-zone processes largely comes from petrological and 

geochemical studies of exhumed eclogites and eclogitic rocks. While the mechanisms 

of exhumation remain poorly understood, exhumed eclogites of seafloor protoliths 

record low temperature (mostly < 600 °C), high pressure and “wet” environments, i.e., 

relatively “cold” subduction with highly hydrous minerals such as lawsonite. On the 

other hand, exhumed eclogites of continental crustal protoliths record relatively “hot” 

(T > 650 °C) and “dry” UHPM conditions. Here we investigate some eclogites from 

two ophiolite sequences that intercalated in the North Qaidam UHPM belt, which is 



 

 

genetically associated with continental subduction/collision. The observations of 

lawsonite-pseudomorphs in garnets, garnet compositional zoning, mineral and fluid 

inclusions in zircons, and zircons with distinct trace element patterns and U-Pb ages all 

suggest that these eclogites represent two exhumation episodes of subduction-zone 

metamorphic rocks: the early “cold” and “wet” lawsonite-eclogite and the late “hot” 

and “dry” UHP kyanite-eclogite. The early lawsonite-bearing eclogite give 

metamorphic ages of 470-445 Ma and the later kysnite-bearing eclogite gives 

metamorphic ages of 438-420 Ma, with a time gap of ~ 7-10 Myrs. This gap may 

represent the timescale for transition from oceanic subduction and continental 

subduction to depths greater than 100 km. We conclude that evolution from oceanic 

subduction to continental collision and subduction was a continuous process. 

 

Keywords: Two episodes of eclogite metamorphism, “cold and wet” oceanic 

subduction, “hot and dry” continental subduction, North Qaidam UHPM belt 

Introduction. 

Eclogite, as an important rock type within orogenic belts, records processes of 

subduction and exhumation of both oceanic and continental lithospheric materials. 

They usually occur in two individual end-member subduction zones, i.e., the oceanic-

type and continental-type, within the continental orogenic belts.  

Oceanic subduction and continental subduction zones are distinctive in rock 

assemblage and their detailed dynamics of subduction processes are only poorly known 



 

 

(Ernst, 2001; Maruyama et al., 1996; Song et al., 2006; 2014a; Rubatto et al., 2011). 

Relationship between the oceanic subduction (usually cold and negative buoyancy) and 

continental subduction (usually hot and buoyancy) is also an issue of ambiguity. As to 

be a consensus, continental crust is less dense than that of the oceanic counterpart, and 

less likely to sink into the mantle (e.g. Brueckner, 2011). Therefore, a pull force from 

previously subducted oceanic lithosphere plays an important role in dragging the 

continental lithosphere to the depths greater than 100 km (e.g., Chemenda et al., 1996; 

Ernst, 2005; Brueckner, 2006).  

Most high-pressure and ultrahigh-pressure metamorphic zones record complex 

process of subduction and exhumation, for example, two cycles of yo-yo subduction 

and exhumation would occur within less than 20 Myr (Robbuto et al., 2011), and two 

orogenic cycles were recorded in one eclogite sample (Herwartz et al., 2011). Transition 

from oceanic subduction to continental collision and subduction, on the other hand, is 

a more complex process and two aspects remain to be particularly figured out: (1) the 

influence upon the former subducted oceanic slab during the continental 

collision/subduction, and (2) the timescale for the transition from oceanic subduction 

to continental subduction and exhumation. Presence of UHP metamorphic ophiolite 

sequences within the continental subduction zones (e.g., Zhang et al., 2008; Song et al., 

2006, 2009) provide opportunities to reveal the two cycles of eclogite-facies 

metamorphism and transition of oceanic-continental subduction. 

In this paper, we report two epochs of eclogite-facies metamorphism that recorded 

early lawsonite-eclogite to late kyanite-eclogite in some individual samples from the 



 

 

North Qaidam UHP metamorphic belt, which confirm a complete process from “cold” 

oceanic subduction to “hot” continental subduction. This process will help us in 

understanding dynamic process of connection between the oceanic subduction and the 

subsequent continental subductions. 

Mineral abbreviations are after Whitney and Evans (2010). 

Geological Setting  

Two kinds of subduction belts, i.e., the North Qilian oceanic “cold” subduction 

zone in the north and the North Qaidam continental subduction belt in the south, extend 

parallel in the northern Qinghai-Tibet Plateau.  The North Qilian orogenic belt in the 

north is the type oceanic suture zone and contains early Paleozoic ophiolite sequences, 

HP metamorphic belts, island-arc volcanic rocks and granitic plutons, Silurian flysch 

formations, Devonian molasse, and Carboniferous to Triassic sedimentary cover 

sequences (see Song et al., 2013 and reference therein). Lawsonite in eclogite and Mg-

carpholite in metapelite provide convincing evidence that the North Qilian HP 

metamorphic belt records cold oceanic lithosphere a low geothermal gradient (6–

7 °C/km) in the early Paleozoic (Zhang et al., 2007; Song et al., 2007). 

