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A generalized data assimilation model for turbulent flows using the continuous adjoint formulation
is proposed. Within this formulation, the Spalart–Allmaras turbulence model is modified by adding
a correction function β as a spatially varying coefficient to the turbulence production term. The
model-form error is thus corrected by optimizing the β distribution, using the adjoint equations and
the corresponding boundary conditions, to minimize the discrepancy between the predictions and
observations. In addition, a constraint is applied to drive β toward a large value to avoid the flow
unsteadiness owing to the low eddy viscosity. The present adjoint-based data assimilation (ABDA)
model is expected to be applicable to various flow conditions unsolvable by the simple optimization
of the model constant. This model is fully equation-driven and is thus computationally cheaper than
the discretized adjoint method, as well as convenient to be implemented in the existing computa-
tional fluid dynamics codes. The flow over a cylinder with synthetic observations, the free round jet,
the flow over a hump, and the three-dimensional flow over a wall-mounted cube, all of which are
challenging for original Reynolds-averaged Navier–Stokes simulations, are employed to successfully
demonstrate the reliability and capacity of the present ABDA model. The first-order scheme applied to
the adjoint equations exhibits little effects on the final assimilation results, but improves the robustness
significantly, and drives β to another solution that can also minimize the cost function. The present
ABDA model is efficient in the heavy assimilation work of different types of shear and separated
flows. Published by AIP Publishing. https://doi.org/10.1063/1.5048727

I. INTRODUCTION

The fast development of computational fluid dynam-
ics (CFD) and measurement technologies is still primar-
ily challenged by the accurate and complete determination
of turbulent flows. The computationally cheap Reynolds-
averaged Navier–Stokes (RANS) modeling typically gener-
ates strongly model-dependent flow information, far from
being universal for widespread utilization;1 meanwhile, the
direct numerical simulation (DNS) and large-eddy simula-
tion (LES) are prohibited in industry applications owing
to the extremely heavy workload. State-of-the-art measure-
ment techniques such as time-resolved tomographic particle
image velocimetry (PIV) enables the determination of the
spatio-temporal variation of three-dimensional velocity fields;
however, a trade-off decision has to be made in terms of
the factors among the temporal/spatial resolutions, the flow’s
physical domain, and the hardware performances. Neverthe-
less, the data assimilation (DA)2 technique, which integrates
the local measurement data (observations) and numerical mod-
eling, could augment the turbulence model prediction beyond
the spatially limited local measurements, yielding accurate
flow reproduction in the global flow field. Undoubtedly, the

a)Author to whom correspondence should be addressed: yzliu@sjtu.edu.cn

development of an efficient DA model for turbulent flows is
highly desirable.

DA is a mathematical technique that is initially devel-
oped in numerical weather prediction.3 It helps us to gather
the observation data at a given time and uses the equations of
the flow dynamics and thermodynamics to estimate the future
atmospheric state. From the last decade, DA has been sought
for turbulence prediction by augmenting the numerical model
with local observations. Among these studies, recalibrating
the RANS model constants according to the flow information,
using either a perturbation-based adaptation4 or a statistical
approach with an ensemble Kalman filter (EnKF),5 has yielded
significant improvements in the model performance. The for-
mer method calculates the approximate gradients of the cost
function numerically by perturbing each model constant sep-
arately and adjusts them in the descending direction, whereas
the latter determines an optimal set of model constants using
the EnKF from a large ensemble, which is obtained by precur-
sor simulations with random constant combinations (the same
approach was also used by Gao et al.6 for optimizing other
model parameters). Both methods rely on a large number of
tentative simulations, thus complicating the implementation
process and increasing the computational cost. Moreover, the
models might be formally wrong owing to the specific struc-
ture of the equations,7 which would frustrate the determination
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of a suitable constant combination even when any of the recal-
ibration procedures is used. In this regard, Oliver and Moser8,9

induced a stochastic extension to the Boussinesq hypothesis
based on Bayesian statistics, aiming at estimating the misfit
of the RANS model to a set of observations. Unfortunately,
the choice of stochastic extension and the dependency on the
relevant observations still remain critical. Xiao et al.10 intro-
duced uncertainty terms directly into the Reynolds stresses
to remedy the model-form error in a RANS simulation, with
parameters determined iteratively using the EnKF. As declared
by the authors, however, the inferred Reynolds stress field
was inaccurate although this approach was not computation-
ally intensive. Recently, the adjoint-based method has been
introduced in field inversion,11–13 in which a machine-learning
scheme is proposed to augment the performance of the RANS
model. This determines the parameters by calculating the gra-
dients of the cost function directly using the adjoint system
without any perturbation and tentative simulation; the model-
form error of the RANS simulation can thus be eliminated by
introducing a spatially distributed correction function into the
model equation. Although only simple exemplary cases on pre-
diction of the pressure coefficient have been presented, these
present broad prospects in the data assimilation of turbulent
flow fields.

The abovementioned efforts have primarily employed two
approaches for the model-form correction of the RANS sim-
ulation, i.e., EnKF (or similar Bayesian statistics) and the
adjoint-based method. The EnKF consists of serial propaga-
tion equations that are difficult to obtain explicitly in turbulent
flows. This leads to a statistical data-driving approach for the
determination of the Kalman gain, and the variance using a
large ensemble that is computationally expensive for high-
dimension systems,14 or the inclusion of reduced-order models
but with the introduction of extra model uncertainties.15 The
adjoint-based method is typically implemented in the discrete
form, within which the system is discretized before the need
of adjoint equation derivation. The choice of the discrete form
is primarily due to the difficulties in the derivation of the
adjoint equations and the embedding of the objective func-
tions when otherwise implemented in the continuous form.
However, the discrete adjoint method relies on the matrix
operation that requires large memory,16 thus restricting its use
mostly in two dimensional flows.11–13 The continuous adjoint
method, on the contrary, is solely equation driven with a set
of additional adjoint equations, and the corresponding bound-
ary conditions complemented to the primal equation set. This
requires a lower computational cost and can be easily imple-
mented in the existing CFD codes, as reported in topology
optimization.17

The present study concentrates on the development of a
generalized adjoint-based data assimilation (ABDA) model
for the reproduction of the global turbulent flow fields from
the local measurement data. A full set of adjoint equations
and the corresponding boundary conditions are derived, cou-
pled with the primal Navier–Stokes (N–S) equations and the
Spalart–Allmaras (SA) turbulence model.18 The model-form
error is corrected by a spatially distributed correction function
that is determined using the measured wall pressure distribu-
tion or the local flow velocity as observations. This ABDA

model is implemented in the open-source code, OpenFOAM
(http://openfoam.org). The flow over a cylinder with syn-
thetic observations, the free round jet19 (free-shear flow), the
flow over a hump20,21 (separation from a smooth surface),
and the full 3D flow over a wall-mounted cube22 (3D flow
with multiple separations and reattachments), all of which are
challenging for original RANS simulations, are employed to
successfully demonstrate the reliability and capacity of the
present ABDA model.

