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Understanding the magnetic field dependence of the critical cur-

rent density (Jc) of superconductors is of considerable interest for 

optimizing their use in high field applications. Using time-depend-
ent Ginzburg—Landau theory, we have completed simulations of 
the average electric field generated in thin film systems subject to 

transport currents in applied magnetic fields, and compared them 
to thin film systems containing narrow junctions of reduced criti-
cal temperature (Tc). For thin films in contact with insulating sur-

faces, Jc approaches the depairing current density at applied mag-
netic fields below the initial vortex penetration field and remains 
non-zero until close to the Tinkham’s parallel critical field [1]. For 

thin films in contact with highly metallic surfaces, Jc was found to 
decrease to zero with decreasing film width. Adding a junction re-
gion to the film was found to broaden the transition to the normal 

state at all applied magnetic fields and reduce Jc of the film at zero 
field.  
 

Index Terms—TDGL, thin films, junctions, critical current den-
sity. 

I.  INTRODUCTION 

Understanding how the critical current density Jc of techno-

logical superconductors depends on applied magnetic fields is 

essential to the design and optimization of superconducting de-

vices for applications in high magnetic fields, such as magnet 

systems for fusion devices.  However, accurate simulation of Jc 

is challenging, since it is highly dependent on interactions be-

tween the vortices and the microstructure present in the mate-

rial. To this end, simulations based on the time-dependent Ginz-

burg—Landau (TDGL) equations have been widely applied to 

model vortex dynamics in superconductors, due to their relative 

simplicity compared to full microscopic theory.  Indeed, TDGL 

simulations have recently also been used to predict optimal pin-

ning landscapes in superconductors containing spherical, sphe-

roidal and columnar pinning centers [2, 3]. 

The simplest complete set of time-dependent Ginzburg—

Landau equations were first derived from microscopic theory 

for a gapless superconductor dominated by paramagnetic impu-

rities close to its critical temperature by Gor’kov and Eliashberg 

[4]. The normalized TDGL equations can be written as [5] 
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𝜂(𝜕𝑡 + 𝚤𝛷)𝜓 = [(𝛁 − 𝚤𝑨)2 + 𝜖(𝒓) − |𝜓|2]𝜓,  (1) 

 

𝜅2(𝛁 ×  𝛁 ×  𝑨) = Im[𝜓∗(𝛁 − 𝚤𝑨)𝜓]

+ (−𝛁𝛷 − 𝜕𝑡𝑨), 
(2) 

 

with associated boundary conditions 

 

(𝛁 ×  𝑨 − 𝑩) ×  �̂� = 𝟎,   (3) 

 

(𝛁 − 𝚤𝑨)𝜓 ⋅ �̂� = −𝛾𝜓, (4) 

 

where �̂� is the outward pointing normal unit vector of the su-

perconductor surface. Distances are normalized in units of the 

superconductor coherence length 𝜉, time 𝑡 in units of 𝜏 =
𝜇0𝜎𝜅

2𝜉2, the order parameter 𝜓 in units of the bulk Meissner 

state order parameter 𝜓0, the magnetic field in units of the upper 

critical field 𝐵c2, the magnetic vector potential 𝑨 in units of 

𝐵c2𝜉, and the electrostatic potential 𝛷 in units of 𝐵c2𝜉
2𝜏−1.  

𝜖(𝒓) = (𝑇 − 𝑇c(𝒓))/(𝑇 − 𝑇c
S) is dependent on the temperature 

𝑇, the local critical temperature 𝑇c(𝒓) and the critical tempera-

ture of the bulk superconductor 𝑇c
S. Current densities are scaled 

in units of the depairing current density of the superconductive 

domain 𝐽D = 2𝐵c2/3√3𝜇0𝜉𝜅
2. Eqs. (1) – (4) along with Max-

well’s equations define the state of the system up to a gauge 

transformation [6].  

