
MicroRNAs in the skin; role in development, homeostasis, and 

regeneration 

 

Steven Horsburgh1 

Nicola Fullard2 

Mathilde Roger2 

Abbie Degnan1 

Stephen Todryk1 

Stefan Przyborski2 

Steven O’Reilly1 

 

1Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST 

2School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE 

 

Corresponding author: Dr Steven O’Reilly PhD  

Email: steven.oreilly@northumbria.ac.uk 

 

 

  

mailto:steven.oreilly@northumbria.ac.uk


Abstract  

The skin is the largest organ of the integumentary system and possesses a vast number of 

functions. Due to the distinct layers of the skin and the variety of cells that populate each, a 

tightly regulated network of molecular signals control development and regeneration, whether 

due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent 

discovery; they are a class of small non-coding RNAs that possess a multitude of biological 

functions due to their ability to regulate gene expression via post-transcriptional gene silencing. 

Of interest, is that a plethora of data demonstrates that a number of miRs are highly expressed 

within the skin, and are evidently key regulators of numerous vital processes to maintain non-

aberrant functioning. Recently, miRs have been targeted as therapeutic interventions due to the 

ability of synthetic ‘antagomiRs’ to downregulate abnormal miR expression, thereby 

potentiating wound healing and attenuating fibrotic processes which can contribute to disease 

such as systemic sclerosis (SSc). This review will provide an introduction to the structure and 

function of the skin and miR biogenesis, before summarising the literature pertaining to the 

role of miRs. Finally, miR therapies will also be discussed, highlighting important future areas 

of research. 
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1. Introduction 

1.1 Skin 

The skin is the largest and one of the most varied organs of the body, and possesses a vast 

number of functions including thermoregulation, protection from external stimuli and 

pathogens, as well as water resistance. Composed of three layers, the skin acts as a protective 

barrier against environmental exposures. The top layer, the epidermis, is composed of 

proliferating basal and differentiated suprabasal keratinocytes, in addition to melanocytes, 

Langerhans and Merkel cells.  

Keratinocytes are the most abundant cell type located in the epidermis and possess a number 

of immune functions. For example, they exert a protective role via secretion of chemokines 

upon invasion of a pathogenic threat (1). Production of a broad range cytokines, with both pro- 

and anti-inflammatory functions also occurs (2). Expression of various Toll-like receptors 

(TLRs) contributes to the defence of the skin against antimicrobial pathogens (3). In addition 

to their immune functions, they also secrete keratin, a key structural protein, and finally become 

the cornified layer once the cells flatten. Melanoblasts proliferate and colonise in the epidermis 

as melanocytes. Located in the basal layer, these cells produce melanin, the pigment found in 

skin, hair and eyes that protects against UV radiation (4). Keratinocytes stimulate the 

proliferation and differentiation of melanocytes, in addition to melanogenesis. Epidermal and 

follicular homeostasis, therefore, is maintained largely by interactions between these two cell 

types (4). Langerhans cells are dendritic cells that process microbial antigens and are able to 

induce T cell differentiation and polarisation (5), in addition to activation of regulatory T cells 

(6). In contrast, Merkel cells which are located in the basal epidermis, function as 

mechanoreceptors (7). Homeostasis of the epidermis is maintained by three distinct classes of 

stem cells; bulge stem cells of located in the hair follicle, interfollicular stem cells, and 

sebaceous gland stem cells.  

The middle layer, the dermis, is populated by macrophages, lymphocytes, mast cells, and 

dendritic cells, in addition to fibroblasts which provide structural strength through production 

of  collagen and elastin fibers and other extracellular matrix proteins (8). Meissner’s and 

Pacinian corpuscles, in addition to nerve fibres and free endings, detect touch, pressure, and 

pain (9), while sweat and sebaceous glands regulate temperature. Not only do capillary 

networks in the dermis provide the epidermis with oxygen and nutrients (8), but dermal stem 

cells are able to differentiate into functional cells in the epidermis, highlighting an 

interdependence between the two layers (10). 



 

Figure 1 – Structure of the epidermis and dermis. 

 

The hypodermis is primarily composed of adipocytes, and is also involved in thermoregulation 

via its insulative properties, while production of vitamin D also occurs in this subcutaneous 

layer.  

The large number of cell types and functional diversity of the skin necessitate tightly regulated 

molecular signals in order to deter aberrant growth and maintain homeostasis. MicroRNAs 

(miRs) are one group of molecules that aid in such mechanisms. 

 

1.2 MicroRNA Biogenesis and Function  

MiRs are small non-coding RNA molecules, typically ~22 nucleotides (nt) long, involved in 

RNA silencing and post-transcriptional regulation of gene expression by binding to the 3’UTR 

of its targets; target recognition occurs via a 6-8 nt site that matches the miR seed region.  Each 

miR is capable of repressing hundreds of genes, and each gene can be targeted by multiple 

miRs, making it a powerful system for the fine-tuning of gene expression. 

MiR biogenesis is similar to protein-coding genes in that upon transcription factor binding, 

RNA polymerase II transcribes the miR gene, followed by Drosha-mediated cleavage of the 

primary miR transcript resulting in a number of precursor miRs (pre-miR). A 2 nt overhang at 

the 3’ end exists as a binding site for Exportin-5 which causes translocation to the cytoplasm. 

Dicer then processes the pre-miR into a mature miR strand which is incorporated into the RNA-

induced silencing complex (RISC), which in turn, inhibits translation (see figure 2). Reduction 

in the abundance of the target mRNA may also occur via RNA cleavage or decapping and 

deadenylation. The RISC can also silence genes via formation of heterochromatin at the 

genomic level (11). A number of miRs are highly expressed in the skin, and possess a plethora 

of important functions with regard to development, homeostasis, and regeneration. The 

following sections serve to summarise the current literature within these areas. In addition, 



chemically synthesized miRs are beginning to be trialled and used as therapeutic treatments for 

a number of diseases, and will also be discussed.  

 

 

 

Figure 2 – Simplified microRNA biogenesis and incorporation into the RNA-induced 

silencing complex pathway. 

  



2. Skin Development and Homeostasis: Role of MicroRNAs 

During embryonic development, gastrulation occurs whereby the single-layered blastula 

transforms into the tri-layered gastrula. Epidermal progenitor cells of the outer layer, the 

ectoderm, cause hair follicles, sebaceous glands and the epidermis itself to grow. Mesenchymal 

cells begin to infiltrate the skin and in combination with the basal epidermal layer, begin to 

direct extracellular matrix proteins and growth factors. Once the formation of new keratinocyte 

layers (stratification) and differentiation of their properties is complete, the epidermis consists 

of distinct layers: a cornified layer (stratum corneum), a translucent layer (stratum lucidum), a 

granular layer (stratum granulosum), a spinous layer (stratum spinosum), and a basal layer 

(stratum basale). The inner layer of basal cells proliferate, while suprabasal cells terminally 

differentiate. Hair follicle morphogenesis occurs via interactions between epidermal 

keratinocytes and dermal fibroblasts. Primarily, the mesenchyme coordinates keratinocyte 

proliferation. The follicle continues to develop downwards, whereby differentiation results in 

the hair shaft and sebaceous gland. The epidermis, therefore, is composed of the interfollicular 

epidermis and a pilosebaceous unit which contains a hair follicle.  