II. MATHEMATICAL FORMULATIONS
A. RANS fundamentals and correction

The present ABDA formulation is derived from the time-
independent SA model,18 in which the turbulent eddy viscosity
νt is determined

Uj
ν̃

xj
= P(ν̃, U) − D(ν̃, U) + T (ν̃, U), (1)

where U represents the Reynolds-averaged fluid velocity;
P(ν̃, U), D(ν̃, U), and T (ν̃, U) represent the production, dissi-
pation, and transport of the turbulence quantity ν̃, respectively,
which are expressed as

P(ν̃, U) = Cb1S̃ν̃, (2a)

D(ν̃, U) = Cw1 fw

(
ν̃

dw

)2

, (2b)

T (ν̃, U) =
∂

∂xj

[(
ν̃

σνt
+

ν

σνt

)
∂ν̃

∂xj

]
+

Cb2

σνt

(
∂ν̃

∂xj

)2

. (2c)

The turbulent eddy viscosity is determined by

νt = fν1 ν̃. (3)

The definitions of other quantities and the values of the model
constants involved in Eqs. (2) and (3), which can be found
in Ref. 18, are not shown here for clarity. However, the major
source of the modeling error is the structure of the model equa-
tion [Eq. (1)] rather than the model constants. Accordingly,
the reformulation of the model equation is necessary for the
accurate prediction of the turbulent flows.

The basic idea of the ABDA model is to construct a spa-
tially distributed function β(x) imposed on the production term
to correct the model-form error.12 The modified SA model thus
becomes

Uj
ν̃

xj
= β(x)P(ν̃, U) − D(ν̃, U) + T (ν̃, U). (4)

The dimensionless correction function β(x) changes the entire
balance of the equation when it deviates from unity. Indeed, the
correcting function can be added on other terms or introduced
as a source term in Eq. (1). However, the current formulation
is typically adopted in the field inversion problem owing to the
convenience in implementation.11–13

B. Derivation of the adjoint system

Following the idea of the adjoint-based topology opti-
mization,17 the present DA can be achieved by minimizing

http://openfoam.org/


105108-3 He, Liu, and Gan Phys. Fluids 30, 105108 (2018)

the cost function J, i.e., the discrepancy between the results
obtained by the corrected SA model [Eq. (4)] and those deter-
mined in the experiments, subject to the governing equations
and the SA model. This is expressed as

minimize J =
∫

x

[
ϕ(β) − ϕExp

]2
dx,

subject to R(β, U, ν̃) = 0, (5)

where ϕ represents the predicted variables selected as the
observation. R = (RNS,RC,RSA/ξ1) are the incompress-
ible steady-state N–S equations, the continuity equation, and
the model equation presented in Eq. (4), respectively. ξ1 is
a dimension converter of dimensions [L2] and value unity
to cope with the dimensional inconsistency. We thus obtain
a constraint optimization problem solvable by introducing a
Lagrange function L

L = J +
∫
Ω

(V , q, ω̃)RdΩ. (6)

Here, the adjoint velocity V , the adjoint pressure q, and the
adjoint turbulence quantities ω̃ are introduced as the Lagrange
multipliers.Ω represents the computational domain. The deter-
mination of the optimal β distribution can be achieved by
obtaining the sensitivities of the Lagrange function L with
respect to the state variables. Following Othmer,17 the total
variation of L must be calculated

δL = δβL + δUL + δpL + δν̃L. (7)

This can be simplified by choosing the appropriate adjoint
variables V , q, and ω̃ to deplete the variation with respect to
the state variables

δUL + δpL + δν̃L = 0. (8)

Therefore, the sensitivities can be obtained using the variation
in L with respect to β

δL = δβJ +
∫
Ω

(V , q, ω̃)δβRdΩ. (9)

According to Eq. (8), the adjoint equation associated with the
adjoint state variables V , q, and ω̃ can be derived. This reads

δUJ + δpJ + δν̃J +
∫
Ω

(V , q, ω̃)δURdΩ

+
∫
Ω

(V , q, ω̃)δpRdΩ +
∫
Ω

(V , q, ω̃)δν̃RdΩ = 0 (10)

with

δURNS = δUj
∂Ui

∂xj
+ Uj

∂δUi

∂xj
−

∂

∂xj

[
(ν + νt)

∂δUi

∂xj

]
, (11a)

δURC = −
∂δUj

∂xj
, (11b)

δURSA = δUj
∂ν̃

∂xj
, (11c)

δpRNS =
∂δp
∂xi

, (12a)

δpRC = 0, (12b)

δpRSA = 0, (12c)

δν̃RNS = −
∂

∂xj

(
fν1δν̃

∂Ui

∂xj

)
, (13a)

δν̃RC = 0, (13b)

δν̃RSA = Uj
∂δν̃

∂xj
−

∂

∂xj

[
δν̃

σνt

∂ν̃

∂xj
+

(
ν̃

σνt
+

ν

σνt

)
∂δν̃

∂xj

]

− 2
Cb2

σνt

∂δν̃

∂xj

∂ν̃

∂xj
− βCb1S̃δν̃ + 2Cw1fw

δν̃

dw
2
ν̃. (13c)

It is noteworthy that f ν1, f w, and S̃ are regarded as model
coefficients, while their variations with respect to the state vari-
ables are neglected for simplification. The deduction of the
adjoint system is similar to the description by Othmer;17 the
detailed process is thus not included herein. The adjoint equa-
tions and the corresponding boundary conditions are shown as
follows. It is noteworthy that the fluid density is absorbed in
the primal and adjoint pressures.
Adjoint equations:

Vj
∂Uj

∂xi
− Uj

∂Vi

∂xj
−

∂

∂xj

[
(ν + νt)

∂Vi

∂xj

]

+
∂q
∂xi
−
ν̃

ξ1

∂ω̃

∂xi
+
∂JΩ
∂U
= 0, (14a)