The North Qaidam UHPM belt in the south is located in the north margin of the 

Qaidam Basin, between the Qilian Block and Qaidam Block, and extends for about 400 

km (see Fig. 1). The North Qaidam UHPM belt mainly consists of granitic and pelitic 

gneisses intercalated with blocks of eclogite and varying amounts of ultramafic rocks, 

especially garnet peridotite. The rock assemblages suggest that this belt is typical of a 



 

 

continental-type subduction zone (Song et al., 2014a and references therein), different 

from the “cold”, oceanic-type subduction of the North Qilian suture zone.  

Coesite inclusions have been identified in zircon and garnet from metapelite and 

eclogite at Dulan, Xitieshan and Yuka (Yang et al., 2002; Song et al., 2003a,b, 2006; 

Zhang G. et al., 2009; Zhang et al., 2010; Liu et al., 2012) and diamond in zircon from 

the garnet peridotite at Lüliangshan (Song et al., 2005), respectively. P-T estimates of 

the enclosing eclogite and garnet peridotite establish the North Qaidam eclogite belt as 

an Early Paleozoic UHPM terrane exhumed from depths of 100−200 km. 

Two rock-types of eclogitic protoliths have been identified in the North Qaidam 

UHPM belt: (1) the 850-820 Ma CFBs with mantle-plume origin (Chen et al., 2009; 

Song et al., 2010; Zhang et al., 2010) and (2) 540-500 Ma ophiolite with UHP 

metamorphic harzburgite, cumulate gabbro (kyanite eclogite) and N- to E-type basalts 

(Song et al., 2006, 2009; Zhang, 2008). 

Sample Petrography  

Two types of eclogite samples from two sections in the well-studied Dulan UHP 

terrane were carefully investigated (see localities in Fig. 1a). One is the bimineral 

eclogites with protoliths of low-K tholeiitic basalt (Song et al., 2006), the other is 

kyanite eclogite from cumulate gabbro in a UHP metamorphic ophiolite sequence (e.g. 

Zhang et al., 2008). 



 

 

 

Fig. 1. (A) Geological map of the Dulan UHPM terrane with two ophiolitic sections. The 
Yematian section (B) consists of UHP metamorphosed serpentinite, garnet pyroxenite, 
gabbroic and basaltic eclogites (C, D). The Shaliuhe section (E) consists of UHP 
metamorphosed harzburgite (F), garnet pyroxenite and olivine pyroxenite (G), kyanite-
eclogite (cumulate gabbro) (H). 

Basaltic bimineral eclogite in the Yematan section 

Samples was collected from a large massive eclogite block (200×800 m in size) in 

the Yematan section; this cross-section exposes blocks of garnet-bearing, strongly 

garnet-bearing serpentinized peridotite (Mattinson et al., 2006), garnet-bearing 

pyroxenite and eclogite intercalated with coesite bearing metapelite (Yang et al., 2002; 

Song et al., 2003, 2006, 2009) and 910-950 Ma granitic gneisses (Song et al., 2012) 

(Fig. 1b). The garnet pyroxenite was interpreted to be an ultramafic cumulate and the 



 

 

eclogite blocks are geochemically similar to present-day N-type to E-type MORB 

(Song et al, 2003b, 2006). This rock assemblage resembles a dismembered ophiolite 

(Song et al., 2009) with protolith ages of ~ 500 Ma (Han, 2015). 

The studied eclogite samples (2D73, 2D155 and 11YM29) are a very fresh, show a 

granoblastic texture without being deformed, and consist of garnet (~35 %), omphacite 

(~60 %), rutile (~1-2%) with very rare phengite and the least amphibole overprinting 

(Fig. 2a). The protolith is low-K basalt in composition and exhibits geochemical 

characters of N-MORB affinity (Song et al., 2006). We name it basaltic eclogite. In this 

eclogite, omphacite is equigranular, relatively small in size and chemically 

homogeneous; garnet occurs as porphyroblasts uniformly distributed in the matrix of 

omphacite (Fig. 2a).  