Epidermal homeostasis is maintained by three distinct pools of stem cells located in the 

interfollicular epidermis, the bulge (a region located at the bottom of the hair follicle outer root 

sheath), and the sebaceous gland. Stem cells continuously self-renew and differentiate into 

various cell lineages, which is an essential process in order to replenish cells such as 

keratinocytes that die due to injury or programmed termination. Skin barrier renewal via 

spinous transition of basal cells in mature skin occurs concomitantly with changes to gene 

expression, for example, Keratin5/14 (K5/K14) are downregulated, and Keratin1/10 (K1/K10) 

are upregulated (12).  

The molecular signals that control the development of the skin are numerous and complex, 

with a clear role for miRs as key regulators of a variety of processes crucial to epidermal and 

follicular development and homeostasis. The importance of miRs in skin morphogenesis has 

been shown by progenitor cell Dicer knockdown in an embryonic mouse skin model in which 

hair germ cells evaginated towards the epidermis, instead of invaginating towards the dermis 

as usual (13). Interestingly, lower Dicer expression has been observed in mouse embryonic 

epidermis than the hair follicle, suggesting differential epigenetic regulation even between two 

conjoining structures (14).  

The functional consequence of Dicer knockdown is also significantly different between the 

epidermis and hair follicle; one week after birth, epidermal proliferation and apoptosis was not 

significantly altered, however, elevated apoptosis and attenuated cell proliferation inhibited 

follicular development (13, 14). In support of the postulation that differential epigenetic signals 

regulate development of the epidermis and hair follicle, the miR-19/20 and miR-200 families 

are highly expressed in the former, while conversely, the miR-199 family is exclusively 

expressed in the latter (13). 

The transcription factor p63 is essential in epidermal development, as demonstrated by the 

death of p63-deficient mice immediately following birth (15), likely as it is important in 

maintaining stem cell proliferation (16). The Notch pathway is a regulator of interfollicular 

differentiation and active primarily in suprabasal cells (17), while inhibition of this pathway 

results in a lack of skin barrier development (18). In addition, the MAPK pathway regulates 



epidermal proliferation and differentiation as evidenced by Mek1/2 deletion which results in 

underdevelopment of the skin (19). Conversely, over-activation of epidermal growth factor 

(EGF) signalling, involved in the MAPK pathway, causes augmented proliferation and 

epidermal tumour growth (20). Consistently, attenuated interfollicular proliferation occurred 

as a consequence of EGF downregulation. 

MiR-203 is expressed in both human adult and foetal skin, although expression was not 

detectable until 17 weeks (21). Evidence suggests that miR-203 is an important regulator of 

keratinocyte differentiation; Protein Kinase C (PKC) inhibition blocked miR-203 expression 

following calcium-induced differentiation, while overexpression of miR-203 significantly 

augmented differentiation (22). These data demonstrate that PKC pathway activation is 

essential for miR-203 upregulation, and thus, keratinocyte differentiation. Furthermore, miR-

203 appears to promote epidermal differentiation via decreasing proliferation. Given that p63 

regulates stem cell maintenance, miR-203-induced p63 repression is a plausible mechanism by 

which miR-203 promotes differentiation (23). SOCS3 is expressed basally in both human foetal 

and adult skin, and is also directly targeted by miR-203 (21), further supporting the role of this 

miR in skin development. 

MiR-34a, -34c, -574-3p, and -720 also appear to be regulated by p63. Inhibition of miR-34a 

and -34c restored keratinocyte cell cycle progression, while knockdown of p63 augmented both 

of these miRs concomitantly with inhibition of cell cycle regulators (24). p63 and iASPP 

(inhibitor of apoptosis stimulating protein of p53) are involved in an autoregulatory feedback 

loop; iASPP itself negatively regulates miR-574-3p and miR-720, which could, in turn, be 

negatively regulating p63. Depletion of iASPP in keratinocytes promotes differentiation 

concomitantly with an overexpression of these two miRs. Furthermore, miR-574-3p and miR-

720 expression in these cells correlate with stratification pattern (25), thereby supporting their 

role in epidermal differentiation, plausibly via downregulation of p63. 

Another miR-200 family member, miR-205, exhibits one of the highest levels of expression in 

skin stem cells. Significantly attenuated neonatal epidermal and follicular development occur 

as a consequence of miR-205 knockdown, resulting in thinner skin (26). Phosphorylated 

Protein Kinase B (pAKT), previously shown to be involved in skin stem cell renewal and 

proliferation (27), was reported to be downregulated in the knockout model, as miR-205 

directly targets and represses negative regulators of PI3K signalling.  Proliferation, therefore, 

of skin stem cells appears to occur via miR-205-mediated mechanisms which maintain pAKT.  

In addition to p63 expression, interfollicular, sebaceous gland, and hair follicle stem cells also 

express K5 and K14. Maintenance of miR-125b in cells expressing K14 was reported to sustain 

stemness, resulting in aberrant skin morphogenesis in the form of a thickened epidermis, lack 

of hair follicle development, and enlarged sebaceous glands, plausibly via an attenuation of 

Blimp1 protein level. The data suggest that this dysregulated follicular development is due to 

an increased number of early bulge cell divisions in the outer root sheath, restricting cell lineage 

commitment. Interestingly however, upon restoration of miR-125b to normal levels, these 

effects were reversed (28). MiR-125b does not, however, influence stem cell maintenance or 

activation, suggesting that the function of this miR is to primarily enhance stem cell renewal. 

Overall, these results indicate that miR-125b possesses the ability to repress stem cell 

differentiation, which appears logical given that miR-125b expression is low in early stem cell 

progeny.  



In terms of hair follicle morphogenesis, the Wnt/β-catenin pathway is an important regulator 

of hair follicle specification; during development, augmentation of β-catenin results in failed 

hair follicle differentiation (29), while similarly, Runx1 expression is also essential for 

follicular differentiation (30). Furthermore, Bone morphogenetic protein (BMP) ligands and 

antagonists are key, as evidenced by deletion of the BMP antagonist Noggin which attenuates 

development of the hair follicle (31). MiR-214 targets β-catenin; when overexpressed in 

keratinocytes, miR-214 inhibits proliferation and consequently hair follicle development due 

to attenuation of β-catenin and Lef-1. MiR-214, therefore, is a key regulator of Wnt signalling, 

which itself is key in follicular morphogenesis (32).   