∂Vj

∂xj
−
∂JΩ
∂p
= 0, (14b)

−Uj
∂ω̃

∂xj
−

∂

∂xj

[(
ν̃

σνt
+

ν

σνt

)
∂ω̃

∂xj

]
+

1 + 2Cb2

σνt

∂ν̃

∂xj

∂ω̃

∂xj

+

(
2

Cb2

σνt

∂2 ν̃

∂xj
2
− βCb1S̃ + 2Cw1fw

ν̃

dw
2

)
ω̃

+ ξ1fν1
∂Vi

∂xj

∂Ui

∂xj
− ξ1

∂JΩ
∂ν̃
= 0. (14c)

Adjoint boundary conditions:
For the inflow, the wall and far-field boundaries where the
primal state variables U and ν̃ are specified as follows,

Vτ = 0, Vn = −
∂JΓ
∂p

, (15a)

∂q
∂xi
· n = 0, (15b)

ω̃ = 0. (15c)

On the outflow boundaries where the wall-normal gradients of
the primal state variables U and ν̃ are zero,

Un · Vτ + (ν + νt)

(
∂Uτ

∂xi
· n

)
+
∂JΓ
∂Uτ

= 0, (16a)

Un · Vn + (ν + νt)

(
∂Un

∂xi
· n

)
+
ν̃ω̃

ξ1
+
∂JΓ
∂Un

− q = 0, (16b)

Unω̃ +

(
ν̃

σνt
+

ν

σνt

) (
∂ω̃

∂xi
· n

)
− ξ1fν1

(
Vi
∂Ui

∂xj
· n

)
+ ξ1

∂JΓ
∂ν̃
= 0, (16c)
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with

J =
∫
Γ

JΓdΓ +
∫
Ω

JΩdΩ, (17)

where Γ represents the boundary of the computational domain.
Equations (15) and (16) provide the boundary conditions

for V , q, and ω̃. It is noteworthy that Eq. (16a) only speci-
fies the tangential component of the adjoint velocity Vτ on
the outflow boundary. A straightforward treatment for the nor-
mal component Vn is the zero-gradient condition. However,
Eq. (16a) provides a tangential component condition that is
highly sensitive to the primal velocity; this induces the serious
instability for the adjoint equations. Fortunately, this outflow
boundary condition contributes little to the adjoint flow field
inside the domain, while the adjoint flow field largely origi-
nates from the source term ∂JΩ

∂U in Eq. (14a) and the boundary
condition on the wall [Eq. (15a)], and propagates upstream
in a direction opposite to the primal flow. The zero-tangential
component of the adjoint velocity is a good choice to signif-
icantly improve the numerical stability without deterioration
on the results. The second source of the numerical instability
in the computation is the adjoint transpose convection (ATC)
term

ATCi = Vj
∂Uj

∂xi
. (18)

Here, the formulation is different from that derived by
Othmer.17 Schramm et al.23 reported that integration by parts
is unnecessary in the derivation of the ATC term; this leads to
the current more stable adjoint momentum equation. Georgios
et al.24 damped the ATC contribution on a cell-by-cell basis in
the regions where the projected diagonal contribution for an
implicit ATC term is negative, and claimed that this guaranteed
the diagonal dominance of the matrix, and rendered the solu-
tion more stable. However, this criterion is not universal and is
conservative in certain cases as much of the ATC contribution
is damped. In the present study, the instability is eliminated by
the additional numerical dissipation introduced by the first-
order upwind scheme applied for the convection term of the
adjoint momentum equations, while the primal equations still
retain the second-order accuracy. Figure 2 shows that the first-
order scheme has little effect on the accuracy of the final result,
compared to the second-order scheme. The third source of the
numerical instability is the third term in Eq. (14c), where the
explicit gradient of ω̃ is involved (it must be treated explicitly
when coded in OpenFOAM). In the present study, the gradi-
ent of ω̃ is reconstructed from its surface flux, serving as the
computation on a pseudo staggered grid. This helps removing
the “wiggle behaviors” and improving the numerical stability.

C. Specialization to wall-pressure assimilation

Using the pressure coefficient on the wall as the observa-
tion data, the cost function J is presented as

J = ξ2

∫
Γw

(
p − pExp

0.5U2
∞

)2

dΓw + αφ
ξ2
√
ξ1

∫
Ω

(β − 1)2dΩ. (19)

Here, pExp is the measured pressure on the wall boundary. ξ2

is a dimension converter of dimensions [L3 ·T−3] and value
unity to ensure dimensional consistency. U∞ denotes the free-
stream velocity. α is the dimensionless weighting coefficient

specifying the relative importance of the second term in the
cost function. φ is the blending function defined as

φ = 0.5

(
1 −

β − 1
| β − 1| + ε

)
, (20)

with a small positive constant ε to prevent the denominator
from zero. In this formulation, φ becomes unity in the region
where β < 1, while the second term in Eq. (19) is activated.
With this mechanism, the solution is pushed toward a large β
value such that the steadiness of the primal flow is guaranteed.
Therefore, the sources in the adjoint equations and boundary
conditions become

∂JΩ
∂U
= 0, (20a)

∂JΩ
∂p
= 0, (20b)

∂JΩ
∂ν̃
= 0, (20c)

∂JΓ
∂Uτ

= 0,
∂JΓ
∂Un

= 0, (20d)

∂JΓ
∂p
= 8 · ξ2

pExp − p

U4
∞

, (20e)

∂JΓ
∂ν̃
= 0. (20f)

In the adjoint system, the adjoint flow originated from the
normal adjoint velocity on the wall boundary, while the adjoint
turbulent quantities ω̃ are produced by the source term [the
fourth term in Eq. (14c)]. Both fields are convected upstream
by the adjoint system.

D. Specialization to velocity assimilation

In experiments, the flow velocity is typically obtained on
straight lines such as using a hot-wire anemometer and laser
Doppler velocimetry (LDV), or in limited two-dimensional
(2D) planes such as using planar particle image velocimetry
(planar-PIV) inside the flow domain. In addition, the measured
velocity is typically limited to one or two components. In the
present study, the streamwise component of the velocity Ux

on several straight lines inside the domain is used as the obser-
vation data; the cost function J can be subsequently presented
as

J = ξ2
√
ξ1

∫
Ω

M

(
Ux − Ux,Exp

U∞

)2

dΩ + αφ
ξ2
√
ξ1

∫
Ω

(β − 1)2dΩ.