 

Fig. 2. Photomicrographs showing textures of the two types of eclogites. (a) 
granoblastic texture of the basaltic bimineral eclogite (2D73) in the Yematan section. 
(b) Garnet (Grt) porphyroblast show two stages of growth. (c) Ky-eclogite (4C05) with 
mineral assemblage Grt + Omp + Ky + Rt. Garnet has a large quantity of mineral 
inclusions in the core domain. (d) Mineral inclusions kyanite (Ky), zoisite (Zo), 
omphacite (Omp) and quartz (Qtz) in garnet. The assemblage Ky + Zo + Qtz is most 



 

 

likely the product of lawsonite decomposition.  

Gabbroic kyanite-eclogite in Shaliuhe ophiolite sequence 

The kyanite eclogite (including samples KL61, 4C05, 4C19) that was collected 

from the well-studied Shaliuhe UHPM ophiolite section, which contains (1) 

serpentinized harzburgite, (2) garnet-bearing pyroxenite and olivine pyroxenite, (3) 

kyanite-eclogite, and (4) massive eclogite (Fig. 1 E-H). The peridotite block is dark-

colored, strongly serpentinized and is apparently conformable with pyroxenites and 

kyanite-eclogite. Relic olivine, opx with two types of olivine (relic olivine from the 

oceanic mantle and metamorphic olivine during UHP metamoephism) (Zhang et al., 

2008; Song et al., 2009). Both the garnet-bearing pyroxenite and kyanite-eclogite retain 

a banded structure that has been confirmed as inherited from original ultramafic and 

gabbroic cumulates (Fig. 1, G and H). Geochemical analyses further indicate that this 

banded kyanite-eclogite has characteristics of cumulate gabbro by high contents of 

Al2O3 (17.2–22.7 wt%), CaO (12.5–13.5 wt%), MgO (7.2–13.5 wt%), Cr (422–790 

ppm), Ni, Sr, low TiO2 and REE, and show strong positive Eu anomalies (Eu* 1.51–

2.08) (Zhang et al., 2008). We therefore name it gabbroic Ky-eclogite. 

The Ky-eclogite has the mineral assemblage of Grt, Omp, Ky and Rt with retrograde 

overprinting by amphibole. Phengite is a minor phase that occasionally occurs in matrix 

or as inclusion in Omp and garnet, and no Ep or Zo was found in the matrix. Grt-Omp-

Phn-Ky geothermoborameter of Ravna and Terry (2004) yielded peak P-T conditions 

of P = 2.7-3.4 GPa and T = 630-770 °C (Song et al., 2003; Zhang et al., 2008). 



 

 

Two epochs of eclogite metamorphism recorded in garnet 

All garnet porphyroblasts in the gabbroic and basaltic eclogite samples (2D73) 

show clear core-rim structure; they are defined by both mineral inclusions and chemical 

patterns and exhibit clear two-stage overgrowth (Fig. 2b). In the kyanite eclogite 

(KL61), the core domain of garnet contains abundant mineral inclusions, but the rim 

domain is fairly clean (Fig. 2c). This core-rim structure is a common feature for garnet 

in all low-temperature (especially lawsonite-bearing) eclogites (e.g. Clarke et al., 1997; 

Song et al., 2007), but less common in the high-temperature eclogites in the continental-

type UHPM belt.  

Lawsonite pseudomorph in garnet from the Ky-eclogite 

Mineral inclusions in the core domain of garnets from the Ky-eclogite are kyanite, 

zoisite, omphacite and quartz. They show rectangular and triangular shapes (Fig. 2d). 

Zoisite inclusions are characterized by extremely low FeOt in composition [Ps = 

100*Fe3+/(Fe3++Al) = 1.1-2.1 mol%] (Table 1). This mineral assemblage comprises 

lawsonite psedomorphs and define a possible reaction of the form:  

4CaAl2 [Si2O7](OH)2(H2O) = 2Ca2Al3(Si2O7)(SiO4)O(OH) + Al2SiO5 + SiO2 + 7H2O 

(i.e., Lws = Zo + Ky + Qtz + H2O).  

Omp inclusions in garnet have slightly higher mole aegrine (Ae = 6.1-7.0 mol%) 

and lower jadeite (Jd = 25-27 mol%) than Omp in the matrix (Ae = 0, Jd =35-39 mole%; 

Table 1), suggesting a lower temperature condition in the core domain. 

The numerous lawsonite pseudomorphs in garnet suggest that lawsonite was 



 

 

ubiquitous during the first epoch of lawsonite-eclogite facies metamorphism associated 

with cold and water-saturated oceanic subduction.  

Garnet compositional profiles  

Garnet from the gabboic Ky-eclogite have much higher MgO and CaO than from 

the basaltic eclogite. A porphyroblast garnet from the gabbroic eclogite was chosen for 

compositional profile analyses. As shown in Figure 3a, two epochs of progressive 

growth zonation are recognized in the profile; in the core domain, grossular decreases 

smoothly from center (Grs 23.33 mol%) to core-rim boundary (Grs 21.1 mol%), 

almandine from 35.65 to 34.91, whereas pyrope increases from 40.37 to 43.01 mol %. 

