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Abstract 11 

The destination choices of individual recreationalists are dependent on the spatial 12 

distribution of sites and attractions. An important issue in destination choice modelling is 13 

how to account for the effects of cumulative attraction from multiple sites and hierarchical 14 

processing of potential destinations. This study is concerned with recreational visits to 15 

beaches on the Coromandel Peninsula of New Zealand. Each beach has a different 16 

combination of attractions with potentially complex substitution patterns. We find that an 17 

Agglomerating and Competing Destination Choice model, with differentiated accessibility 18 

parameters for each attribute, offers the best fit. It is flexible enough to model different 19 

levels of substitutability for different attraction types, yet is tractable in estimation. We 20 

compare response predictions of different models for two site-specific changes - closure of a 21 

campground and construction of a sea wall. Allowing for more complex substitution 22 

patterns results in different predictions for visitation in the wider area.   23 
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1. Introduction 1 

Destination choices of individual recreationists collectively determine the demand for beach 2 

recreation and the welfare effect they experience from changes to the coastal environment.  3 

A common approach to modelling determinants of recreation site choice is by means of 4 

random utility models (RUM). This allows the estimation of demand for multiple sites, 5 

substitution across sites, and is consistent with utility maximisation theory (Phaneuf & 6 

Smith, 2005). Recent applications include domestic tourism in Spain (Bujosa, Riera, & Torres, 7 

2015), Japan (Wu, Zhang, & Fujiwara, 2011) and China (Yang, Fik, & Zhang, 2013), angling in 8 

New Zealand (Mkwara, Marsh, & Scarpa, 2015) and lake recreation in Iowa (Smirnov & Egan, 9 

2012). 10 

An important issue in destination choice models is how to account for the effects of the 11 

spatial distribution of sites and attractions. There can be spatial dependencies (e.g. when 12 

site attractiveness is enhanced or diminished by attractiveness of a nearby site) and/or 13 

spatial correlation of errors (e.g. when the attractiveness of multiple sites is affected by an 14 

unobserved feature of the area) (Griffith, 2007). Spatially correlated errors violate the 15 

assumption of the travel cost method that sites must be substitutes. When sites share 16 

unobserved attributes that influence choice behaviour this also violates the assumption of 17 

independence of error terms in the widely-used multinomial logit model for discrete 18 

choices. Spatial heterogeneity, if ignored, may cause substantial bias in model parameters 19 

(Bhat, Dubey, Alam, & Khushefati, 2015). 20 

For this study we analyse destination choices of recreational visitors to beaches on the 21 

Coromandel Peninsula of New Zealand. There is a dearth of quantitative studies about 22 

beach recreation in New Zealand, despite the fact that the coast is an important part of New 23 
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Zealand cultural identity (Kearns & Collins, 2012). The Peninsula has many attractive 1 

beaches within close proximity, each with a unique set of features and services. The values 2 

people hold for these beaches may be significantly affected by coastal policy and 3 

management decisions.   4 

We first review modelling approaches for spatial correlation and multiple destination trips. 5 

We estimate an Agglomerating and Competing Destination Choice (ACDC) model that 6 

extends previous research (Bernardin, Koppelman, & Boyce, 2009). By using not just one, 7 

but multiple dissimilarity measures, we estimate spatial interaction effects for each type of 8 

observed beach attribute. We demonstrate that the expanded model allows the simulation 9 

of more complex response effects than alternative models. Yet, this model retains a 10 

computationally simple closed form, which makes it mathematically tractable in estimation.   11 

2. Theoretical framework 12 

2.1 Travel cost method 13 

The consumption of beach recreation requires the user to incur the costs of travel and 14 

access to the site. These costs serve as the implicit price of the trip. An individual can visit 15 

only one site at a time and is assumed to choose the site that maximises his or her 16 

unobserved utility function for recreation benefits (Phaneuf & Smith, 2005). Multiple-17 

destination trips complicate travel cost analysis because there is the potential for value to 18 

be attributed to the wrong site. The most direct solution is to discard multiple-site visitors 19 

from the sample. A less drastic approach is to include a dummy variable and price 20 

interaction for multiple destination trips (Parsons & Wilson, 1997) or use nested models for 21 

additional or “follow on” destinations (Taylor, McKean, & Johnson, 2010). Mendelsohn 22 

(1992) treats combinations of sites as additional sites, but this is only practical if there are 23 
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small numbers of possible combinations. Lue, Crompton and Fesenmaier (1993) argue that 1 

the most appropriate way to allocate costs largely depends on which travel pattern the 2 

individual visitor is using. However, in practice it is difficult to distinguish between different 3 

patterns such as en-route, base-camp, regional tour or trip chaining. We use the approach 4 

proposed by Yeh, Haab and Sohngen (2006) who allocate travel cost by the proportion of 5 

time spent at each site. The assumption is that people spend more time at more highly 6 

valued sites.    7 

2.2   Spatial random utility models 8 

The multinomial logit (MNL) model was shown to be consistent with RUM by McFadden 9 

(1974)  and is the most widely used structure within random utility modelling. However, the 10 

independent and identical distribution of the error term results in the property called 11 

Independence of Irrelevant Alternatives (IIA). IIA is undesirable when patterns of 12 

substitution vary across different types or spatial clusters of alternatives. As McFadden 13 

(1978) noted, “there may be a structure of perceived similarities among alternatives” that 14 

invalidate this assumption of the model. Early applications of discrete choice models 15 

included spatial choices (for example, residential location in McFadden (1978)) but the 16 

added complexity of spatial dependence was not often recognised (Pellegrini & 17 

Fotheringham, 2002). There are two concepts that help explain the reasons for spatial 18 

dependence in destination choices: cumulative attraction (Nelson, 1958) and hierarchical 19 

processing.  20 

2.2.1 Cumulative Attraction  21 

The theory of cumulative attraction (Nelson, 1958) implies that multiple attractions in an 22 

area will draw more visitors than if such attractions were widely scattered. A key 23 
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component is the principle of compatibility in which total attractiveness depends not only 1 

on geographic proximity but also on how complementary the sites are. Complementary sites 2 

must be dissimilar in some way, providing different experiences or services. This allows 3 

visitors to satisfy a diverse range of objectives and reduce the risk of unrealised expected 4 

benefits (Lue, Crompton, & Stewart, 1996). Applications of Cumulative Attraction to tourism 5 

research have corroborated empirically the importance of the principle of compatibility (Lue 6 

et al., 1996; Weidenfeld, Butler, & Williams, 2010). 7 

2.2.2 Hierarchical processing 8 

Destination choices can involve a large number of destination options. Limited 9 

substitutability or hierarchical behaviour is therefore more appropriate than the MNL 10 

assumption of unlimited substitutability, typical of fully compensatory random utility 11 

models (Drakopoulos, 1994). The role of hierarchical processing has been explored in detail 12 

in the area of choice set formation (Decrop, 2010; Pagliara & Timmermans, 2009; Thiene, 13 