(21)

Here, a masking function M is defined to specify the region
where the observation data are obtained. The values of M at the
cell centers close to the lines are set to unity and remain zero
in other regions. Therefore, the sources in the adjoint equation
and boundary conditions become

∂JΩ
∂U
= 2M

ξ2
√
ξ1

U − UExp

U2
∞

, (22a)

∂JΩ
∂p
= 0, (22b)

∂JΩ
∂ν̃
= 0, (22c)
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∂JΓ
∂Uτ

= 0,
∂JΓ
∂Un

= 0, (22d)

∂JΓ
∂p
= 0, (22e)

∂JΓ
∂ν̃
= 0, (22f)

with the assignment

Uy,Exp = MUy, (23a)

Uz,Exp = MUz, (23b)

at each iteration to ensure that only the streamwise component
of the velocity is assimilated. In this case, both the adjoint
flow and the turbulent quantities ω̃ originated from the internal
source.

E. Correcting function determination

Once the adjoint state variables are obtained, the sensitiv-
ities of the Lagrange function L with respect to the correcting
function β can be computed from Eq. (9) for both the cases of
wall-pressure and velocity assimilations

∂L
∂ β
= 2αφ

ξ2
√
ξ1

(β − 1) −
Cb1S̃ν̃ω̃
ξ1

. (24)

As the sensitivity with respect to the state variables is forced
to vanish [Eq. (8)], the correction function β can be adjusted
gradually according to Eq. (24) to minimize the cost function.
This is achieved using the steepest descent algorithm25 at each
iteration

β = β − λ
∂L
∂ β

, (25)

with λ being the step length that can be estimated using

λ = (0.01 ∼ 0.1)/

(
∂L
∂ β

)
max

. (26)

This indicates that β has an adjustment of 0.01–0.1 at each iter-
ation. The numerical instability benefits from a smaller value
of λ at the expense of the convergence speed. As the primal
and adjoint equations, and the adjustment of β are coupled at
each iteration in the present study, a small value of λ is required
for the accurate determination of the sensitivity. Therefore, the
optimization of the step length is not implemented presently.
β converges to the optimal distribution as the residual, i.e.,
the difference between the predicted and observed data, or the
maximum value of the sensitivity, decreases below a specified
value.

III. TEST CASES
A. Flow over a cylinder

The flow over a two-dimensional cylinder is employed in
this study to demonstrate the effects of different discretization
schemes applied to the adjoint momentum equations on the
assimilation results. The Reynolds number based on the cylin-
der diameter D is Re = 20 000. A two-dimensional domain
extended 5D, 16D, and 30D in the upstream, lateral, and
downstream directions, respectively, is employed with 50 000
grid cells which achieve the grid independence. Free-slip and

zero-gradient conditions are applied on the lateral and outflow
boundaries, respectively, while all the boundary conditions for
the adjoint variables are set according to the discussion in
Sec. II. The default SA simulation is performed with ν̃ = 0.001
on the inflow boundary. Subsequently, another simulation with
the SA mode is conducted with an inflow boundary condition
ν̃ = 0.01 to produce the reference data (synthetic observa-
tion); this produces a recirculation bubble in the cylinder wake
that is much shorter than that in the former simulation with
ν̃ = 0.001. The objective of the ABDA model used in this
case is to reproduce the flow field in the reference con-
figuration using the inflow condition ν̃ = 0.001. Using the
reference synthetic data as the observation makes the con-
vergence easier to compare the effects of different discretize
schemes. The observation data are extracted at 2D down-
stream of the cylinder from the reference data. The convec-
tion terms in all the primal equations are discretized using
a linear-upwind scheme, which is derived from the upwind
scheme and returns the upwind weighting factors and applies
an explicit correction to achieve the boundedness and second-
order accuracy (named second-order scheme for simplifica-
tion), while both the second-order scheme and first-order
upwind are used for the adjoint momentum equations for com-
parison. α is set to 1 × 10−6 to eliminate any constraint on the
β determination.

Figures 1(a) and 1(b) present the distributions of the initial
adjoint state variables (the velocity magnitude and turbulence
quantities) calculated using different discretization schemes
before the update of β. The difference in the adjoint state vari-
able distributions is expectably small. The adjoint velocities
remain significantly large near the cylinder and produce two
abreast recirculation bubbles in the wake; the adjoint velocities
are convected upstream in the far-cylinder region. Addition-
ally, large ω̃ values are observed in the cylinder shear layer. It
is noteworthy that negative values of ω̃ are produced, unlike
the primal counterpart ν̃ that is always positive. In addition,
both the adjoint variables decrease to extremely small (not
shown here) as the computation converges, and the differ-
ence between the simulation result and the observation (i.e.,
origin of the source in the adjoint equations) is eliminated.
Figure 1(c) presents the converged β distributions calculated
using different discretization schemes that are the optimal β
distributions for the flow reproduction. A significant differ-
ence in the β distributions is observed using the first- and
second-order schemes, even though the initial adjoint vari-
ables are similar. This is because the adjoint method drives
the cost function to the local minima; thus, the resulting solu-
tion is not unique.26 It is also noteworthy that because the
observation data are obtained by imposing different ν̃ on the
inflow boundary, different eddy viscosity distributions will be
resulted in the entire domain. The present results indicate that
the approximation of the flow field using the ABDA model is
possible without the complete recovery of the eddy viscosity
distribution.

The quantitative comparison of the assimilation results
using different discretization schemes are presented in Fig. 2.
While the default SA simulation yields a result that devi-
ates significantly from the reference experimental data, good
agreement on the assimilated velocity and pressure coefficient
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FIG. 1. Distributions of the adjoint
variablesν (a), ω̃ (b), and the correction
coefficient β (c) in the cylinder wake.

FIG. 2. Streamwise velocity [(a) x/D = 1 and (b) x/D = 2] and pressure coef-
ficient [(c) on the cylinder] distributions calculated using the SA model and
ABDA model with the Ux constraint. (The reference observational data here
are produced using the default SA simulation with different inflow boundary
conditions.)

with the reference data is obtained using both first- and second-
order schemes. This indicates that both the β distributions
shown in Fig. 1(c) are well suited for the flow field repro-
duction, even though they differ significantly from each other.
It is important to note here that the optimal β distributions
change the entire balance of the turbulence in the flow and thus
improve the model prediction. The multi-optimal problem may
stem from the eddy viscosity hypothesis of the RANS model,
which reduces the Reynolds stress tensor to an eddy viscosity
scalar. The time-lasting effects of the production mechanism
observed by Meldi27 is not considered recently as the present
formulation is proposed only for steady simulations. Figure 2
also demonstrates that the first-order discretization schemes
applied on the adjoint equations do not deteriorate the assim-
ilation results much, when the primal equations are solved
precisely. Therefore, the first-order upwind scheme is applied
on the adjoint equations for all the following cases for numeri-
cal stability, while the second-order scheme is retained for the
primal equation.