Smad proteins, which are signal transducers of the TGF signalling pathway, are also involved 

in follicular development via mediation of BMP signalling and inhibition of Wnt/ β-catenin 

signalling (33). Interestingly, Smads also regulate miR expression through transcriptional and 

post-transcriptional mechanisms (34), further supporting the importance of the TGF- β 

superfamily and miRs in the skinBMPs are expressed in the epidermis and mesenchyme, and 

are involved in skin development and tissue remodelling (35); BMP4 treatment resulted in 

significant inhibition of miR-21 expression in primary mouse keratinocytes. Similarly, 

overexpression of the BMP antagonist Noggin significantly augments miR-21 in a transgenic 

mouse model (36). Furthermore, the BMP4-mediated inhibition of cell proliferation and 

migration was prevented by miR-21. Given that miR-21 is consistently overexpressed in a 

variety of tumour types, these findings suggest a mechanism by which the BMP pathway 

inhibits miR-21 in order to maintain normal function of the skin.  

Embryonic RUNX1 deletion in the epidermis causes delayed hair follicle regeneration due to 

failure of bulge stem cell proliferation (37). In contrast to epidermal development whereby 

elevated β-catenin leads to a reduction in hair follicle differentiation, during adulthood, high 

levels of β-catenin cause abnormal growth of hair follicles (29). The aforementioned BMP 

pathway mediates bulge stem cell quiescence in adult mice, and as BMP expression reduces, 

bulge stem cells activate and augment hair follicle regeneration (38).  

In terms of dermal homeostasis, miR-145 is highly expressed in dermal fibroblasts, however, 

expression was reported to be significantly downregulated during reprogramming to 

pluripotent stem cells. Inhibition of miR-145 resulted in an elevation in epithelial markers, and 

a reduction in mesenchymal markers, suggesting mesenchymal to epithelial transitioning, a key 

process in reprogramming of somatic cells to induced pluripotent stem cells. It seems clear, 

therefore, that the reduction in miR-145 significantly contributes to homeostatic control of the 

dermis via a switch from dermal fibroblasts to stem cells (39), which themselves can be 

programmed to a different cell type.  

The literature discussed thus far demonstrates that a large number of miRs exert significant 

regulatory effect on the fine tuning of a variety of signalling pathways involved in epidermal 

and dermal development and homeostasis.  

  



Table 1 – Summary of miRs involved in skin development and homeostasis. 

*iASPP = inhibitor of apoptosis stimulating protein of p53; BMP4 = bone morphogenic protein 4.  

miR  Cell/Model Role 

203. Foetal/adult skin 

(human) (22). 

Regulator of keratinocyte differentiation. 

34a/34c. Keratinocytes (mouse) 

(24). 

p63-regulated repression of -34a/34c controls 

cell cycle progression. 

574-3p/720. Neonatal keratinocytes 

(human) (25). 

Negatively regulated by iASPP*. Depletion of 

iASPP = miR expression and cell differentiation 

205. Mouse models (26). Neonatal epidermal and follicular development. 

125b. Mouse models (28). Enhances stem cell renewal and inhibits stem 

cell differentiation. 

214. Mouse 

models/keratinocytes 

(32).  

Inhibits follicular development via targeting β-

catenin. 

21. Mouse 

models/keratinocytes 

(36). 

Inhibits effects of BMP4* on cell 

proliferation/migration, leading to aberrant 

growth. 

145. Human dermal 

fibroblasts (39). 

Downregulated during reprogramming of 

somatic cells into pluripotent stem cells 



3.  MicroRNAs in Wound Healing and Skin Regeneration  
The underlying molecular mechanisms that mediate the development and homeostasis of the 

skin that have been discussed thus far all refer to processes that occur in healthy, undamaged 

skin. However, when injury occurs, differing signals, including miRs, coordinate the many 

stages of skin regeneration. The principal stage, haemostasis, is characterised by 

vasoconstriction which reduces blood flow, and platelet degranulation which activates fibrin, 

a protein involved in clotting. The second phase involves inflammation, whereby neutrophils 

immediately migrate to the wound and phagocytose pathogens and tissue debris. Monocyte-

derived macrophages cause efferocytosis which aids in the resolution of the acute inflammatory 

response. Proliferation then occurs, which is characterised by a number of processes which 

assist in the formation of new tissue; several cell types, in particular keratinocytes, fibroblasts, 

and endothelial cells, coordinate re-epithelialisation, collagen deposition, angiogenesis and 

granulation tissue formation. Finally, the remodelling phase involves full formation of the 

epidermal barrier primarily via extracellular matrix protein synthesis and apoptosis of immune 

cells. Scar formation may also occur during this phase, thought to be a consequence of aberrant 

inflammation, re-epithelialisation, and collagen deposition. 

 

3.1. Haemostasis 

MiR-143-145 appears to be essential during haemostasis, as evidenced by attenuated 

vasoconstriction,  a critical event during the early stages of wound healing, and impaired 

vascular smooth muscle cell (VSMC) differentiation in miR-143-145 knockout animals when 

compared with age-matched wildtype controls (40). Platelet-derive growth factor (PDGF) 

induces miR-15b, which is essential for VSMC proliferation (41). This mimics previous 

findings which showed that PDGF elicited miR-221 upregulation concomitantly with VSMC 

proliferation via  downregulation of c-Kit (42).  

Fibrinogen, the precursor to fibrin which causes clots at the site of skin injury, is regulated by 

miRs with attenuation of the FGB transcript occurring due to miR-409-3p overexpression. 

MiR-29 reduced the levels of all three fibrinogen transcripts, FGA, FGB, and FGG (43). 

Each of the aforementioned stages do not necessarily occur in isolation, as evidenced by miR 

regulation of overlapping haemostatic and inflammatory mechanisms. The pleiotropic cytokine 

IL-6 is a significant inducer of fibrinogen synthesis (44), which itself is regulated by the 

transcription factor STAT3. Expression of the miR-17.92 family transcripts, miR-18a, miR-

19a, and miR20a, were elevated after 24 hours of IL-6 treatment in both hepatoma cells and 

hepatocytes. Moreover, miR-18a was able to augment STAT3 transcriptional activity in HepG2 

cells, which, in addition to fibrinogen protein upregulation following miR-18a transfection of 

IL-6 stimulated cells, highlights that a positive feedback loop may exist by which miR-18a and 

the STAT3 pathway, and subsequent IL-6/fibrinogen activation, upregulate one another during 

the acute phase response (45).  

Although these data do not directly pertain to cells located in the skin, the underlying 

mechanisms may still be applicable however. 



Table 2 – Summary of miRs involved in haemostasis during skin regeneration. 

*VSMC = vascular smooth muscle cell 

 

3.2. Inflammation  

The inflammatory phase, as described above, depends on recruitment of immune cells to the 

site of the wound (46). Differentiation of blood monocytes into macrophages in the injured 

tissue is essential in order to mount an effective phagocytic response. This process involves a 

complex cascade of interlinked events in which miRs have been identified. For example, 

activation of the macrophage colony stimulating factor receptor (M-CSFR) gene due to miR-

424-mediated nuclear factor I type A (NFI-A) transcription factor downregulation has been 

reported (47). Additionally, computational analysis revealed that the transcription factors 

CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2, which are involved in monocytic 

differentiation, target miR-21, -424, -155, and -17-92 (48).  