Chemical zoning sharply changes in the core-rim boundary; grossular bounds up to 

23.87 mol %, almandine to 36.94 mol %, and pyrope drops down to 39.3 mol %.  

Some garnet porphyroblasts in sample 2D73 also exhibit core-rim structure; zoisite, 

amphibole and omphacite occur in the core and phengite inclusions occur at the core-

rim boundary (Fig. 2b). Compositional zoning shows similar pattern with sharp change 

at the core-rim boundary (Fig. 3b).  



 

 

 

Fig. 3. Composition profiles of garnets from a kyanite-eclogite (KL61) and bimineral 
eclogite 2D73. 

The sharp increase of glossular at the core-rim boundaries can be explained by 

decomposition of lawsonite with increase of pressure and temperature, which can 

release large amount of glossular composition into garnet at UHP conditions beyond 

the lawsonite stability field. Dehydration of lawsonite during continental subduction 

will give rise to exhumation and decompression melting of the subducted oceanic slab 

(Song et al., 2014b). 

P-T estimate for the Ky-eclogite 

Petrographic observations indicate that eclogite-facies metamorphic epoch recorded in 



 

 

the core domain of garnet contains low-tempreture assemblage grt + Omp + Lws +/- 

Phn + Qtz/Coe + Rt, as lawsonite presents as psudomorphs of Ky + Zo + Qtz. Using 

compositions of Cpx inclusions in garnet and the garnet around, and assuming presence 

of Phn, and using the garnet–clinopyroxene Fe2+–Mg exchange thermometer of Ravna 

(2000) and the geothermobarometry of (Ravna & Terry, 2004), we obtained P-T 

conditions for the first epoch of eclogite metamorphism at T = 547-603°C and P = 2.6-

2.7 GPa, which are well within the lawsonite stability field.  

Using the rim composition of garnet and Omp in the matrix, the assemblage Grt + 

Omp + Ky + Phn in the matrix gave P = 3.2-3.3 GPa and T = 698-721 °C, while Fe3+ 

in omphacite was assumed Fe3+ = (Na-Al-Cr). 

Two epochs of eclogite metamorphism recorded by zircons 

Zircons from six represented, well studied eclogite samples are re-examined for 

inner structures (CL), mineral inclusions and ages, and zircon REE patterns. These 

samples include basaltic bimineral eclogite from Yematian ophiolite section (2D73, 

2D155, 11YM29), and Ky-eclogite and Grt-pyroxenite from Shaliuhe ophiolite section 

(4C05, 4C19, 5S23), respectively (Table 2). 

Zircon grains from the Shaliuhe gabbroic Ky-eclogite (5S23, Zhang et al., 2008; 

2D19, 4C04) and Yematan basaltic eclogite were studied for their Cathodoluminescent 

(CL) images, mineral inclusions and U-Pb isotopic dating. CL was carried out at The 

internal zoning was examined using a CL spectrometer (Garton Mono CL3+) equipped 

on a Quanta 200F ESEM with 2-min scanning time at conditions of 15 kV and 120 nA 



 

 

at Peking University. Zircons were analyzed for U, Pb and Th isotopes using SHRIMP 

II at Beijing SHRIMP Centre, Chinese Academy of Geosciences. Instrumental 

conditions and measurement procedures follow Compston et al. (1992). The spot size 

of the ion beam was about 25 μm in diameter, and the data were collected in sets of five 

scans through the masses with 2 nA primary O2ˉ beams. The reference zircon was 

analyzed first and again after every three unknowns. The measured 206Pb/238U ratios in 

the samples were corrected using reference zircon standard SL13 from a pegmatite from 

Sri Lanka (206Pb/238U=0.0928; 572 Ma) and zircon standard TEMORA (417 Ma) from 

Australia (Black et al., 2003). The common-Pb correction used the 206Pb/204Pb ratio and 

assumed a two-stage evolution model (Stacey and Kramers, 1975). Concordia ages and 

diagrams were obtained using Isoplot/Ex (3.0) and the mean ages are weighted means 

at 95% confidence levels (Ludwig, 2003). Analysis for trace elements of zircons were 

conducted on Laser-ICP-MS at Chinese University of Geoscience and Peking 

University. Detailed analytical procedures are similar to those described by Song et al. 