The dimensionless parameters 𝜅 and 𝜂 characterize the su-

perconductive material. 𝜅 is the well-known Ginzburg—Lan-

dau parameter that represents the ratio of the characteristic 

length scales for variations in the electromagnetic field and var-

iations in the order parameter. Similarly, the friction coefficient 

𝜂 represents the ratio between the characteristic timescales for 

the evolution of the electromagnetic field and evolution of the 

order parameter field. In terms of the normal state conductivity 

𝜎 and the diffusivity 𝐷, the friction coefficient  

𝜂 = (𝜇0𝜎𝐷𝜅
2)−1, which was shown by Schmid to have the 

limiting value of 𝜂 = 5.78 in the dirty limit [7]. The surface 

parameter 𝛾 is the reciprocal of the De Gennes extrapolation 
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length (in normalized units) and has limiting values of 𝛾 = 0 

for surfaces in contact with an insulator (or vacuum) and  

𝛾 = ∞ for highly metallic surfaces [8]. 

Numerical solutions to the TDGL equations have been previ-

ously used by Machida to generate simulated V-I characteristics 

for a small superconducting system [9]. This was extended by 

Berdiyorov et al. to generate V-I characteristics and model vor-

tex dynamics in superconducting stripes and periodic junction 

arrays [10, 11]. Barba-Ortega has investigated the vortex struc-

ture in mesoscopic thin films and the effect of modifying sur-

face boundary conditions for such structures on their magneti-

zation [12, 13]. TDGL theory has also been used to investigate 

the effect of normal metal coatings on the magnetization char-

acteristics of type-II superconductors [14], and to simulate 

model polycrystalline systems in 3D [15]. More recently, a sta-

ble, large-scale solver of the TDGL equations developed by Sa-

dovskyy et al. [5] has been developed to optimize pinning and 

Jc in high-temperature superconductive materials [16, 17]. 

II. COMPUTATIONAL METHOD 

In this work, the TDGL equations in the zero electric poten-

tial gauge were solved in 2D using the finite difference semi-

implicit Crank—Nicolson algorithm developed by Winiecki 

and Adams [18]. It is based on the widely-used U–𝜓 method 

described by Gropp et al. [19]. All computations were per-

formed on the Hamilton 7 supercomputing cluster at Durham 

University. 

Thin superconductive films were discretized on a grid with 

length 𝑙, width 𝑤 and grid spacing 0.4𝜉 in the x and y-direc-

tions. A time step of 𝛿𝑡 = 0.5𝜏 was chosen for these simula-

tions, with the observables of the local current density, local su-

percurrent density and local superelectron density converged to 

one part in 105 at each time step. For computational efficiency, 

we have taken 𝜅 = 10 and 𝜂 = 1 for this system. 

Periodic boundary conditions were implemented for the film 

in the x-direction. In the y-direction, the ghost point method was 

used to implement second-order accurate formulations of Eqs. 

(3) and (4). The magnetic field at the upper and lower surfaces 

of the film was set by the externally applied field Bapp and the 

applied average current density Japp according to [9] 

 

𝐵 (𝑦 =
𝑤

2
±
𝑤

2
) = 𝐵app ±

𝑤

2
𝜇0𝐽app. (5) 

 

Simulations of superconducting thin films in magnetic fields 

were initialized in the bulk Meissner state throughout  

(𝜓 = 1,   𝑩 = 𝑱 = 𝟎). The magnetic field at the film surfaces 

were then raised to the desired applied field Bapp at a rate of 

3 × 10−4 𝐵c2𝜏
−1 and then held for 3000𝜏 to equilibrate, unless 

otherwise specified. For thin films containing junctions, a junc-

tion region with thickness 𝑑 = 2𝜉 was added to the centre of 

the thin film system, perpendicular to the direction of applied 

current flow, in which ϵ(r) = ϵJunc inside the junction region; a 

schematic of this system is shown in Fig. 1. When 𝑇𝑐 inside the 

junction region is reduced relative to the surrounding supercon-

ductor, ϵJunc decreases. An example of the superconducting state 

for the thin film system at Bapp = 0.5 Bc2 is shown in Fig. 2, with 

a triangular vortex lattice seen in the bulk of the film. 

For simulations of the 𝐸(𝐽) characteristics of thin film sys-

tems, the applied average transport current density Japp was in-

creased at a constant rate of 3 × 10−4 𝐽D𝜏
−1 and the average 

electric field along the x-direction 〈𝐸𝑥〉 in the system was com-

puted at each time step. 