Furthermore, albeit using fibroblast-like synoviocytes isolated from rheumatoid arthritis (RA) 

patients, Nakamuchi et al. (49) were able to demonstrate that miR-124a impaired monocyte 

chemoattractant protein 1 (MCP-1) expression which may have significant implications for 

monocyte migration following skin injury.  

Efferocytosis of apoptotic cells by these differentiated macrophages is critical, and has been 

shown to induce miR-21, while this miR also augmented efferocytosis, thereby demonstrating 

that a positive feedback loop exists. Of functional consequence, both post-efferocytotic and 

experimentally induced miR-21 were able to suppress LPS-induced NF-κB activation and TNF-

α expression. In addition, efferocytosis, and thus miR-21, augmented IL-10, which together 

indicates that miR-21 dampens pro-inflammatory mediators and enhances anti-inflammatory 

signalling (50).  

TLRs enable inflammatory cells to recognise microbial pathogens, thereby aiding in the 

regulation of the innate inflammatory response. LPS, which is recognised by TLR4, has been 

shown to augment miR-146a and -146b in primary monocytes isolated from cord and adult 

blood (51), in addition to the monocytic cell line THP-1, whereby these miRs were shown to 

downregulate IRAK1 and TRAF6, and thus, negatively regulate TLR signalling (52). LPS also 

upregulated miR-155. 

miR Cell/Model Role 

143-145. Mouse models (40). Essential for VSMC* differentiation, and 

functionally, vasoconstriction and vasodilation. 

15b. Pulmonary artery 

SMCs (41). 

Induced by platelet-derived growth factor, 

which inhibits SMC-specific gene expression 

and promotes cell proliferation. 

221. Pulmonary artery 

SMCs (42). 

Induced by platelet-derived growth factor, 

which inhibits SMC-specific gene expression 

and promotes cell proliferation via attenuation 

of c-kit. 

409-3p/29. HuH7 (liver) cell line 

(43). 

Attenuates Fibrinogen gene (FGA, FGB, FGG) 

expression. 

18a/19a/20a. HepG2 (liver) cell line 

(45).  

IL-6 stimulation augmented expression of all 

three miRs. MiR-18a increased STAT3 

activation and Fibrinogen protein level. 



Similarly, miR-147 was reported to be inducible by TLR stimulation, with binding of NF-κB 

and STAT1α to the miR-147 promoter also observed (53). MiR-147 knockdown resulted in 

increased TNF-α and IL-6 protein concentrations, demonstrating that this miR is a significant 

negative regulator of TLR-induced inflammatory responses in macrophages, thereby 

preventing aberrant inflammation which could be causative of scar formation.  

In addition to the aforementioned LPS-induced upregulation of miR-155 (52), the same group 

then reported that IFN-β also augmented miR-155 expression (54); the functional consequence 

of which was not identified, in contrast to the role of miR-146a. More recently however, 

Jablonski et al. (55) demonstrated that miR-155, which was upregulated in LPS and IFN-γ 

treated macrophages, suppresses a number of a genes, which drives the transformation to a 

classically activated ‘M1’ pro-inflammatory, anti-fibrotic macrophage phenotype in vitro. 

MiR-155 deficient mice exhibited accelerated wound closing concomitantly with increased 

numbers of macrophages at the wound site following punch biopsy (56). Consistent with 

Jablonski et al’s findings, treatment of these knockout mice with IL-4, the main cytokine 

involved in ‘M2’ or alternative macrophage phenotype activation, which is characterised by 

pro-fibrotic properties, induced the expression of the fibrotic protein FIZZ1. As expected, type-

1 collagen deposition was elevated in this system. Combined, these data show that miR-155 

inhibits M2 polarisation in favour of an inflammatory phenotype, and also that an overlap exists 

between the inflammatory phase and the growth of new tissue in the proliferation phase. MiR-

-155 is now also recognised as a multifunctional miR; elevated expression has been reported 

in activated B and T cells (57), synovial fibroblasts isolated from RA patients (58), and 

malignant tumours (59). Interestingly, it also regulates BMAL1, an intrinsic component of the 

circadian clock, that regulates circadian rhythm and oscillations (60). 

IL-10, through activation of, and also secretion by alternatively activated ‘M2’ macrophages, 

typically possess anti-inflammatory properties. MiR-4661 transfection of RAW 264.7 

macrophages resulted in augmented mRNA and protein levels of IL-10 (61). Recently, miR-

142 has also been found to be critical to appropriate wound healing through the regulation of 

neutrophil actin cytoskeleton gene modifiers as demonstrated by miR-142 KO mice that have 

abnormal wound closure rates (62).  

The literature discussed above all pertains to inflammatory regulation by monocytes and 

macrophages; however, miRs also appear to regulate inflammatory responses in keratinocytes 

and in inflammatory skin disorders. 

TLR2 stimulation of keratinocytes also upregulates the expression of miR-146a, via NF-κB 

and MAPK, with this overexpression attenuating neutrophil chemoattraction due to 

downregulated production of IL-8, TNF-α and CCL20, with the reverse occurring when miR-

146a was inhibited (63). MiR-146a is also significantly associated with the inflammatory skin 

conditions atopic dermatitis (AD) and psoriasis.  For example, miR-146a has been shown to be 

overexpressed in keratinocytes and skin lesions of AD patients (64), and functionally, appears 

to suppress NF-κB-dependent genes. Patients suffering from psoriasis exhibit miR-146a 

overexpression in skin lesions, which, as above, impairs neutrophil chemoattraction of 

keratinocytes. Genetic deficiency of miR-146a elicits an elevation in skin inflammation, in 

addition to earlier onset, due to epidermal hyperproliferation and augmented neutrophil 

infiltration (65). Upon administration of a miR-146a mimic, IL-17-driven inflammation was 



suppressed, and the inflammatory response magnified upon inhibition, clearly demonstrating 

that miR-146a possesses a key role in the regulation of skin inflammation.  

MiR-155 is also associated with chronic inflammatory skin disorders, including AD and 

vitiligo. Overexpression of miR-155 was found in both CD4+ T cells and AD patient skin 

samples. A positive correlation was also observed between expression of the miR and AD 

disease severity, Th17 cell percentage, IL-17 mRNA expression and plasma concentrations, 

which was further exacerbated upon transfection of a miR mimic, while an inhibitor elicited 

contrasting effects (66). Th17 cells have previously been postulated to significantly contribute 

to AD pathology, therefore it appears plausible that miR-155 contributes to disease progression 

due to augmentation of these cells (67). Furthermore, expression of miR-155 was reported to 

be elevated in the epidermis of vitiligo patients. When overexpression was induced in primary 

melanocytes and keratinocytes, genes associated with melanogenesis were downregulated (68). 

These data indicate that miR-155 is a key regulator in the pathogenesis of the chronic skin 

conditions such as AD and vitiligo. 

The reviews published by Rozalski et al. (68, 69) and Hawkes et al. (70) outline the extensive 

number of aberrations in miR expression associated with AD and psoriasis, respectively, and 

can be referred to for further discussion on these diseases outside the remit of this review.  