Swait, & Scarpa, 2017) and also used to explain spatial dependence in destination choice 14 

(Schüssler & Axhausen, 2009). The assumption is that destinations are evaluated in spatial 15 

or typological clusters.  16 

There are various alternatives, generalisations or extensions to MNL that can be used to 17 

model hierarchical choice processes. The multinomial probit (MNP) model is very flexible 18 

with joint multivariate normal error terms, rather than the independent and identically 19 

distributed (i.i.d.) extreme values in MNL.  However, the calculation of a single choice 20 

probability requires integration with as many dimensions as there are alternatives, which is 21 

not feasible without substantial investment in programming purpose-specific code and 22 

simulation techniques. The mixed logit model (Train, 1998) can also capture complex 23 
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correlation patterns, using random parameters or error components. Thiene and Scarpa 1 

(2008), for example, used joint error components for two or more alpine sites that were 2 

believed to give sites a higher degree of substitutability, resulting in correlated choice. The 3 

limitation is that the number of random parameters required increases with the number of 4 

correlations modelled. Again, simulation techniques are required in estimation, which are 5 

slow and give estimates prone to simulation error (Klaiber & von Haefen, 2008). Simulation 6 

variance which adds to the unavoidable sampling variance. The challenge is to specify a 7 

computationally tractable model that accommodates the important spatial effects and has a 8 

firm foundation in economic theory. We therefore turn our attention to models with closed-9 

form probabilities, which do not require computationally expensive simulation techniques.  10 

2.2.3  GEV models 11 

Hierarchical choice processes can be modelled using the Generalized Extreme Value (GEV) 12 

class of models, of which MNL is a special case (McFadden, 1978). GEV models remove the 13 

IIA property of MNL by allowing the random components of alternatives to be correlated, 14 

while maintaining the assumption that they are identically distributed. The set of 15 

alternatives are partitioned into subsets (called nests), which correspond to similarity of 16 

influence. Nests may be non-overlapping, as in the nested logit (Daly, 1987), or overlapping, 17 

as in the cross-nested logit  (Vovsha, 1997), paired combinatorial logit (Chu, 1989), 18 

generalized nested logit (Wen & Koppelman, 2001), spatially correlated logit (Bhat & Guo, 19 

2004), generalized spatially correlated logit (Sener, Pendyala, & Bhat, 2011), or the network 20 

GEV (Daly & Bierlaire, 2006). Multiple-level hierarchies have also been used in destination 21 

choice (Bekhor & Prashker, 2008).  22 
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GEV models are very flexible and maintain closed-form expressions for choice probabilities. 1 

However, this flexibility can require estimating a large number of dissimilarity or allocation 2 

parameters (Bhat & Guo, 2004). Another limitation of GEV models is that the hierarchical 3 

structure must be exogenously specified, which can be a somewhat arbitrary division of 4 

continuous space (Pellegrini & Fotheringham, 2002). Ishaq, Bekhor & Shiftan (2013) used 5 

“fuzzy segmentation” to assign individuals to different structures, but the structures were 6 

still specified exogenously rather than emerging endogenously from the data.  7 

2.2.4 Competing Destinations models 8 

Another closed-form model free of the IIA property is the Competing Destinations (CD) 9 

model introduced by Fotheringham (1983). CD is similar to MNL but the utility function is 10 

amended to reflect the probability that an alternative is evaluated. The rationale for this 11 

approach is that people do not evaluate every alternative and are more likely to be aware of 12 

sites that are large and close. Accessibility affects the likelihood that alternative j is in the 13 

cluster of awareness for individual n. There are different ways to evaluate accessibility, 14 

which has been defined as “reflects the ease of reaching needed or desired activities” 15 

(Handy & Clifton, 2001). Fotheringham (1983) used a Hansen accessibility variable of the 16 

form: 17 

𝐴𝑗 =
1

𝐾−1
∑

𝑊𝑘

𝑑𝑗𝑘
𝜃

𝐾
𝑘

𝑘≠𝑗

       (1) 18 

where K is the set of all alternatives, W is an attraction measure, djk is the distance between 19 

alternatives j and k, and θ is a distance decay parameter. Attraction measures can reflect 20 

cumulative opportunities (Handy & Niemeier, 1997) or a calculation of 21 

similarity/dissimilarity (Schüssler & Axhausen, 2009). The impedance parameter (distance) 22 

may also take other forms. The distance decay parameter is often omitted to simplify 23 
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estimation, which implicitly constrains it to one (Bernardin et al., 2009). If the estimated 1 

parameter for A is negative then competition effects dominate. A positive parameter 2 

indicates that agglomeration effects dominate. A limitation of the CD model is that it only 3 

measures the net effect of competition and agglomeration. Which of the two effects 4 

prevails and for whom remains an empirical question.  5 

2.2.5 Agglomerating and Competing Destination Choice model 6 

Bernardin et al. (2009) included two adjustment terms in the utility function to separately 7 

measure spatial competition and agglomeration effects and named this model 8 

Agglomerating and Competing Destination Choice (ACDC). Using a dissimilarity statistic 9 

based on business types, Bernardin et al. (2009) calculated the number of complement and 10 

substitute urban zones available to every other zone. In their application the ACDC model 11 

outperformed the CD model and was more useful for analysing trip chaining effects. 12 