(2010). The diameter of the laser spot size was 32 μm. Calibrations for elemental 

concentration were carried out using NIST 610 glass as an external standard, with 

recommended values taken from Pearce et al. (1997) and using 29Si (for zircon) and 

49Ti (for rutile) as an internal standard. NIST 612 and 614 serving as monitoring 

standards at the same time. 

Evidence of zircon structure and mineral/fluid inclusions  

All three eclogite samples (2D73, 2D155, 11YM29) from the Yematan ophiolitic 

sections are all fresh with the least retrograde mineral (Amp) overprinting (Fig. 2a,b). 



 

 

However, almost all zircons from these samples exhibit core-rim structure in CL images; 

the core-domains show dark luminescence emission (fluid-rich and high U, Th contents) 

and fir-tree sector zones, and the rim shows intermediate luminescence emission (Fig. 

4). Besides Grt, Omp, Rt inclusions, Qtz and large quantity of water-dominant fluid 

inclusions are also identified using Raman spectrum in the core domain (Fig. 4a,b), 

which suggest that the zircon cores were crystallized in a water-rich and quartz-stability 

condition. As shown in Figure 4c, eclogite-facies mineral inclusions Grt, Omp and Rt 

are found in both core and rim domains.   

CL images suggest that zircons from the gabbroic Ky-eclogite also have two 

distinct stages of growth with core-rim structure. In sample 5S23, some grains retain 

magmatic core with oscillatory zones, representing relics from its protolith of cumulate 

gabbro and therefore having determined the forming age of the ophiolite at 517 ± 11 

Ma (Zhang et al., 2008). The textually old core show the dark luminescence emission 

and weak zoning. The texturally young zircon rim show strong/intimidate luminescence 

(Fig. 4 c,d), occurs either as rims around old core or as single crystals. Mineral 

inclusions garnet, omp, rutile are also observed in both core and rim domains.  



 

 

 

Fig. 4. Representative photomicrographs of zircons and their CL images. (a) Omp, 
quartz and small fluid inclusions in zircon cores (2D73). (b) A banded fluid inclusions in 
a zircon grain (2D155). These water-rich fluid inclusions show oval, tubular and 
negative-crystal shapes. The two negative-crystal inclusions (arrow) show major liquid 
phase with a small vapor bubble. (c) Zircon CL images showing obverse core-rim 
structure. The core domain contains Grt, Omp and Qtz inclusions, whereas the rim 
domain also has Omp inclusion. (d) Zircon CL images showing core-mantle structure 
with garnet inclusions and ages.  

Evidence of two stages of metamorphic ages  

Table 2 lists the published results of SHRIMP dating. Zircons from the basaltic 

eclogite 2D155 in the Yematan have large, dark-luminescence cores and narrow, 

intimidate-luminescence rims. Fourteen cores gave weighted 206Pb/238U mean age of 

457± 7 Ma (MSWD = 0.91) and one rim gives an apparent age of 426±12 Ma (Song et 

al., 2006). For basaltic eclogite 2D73, two zircon grains contain relic magmatic cores 

and yielded 206Pb/238U apparent ages of 485 ± 24 Ma and 481 ± 24 Ma, which should 



 

 

represent the protolith age of the ophiolite sequence. Eight metamorphic cores analyzed 

by SHRIMP form a weighted 206Pb/238U mean of 462 ± 13 Ma (MSWD = 0.41) and 

fourteen analyses for rims and weak luminescent grains gave a weighted mean age of 

424 ± 13 Ma (MSWD = 0.12). For basaltic eclogite sample 11YM 29, seventeen cores 

gave a weighted mean age of 448±6 Ma (MSWD = 0.91), and nine rims gave a weighted 

mean age of 425 Ma.  

In the gabbroic sample (5S23) from the Shaliuhe UHP metamorphic ophiolite 

sequence, magmatic zircon relics with oscillatory zoning gave a weighted mean age of 

517 ± 11 Ma (Zhang et al., 2008), suggesting the oceanic crust formed at late Cambrian, 

similar to ophiolite in the North Qilian suture zone (Song et al., 2013). Eleven 

metamorphic cores form a weighted mean age of 450 ± 7 Ma and thirteen rims and 

weak luminescent grains give a mean of 426 ± 13 Ma. Sample 4C05 is also a ky-eclogite 

from the Shaliuhe section. One zircon core gave a 206Pb/238U age of 468±16 Ma and 13 

grains with intimidate-luminescence emission yielded weighted mean age of 425 ± 8 

Ma.  

Sample 4C19 is a garnet-pyroxenite metamorphosed from a high-Mg cumulate in 

Shaliuhe ophiolite sequence. Six analyses for dark-luminescence cores yield a weighted 

mean ages of 450 ± 7 Ma (MSWD = 0.31) and nine analyses for rims and weak 

luminescent grains gave a weighted mean age of 425 ± 9 Ma (MSWD =0.50).  