Altogether the literature presented in section 3.2 demonstrates that a vast number of miRs 

regulate both the induction and resolution of inflammation during this stage of skin 

regeneration.   

 

Table 3 – Summary of miRs involved in inflammatory phase of skin regeneration. 

 



miR Cell/Model Role 

424. NB4 cell line (47). Upregulation during monocyte/macrophage 

differentiation. Downregulates NFI-A 

transcription factor, activating M-CSFR*.  

21/424/155/17-92. THP-1 cell line (48). Targets of monocyte differentiation 

transcription factors.  

124a. Rheumatoid-arthritis 

fibroblast-like 

synoviocytes (49). 

Impairs MCP-1* expression. 

21. Monocyte-derived 

macrophages (human) 

(50). 

Induces and is induced by efferocytosis. 

Suppresses LPS-induced NF-κB activation and 

TNF-α expression, and augments IL-10. 

146a/146b.  

 

 

 

 

Primary monocytes 

(cord and adult blood) 

(51). 

 

THP-1 cell line (52). 

Increased expression upon LPS stimulation.  

 

 

 

Downregulation of IRAK1 and TRAF6, and thus, 

TLR signalling.  

146a. 

 

 

 

 

 

Keratinocytes (human) 

(63). 

 

AD skin 

lesions/keratinocytes 

(64).  

 

Psoriasis skin lesions 

(65). 

 

KO mouse model (65). 

Upregulation following TLR2 stimulation and 

attenuated neutrophil chemoattraction. 

 

MiR-146a overexpression. 

 

 

 

Overexpression in skin lesions, impairing 

neutrophil chemoattraction. 

 

Earlier disease onset, increased skin 

inflammation, epidermal hypoproliferation, 

augmented neutrophil infiltration. IL-17-driven 

inflammation suppressed upon administration of 

miR-146a mimic.  

147. Peritoneal/alveolar 

macrophages (mouse) 

(53). 

 

RAW 264.7 cell line 

(53).  

 

Expression induced by TLR (LPS) stimulation. 

MiR-147 knockdown augmented IL-6 and TNF-

α concentrations. 

 

NF-κB and STAT1α bound to miR-147 

promoter. 

155.  

 

 

 

 

 

 

 

THP-1 cell line (52). 

 

Primary macrophages 

(mouse) (54). 

 

Primary macrophages 

(mouse) (55). 

 

 

KO mouse model (56). 

 

 

LPS-induced overexpression. 

 

IFN-β-induced overexpression. 

 

 

Upregulated in LPS/IFN-γ treated macrophages. 

Drives transformation to pro-inflammatory ‘M1’ 

phenotype. 

 

Augmented wound closing correlated with 

increase number of infiltrating macrophages. IL-

4 (‘M2) treatment increased FIZZ-1 expression 

and type 1 collagen deposition. 



*M-CSFR = macrophage colony stimulating factor receptor; MCP-1 = macrophage chemoattractant 

protein-1 

 

3.3. Proliferation and Remodelling 

The transition between inflammatory and proliferative phases is an essential aspect of wound 

healing and regeneration, and may be regulated by miR-132, which is induced by TGF-β1 and 

TGF-β2 in keratinocytes. MiR-132 was shown to augment keratinocyte proliferation, and 

similarly to miR-146a and miR-155, attenuate their chemoattractive ability via NF-κB 

suppression (71). It is likely, therefore, that miR-132 serves to mediate inflammation during 

progression to the proliferative phase, which is likely considering that miR-132 also suppresses 

NF-κB signalling. 

Mobilisation of hair follicle and interfollicular epidermal stem cells during the inflammatory 

stage, and migration and proliferation of keratinocytes, cause skin re-epithelialisation. In an 

acute human skin wound model, miR-21 and miR-130a have been reported to delay re-

epithelialisation (72). Conversely however, TGF-β1-induced miR-21 expression was able to 

augment keratinocyte migration in HaCaT cells (73). Consistently, knockdown of miR-21 

decreased TGF-β1-induced keratinocyte migration. Following mouse skin punch biopsies, 

miR-21 expression was elevated, while miR-21 knockdown impaired re-epithelialisation. Both 

in vitro and in vivo data from this study strongly suggest that miR-21 drives keratinocyte 

migration and proliferation. The data regarding miR-21 appear somewhat conflicting, however, 

these differences may be due to the use of human cell lines and mouse skin model in one 

investigation (73), and the use of an acute human skin wound model in the other (72). 

Nonetheless, it is clear that miR-21 possesses a significant regulatory role in keratinocyte 

migration and thus, re-epithelialisation.  

In addition to the results reported by Yang et al. (73), Li et al. (74) showed that another 

transforming growth factor, TGF-β2, known to be highly expressed in skin wounds, elicits a 

significant elevation in the expression of miR-31 and subsequent proliferation in primary 

human keratinocytes, with miR-31 knockdown causing contrasting effects. Interestingly, EMP-

1 appeared to mediate the effects of miR-31; a significant negative association was observed 

between the two, while silencing of EMP-1 exerted similar effects as miR-31 overexpression 

in terms of migratory capacity. In vivo, punch biopsy of a human wound healing model 

155. 

 

CD4+ T cells/AD skin 

lesions (66). 

 

 

 

Vitiligo patient 

epidermis/melanocytes 

and keratinocytes (68). 

Overexpression of miR-155. Expression 

correlated with disease severity, Th17 cell 

percentage, IL-17 mRNA and plasma 

concentrations. 

 

Overexpression of miR-155 in epidermis. 

Induced overexpression in vitro inhibited genes 

associated with melanogenesis. 

4661. RAW 264.7 cell line 

(61). 

 

Elevated IL-10 mRNA and protein following 

miR transfection. 

142. KO mouse 

model/wound-

infiltrated neutrophils 

(mouse) (62). 

Impaired wound closure rate. Altered neutrophil 

phagocytosis. Actin cytoskeleton regulators Rho 

and Rac elevated, suggesting involvement in 

neutrophil migratory capacity. 



demonstrated that miR-31 gradually increased from the first day, and thus, the inflammatory 

phase, until day seven during the proliferative phase (74). This not only supports the postulation 

that considerable overlap exists between the phases of skin regeneration, but also that miR-31 

regulates re-epithelialisation in a similar manner to miR-21. 

An inverse correlation between RAN and RAPH1, and miR-203 expression was observed (75). 

These two proteins, involved in cell proliferation and survival, and cytoskeleton remodelling 

respectively, have shown to be direct targets of miR-203. Furthermore, both silencing of these 

targets and overexpression of miR-203 in vitro using human neonatal epidermal keratinocytes 

resulted in attenuated cell proliferation and migratory capacity. In vivo, elevated miR-203 

expression was reported in the suprabasal epidermal layers surrounding the wound in a mouse 

skin model, however, minimal expression was found in the migrating keratinocytes themselves. 

MiR-203, could, therefore, be a possible target for therapeutic intervention, given the need for 

keratinocyte migration and proliferation in re-epithelialisation, and the evident role miR-203 

possesses in terms of inhibiting these key processes.  