Although Bernardin et al. (2009) and other ACDC model users (e.g. Ho & Hensher, 2016) had 13 

separate measures of competition and agglomeration, they still used only a single measure 14 

of dissimilarity to calculate both variables. This does not allow for differentiation of 15 

competition or agglomeration effects for different types of attractions.  16 

The beach sites in our study each have a different set of attraction characteristics and do 17 

not fit into neat non-overlapping typologies. If two sites have sandy beaches they are 18 

substitutes for people who like sand. If one site has a motel and the other has no motel, but 19 

is undeveloped and peaceful, these may be complementary attributes. A single nest 20 

structure or dissimilarity measure may therefore be inadequate to capture complex 21 

substitution effects. For this study we expand on the ACDC model concept and estimate 22 

complement and substitute parameters for a range of site attributes. 23 
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3. Empirical context 1 

The Coromandel Peninsula is steep and hilly and lies across the Hauraki Gulf from Auckland, 2 

the largest city in New Zealand. Most of the Peninsula interior is forest park and settlements 3 

of varying sizes are dotted along the coastline. Coromandel beaches are popular holiday 4 

destinations for residents of the nearby urban areas of Auckland and Hamilton, and to a 5 

lesser extent, international tourists. There are many beaches with high scenic and 6 

recreational appeal. Coastal areas in New Zealand are highly valued for wildness, 7 

accessibility and contribution to identity (Kearns & Collins, 2012) . Administratively, it 8 

comprises five Community Board areas (Figure 2). The Thames area is named for the town 9 

at the southern corner of the Gulf and it is the entry point for the majority of visitors who 10 

come from Auckland or Hamilton. There is a road going east to Tairua and another winding 11 

road that heads north along the relatively homogenous shingle-covered West coast. We 12 

further divide the Coromandel-Colville area into West (popular for fishing) and East coast. 13 

Mercury Bay has the largest population and many exceptionally scenic white sand beaches. 14 

The Tairua-Pauanui area is the gateway to Mercury Bay and provides a wide range of 15 

services. The Whangamata area contains a large town and popular surf beach of the same 16 

name, and is the main route for people travelling from the Bay of Plenty region that lies to 17 

the south.  18 
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Figure 1 - Coromandel Peninsula (circled) 

 

Figure 2 - Community Board Areas 

For this study the Coromandel Peninsula coast is divided into 109 discrete beach “sites” 1 

based on geographically distinct bays or harbours, most of which have existing names. Some 2 

longer bays are divided into two sites, such as Hot Water Beach, which has a settlement at 3 

the southern end and undeveloped dunes at the northern end and separate access points. 4 

The west coast has long stretches of relatively homogenous coast with few distinct inlets, so 5 

some beach sites are defined by the nearest settlement instead. 6 

The destination choice analysis is simplified somewhat because the vast majority of visitors 7 

travel by car, every urban area is on the coast, and the main road forms a loop around the 8 

Peninsula. It is a simple matter to determine a visitor’s probable route to any beach, and 9 

which other beaches they would have passed along the way.  10 

There is a forthcoming Regional Coastal Plan review1 that will address issues such as coastal 11 

erosion, development, conservation, contaminants and location of infrastructure. One 12 

                                                      
1 https://www.waikatoregion.govt.nz/community/whats-happening/waikato-regional-plan-review/ 
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objective of this study is to help inform the review about possible effects on recreational 1 

users of the beaches.  2 

4. Data Collection 3 

The data were collected via a web-based panel survey from October 2013 to April 2014 4 

designed to gather information about beach preferences of domestic visitors to the 5 

Coromandel Peninsula. We primarily sourced participants from a panel of New Zealanders 6 

pre-recruited by a market research company. The use of a pre-recruited panel restricts 7 

multiple participations by the same individuals and is an increasingly popular collection 8 

mode (Windle & Rolfe, 2011). The survey included questions about previous and planned 9 

Coromandel Peninsula visits, environmental attitudes, socio-economic variables and choice 10 

experiment questions. In this paper we only report the revealed preference results. 11 

Respondents were asked to report only trips where beach recreation was the primary 12 

purpose of the trip. They indicated the location of their beach visit(s) using a Google Maps™ 13 

API tool, which provided the latitude and longitude of each visit. The beach markers were 14 

assigned to a beach site based on proximity. We excluded markers that were outside the 15 

Coromandel Peninsula, too far off shore or too far inland.  16 

No data were collected about trips to other regions or recreational activities near home that 17 

might be substitutes for visiting a beach (e.g. swimming in a pool). The destination choices 18 

we analyse are conditional on the fact that the respondent has already decided to visit the 19 

Coromandel Peninsula for the purpose of beach recreation.  20 

4.1 Definition of variables 21 

The value of coastal recreation is highly dependent on the physical appearance of the 22 

coastal zone (Coombes, Jones, & Sutherland, 2008). A large number of variables were 23 
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calculated for each site including length, width, surrounding land cover, type of 1 

sand/shingle, the presence of a stream, suitability for surfing, length of dune, length of 2 

seawalls, headland elevation, presence of boating facilities, public toilets, campgrounds, 3 

playgrounds, motels, food retailers, usual population and overall development level. There 4 

was no water quality data to include in the model as monitoring is sporadic and limited to a 5 

few estuaries. Many biophysical variables were highly correlated or just not useful 6 

explanatory variables. For example, almost all beaches are in close proximity to the forest 7 

park that covers the interior of the Peninsula. Development level of each site is determined 8 

by adjacency to an urban area and the significance of that urban area. See Table V in the 9 

appendix for list of variables included in the final models and their data sources. 10 

The travel distance and time by car between each origin and destination was calculated 11 

using Google© Distance Matrix API2. A standard fuel cost of 20 cents per kilometre was 12 

assumed, based on the assumption of $2 per litre of petrol and 10 kilometres to the litre3. 13 

For sites with no road access to the foreshore we added additional walking time, also 14 

calculated by the Google API. The opportunity cost of travel time was defined as 33 per cent 15 

of hourly household income, which is a typical approach without introducing the additional 16 

complexities of a “noisy” wage fraction (Larson & Lew, 2013). For the distance weighting of 17 

accessibility variables we used travel time rather than distance, because many stretches of 18 

road on the Peninsula are narrow, windy or unsealed and travel speed is variable. For 19 

multiple-destination visits the total trip cost is apportioned based on the proportion of time 20 

spent at each site. Travel cost C for individual n to site j in trip t is therefore defined as: 21 