B. Free round jet

The free round jet is an important flow configuration to
evaluate the model in the shear flow. It is well known that
RANS models cannot capture the basic flow features in round
jets, thus exhibiting poor performance in predicting the mean
flow field.28 The free jet issued from a long pipe at the Reynolds
number based on the pipe diameter D and bulk velocity U0,
i.e., Re = 6,000, which has been studied experimentally and
numerically in our previous research,19 is employed. A quasi
two-dimensional computational domain with maximum diam-
eter 28D and length 32D (50 000 grid cells after the grid
independent test) is used for the present ABDA model. The
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FIG. 3. Computational domain of the free jet (a) and the implantation of the
experimental data (b).

FIG. 4. Streamwise velocity on the jet centerline calculated using the SA and
ABDA models.

inflow boundary is extended 1D upstream of the nozzle exit
to eliminate the boundary effect on the results, as shown in
Fig. 3(a). A precursor simulation is conducted to obtain the
inflow boundary condition for the primal state variables. A
co-flow with 2% of the jet bulk velocity is imposed to improve
the numerical stability. The free-slip and zero-gradient con-
ditions are imposed on the far-field and outflow boundary,
respectively, for the primal state variables. All the boundary
conditions for the adjoint variables are set according to the dis-
cussion in Sec. II. Figure 3(b) shows various implantations of
the PIV data in the assimilation: the first constraint is using the
observation at x/D = 6, while the second constraint is using the
observations at x/D = 6 and 10, to improve the performance.
Two nearest columns of the grid cell at both sides of the spec-
ified radial line (x/D = 6 or 10) are selected, on which the
value of the M equals unity and Ux ,Exp equals the correspond-
ing PIV data. The third constraint uses the PIV data on the
jet centerline, while the nearest cells are selected to set the
masking function and observation. α is set to 1 × 10−6 to elim-
inate any constraint on the β determination. Note here that the
observation is set on the cell center of the grid; this will indeed
induce error while the cell centers are not exactly on the jet
centerline.

Figure 4 shows the streamwise velocity along the jet
centerline determined by PIV, the default SA model, and
the ABDA model with different observations. It is obvious
that the result predicted using the SA model deviates signif-
icantly from the PIV data at x/D > 6. The best agreement
is obtained using the ABDA model with the observations at
x/D = 6 and 10. The assimilation results with other obser-
vations also exhibit significant improvements compared with
that of the default SA model. However, using the observa-
tion at only x/D = 10 shows an insufficient constraint in the

FIG. 5. Transverse profiles of the streamwise velocity in
the free jet calculated using the SA and ABDA models.
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FIG. 6. Correction coefficient β distributions in the free jet calculated using
different Ux constraints. (a) Ux constraints at x/D = 10. (b) Ux constraints at
x/D = 6 and 10. (c) Ux constraints on the jet centerline.

region 6 < x/D < 10, where the streamwise velocity is slightly
overpredicted. This indicates that an appropriate selection of
the observations is necessary to impose a sufficient constraint
on the assimilated field. In the present jet, the observation at
x/D = 6 is a good constraint to accurately capture the fea-
ture of the jet transition downstream of the potential core,
and the observation at x/D = 10 is required for the predic-
tion of the velocity decay beyond the transition region. A
detailed quantitative comparison of the streamwise velocity
in the cross sections is presented in Fig. 5, showing the exces-
sive spread and decay of the jet predicted using the SA model
as well as the accurate reproduction of the global field using the
ABDA model.

Figure 6 shows the distributions of the correcting func-
tion β computed with different observations. The distribution

FIG. 7. Turbulence eddy viscosity distributions in the free jet calculated using
(a) the SA model and the ABDA model with different Ux constraints. (b)
Assimilation with Ux constraints at x/D = 10. (c) Assimilation with Ux con-
straints at x/D = 6 and 10. (d) Assimilation with Ux constraints on the jet
centerline.

patterns are similar except the absolute values. A significantly
large value of β is observed near the wall boundary and the
nozzle tip, while a small value is produced in the jet shear
layer. Obviously, the small value of β is responsible for the
decrease in the turbulence eddy viscosity, as shown in Fig. 7,
and thus the jet decay rate beyond the jet potential core. It
is noteworthy that a region with a large β exists close to the
inflow boundary (Fig. 6) owing to the boundary condition of
the adjoint variables. However, this region has little effect on
the eddy viscosity distribution (Fig. 7) owing to the low shear
rate of the flow.

C. Flow over a hump

The two-dimensional flow over a wall-mounted hump
(without flow control) with the available original data20,21

is employed in this study to test the ABDA model, in
the prediction of flow separation from a smooth surface,
and the subsequent reattachment and boundary recovery.
This particular case has proven to be challenging for all
known RANS models (NASA Turbulence Modeling Resource,
https://turbmodels.larc.nasa.gov/), which tend to underpredict
the turbulent shear stress in the separated shear layer and
therefore tend to predict too long a separation bubble. The
Reynolds number based on the freestream velocity U0 and the
hump chord C is 936 000. The inflow boundary condition is
imposed at x/C = −2.14 with a boundary layer thickness of
0.08C and a velocity profile obtained by a precursor SA sim-
ulation. The computational domain is presented in Fig. 8(a),
where the location of the far-field boundary (free-slip) is deter-
mined 0.7C from the bottom wall to fit the blockage in the
experiment; this treatment is also applied in NASA Turbulence
Modeling Resource and in the study by Krishnan et al.29 to
reduce the domain size with respect to the measurement con-
figuration. A precursor SA simulation is conducted to obtain
the desired boundary layer thickness on the inflow bound-
ary, while the walls and outflow boundaries are set as no-slip
and zero-gradient conditions, respectively. All the boundary
conditions for the adjoint variables are set according to the
discussion in Sec. II. A set of two-dimensional grids with

FIG. 8. Computational domain of the hump flow (a) and the implantation of
the experimental data (b).

https://turbmodels.larc.nasa.gov/
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FIG. 9. Pressure coefficients on the hump calculated using the SA and ABDA
models.