Reactive oxygen species released by phagocytic cells during the inflammatory phase appear to 

drive angiogenesis as evidenced by H2O2-induced VEGF augmentation in keratinocytes (76), 

in addition to impairment of angiogenesis upon antioxidant treatment in human microvascular 

endothelial cells (77). In the study conducted by Shilo and colleagues (77), despite elevated 

VEGF expression following Dicer knockdown, the angiogenic response of these endothelial 

cells was compromised, demonstrated by attenuated tube formation and cell migration. 

Furthermore, Dicer knockdown in human endothelial cells elicited aberrant expression of a 

number of angiogenic genes concomitantly with attenuated cell proliferation (78). Similarly, 

mice that lacked the first two exons of the Dicer gene exhibited under-developed blood vessels 

(79). 

Moreover, miR-221 and -222 transfection of endothelial cells results in a reduction in c-Kit 

protein levels through targeting the c-Kit 3’UTR (80). c-Kit signalling involves Akt and Erk1/2 

pathways, similarly to VEGF (81), while activation of c-Kit has been shown to also upregulate 

VEGF (82). Thus, miR-221 and -222 appear to regulate angiogenesis directly through c-Kit, 

which itself is the receptor for stem cell factor, and indirectly via c-Kit-dependent modulation 

of VEGF. Tissue hypoxia due to reduced blood supply of the damaged skin is also known to 

be an inducer of angiogenesis during regeneration; ETS-1, the angiogenesis-related 

transcription factor, in addition to MMP1 and VEGFR1, are negatively regulated by miR-200b. 

Expression of ETS-1 was de-repressed following hypoxia-induced downregulation of miR-

200b, which augmented angiogenic capacity (83), again, in experiments that utilised 

endothelial cells.  

Seven days post-skin excision injury in mice, over 50 miRs exhibited altered expression of 

greater than two-fold, 33 of which were upregulated and 21 downregulated. The former 

included miR-21, -31, and -203, and the latter, miR-249. Prior to skin injury, miR-21 expression 

was undetectable in the epidermis, however, following excision, expression in the migrating 

epithelial cells was augmented greatly (84). Furthermore, mesenchymal expression of miR-21 

was also elevated in granulation tissue.  Overexpression of miR-21 has been shown to inhibit 

granulation tissue formation in a rat wound model (72), which could have significant 

implications for therapeutic targeting in chronic non-healing wounds. Interestingly, TGF-β 



signalling has been robustly shown to not only induce miR-21 expression in keratinocytes (85), 

but is also a key pathway involved in the contraction of wounds (86).  

In terms of collagen deposition, augmented miR-29a expression was shown to occur 

concurrently with a reduction in collagen type 1 alpha 2 (COL1α2) and VEGF-A following 

thermal skin injury (87). As miR-29a began to decrease, COL1α2 and VEGF-A began to 

increase, suggesting that they were targets of miR-29a, which was discovered to be the case. 

This was further demonstrated by inhibition of miR-29a, which elicited a significant elevation 

in fibroblast proliferation and migration. The naturally occurring downregulation of miR-29a 

during skin regeneration, therefore, appears to be a mechanism by which type 1 collagen 

synthesis and angiogenesis are enhanced, aiding the regenerative process. In a similar manner, 

Zhu et al. (88) corroborated these findings by recently reporting that miR-29a exhibited 

downregulation in a murine thermal wound model, however, much more drastic attenuation of 

miR-29b was observed in both thermal and excisional wound models, concomitantly with a 

significant elevation in heat shock protein 47 (HSP47) expression and a gradual increase in 

COL1α1. Of note was that TGF-β1 inhibited miR-29b transcription in skin fibroblasts; given 

that miR-29b overexpression impairs biosynthesis of COL1α1, this further highlights the 

important of TGF-β signalling in collagen deposition.   Together, these data demonstrate that 

the miR-29 family possesses essential regulatory roles in mediating fibrotic processes and 

collagen deposition associated with wound contraction and scar formation. It has long been 

suggested that miR-29 is “fibromiR” and is a critical target in fibrotic diseases where 

constitution of miR-29 is currently being investigated; the miR-29 family shares seed 

sequences complementary to conserved binding sites of multiple collagen genes (89) and 

downregulation of miR-29a in SSc, a major fibrotic disease, has also been shown (90); 

experimentally, this study reported that overexpression of miR-29a caused a decrease in type I 

and type III collagen mRNA, with the opposite effects observed upon miR-29a knockdown. 

These data were corroborated, as increased miR-29a expression reversed the fibrotic SSc 

fibroblast phenotype due to attenuation of collagen and TIMP-1, which itself is regulated by 

the miR-29a target TAB1 (91).  

 

MiR-145 appears to regulate a similar cascade; in vivo, miR-145 levels and α-smooth muscle 

actin (α-SMA) were significantly augmented in hypertrophic skin tissue compared with 

controls, while TGF-β1-induced elevation of miR-145 attenuated expression of KLF4, thereby 

de-repressing α-SMA in skin myofibroblasts (92). Thus, aberrant miR-145 appears to contribute 

to scarring due to α-SMA’s contribution to permanent tissue contracture. Furthermore, 

inhibition of miR-145 attenuated not only COL1α1 expression, but also TGF-β1 secretion, and 

migration. 

A reduction in miR-129-5p also appears to possess a significant regulatory role in aberrant 

fibrotic processes associated with SSc pathology; in vitro, IL-17RA siRNA transfection 

significantly reduced expression of the antifibrotic miR-129-5p. Moreover, TGF-β1-induced 

downregulation of IL-17A signalling due to attenuation of the receptor IL-17RA expression in 

SSc fibroblasts releases the inhibitory effect of miR-129-5p on type 1 collagen, thereby 

promoting fibrosis (93).  



 

Figure 3 – Schematic representing miRs involved in collagen regulation and scleroderma 

pathogenesis. MMP-1 = matrix metalloproteinase-1; ITGB3 = integrin beta 3; Col. = collagen. 

References: (88, 90, 91, 93-99). 

  



Table 4 – Summary of miRs involved in proliferation and remodelling phase of skin 

regeneration. 

 

A paucity of literature appears to exist concerning miR-mediated longer term remodelling of 

the skin, whereby type III collagen is replaced by type I collagen and re-aligned. This area, 

therefore, warrants further investigation so that the molecular mechanisms that govern wound 

healing are fully characterised.  



miR Cell/Model Role 

132. Keratinocytes (human) 

(71). 

Augments proliferation and attenuate 

chemoattractive ability. 

21. 

 

 

 

 

 

 

 

 

Skin punch biopsy 

(human/rat) (72). 

 

HaCaT cell line (73). 

 

 

Excisional wound 

model (mouse) (84). 

 

HaCaT cell line (85). 

 

Inhibits re-epithelisation.  

 

 

TGF-β1-induced miR-21 expression increased 

keratinocyte migration. 

 

Elevated expression in migrating epithelial cells 

following skin injury. 

 

TGF-β signalling induced miR-21 expression. 

MiR-21 blocks inhibition of growth by TGF-β1. 