𝑪𝒏𝒋𝒕 = 𝝆𝒏𝒋𝒕 ∑ ( 𝟎. 𝟐𝒅𝒏𝒕𝒌 + 𝟏 𝟑⁄ 𝝎𝒏𝒎𝒏𝒕𝒌)𝑲𝒕
𝒌=𝟏     ( 2) 22 

                                                      
2 https://developers.google.com/maps/documentation/distance-matrix/ 
3 Data were not collected about the vehicle type or whether it was towing a boat. 

https://developers.google.com/maps/documentation/distance-matrix/
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where ρnjt is the proportion of time in trip t that is spent at site j; Kt is the set of destinations 1 

in the trip (including home as the final destination); dntk is distance in kilometres; mntk is 2 

travel time in minutes from origin k-1 (0 is home) to destination k; and ωn is household wage 3 

per minute. By factoring in the structure of multiple-destination trip-chaining, we avoid the 4 

downward bias from ignoring multi-day trips and the upward bias from attributing all trips 5 

costs to a single site. 6 

5. Model Formulation 7 

We estimate and compare MNL, CNL, CD and ACDC models. The formulations are presented 8 

below.  9 

5.1 MNL 10 

The utility or net benefit that person n expects to obtain from site j is specified as: 11 

𝑈𝑛𝑗  =  𝑉𝑛𝑗  +  𝜀𝑛𝑗       (3) 12 

where 𝑉𝑛𝑗 is a deterministic, linear-in-parameters component and 𝜀𝑛𝑗 is an unobserved 13 

utility component with an i.i.d. Type I Extreme Value distribution. The probability that 14 

person n chooses site j is therefore: 15 

𝑃𝑛𝑗 =  
𝑒

𝑉𝑛𝑗

∑ (𝑒𝑉𝑛𝑘)𝑘
        (4) 16 

Vnj includes site-specific parameters (listed in appendix), travel cost, and a wage-travel cost 17 

interaction variable.  18 

𝑉𝑛𝑗 =  ∑ 𝛽𝑔𝐵𝑗𝑔𝑔 + 𝛽𝑐 𝑐𝑛𝑗𝑡 + 𝛽𝑐𝑤 𝑐𝑛𝑗𝑡𝜔𝒏    (5) 19 

Bjg indicates the value of attribute g at site j. The β parameters are estimated by maximum 20 

likelihood. 21 
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5.2 CNL 1 

The CNL specification is  given by the generator function  (Michel Bierlaire, 2006): 2 

𝐺(𝑦) =  ∑ (∑ (𝛼𝑗𝑚
1

𝜇⁄ 𝑦𝑗)
𝜇𝑚

𝑗∈𝐾 )

𝜇
𝜇𝑚

⁄

𝑚=1       (6) 3 

where y is the deterministic part of the utility function;  j refers to an alternative in the set of all sites 4 

K; m is a nest; µ is a scale parameter; µm is a nest-specific coefficient; and αjm are the parameters 5 

allocating sites to nests. There is one nest for site attribute type4, which are defined in Table V  in the 6 

appendix. Every site that possesses the attribute is a member of the nest, weighted by the number 7 

of other attributes the site also possesses: 8 

𝛼𝑗𝑚 =  
𝐵𝑗𝑚

∑ 𝐵𝑘𝑚𝑘
       (7) 9 

where Bjm = 1 if the site has the feature and 0 if it does not. The sum of the allocation 10 

variables for each site is one.  11 

5.3 CD model with single accessibility variable 12 

In the model labelled “CD1”, the MNL choice probability is modified by the addition of an 13 

accessibility variable Aj.  14 

𝑃𝑛𝑗 =  
𝑒

𝑉𝑛𝑗+𝛽𝐴𝐴𝑗

∑ (𝑒𝑉𝑛𝑘+𝛽𝐴𝐴𝑘)𝑘
         (8) 15 

The accessibility variable is specified as: 16 

𝐴𝑗 = 𝑙𝑛 ∑
𝑊𝑘

𝑑𝑗𝑘
𝑘

𝑘≠𝑗
     (9) 17 

where djk is the travel time in minutes between alternatives j and k; and W is an attraction 18 

measure that adds the attributes at site k and weights them by fg, the frequency of visits to 19 

all sites with that attraction type.  20 

                                                      
4 We tested several GEV nested and cross-nested logit structures including area, trip duration, development 
level, paired distance, en-route availability, and attribute-based nests. For brevity we only report the 
specification and results for the attribute-based CNL because it significantly outperformed any other nest 
structure in terms of AIC/BIC measures. 
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𝑊𝑘 =
∑ 𝑓𝑔𝐵𝑘𝑔𝑔

∑ 𝑓𝑔𝑔
         1 

 (10) 2 

5.4 CD model with multiple accessibility variables 3 

In the model labelled “CD2”, the single accessibility variable is replaced by a vector of 14 4 

variables measuring the access to every attribute in the utility function except for estuary 5 

(which is excluded because there is no variation - every estuary is beside a non-estuary site).  6 

𝐴𝑗𝑔 =
1

𝐾−1
∑

𝐵𝑘𝑔

𝑑𝑗𝑘

𝐾
𝑘

𝑘≠𝑗

    7 

 (11) 8 

5.5 Simple ACDC model 9 

In the model labelled “ACDC1” we estimate the number of complement and substitute 10 

attributes at each site using Lierberson’s D dissimilarity statistic (Lieberson, 1969). D is 11 

based on the probability of randomly selecting different attribute types (g) from a pair of 12 

sites j and k. It is weighted by the frequency of visit for each attribute type (𝑓𝑔). 13 