 

Table 2. Zircon U-Pb SHRIMP ages of eclogites from Yematan ophiolitic section and 

Shaliuhe ophiolitic section. 

sample Rock type Protolith age stage I (core) 

(Lws-eclogite) 

Stage II (rim) 

Ky/Zo-eclogite 

Refs. 



 

 

2D155 Basaltic eclogite 

(Yematan) 

No magmatic 

core 

457±7 Ma 

n = 15 

426±12 Ma 

n = 1 

Song et al. 2006; 

This study 

2D73 Basaltic eclogite 

(Yematan) 

485±23 Ma 452±15 Ma 

n = 10 

424±13 Ma 

n = 14 

Song et al., 2014a 

This study 

11YM29 Basaltic eclogite 

(Yematan) 

No magmatic 

core 

448±6 Ma 

n = 17 

425±6 Ma 

n = 9 

Zhang et al. 2014 

5S23 Gabbroic Ky-eclogite 

(Shaliuhe ophiolite) 

517±11 Ma 

n = 10 

450±7 Ma 

n = 11 

426±13 Ma 

n = 13 

Zhang et al. 2008 

 

4C05 Gabbroic Ky-eclogite 

(Shaliuhe ophiolite) 

No magmatic 

core 

468±16 Ma 

n = 1 

425±8 Ma 

n = 13 

Song et al. 2014a 

 

4C19 Grt-pyroxenite 

(Shaliuhe ophiolite) 

No magmatic 

core 

450 ± 11 Ma  

n = 6 

425 ± 9 Ma 

n = 9 

Song et al. 2014a 

 

 

Evidence of zircon uranium contents and REE patterns  

As a fluid-mobile element, uranium (U) is expected to enrich in zircon at a water-

dominated fluid-rich environment. Figure 5 summarizes U contents of all zircons from 

the eclogite samples in Table 2.  The magmatic relic zircon cores of the gabbroic Ky-

eclogite have high and relatively uniform uranium content of 201-344 ppm (Fig. 5). 

The old metamorphic cores contain variable, but remarkably higher uranium content 

(40-800 ppm, mostly > 60 ppm) than the young metamorphic rims (7-141 ppm, mostly 

<50 ppm), suggesting that the core domain grew in a relatively wet, water-rich 

environment, whereas the rim domain grew in a relatively dry condition. 



 

 

 

Fig. 5. Diagram for uranium vs. 206Pb/238U age of magmatic relics, metamorphic zircon 
cores and rims (samples are listed in Table 2). The magmatic relic cores are from the 
gabbroic eclogite sample (5S23, Zhang et al., 2008). Zircons of lawsonite-bearing 
eclogites are from the North Qilian suture zone (Song et al., 2004, 2006; Zhang et al., 
2007)  

Zircons from basaltic eclogite samples 2D73, 11YM29 and 2D155 were analyzed 

for trace elements, and zircon from one lawsonite eclogite sample (QS45) in the north 

Qilian suture zone are also analyzed for comparison (Fig. 6).  

Zircons from the lawsonite eclogite (QS45) show dark luminescence with 

heterogeneous growth textures of “fir-tree” or radial sector zoning in the CL image (Fig 

6a). Some zircon core parts are rich in HREE and show obvious negative Eu* anomaly 

(0.28-0.39), suggesting they might grow a little earlier than garnet, whereas the rim 

parts contains relatively lower HREE than the core parts and show no Eu* anomaly. All 

these zircons show steep HREE enriched pattern with high content of Yb and low 



 

 

[Tb/Yb]N (0.05-0.24), which, together with their high U, suggesting that they grew 

together with lawsonite at a fluid-rich environment.  

Three zircon inner-cores of sample 2D73 show similar REE patterns with, but have 

weaker Eu* anomaly (0.65-0.90) than, zircon cores of the Qilian lawsonite eclogite. 

Other cores show weakly enriched HREE patterns, and three zircons have extremely 

high light-REE, suggesting strong fluid activity. All rims (or whole grains with strong 

CL luminescent image) have low contents of REE and show flat or deplete HREE 

patterns with chondrite-normalized [Tb]N/[Yb]N mostly > 1 (Fig. 6b). 

Zircon cores of 11YM29 exhibit large variety of the REE patterns, changing 

gradually from steep heavy-REE pattern to flat heavy REE patterns (Fig. 6c). This 

variation is most probably in equilibrium with garnet from less to more garnet presence 

during zircon growth. All of them have no significant Eu anomaly, indicating the 

absence of coexisting plagioclase, and thus zircon growth at high pressure beyond the 

stability of feldspar (Rubatto et al., 2011). The zircon rims show depletion of HREE 

patterns with [Tb]N/[Yb]N < 1, suggesting that the supply of heavy-REEs decrease when 

growing.  