130a. Healthy skin punch 

biopsy (human) (72). 

Inhibits re-epithelisation.  

 

31. Keratinocytes (human) 

(74). 

 

Skin punch biopsy 

(human) (74). 

Expression induced by TGF-β2 

 

 

Expression gradually increased from day 1 until 

day 7.  

203. HEKn cells (75).  

 

 

Skin punch biopsy 

(mouse) (75).  

Overexpression attenuated cell proliferation and 

migratory capacity.  

 

Expression found in suprabasal epidermal 

layers. Minimal expression in migrating 

keratinocytes. 

221/222. Endothelial cells 

(human vascular) (80).  

Transfection reduces c-Kit, thereby reducing 

angiogenesis. 

200b. Dermal microvascular 

endothelial cells 

(human) (83).  

De-repression of angiogenic transcription factor 

ETS-1, and thus increased angiogenesis, 

following hypoxia-induced miR-200b 

downregulation. 

29a. 

 

 

 

 

Thermal wound injury 

model (rat)/BJ 

fibroblast cell line 

(human) (87). 

 

Excisional and thermal 

wound models 

(mouse) (88). 

 

NRK-52E cell line 

(89).  

 

SSc fibroblasts/skin 

sections (human) (90). 

 

 

 

 

Dermal fibroblasts 

(human) (91).  

Augmented expression concurrently with 

attenuated COL1α2 and VEGF-A (confirmed as 

targets of miR-29a in vitro).  

 

 

Expression unaltered in excisional wound 

model, but downregulated in thermal wound 

model. 

 

3’-UTR of numerous collagen genes targeted by 

miR-29 family. 

 

Downregulation in SSc fibroblasts and skin 

sections. Overexpression of miR-29a caused a 

decrease in type I and type III collagen mRNA, 

with the opposite effects observed upon miR-

29a knockdown. 

 

Transfection of miR-29a decreased collagen and 

TIMP-1. TAB-1, a regulator of TIMP-1, found 

to be a novel target of miR-29a.  



 

3.4. Foetal Wound Healing 

Although not as common as tissue injuries in adults, foetal skin possesses the capacity to heal 

without scarring due to its own unique molecular response to injury. Microarray analysis has 

revealed a plethora of differentially expressed genes between mid-gestational and post-natal 

dermal wounds, concomitantly with the expected full re-epithelialisation and lack of scarring 

in the former, and dense scar tissue present in the latter mice (100). Most importantly, a number 

of these differentially regulated genes were involved in growth factor signalling and cell 

proliferation. Further support for the significance of growth factors in the striking phenotypic 

differences between early-mid foetal skin and late foetal or post-natal skin has been reported. 

Unwounded human adult and foetal skin possess distinct TGF-β expression profiles, with lower 

expression of all three isoforms found in foetal skin, in addition to differential ratios compared 

with adult skin (101). Given the role of TGF-β in the regulation of extracellular matrix 

deposition, it was unsurprising that deletion of TBF-βRII significantly attenuated dermal scar 

formation and enhanced epidermal proliferation in post-natal fibroblasts (102). The dermis of 

TBF-βRII knockout mice also exhibited a decrease in collagen deposition together with 

augmented keratinocyte proliferation, and thus, re-epithelialisation (86).  

In addition to growth factors, aberrant collagen composition and organisation also contribute 

to the scarring phenotype which is not characteristic of non-scarring foetal skin. Mid-

gestational rats exhibited a much higher collagen type III:collagen type I ratio than adult rats 

following surgical dermal injury (103). In corroboration, Goldberg et al. (104) discovered that 

COL1α1 expression was attenuated following injury during mid-gestation only, while COL1α2  

COL1α3 were significantly lower in the late-gestational group, in both wounded and normal 

conditions. The pattern of collagen deposition in the mid-gestational mice was characteristic 

of the surrounding unwounded skin with no visual evidence of scarring, whereas irregular 

collagen deposition in the late-gestational mice was observed, suggesting scar tissue formation. 

In vivo, undamaged human foetal skin also exhibited a greater type III:type I ratio than 

adolescent, adult, and elderly skin (105).  

A comparison of mid-gestational (non-scarring phenotype) and late-gestational (scarring 

phenotype) mouse skin revealed a number of differentially expressed miRs and predicted 

targets between the two time-periods and associated phenotypes. In particular, expression of 

miR-29b, -29c, and 338-3p was altered 24, 20, and 19-fold, respectively (106). Importantly, 

29b. Excisional and thermal 

wound models 

(mouse) (88). 

 

Downregulation in both models. Transcription 

inhibited by TGF-β1, enhancing collagen 1 

production.  

145. Hypertrophic scar 

tissue (human) (92). 

 

Dermal fibroblasts 

(human) (92).  

α-SMA and miR-145 elevated. 

 

 
Expression augmented by TGF-β1, causing a 

decreasing in KLF4, thereby de-repressing α-

SMA. 

129-5p. SSc patient skin and 

serum samples (93). 

IL-17A transfection attenuated miR-129-5p 

expression. Downregulation of IL-17A 

signalling by TGF-β1 releases inhibitory effect 

of miR-129-5p on collagen type 1.  



bioinformatic analysis revealed that the differentially expressed miRs were also shown to 

putatively target a number of signalling pathways, including TGF-β. Thus, it could be 

postulated that miRs may be significant regulators of the foetal non-scarring phenotype due to 

modulation of TGF-β signalling. The role of the miR-29 family in the regulation of collagen 

expression has already been discussed within this review, and may present a further molecular 

mechanism by which differential miR expression contributes to scarless healing.  

 

  



4. MicroRNA Therapeutics 
In addition to the essential role of miRs in normal development of the skin and regeneration 

from injury, they also play a pivotal role in the pathogenesis of a vast number of diseases, 

including conditions of the skin such as vitiligo, psoriasis, SSc, dermatomyositis, and 

melanomas. The detection of miRs in serum or plasma, which resist degradation due to 

containment within extracellular vesicles, are emerging as non-invasive diagnostic markers for 

major diseases like cancer (107) and cardiovascular disease (108), in addition to rheumatoid 

arthritis (109), SSc (110), and as a biomarker of the severity of inflammation in children with 

AD (111). 

In terms of treatment of specific conditions, recent research has demonstrated that miRs can 

manipulated via administration of miR mimics which are chemically synthesized, double-

stranded RNAs that mimic endogenous miRNAs, while antagomiRs are chemically engineered 

oligonucleotides that inhibit miRNAs. There is potential for both to be used therapeutically for 

tissue regeneration or fibrotic diseases. As highlighted by Christopher et al. (112), however, a 

number of steps are required before an miR could potentially be used as an effective therapy, 

namely; profiling of the miR associated with a specific disease state, in vitro studies to validate 

the miR using loss/gain of function, in vivo studies to investigate pharmacokinetics, followed 

by clinical trials if all other stages are successful. Other important considerations are specificity 

of binding to the target miR, resistance to degradation, and the method of in vivo delivery.  