𝐷𝑗𝑘 = 1 − ∑ 𝑓𝑔
𝐵𝑗𝑔𝐵𝑘𝑔

∑ 𝐵𝑗𝑔𝑔′ ∑ 𝐵𝑘𝑔𝑔′
𝑔     14 

 (12) 15 

The two accessibility variables AC (complements) and ASAS (substitutes) are: 16 

𝐴𝑗
𝐶 = ln (∑ 𝐷𝑗𝑘

∑ 𝐵𝑘𝑔𝑔

𝑑𝑗𝑘
𝑘 )   17 

 (13) 18 

𝐴𝑗
𝑆 = ln (∑ (2 − 𝐷𝑗𝑘)

∑ 𝐵𝑘𝑔𝑔

𝑑𝑗𝑘
𝑘 )     19 

 (14) 20 
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5.6 Expanded ACDC model 1 

In the model labelled “ACDC2” there are complement and substitute accessibility variables 2 

for every attribute except estuary. If site j has attribute g the accessibility variable is 3 

specified as a substitute. If it does not, it is a complement. 4 

𝐴𝑗𝑔
𝐶 = {

1

𝐾−1
∑

𝐵𝑘𝑔

𝑑𝑗𝑘

𝐾
𝑘

𝑘≠𝑗

                for 𝐵𝑗𝑔 = 0 

0                              for 𝐵𝑗𝑔 > 0 
                 5 

(15) 6 

𝐴𝑗𝑔
𝑆 = {

1

𝐾−1
∑

𝐵𝑘𝑔

𝑑𝑗𝑘

𝐾
𝑘

𝑘≠𝑗

                for 𝐵𝑗𝑔 > 0 

0                               for 𝐵𝑗𝑔 = 0 
                 7 

(16) 8 

6. Results 9 

A total of 2,447 trips and 3,946 beach visits by 1,137 unique respondents are in the final 10 

data set. The following table shows a selection of descriptive statistics. Women and people 11 

with degrees are over-represented when compared with the New Zealand census. However, 12 

the sampling frame of Coromandel Peninsula visitors do not necessarily have the same 13 

characteristics as the general population. On-site surveys have also found beach visitors 14 

were more likely to have a degree than the general population (Thomson, 2003). 15 

Table I - Descriptive statistics 16 

Measure  

Count of respondents 1,137 

Count of trips 2,447 
Count of beach visits 3,946 
Average travel time to site (hours) 2.33 
Average age of respondent 43 
Proportion of female respondents 0.59 
Proportion of university-educated respondents 0.47 
Proportion from Waikato region 0.41 
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Proportion from Auckland region 0.38 

Proportion from Bay of Plenty region 0.21 
Proportion of visits with an overnight stay 0.39 

 1 

Figure 3 shows the relative intensity of beach visits around the Peninsula with hotspots 2 

around urban areas and the Mercury Bay area (each additional overlapping point changes 3 

the colour towards red).  It also illustrates how close the sites are to each other. Within a 15 4 

minute travel time radius of each beach there are an average of six other beaches. Almost 5 

three quarters of beaches have an urban area less than 15 minutes away. Visiting multiple 6 

sites on one trip is therefore a practical way to fulfill a variety of needs. In our sample, 31 7 

percent of trips included multiple beach sites.  8 

 9 

Figure 3 – Heat map of beach visits 10 

 11 
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6.1 Site compatibility 1 

Compatibility is defined as the proportion of visitors to site A that also visit site B (Nelson, 2 

1958)5. We fit a logistic regression to see how well compatibility can be explained by site 3 

characteristics and site differences. The dependent variable equals one if a visitor to site A 4 

also visits site B, otherwise zero. The independent variables include visitor counts to each 5 

site, travel time, site B attributes and “dissimilarity” variables to indicate site B has the 6 

attribute while site A does not. Results are reported in Table VI in the appendix. The model 7 

fit is high with a McFadden pseudo R-square of 0.63. 8 

The model implies that compatibility is higher if site A has few visitors or site B has many 9 

visitors. Travel time has a negative effect and being en-route a positive one. Some site B 10 

attributes are positive and significant regardless of whether site A has them or not (i.e. boat 11 

ramps, campground, dune, food, public road and toilet). Negative site B attributes are 12 

estuary, seawall, undeveloped, and all sizes of urban area. To summarise the dissimilarity 13 

variables: if site B is in a different area or has a different scale of urban development to site 14 

A, it is less compatible. If site B has a natural dune, non-estuarine sandy beach, or is urban 15 

or undeveloped while site A is not, it is more compatible. The results imply that a one-16 

dimensional site typology such as “urban” versus “rural” would be inadequate for modelling 17 

complex substitution patterns in site choice. In the next section we show the destination 18 

choice model results.  19 

                                                      
5 We restrict site combinations to pairs because only 11 per cent of people visited more than two beaches and 
the large number of possible three-site combinations results in miniscule compatibility measures for trios. 
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6.2 Model results 1 

We used Biogeme (Bierlaire, 2003) to estimate the multinomial logit (MNL), cross-nested 2 

logit (CNL), Competing Destinations (CD1 and CD2) and Agglomerating and Competing 3 

Destination Choice (ACDC1 and ACDC2) models6. Results are reported in Table II.  4 

The basic MNL model has a relatively good fit to the data, with an adjusted (for the number 5 

of parameters) McFadden pseudo r-squared of 0.18. The travel cost parameter is negative 6 

and significant in all models. The travel cost times wage interaction variable is positive, 7 

which means that high income individuals are willing to travel further. The area dummy 8 

variables are all positive, which means every other area is preferred to Thames area. Site 9 

characteristics associated with a higher probability of visit are boat ramp, campground, 10 

motel, playground, public road, public toilet, sandy (as opposed to shingle or pebble) beach 11 

and a large urban area. The negative variables are estuary sites (which tend to be silty and 12 

colonised by mangroves), undeveloped sites, and the presence of seawalls. The presence of 13 

food retailers is positive only in the ACDC model. Tourists cannot have motels and 14 

playgrounds without the associated urban areas, but after controlling for these amenities 15 

small and medium urban areas have a residual negative effect. The parameter for large 16 

urban areas is positive and significant in all models except ACDC2. 17 

The CNL model with attribute-based nests offers an improvement in model fit over the basic 18 