0.1 × 106 cells (after the grid independent test) is generated
as shown in Fig. 8(b), with the experimental data (stream-
wise component of the velocity) implanted at x/C = 0.8, 1.0,
and 1.3 as the observations (Ux constraint). It is notewor-
thy that three columns of the grid cell at each implantation
location are assigned with the experimental data to demon-
strate that a slight extension of the experimental data to the
nearby cells will not influence the assimilation result sig-
nificantly. Additionally, the pressure coefficient on the sur-
face at 0 < x/C < 1.5 (p constraint) is employed as another
observation to test the performance of the ABDA model for
the flow field reproduction. In the present case, the α value
is also set to 1 × 10−6 to eliminate any constraint on the
β determination.

The pressure coefficient on the surface predicted by the
SA model and the ABDA model with Ux and p constraints is
presented in Fig. 9. The SA model yields a pressure coefficient

exhibiting a significant disagreement with the experimental
data in the region 0.7 < x/C < 1.3, owing to its problematic
behavior in the flow separation. The prediction is significantly
improved using the ABDA model with both constraints. How-
ever, a slight deviation is still observed near x/C = 0.8, resulting
from the error in the flow field production [Fig. 10(c)]. It is
noteworthy that the agreement of the pressure coefficient with
the experimental data is less impressive as that determined
using the discretized adjoint method;12 this is attributed to
the uncertainty in the sensitivity computation owing to several
mathematical simplifications in the ABDA formulation and
the first-order scheme employed in the adjoint equations.

The streamwise velocity in the flow separation and reat-
tachment region reproduced by the SA and ABDA models
is presented in Fig. 10. We observed that the velocity is sig-
nificantly underestimated at x/C > 1.0, indicating too long a
recirculation bubble determined by the SA model; this agrees
with the SA simulation results shown in the NASA Turbulence
Modeling Resource database. The ABDA model with the Ux

constraint reproduces the recirculation bubble accurately while
maintaining the flow field in the separation region nearly unaf-
fected. The result obtained using the ABDA model with the p
constraint still exhibited a large gap compared with the exper-
imental data in the region of boundary recovery. This suggests
that the velocity inside the domain is better for the assim-
ilation observation. However, it is noteworthy that both the
SA and ABDA models failed to reproduce the near-wall flow
at x/C = 0.8 [Fig. 10(c)] even though the velocity there has
been constrained to the experimental data. This is likely from
the defect of the eddy-viscosity hypothesis used in the RANS
model; this also gives rise to the local disagreement of the
pressure coefficient with the experimental data as mentioned
before.

Figure 11 presents the distinctly different β distributions
computed using the ABDA model using different observa-
tions. This evidences the multisolution property of the adjoint
method that drives the result to the nearest local minima. It

FIG. 10. Streamwise velocity profiles in hump flow
calculated using the SA and ABDA models.
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FIG. 11. Correction coefficient β distributions in hump flow calculated using
(a) Ux and (b) pressure (p) constraints.

is noteworthy that the negative value of β is observed in both
cases, indicating the turbulence damping and thus the reduc-
tion in the eddy viscosity. The correction of the SA model
using the Ux constraint primarily occurs in the separated shear
layer, as shown in Fig. 11(a); this is reasonable as it is where
the observation data are extracted and where the flow is highly
sensitive. Alternatively, the correction using the p constraint
exists largely near the hump wall with the strongest turbulence
damping, as shown in Fig. 11(b). This tends to delay the flow
separation and decrease the length of the recirculation bubble.
However, this effort is hardly sufficient to correct the flow in
the reparation region even though the pressure coefficient on
the hump is accurately predicted, as shown in Figs. 9 and 10. In
addition, too small a β value deteriorates the robustness of the
adjoint equations, giving rise to the requirement of a smaller
step size λ in the steepest descent algorithm and thus a longer
convergence time. The eddy viscosity distributions predicted
by the SA and ABDA models are presented in Fig. 12. As
shown, the ABDA model with the Ux constraint yields a sig-
nificant modification on the eddy viscosity in the reparation
region, while the ABDA model with the p constraint has very
limited effects. This indicates that the Ux constraint strategy is
more efficient for the flow field reproduction using the ABDA
model.

FIG. 12. Turbulence eddy viscosity distributions in hump flow calculated
using (a) the SA model and the ABDA model with (b) Ux and (c) pressure (p)
constraints.

D. Three-dimensional flow over a wall-mounted cube

The flow over a wall-mounted cube in a confined
channel22 at Re = 105 is employed to demonstrate the capa-
bility of the present ABDA model in three-dimensional flows.
This flow is featured by multiple separations and reattach-
ments of the flow and shear-layer interactions, which are chal-
lenging for RANS simulations. The full set of experimental
data can be found in the Journal of Fluid Engineering Data-
bank (https://scholar.lib.vt.edu/ejournals/JFE/data/JFE/). The
computational domain employed in this study is presented
in Fig. 13(a). A cube of size D is mounted in a 2D-high
channel. The channel width is set to 16D to eliminate the
lateral confinement to the flow. A precursor SA simulation
in a fully developed channel flow is conducted to obtain the
inflow boundary condition for the primal variables. The cube
surface, and the upper and lower walls are set as the no-slip
wall, while free-slip and zero-gradient conditions are applied
to the lateral far-field to mimic the experimental condition.
All the boundary conditions for the adjoint variables are set
according to the discussion in Sec. II. A structured grid with
1 × 106 cells (after the grid independent test, larger number of
cells are also solvable using this ABDA model) is employed
for demonstration purposes, which is extremely memory con-
suming or even problematic when used with the discretized
adjoint method. Figure 13(b) presents the implantation strategy
of the experimental data, with the streamwise component of the
velocity at x/D = 1, 2, 4 in the center plane, and x/D = 1, 1.5 at
z/D = ± 0.5 set to the single column of cells as the observa-
tions. In the assimilation, α [Eq. (21)] is set to 3× 10−4 to
drive the solution toward a larger β value to eliminate the
flow unsteadiness. The selection of α is challenging as a small
α value will induce the flow unsteadiness and cause conver-
gence problem (unlike the robustness problem mentioned in
Sec. III C) for the adjoint equations, while a largeα value drives
β toward unity and thus reduces the correction effect to the

FIG. 13. Computational domain of the 3D cube flow (a) and the implantation
of the experimental data (b).

https://scholar.lib.vt.edu/ejournals/JFE/data/JFE/
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FIG. 14. Streamwise velocity profiles at z/D = 0 in 3D
cube flow calculated using the SA and ABDA models.

turbulence production. α can be estimated by comparing the
first and second terms in Eq. (21) and is decreased gradually in
the computation before the flow unsteadiness occurs. It is note-
worthy that the constraint of the small β value by increasing α
has two different impacts on the final result, which cannot be
controlled explicitly. The first impact is forcing β to increase
at the expense of the result accuracy, while the second impact
is driving β to another solution that will minimize the cost
function and provide satisfactory results.