Zircons from 2D155 have a large core with dark luminescence and fir-tree structure, 

and a thin bright rim. U-Pb analyses by the LA-ICP-MS gave a mean 206Pb/238U age 

of 459.5 ± 4 Ma (MSWD = 0.59), the same as by the SHRIMP dating (457 ±7 Ma). 

Trace element analyses show that zircons have rather uniform, weakly enriched HREE 

patterns ([Tb]N/[Yb]N < 1) and no Eu anomaly (Fig. 6d), similar to those metamorphic 

zircon cores described above. 



 

 

 

Fig. 6. Chondrite normalized REE patterns for zircons from (a) lawsonite eclogite 

(QS45) from the North Qilian Suture zone with a mean age of 464 ± 6 Ma (Song et al., 

2006); (b) and (c) basaltic eclogite with two stages of zircon growth from the North 

Qaidam UHPM belt; (d) basaltic eclogite (2D155) with analyses of core-domains in the 

North Qaidam UHPM belt.  

 

The steep heavy-REE pattern of zircon cores was generally thought that garnet, 

which readily sequesters heavy-REE, was not a major constituent of the assemblage, in 

other word, zircon would be grown earlier than garnet. However, garnet and omphacite 

inclusions in zircon cores suggest they must concurrently grew during eclogite-facies 

metamorphism. Therefore, we suggest that water-rich fluids will help heavy-REEs 

entering zircon against garnet, high Uranium contents in zircon cores can testify the 

explanation.  

In summary, zircon U-Pb analyses show that two stages of HP-UHP metamorphism 

are distinct. The early HP stage from 448 Ma to 468 Ma with high uranium can be 

interpreted to be time for oceanic “wet and cold” subduction and the late stage from 



 

 

430 Ma to 425 Ma for UHP metamorphism during continental subduction.  

Discussion and conclusions 

Two epochs of eclogite metamorphism at Oceanic vs. continental 

subduction 

Seafloor subduction is generally cold (<550 °C, e.g. Maruyama et al., 1996; 

Carswell, 1990; Song et al., 2007; Agard et al., 2009) with abundant hydral minerals 

such as lawsonite, epidote/zoisite, glaucophene and carpholite (also see xiao et al., 2012, 

2013). The minerals, especially lawsonite and carpholite, contain a large amount of 

water, and therefore can introduce the water into deep mantle along the oceanic 

subduction channels to depths greater than 100 km (e.g. Peacock and Wang, 1999; Poli 

and schemedt, 2002).  

All studied eclogite samples came from ophiolitic sequences, the oceanic slab that 

previously preserved before continental collision. All lines of evidence described above, 

including (1) lawsonite pseudomorphs in garnet and their variation of composition 

profiles, (2) decrease of uranium contents from zircon core to rim, (3) REE patterns and 

two distinct stages of ages in metamorphic zircons, afford that they have experienced 

two cycles of eclogite-facies metamorphism. The first epoch is “cold and wet”, 

lawsonite-eclogite facies at P-T conditions of 2.6-2.7 GPa and 547-603°C related to the 

oceanic subduction, similar to, or little higher than, the lawsonite-eclogite in the North 

Qilian suture zone (e.g. Song et al., 2007; Zhang et al., 2007; Wei et al., 2009). The 

second epoch, on the other hand, is “dry and hot”, kyanite-eclogite facies at P-T 



 

 

conditions of 3.2-3.3 GPa and 700-720°C related to the continental subduction. The 

garnet peridotites, felsic gneisses and eclogites with protoliths of 850-820 Ma CFBs 

have experienced this epoch of UHP metamorphic event (see below). 

 

Timescale of continental subduction  

As described above, eclogites from the ophiolitic sequences have complex, but two 

distinct epochs of eclogite-facies metamorphic ages. However, some key rock types, 

including garnet peridotite, eclogites with CFB protolith and granitic and pelitic 

gneisses that represent the components of continental crust can be used to constrain the 

timescale of UHP metamorphism related to continental subduction.  

(1) The garnet peridotite, which is only present in UHPM terranes associated with 

continental-type subduction zones (e.g., Brueckner, 1998), recorded UHP 

metamorphism at depths ~200 km and gave UHP metamorphic ages of 433-

420 Ma (Song et al., 2004, 2005ab; Xiong et al., 2011).  

(2) Some eclogites in the North Qaidam UHMP belt have protoltihs of continental 

flood basalts (CFBs) with forming ages ranging 850 Ma to 820 Ma (e.g. Song 

et al., 2010). They are remarked components of the subducted continental crust. 