Chemical modification of the miRs are required to enhanced stability and stop the breakdown 

by copious endogenous nucleases, in addition to improving affinity of the antagomiR to the 

cognate miR. Such examples are Locked Nucleic Acids (LNAs), whereby the ribose of the 

RNA nucleotide is chemically modified by the addition of a 2’-O, 4’-C-methylene bridge (113). 

Alternatively, tiny LNAs which are 8-mer LNA anti-miRs that specifically target the miR seed 

region, can be used (114). Chemical substitution of the 2’ hydroxyl group, to 2’O-methyl or 

2’O-methoxyethyl, for example, also occur (115).  

The issue of specificity is being addressed via a number of methods; sponge miRs, for example, 

contain several complementary binding sites to the specific miR of interest, whereas miR 

erasers utilise two copies of the exact miR complementary antisense sequence (116). Long non 

coding RNAs (lncRNA) are longer forms of RNA arbitrarily defined as 200nts and over, and 

often act as sponges to sequester faulty miR expression. Indeed, the X-linked lncRNA H19 is 

aberrantly expressed in keloids (117). Targeting of the miR to the correct tissue could also be 

employed by conjugating the chemically synthesised miR to a monoclonal antibody that 

identifies that specific tissue antigen, thereby ‘hitting the target’ and causing the miR to bind 

to its cognate mRNA. This could also be PEGylated to increase stability.   

Viral vectors have been utilised in order to deliver miR mimics or inhibitors. For example, 

adeno-associated virus (AAV) is a popular gene delivery system; however, a consistent issue 

which has inhibited the progression of some AAV therapies to human clinical trials is the 

induction of low grade immune activation (118). Lenti-viral vectors for delivery suffer from 

the same immunogenicity issues. MiR mimics for the tumour suppressors miR-34a and let-7 

have been successfully delivered in a complex with neutral lipid emulsion in mice (119). 

A number of miR therapies are currently in preclinical trials, with a small number having 

already met the requirements to advance to clinical studies. Although no miR therapies 

designed specifically for skin disorders are at this stage to the authors’ knowledge, MiRagen 



Therapeutics currently have an ongoing phase 1 clinical trial for MRG-201, a miR-29b mimic 

which is designed to attenuate collagen expression, as this is a true target of miR-29. A number 

of studies have also utilised miR mimics and antagomiRs in vitro, and could potentially inform 

future studies which may progress to clinical trials. 

Loss/gain of function studies are essential in order to validate particular miRs that may be 

future therapeutic targets with regard to skin disorders and/or healing. MiR mimics and 

inhibitors have shown that miR-200b expression was up- and down-regulated, respectively, in 

human microvascular endothelial cells, with a subsequent attenuation in tube formation and 

wound closure following mimic administration, with contrasting effects observed following 

addition of the 200b inhibitor (83). In a similar investigation, the addition of a miR-29b mimic 

to primary human dermal fibroblasts elicited a significant augmentation of miR-29b expression 

with a concomitant attenuation of HSP47 and COL1α1 expression. As expected, contrasting 

outcomes were observed following administration of an inhibitor (88). These miRs could, 

therefore, be future targets for therapeutic intervention. Furthermore, due to the data presented 

above by Gras and colleagues (92), they concluded that miR-145 may also be a promising 

target for future therapeutic intervention.  

With specific regard to the utilisation of antagomiRs, Krützfeldt et al. (120) have demonstrated 

that intravenous injection of antagomiRs against miR-16, -122, -192, and -194, resulted in a 

subsequent attenuation of the miR levels in a number of major tissues, including the skin. 

Subcutaneous injection of a miR-203 antagomiR attenuated miR-203 expression, but 

importantly, resulted in a greater number of proliferative cells in the dorsal epidermis of 

neonatal mice (23). Similarly, in a mouse excisional wound model, injection of an antagomiR 

to miR-155 attenuated expression as expected, in addition to phagocytic cell migration, pro-

inflammatory cytokine secretion, and COL1α1, COL2α1, and α-SMA expression. Functionally, 

this elicited an overall positive effect as demonstrated by better aligned and thinner collagen 

fibres upon wound healing (121). Most recently, topical epicutaneous administration of the 

miR-155 antagomiR elicited a reduction in collagen deposition and dermal thickening in 

bleomycin-induced fibrotic mice (122). Of greatest interest, however, was that due to the 

topical delivery method, miR-155 was downregulated only in the skin, and not liver, bone 

marrow, or blood cells.  

Direct injection of a miR-21 antagomiR to the dermis surrounding a would site did indeed 

attenuate expression of miR-21, however impaired collagen deposition and delayed wound 

healing were observed which the authors did not expect, and therefore, miR-21 may not be an 

effective therapeutic target for wound healing (84). 

Another issue is that targeting one specific miR might not be sufficient to elicit a significant 

clinical effect due to large redundancy among miRs; a reduction in one miR may have 

negligible effects on the protein output due to one or more miRs compensating for this. Thus, 

it may take multi-miR targeting approaches to repress a specific pathway.  

Whilst hematopoietic stem cell transplantation (HSCT) isn't an miR-based therapy per se, we 

hypothesize that miRs could be reset to non-aberrant levels thereby attenuating IL-6, TNF-R, 

and CD3+ cell numbers, which was indeed observed in the dermis of the patient presented in 

figure 4 (123). Concomitantly, restoration of the skin structure also occurred, which would be 

expected given the role of IL-6 in promoting fibrosis (124). It must be noted that no current 

data exists to support or refute this postulation however. 



 

 

Figure 4 – Hematoxylin and eosin (H.E.) and T cell (CD3) immunohistochemistry staining of 

a SSc patient’s dermis, before and after HSCT.  



5. Concluding Remarks and Future Directions 
Although originally referred to as ‘junk DNA’ with little to no biological function, it has 

become increasingly apparent that non-protein coding regions of the genome can still exert a 

multitude of diverse effects and are no longer deemed insignificant. Non-coding RNA are one 

such example that mediate a vast number of functions via post-transcriptional gene regulation, 

in the case of miRs (125).  

The skin and the underlying molecular mechanisms by which it develops, is maintained, and 

regenerated, while complex, has been reasonably well characterised at this point. Of interest 

however, is how these mechanisms can be manipulated in order to elicit salubrious outcomes 

in the context of wound healing or skin disorders such as scleroderma. Persistent perpetuation 

of dysregulated miRs in skin disorders suggest they are key players in disease progression, and 

may also, therefore, be promising biomarkers and/or therapeutic targets. Data thus far has 

highlighted a variety of potential therapeutic targets in vitro and using murine models, however, 

as discussed, a large number of stages and considerations are required prior to a specific miR 

becoming eligible for clinical trial. Further research should continue to identify and validate 

miRs associated with aberrant epidermal development and homeostasis associated with disease 

in the hope that efficient miR-based therapies may be established.  It may be possible in the 

future with the advent of viral gene delivery to alter the expression of miRs with the use of 

viral vectors providing immune activation is avoided. In particular SSc may be a tractable target 

for miR viral gene delivery due to the wealth of knowledge of miRs in this condition. 
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