FIG. 15. Streamwise velocity profiles at z/D = 0.5 in 3D cube flow calculated
using the SA and ABDA models.

Figure 14 shows the profiles of the streamwise velocity
on the center plane. The SA model also yields a result with
too long a recirculation bubble while the streamwise veloci-
ties at 3 ≤ x/D ≤ 8 are severely underestimated. The ABDA
model has largely amended this discrepancy while the pre-
dicted streamwise velocities agree reasonably well with the
experimental data. Figure 15 shows the significant improve-
ment in the velocity prediction on the plane z/D = 0.5 at
several streamwise locations. On this plane, the ABDA results
exhibit a slight discrepancy at x/D = 1.5, 2.0, and 2.5 com-
pared with the experimental data. Although the velocity is
constrained to the experimental data at x/D = 1.5 on this plane,
the ABDA reproduction of the flow is less impressive than is
expected. This may be attributed to the error in the sensitivity
determination, or the β constraint owing to a large α value.
Nevertheless, the improvement with respect to the default SA
model is significant.

The isosurfaces of the converged β are presented in
Fig. 16, with the dark gray representing β = 0.5 and the

FIG. 16. Isosurface of the correction coefficientβ = 0.5 (colored by dark gray)
and β = 5 (colored by the velocity magnitude) in 3D cube flow calculated with
α = 3 × 10−4.
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FIG. 17. Turbulence eddy viscosity distributions at z/D = 0 in 3D cube
flow calculated using (a) the SA model and (b) the ABDA model with
α = 3 × 10−4.

velocity-colored surface representing β = 5. This shows that
the ABDA model yields a low value of β above the cube, thus
decreasing the eddy viscosity and inducing the flow unsteadi-
ness. Owing to the constraint using a large α value, β remains
at this safe value above the cube while the flow is steadily main-
tained, giving rise to the successful assimilation. The resultant
eddy viscosity is presented in Fig. 17. It is shown that using
the ABDA model, the eddy viscosity downstream of the cube
increased substantially. Meanwhile, a significant attenuation
of the eddy viscosity exists above the cube owing to the low
value of β.

Figure 18 shows the β distribution and the flow field on
the center plane using α = 1 × 10−6, which imposes a little
constraint on the β determination. In this case, a large scale
of β distributed above the cube is lower than 0.5. This results
in the excessive attenuation of the eddy viscosity and induces
strong oscillations of the flow in the first separation region
above the cube. This oscillation (unable to converge) gives
rise to the unsteadiness in the second separation region behind
the cube and drives the solution toward an undesired direction
far from convergence.

FIG. 18. Isosurface of the correction coefficient β = 0.5 (colored by dark
gray) and β = 5 (colored by the velocity magnitude) and the streamlines in
3D cube flow calculated with α = 1 × 10−6 (not converged).

IV. CONCLUDING REMARKS

The present study proposed a generalized data assimi-
lation model (the ABDA model) for turbulent flows based
on the continuous adjoint formulation. The SA turbulence
model was modified by adding a correction function β as
a spatially varying coefficient to the turbulence production
term. A full set of adjoint equations and the corresponding
boundary conditions were derived, coupled with the primal
N–S equations and the SA model. The model-form error was
thus corrected by optimizing the β distribution to minimize
the discrepancy between the predictions and the observations.
A constraint was applied to drive β toward a large value to
avoid the flow unsteadiness owing to low eddy viscosity. The
present ABDA model is expected to be applicable to vari-
ous flow conditions unsolvable by simple optimizations of
the model constant. This model is fully equation driven and
is thus computationally cheaper than the discretized adjoint
method, as well as convenient to be implemented in the existing
CFD codes.

The test in the cylinder wake showed that the first-order
scheme applied to the adjoint equations exhibited little effect
on the final assimilation results but drove β to another solution
that can also minimize the cost function. The configurations of
the free jet and hump flows demonstrated the capability of the
present ABDA model for the flow reproduction in shear and
separation flows. The present proposed Ux-constraint strategy
is more efficient for the flow assimilation than the p-constraint
method previously used by others. The three-dimensional cube
flow also evidenced that the present ABDA model is applica-
ble to heavy assimilation work with a large number of grid
cells.

The SA turbulence model is one of the models that can
be implemented in this adjoint approach. In the present frame-
work, the turbulence model can be also eliminated by solving
directly an optimal eddy viscosity νt or Reynolds stress distri-
bution rather than the correction function β. The only differ-
ence is the computational cost when the assimilation variable
(νt , β or Reynolds stress) converges from the initial state to
the optimal state. Using an appropriate turbulence model can
significantly decrease this cost. The present ABDA model has
been proposed only for the assimilation of steady-state flows.
It minimizes the error between the assimilation result and the
observations in the sense of time-averaging. It is not suitable
to be applied directly in unsteady simulations. However, the
unsteady version of the ABDA model can be derived accord-
ing to the present procedure with the time-dependent term in
both the primary and adjoint equations. We have noticed that
this unsteady adjoint formulation requires much more com-
putational efforts when integrated forward and backward in
time repeatedly until convergence. Therefore, an efficient and
accurate assimilation approach for unsteady flows is desired,
which will be our future work.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support for
this study from the National Natural Science Foundation of
China (No. 11725209).



105108-13 He, Liu, and Gan Phys. Fluids 30, 105108 (2018)

1K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence modeling in the age
of data,” e-print arXiv:1804.00183 (2018).

2K. J. H. Law, A. M. Stuart, and K. C. Zygalakis, “Data assimilation: A
mathematical introduction,” e-print arXiv:1506.07825 (2015).

3I. M. Navon, “Data assimilation for numerical weather prediction: A
review,” in Data Assimilation for Atmospheric Oceanic and Hydrologic
Applications (Springer Berlin, Heidelberg, 2013), p. 21.