These eclogites recorded only a single UHP metamorphic event at ~ 438‒425 

Ma (Chen et al., 2009; Song et al., 2010; Zhang et al., 2010; Zhang et al., 2014).  

(3) Zircons from pelitic and granitic gneisses in the North Qaidam recorded UHP 

metamorphic ages at 432-423 Ma (Mattinson et al., 2006, 2009; Song et al., 

2006, 2014; Chen et al., 2009). 



 

 

Therefore, These UHP metamorphic ages recorded by zircons indicate that 

continent crust subducted to depth 100 km might be at ~438 Ma and continued to depths 

200 km at ~433-420 Ma. Assuming the Qilian Ocean was closed at ~445 Ma and the 

continents began to subduct with continental collision, the downgoing rate of the 

continental crust would be roughly 1.2-1.4 centimeters per year. 

Melting of subducted oceanic slab evoked by continental subduction 

Generally, the subducted continental crust is composed mostly of felsic gneisses 

(>80 %), buoyant and dry. The protoliths of eclogite are usually continental basalts (e.g. 

in the North Qaidam UHP belt, Song et al., 2010), cumulate gabbros or former high-

grade metamorphosed granulite (e.g., Liu et al., 2007; Song et al., 2012) with extremely 

low-content of water, and they are difficult to melt during continental subduction and 

exhumation. 

The former subducted oceanic slab is generally cold and wet with water-rich 

minerals, such as lawsonite, zoisite/epidote and glauscophane. The subsequent 

continental subduction can disturb the thermal structure of the subduction zone, and 

part of the subducting oceanic slab will roll back and be accreted to the subduction 

channel (e.g., Boutelier et al., 2004; Beaumont et al., 2009; Li et al., 2011; Gerya, 2011). 

Therefore, the former cold eclogites will be warmed up with dehydration reactions. 

When continental subduction initiated pulled by the its leading edge of subducting 

oceanic lithosphere, warmed up and then release water by dehydration of Lws and Ep, 

and give rise to partial melting by both decompression and water releasing (Song et al., 

2014b). This process will in turn evoke exhumation of the UHP terrane (e.g., Labrousse 



 

 

et al., 2011). 

Implications for linking oceanic subduction with continental 

subduction/collision 

The onset of convergence can be constrained by youngest arc volcanic rocks, 

blueschist and low-T eclogites, and remnant sea-basin sediments. Arc volcanic rocks 

from the North Qilian and Lajishan, as well as low-T, high-pressure metamorphism at 

the Qilian oceanic suture zone, suggest that the Qilian Ocean was finally closed at ~ 

445 Ma (Song et al., 2013), and continental subduction continuously followed the 

oceanic subduction and reach depths of 100-200 km at ~438-420 Ma on the basis of 

metamorphic and geochronological studies of eclogites, garnet peridotite and 

metapelite (Song et al., 2005, 2006, 2014a; Zhang et al., 2010; Xiong et al., 2011; Zhang 

et al., 2014). The timescale for transition from oceanic subduction to continental 

collision and then subduction to depths ~ 100 km is about 7 million years (Mys).  



 

 

 

Fig. 7. Distribution of zircon U-Pb ages for various UHPM rocks from the North Qaidam 

UHPM belt. Data from Song et al. (2014, and references therein). 

 

Distribution of all reliable zircon U-Pb ages for various UHPM rocks from the 

North Qaidam UHPM belt (Fig. 7) illustrates the two major epochs of metamorphism, 

except for the late (< 420 Ma) retrograde overprinting. The gap in between 440 Ma and 

445 Ma with only one age presented, further suggested a transition from the end of 

oceanic subduction and continental colliding initiation at ~445 Ma, to continental deep 

subduction with UHP metamorphism at ~ 438-420 Ma. 

Our study provide evidence for two epochs of eclogite-facies metamorphism in 

individual eclogite samples in the North Qaidam UHP belt, which recorded a complex, 

but a complete cycle from oceanic “cold” subduction to continental “warm” subduction 



 

 

in a timescale of ~40 Myr. Such a cycle may represent transition of subduction channel 

dynamics from Franciscan-type (or oceanic-type) (e.g. Gerya et al., 2002; Agard et al., 

2009) to Alpine-type (or continental-type) (Ernst 2001; Song et al., 2006). In any case, 

the remarkable two epochs of eclogite-facies metamorphism present better 

understanding for links between the oceanic subduction and the followed continental 

collision and subduction. 
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