MNL with an r-squared of 0.2097. Eight out of the fifteen nests had Inclusive Value (IV) 19 

variables significantly larger than one, which means that variance is different across sites 20 

with different attributes.  Models CD1 and CD2 fit slightly worse fit than the CNL in terms of 21 

                                                      
6 Various mixed logit and error components models were also tested but not reported because they were 
either unstable (with enormous standard errors) and/or did not fit as well as the CNL/CD/ACDC models.   
7 We also tested models nested by distance, area or development level (not reported here) but these did not 
fit as well. This is consistent with the compatibility analysis that implied beach characteristics are an important 
determinant of substitutability. 
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r-squared and AIC/BIC statistics. The addition of multiple accessibility variables in CD2 1 

improved fit slightly. Campground, public road and medium urban are positive, implying 2 

agglomeration effects dominate. Boat ramp, playground, sandy and toilet are negative, 3 

implying competition effects dominate.   4 

The model ACDC1, which has one complement and one substitute variable, fits only 5 

marginally better than CD1. ACDC2, with complement and substitute variables for each 6 

attribute, is the preferred model in terms of AIC/BIC and offers more insight into 7 

competition and agglomeration effects of different attributes. The complement accessibility 8 

variables are almost all positive and larger than the substitution variables. The exception is 9 

the large urban variable. Perhaps large urban areas have negative spill-overs that mean 10 

close proximity is undesirable, all else being equal. A medium urban area has a negative 11 

effect when on-site but the complement accessibility variable is positive and larger than any 12 

other accessibility parameter. Campground, food retail, motels, sandy beach, public toilet 13 

also have significant positive complement effects for sites without these attributes. The 14 

significant substitute variables are boat ramp, food retail, public road, and small urban area. 15 

Substitute food retail is positive, which implies there is value in having access to other food 16 

establishments even when there is one at the site. This is probably because different types 17 

of food retailers (e.g. a convenience store versus a café) are not perfect substitutes. The 18 

other substitute variables are all negative; implying the close proximity of substitutes 19 

reduces the likelihood of visitation. This is consistent with the conjecture that similarity 20 

results in lower visibility and reduced attractiveness (Schüssler & Axhausen, 2009). 21 
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Table II - Estimated models 

  Variable MNL CNL CD1 CD2 ACDC1 ACDC2 

Model fit 

Log-likelihood -15158 -14604 -14724 -14626 -14706 -14428 

Psuedo-r2 0.180 0.209 0.203 0.208 0.204 0.218 

No. Parameters 22 37 23 36 24 50 

AIC 30359 29282 29495 29324 29461 28956 

BIC 30497 29208 29639 29509 29413 28856 

Individual 
attributes 

Travel cost -0.0775*** -0.0509*** -0.078*** -0.077*** -0.077*** -0.079*** 

Travel cost x wage 0.0007*** 0.0005*** 0.0007*** 0.0007*** 0.0007*** 0.0007*** 

Site attributes 

Area CE 1.6900 1.1000* 0.904*** 1.530*** 0.918*** 1.460*** 

Area CW 0.9130* 0.6310* 1.690*** 1.520*** 1.430*** 1.060*** 

Area M 2.2000 1.4000* 2.200*** 2.050*** 2.090*** 1.980*** 

Area TP 0.9590 0.6680* 0.964*** 0.391* 0.815*** 0.176 

Area W 1.0700 0.7150* 1.080*** 0.720*** 0.968*** 0.389 

Boat ramp 0.3540* 0.3370** 0.354*** 0.406*** 0.330*** 0.545** 

Campground 0.3730** 0.1510** 0.372*** 0.335*** 0.350*** 1.110*** 

Natural dune 0.0486* 0.2090* 0.050 0.519*** 0.010 0.191 

Estuary -1.8800 -1.7100* -1.880*** -1.280*** -1.870*** -0.726*** 

Food retailer -0.2040* -0.1400** -0.206*** -0.302* -0.262*** 1.150*** 

Motel 0.2240* 0.0239** 0.229*** 0.042 0.229*** 0.270 

Playground 0.2650* 0.2910** 0.265*** 1.520*** 0.323*** 1.330*** 

Public road 1.0300* 0.6550* 1.030*** 1.040*** 0.969*** 1.380*** 

Public toilet 0.2480* 0.2130* 0.248*** 0.079 0.258*** 0.165 

Sandy beach 0.4930* 0.6740** 0.492*** 0.335*** 0.539*** 1.460*** 

Undeveloped -0.2860* -0.0172** -0.288*** -0.054 -0.310*** -0.132 

Small urban -0.3200* -0.3900** -0.321*** 0.288** -0.333*** -0.951*** 

Medium urban -0.3290* -0.1120** -0.330*** 0.170* -0.271*** -0.923*** 

Large urban 0.4680* 0.2330** 0.469*** 0.862*** 0.526*** 0.293 
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Seawall -0.4220* -0.1340* -0.420*** -0.326 -0.253*** -0.257 

Accessibility 
(complements
, substitutes) 

Boat ramp 
  

 -52.300***  27.500, -84.300*** 

Campground 
  

 140.000***  106.000***,  11.300 

Natural dune 
  

 -32.500  37.900, -20.200 

Food retailer 
  

 34.300  343.000***,  155.000** 

Motel 
  

 67.800  204.000**, -172.000 

No seawall 
  

 0.132  16.100, -0.785 

Playground 
  

 -105.000***  84.900, -63.700 

Public road 
  

 46.200**  20.400, -46.800** 

Sandy beach 
  

 -37.300***  61.900***, -12.700 

Toilet 
  

 -69.700***  179.000***, -22.100 

Undeveloped 
  

 14.200  39.900*, -5.020 

Urban small 
  

 0.677  -3.020, -213.000*** 

Urban medium 
  

 114.000***  433.000***,  48.900 

Urban large 
  

 2.860  -199.000**, -121.000 

 Composite    0.019  22.100***, -22.400***  
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6.3 Model response properties 1 

The differences in model fit are small. However, the ACDC2 model has the potential to 2 

capture more complex spatial effects. We examine two hypothetical scenarios to illustrate 3 

the different response properties of each model. The first scenario (A) involves the closure 4 

of a popular campground at Hahei. As coastal property values increase it is common for 5 

camping grounds to be sold and developed with houses or apartments (Collins & Kearns, 6 