4Z. Li, H. Zhang, S. C. C. Bailey, J. B. Hoagg, and A. Martin, “A data-driven
adaptive Reynolds-averaged Navier–Stokes k—ωmodel for turbulent flow,”
J. Comput. Phys. 345, 111 (2017).

5H. Kato and S. Obayashi, “Statistical approach for determining parameters
of a turbulence model,” in 15th International Conference on Information
Fusion, Singapore, 2012 (IEEE, Singapore, 2012).

6X. Gao, Y. Wang, N. Overton, M. Zupanski, and X. Tu, “Data-assimilated
computational fluid dynamics modeling of convection-diffusion-reaction
problems,” J. Comput. Sci. 21, 38 (2017).

7J. Larsson and G. Iaccarino, “Modeling of structural uncertainties in
Reynolds-averaged Navier-Stokes closures,” Phys. Fluids 25, 110822
(2013).

8S. H. Cheung, T. A. Oliver, and E. E. Prudencio, “Bayesian uncertainty
analysis with applications to turbulence modeling,” Reliab. Eng. Syst. Saf.
96, 1137 (2011).

9T. A. Oliver and R. D. Moser, “Bayesian uncertainty quantification applied
to RANS turbulence models,” J. Phys.: Conf. Ser. 318, 042032 (2011).

10H. Xiao, J. L. Wu, J. X. Wang, R. Sun, and C. J. Roy, “Quantifying and reduc-
ing model-form uncertainties in Reynolds-averaged Navier–Stokes simu-
lations: A data-driven, physics-informed Bayesian approach,” J. Comput.
Phys. 324, 115 (2015).

11A. P. Singh and K. Duraisamy, “Using field inversion to quantify functional
errors in turbulence closures,” Phys. Fluids 28, 045110 (2016).

12A. P. Singh, S. Medida, and K. Duraisamy, “Machine-learning-augmented
predictive modeling of turbulent separated flows over airfoils,” AIAA J. 55,
2215 (2017).

13E. J. Parish and K. Duraisamy, “A paradigm for data-driven predictive mod-
eling using field inversion and machine learning,” J. Comput. Phys. 305, 758
(2016).

14H. Kato, A. Yoshizawa, G. Ueno, and S. Obayashi, “A data assimilation
methodology for reconstructing turbulent flows around aircraft,” J. Comput.
Phys. 283, 559 (2015).

15M. Meldi and A. Poux, “A reduced order model based on Kalman filtering
for sequential data assimilation of turbulent flows,” J. Comput. Phys. 347,
207 (2017).

16S. Nadarajah and A. Jameson, “A comparison of the continuous and discrete
adjoint approach to automatic aerodynamic optimization,” Can. J. Earth Sci.
43, 1445 (2000).

17C. Othmer, “A continuous adjoint formulation for the computation of topo-
logical and surface sensitivities of ducted flows,” Int. J. Numer. Methods
Fluids 58, 861 (2008).

18P. Spalart and S. Allmaras, “A one-equation turbulence model for aerody-
namic flows,” Rech. Aerosp. 1, 5 (1994).

19C. He, Y. Liu, and S. Yavuzkurt, “Large-eddy simulation of circular
jet mixing: Lip- and inner-ribbed nozzles,” Comput. Fluids 168, 245
(2018).

20D. Greenblatt, C. S. Yao, K. B. Paschal, J. Harris, N. W. Schaeffler, and
A. E. Washburn, “Experimental investigation of separation control part 1:
Baseline and steady suction,” AIAA J. 44, 2820 (2006).

21J. W. Naughton, S. A. Viken, and D. Greenblatt, “Skin friction measurements
on the NASA hump model,” AIAA J. 44, 1255 (2006).

22R. Martinuzzi and C. Tropea, “The flow around surface-mounted prismatic
obstacles placed in a fully developed channel flow,” J. Fluids Eng. 115, 85
(1993).

23M. Schramm, B. Stoevesandt, and J. Peinke, “Optimization of airfoils
using the adjoint approach and the influence of adjoint turbulent viscosity,”
Computation 6, 5 (2018).

24G. K. Karpouzas, E. M. Papoutsis-Kiachagias, T. Schumacher, E. de Villiers,
K. C. Giannakoglou, and C. Othmer, “Adjoint optimization for vehicle
external aerodynamics,” Int. J. Automot. Eng. 7, 1 (2015).

25L. Armijo, “Minimization of functions having Lipschitz continuous first
partial derivatives,” Pac. J. Math. 16, 1 (1966).

26M. Lemke, Adjoint Based Data Assimilation in Compressible Flows
with Application to Pressure Determination from PIV Data (Technische
Universität Berlin, 2015).

27M. Meldi, “The signature of initial production mechanisms in isotropic
turbulence decay,” Phys. Fluids 28, 035105 (2016).

28D. A. Yoder, J. R. Debonis, and N. J. Georgiadis, “Modeling of turbulent
free shear flows,” Comput. Fluids 117, 212 (2015).

29V. Krishnan, K. D. Squires, and J. R. Forsythe, “Prediction of separated flow
characteristics over a hump,” AIAA J. 44, 252 (2006).

https://arxiv.org/abs/1804.00183
https://arxiv.org/abs/1506.07825
https://doi.org/10.1016/j.jcp.2017.05.009
https://doi.org/10.1016/j.jocs.2017.05.014
https://doi.org/10.1063/1.4824659
https://doi.org/10.1016/j.ress.2010.09.013
https://doi.org/10.1088/1742-6596/318/4/042032
https://doi.org/10.1016/j.jcp.2016.07.038
https://doi.org/10.1016/j.jcp.2016.07.038
https://doi.org/10.1063/1.4947045
https://doi.org/10.2514/1.j055595
https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/10.1016/j.jcp.2014.12.013
https://doi.org/10.1016/j.jcp.2014.12.013
https://doi.org/10.1016/j.jcp.2017.06.042
https://doi.org/10.2514/6.2000-667
https://doi.org/10.1002/fld.1770
https://doi.org/10.1002/fld.1770
https://doi.org/10.2514/6.1992-439
https://doi.org/10.1016/j.compfluid.2018.04.018
https://doi.org/10.2514/1.13817
https://doi.org/10.2514/1.14192
https://doi.org/10.1115/1.2910118
https://doi.org/10.3390/computation6010005
https://doi.org/10.20485/jsaeijae.7.1_1
https://doi.org/10.2140/pjm.1966.16.1
https://doi.org/10.1063/1.4943542
https://doi.org/10.1016/j.compfluid.2015.05.009
https://doi.org/10.2514/1.13174