2010). Hahei has a few small, boutique accommodation options but campgrounds provide a 7 

unique, low cost experience enjoyed by families and backpackers and can accommodate 8 

many more people than a low-rise residential development on the same site. Accessibility 9 

variables for all other sites were re-calculated and choice probabilities were simulated using 10 

the Biosim function provided with Biogeme. Simulation results for the MNL model are not 11 

reported because the IIA property means there will simply be equal allocation across sites. 12 

Nor is model CD1 used, since the accessibility parameter is insignificant. 13 

Table III shows a selection of the most affected sites (which are all in Mercury Bay area) as 14 

well as total changes for each area. The CNL model predicts the smallest effect on visitation 15 

share of the Hahei site, with a 20.3% decrease from 0.047 to 0.0375. Just over half of the 16 

visits are redistributed within the Mercury Bay area and there are small increases (0.6% - 17 

0.9%) in each of the other areas. However, the CNL model ignores the fact that many 18 

visitors to undeveloped sites will want low-cost accommodation nearby. Similarly, model 19 

ACDC1 also redistributes visitors mostly to sites closest to Hahei with no regard for the 20 

reduced accessibility to campgrounds. 21 

The CD2 model has a positive and significant parameter on campground accessibility, which 22 

means that sites close to Hahei (such as Cathedral Cove and Hot Water Beach) lose visitors 23 
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also. Similarly, ACDC2 also predicts a decline in visitors to most beaches near Hahei. A 1 

difference arises from the fact that the campground substitute parameter in ACDC2 is close 2 

to zero. Cooks Beach and Whitianga both have campgrounds, so they gain rather than lose 3 

visitors in the ACDC2 model.  4 

Table III – Change in site and area visitation for scenario A 5 

    % Change in share 

  Site Name Current share CNL CD2 ACDC1 ACDC2 

Individual 
sites 
  

Hahei 0.047 -20.3% -23.0% -24.3% -31.1% 

Cathedral cove 0.020 2.0% -29.5% 9.2% -22.8% 

Hot Water Beach South 0.009 1.6% -10.7% 4.2% -7.9% 

Cooks beach 0.043 1.5% -2.6% 0.5% 5.1% 

Whitianga 0.084 0.8% 2.3% 1.3% 4.4% 

Areas 
  

Coro-Colville East 0.147 0.7% 3.4% 2.6% 2.6% 

Coro-Colville West 0.042 0.6% 3.4% 0.0% 2.6% 

Mercury Bay 0.469 -0.9% -3.6% -1.6% -2.5% 

Tairua-Pauanui 0.118 0.9% 2.3% 2.2% 3.9% 

Thames 0.084 0.7% 3.6% 1.5% 2.9% 

Whangamata 0.140 0.8% 3.4% 1.8% 3.5% 

 6 

A second scenario (B) involves the construction of a seawall at Tairua ocean beach to 7 

protect properties from coastal erosion. This would result in the loss of sand dune, so it 8 

affects two attributes (seawall and dune) and the associated accessibility variables. The CNL 9 

model predicts a 14.7 percent decrease in the probability of visiting Tairua ocean beach and 10 

some variation in redistribution to other sites due to the heterogeneous substitution 11 

patterns imposed by the nesting structure. The CD2 model has larger coefficients for dune 12 

and seawall, so it predicts a larger decline at Tairua (-20.8 percent). Because the accessibility 13 

parameters on “natural dune” and “no seawall” are small, the redistribution of visits is 14 

relatively even across all other sites. The ACDC1 model again predicts most visitors will be 15 

redistributed to the closest sites. The ACDC2 predicts that near sites without a dune (such as 16 

Tairua harbour) will also lose visitors because complementary dune accessibility decreases. 17 
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Similarly, sites with seawalls are negatively affected by the reduced accessibility to beaches 1 

with no seawalls. Seawalls are predominantly located in Mercury Bay area (Whitianga and 2 

Cooks Beach), Coromandel-Colville West and Thames.  3 

Table IV – Change in site and area visitation for scenario B 4 

    % Change in share 

  Site Name Current share CNL CD ACDC1 ACDC2 

Individual 
sites 
  

Tairua 0.057 -14.7% -20.8% -16.5% -17.7% 

Pauanui 0.042 1.5% 2.6% 5.6% 2.9% 

Hahei 0.047 -0.4% 2.3% 4.5% 2.7% 

Tairua harbour 0.008 0.6% 2.6% 6.0% -2.6% 

Whitianga 0.084 0.5% 1.8% 1.6% -0.1% 

Areas 
  

Coromandel-Colville East 0.147 1.1% 1.4% 0.5% 1.6% 

Coromandel-Colville West 0.042 0.8% 1.9% 0.0% 0.5% 

Mercury Bay 0.469 1.1% 2.0% 0.9% 1.1% 

Tairua-Pauanui 0.118 -9.4% -15.4% -5.3% -6.8% 

Thames 0.084 2.0% 2.5% 0.3% 0.7% 

Whangamata 0.140 1.9% 2.5% 1.1% 1.3% 

7. Management implications 5 

Our preferred model, ACDC2, is more useful than the alternatives for analysing policy 6 

options such as campground development and coastal erosion protection. It captures not 7 

only the on-site effects but also the effects on other sites that are specific to the type and 8 

location of the change.  9 

In addition, the model highlights the importance of site diversity in a context where 10 

multiple-destination visits are common.  Undeveloped sites have a lower probability of 11 

being visited, but the model shows they increase the attractiveness of nearby developed 12 

sites, which visitors could use as a base for a visit to the undeveloped site. If an undeveloped 13 

site is the last in the area, then the ACDC2 model implies development would have a 14 

detrimental effect on surrounding areas that would lose accessibility to an undeveloped 15 

beach. Conversely, in more remote areas such as the northern end of the Peninsula, general 16 
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development could provide food, accommodation, and boating facilities that are currently 1 

unavailable, and therefore have positive value to visitors in the wider area. Development 2 

decisions require consideration of the existing spatial distribution of services and site 3 

attributes.  4 

8. Limitations 5 

Data limitations of this study meant that we could only analyse choices conditional on the 6 

decision to visit the Peninsula. We could not model substitutions between alternative 7 

regions or other types of recreation. Nor could we model state-dependent effects such as 8 

resistance to change, since there were no changes to observed beach attributes during the 9 

data collection period. Emotional attachment to place can generate mobilisation against 10 

coastal change (Kearns & Collins, 2012). This status-quo bias could manifest as support for 11 

seawalls in erosion prone areas, or intense opposition to new development even if it 12 

provides additional services. The model allows a preliminary assessment of where certain 13 

changes might be more or less favourable but to analyse specific changes would require 14 

more detailed data from stated preference studies or qualitative research.  15 

Nor do we model heterogeneity of visitor preferences beyond including an income-16 

interaction variable for cost8. There are innumerable possibilities to create discrete 17 

distributions from demographics, trip motivation, residence location, group composition, or 18 

activities. Heterogeneous response to change is an issue we leave for future research about 19 

site-specific management issues.  20 

                                                      
8 An individual-specific randomly-distributed error-component was tested but the resulting model was 
unstable. 
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9. Conclusion 1 

With this study we have demonstrated that including multiple accessibility variables in a 2 

destination choice model allows for complex substitution patterns and avoids the need to 3 

exogenously specify a hierarchical structure as in GEV models. Our preferred model does 4 

not impose the restrictive IIA property and is more computationally tractable than 5 

multinomial probit models or mixed logit with large numbers of random parameters. The 6 

use of separate complement and substitute accessibility variables for each attribute 7 

captures the complex spatial dimensions of agglomeration and competition and hence 8 

makes the model attractive for spatial planning and policy processes. 9 
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11. Appendix 

Table V – Site variable definition and sources 

Variable name Average Definition Source 

Area CE          0.15  1 if site is in Coromandel-
Colville East area, otherwise 0 

Community Boards GIS 
layer (WRC) 

Area CW          0.34  1 if site is in Coromandel-
Colville West area, otherwise 
0 

Community Boards GIS 
layer (WRC) 

Area M          0.31  1 if site is in Mercury Bay 
area, otherwise 0 

Community Boards GIS 
layer (WRC) 

Area TP          0.06  1 if site is in Tairua-Pauanu 
area, otherwise 0 

Community Boards GIS 
layer (WRC) 

Area W          0.08  1 if site is in Whangamata 
area, otherwise 0 

Community Boards GIS 
layer (WRC) 

Boat ramp          0.06  1 if site includes boat launch 
facilities, otherwise 0 

Coastal structures GIS 
layer (WRC) 

Campground          0.24  1 if site has a campground, 
otherwise 0 

Inspection of Google 
Map 

Natural dune          0.32  Proportion of beach length 
with a sand dune 

"TOE_OF_DUNE" GIS 
feature (WRC) 

Estuary          0.06  1 if site is a harbour or 
estuary, otherwise 0 

Visual inspection of map 

Food retailer          0.16  1 if site has a convenience 
store, café or restaurant 

Inspection of business 
names on Google Maps 
and Streetview 
 

Motel          0.07  1 if site motel, hotel or other 
serviced accommodation 

Inspection of business 
names on Google Maps 
and Streetview 

Playground          0.21  1 if site has a public 
playground, otherwise 0 

GIS point data (TCDC) 

Public road          0.36  1 if site has a public road 
within 200m of the foreshore 

Visual inspection of map 

Public toilet          0.39  1 if site has a public toilet, 
otherwise 0 

GIS point data (TCDC) 

Sandy beach          0.65  1 if beach is sandy, 0 if it is 
predominantly shingle, silt or 
rock 

Landcover database V3 
(MfE) and visual 
inspection 

Undeveloped          0.46  1 if there are no buildings at 
the site, otherwise 0 

Properties GIS layer 
(LINZ) 

Small urban          0.13  1 if site overlaps a "local" 
scale urban area 

Urban boundaries GIS 
layer (WRC) 

Medium urban          0.09  1 if site overlaps a "district" 
scale urban area 

Urban boundaries GIS 
layer (WRC) 

Large urban          0.10  1 if site overlaps a "regional" 
scale urban area 

Urban boundaries GIS 
layer (WRC) 

Seawall          0.20  1 if site overlaps a "local" 
scale urban area 

Coastal structures GIS 
layer (WRC) 

  



35 

 

Table VI – Compatibility Logistic Regression 

Dependent variable = 1 if site A visitor also visits site B, otherwise 0 Coefficient 

Intercept -4.2584*** 

Site A visitors -0.0005**   

Travel time between sites -0.0380*** 

Site B Characteristics   

Site B visitors   0.0058*** 

Site B is on-route to site A   0.4706*** 

Mercury Bay area   1.1896*** 

Tairua-Pauanui area -0.1466        

Coromandel-Colville East   0.1958**   

Coromandel-Colville West   1.0234*** 

Whangamata Area   0.2615**   

Boat ramp   0.3710*** 

Campground   0.2191*** 

Natural dune   0.5546*** 

Estuary -0.9835*** 

Food retailer   0.1237**   

Sandy beach -0.0061        

Motel -0.1553        

Playground   0.0523        

Public road access   0.9287*** 

Public toilet   0.1833*** 

Seawall -0.2736*** 

Undeveloped -0.2835*** 

Small urban -0.1750*** 

Medium urban -0.3274*** 

Large urban -0.2286*** 

Differences - characteristics possessed by site B but not site A   

Different area -0.2536*** 

Boat ramp -0.0267        

Campground   0.0599        

Natural dune   0.4101*** 

Food retailer -0.0852        

Not on an estuary   0.2747*** 

Sandy beach   0.2468*** 

Motel   0.0972        

Playground   0.1013*      

Public road access - 0.1117        

Public toilet   0.2211*** 

No wall   0.0228        

Undeveloped   0.5147*** 

Urban   0.2134*** 

Larger urban -0.2284*** 

Smaller urban -0.6041*** 
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Observations 11881 

Null deviance 21850.9 

Residual deviance 7881.3 

* significant at 10%, ** significant at 5%, *** significant at 1% 
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