III. RESULTS 

A. Thin Films  

𝐸(𝐽) characteristics of the thin film system subject to insu-

lating boundary conditions at the upper and lower surfaces are 

shown in Fig. 3. For low currents, almost dissipationless behav-

ior is observed. For intermediate currents at low applied mag-

netic fields, temporal oscillations in the average electric field in 

the film are observed due to the entry/exit of entire rows of vor-

tices across the upper/lower surface barriers of the film. The 

vortex rows travel across the film with a current-dependent ve-

locity, and thus these electric field oscillations have a corre-

sponding current-dependent period. At higher fields, the defect 

 
Fig. 1. Schematic diagram of the simulated thin film system, periodic in the x 

direction, containing a junction region of thickness 𝑑. Magnetic fields are applied 
along the z-direction. For the thin film case,  𝑑 = 0 and 𝜖 = 1 throughout. 
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Fig. 2.   Normalized superelectron density |𝜓|2 (top) and local magnetic field 𝐵 
(bottom) in a superconducting film with 𝑤 = 20𝜉, 𝑙 = 60𝜉,  𝜂 = 1 and  𝜅 = 10 
in an applied external magnetic field Bapp = 0.5Bc2, equilibrated for 104𝜏. The sys-
tem is periodic in the x-direction and insulating boundary conditions were applied 
in the y-direction. 
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density in the vortex lattice increases and these electric field os-

cillations become less clearly defined, as defect motion and the 

entry/exit of individual vortices dominates over the coherent 

motion of vortex rows. Eventually, as the applied average cur-

rent density in the film is increased further, the superconducting 

film transitions into the (resistive) normal state. This transition 

becomes more abrupt as the applied magnetic field is increased. 

From the 𝐸(𝐽) characteristics obtained for the film at various 

applied magnetic fields, the critical current density Jc was de-

termined using Ekin’s offset criterion method [20]. At a critical 

average electric field  𝐸c = 0.01 𝜙0/2𝜋𝜉𝜏, the local tangent to 

the 𝐸(𝐽) characteristic was found and extrapolated to zero elec-

tric field; Jc was taken to be the corresponding current density 

at this point. 

Fig. 4 displays the critical current density as a function of 

applied magnetic field for superconducting films of varying 

widths of the superconductor, subject to both highly metallic 

and insulating surface conditions. At applied magnetic fields 

much lower than the initial vortex penetration field of the film, 

the critical current density of films with insulating surface con-

ditions is large, and close to the depairing current density JD. 

For films with highly metallic boundary conditions, the critical 

 
Fig. 3.   Average electric field 〈𝐸𝑥〉 against external applied current Japp for a 
superconducting film with 𝑤 = 20𝜉, 𝑙 = 60𝜉,  𝜂 = 1 and  𝜅 = 10 subject to var-
ious external magnetic fields. Periodic boundary conditions were applied in the x-
direction and insulating boundary conditions were applied in the y-direction. Sys-
tems were first initialised in the bulk Meissner state and the external magnetic 
field Bapp was raised to the desired value. The external current density Japp was then 
slowly swept up to above the depairing current JD. 
 

 
Fig. 6.   Average electric field 〈𝐸𝑥〉 against external applied current Japp for a 
superconducting film containing a 2𝜉 wide ‘junction’ region in its centre, in which 
the local 𝑇c term ϵJunc is variable. The surrounding superconducting domain was 
parameterised with 𝜂 = 1,  𝜅 = 10 and dimensions 𝑤 = 20𝜉 and 𝑙 = 60𝜉, with 
periodic boundary conditions applied in the x-direction and insulating boundary 
conditions applied in the y-direction. At each external magnetic field, the system 
was first initialised in the bulk Meissner state and the external magnetic field Bapp 
was raised to the desired value. The external current density Japp was then slowly 
swept up to above the depairing current JD. 

 
Fig. 5.   Average electric field 〈𝐸𝑥〉 against external applied current Japp for a 

superconducting film containing a 2𝜉 wide ‘junction’ region in its centre, in which 
the local 𝑇c term ϵJunc = 0.80. The surrounding superconducting domain was pa-
rameterised with 𝜂 = 1,  𝜅 = 10 and dimensions 𝑤 = 20𝜉 and 𝑙 = 60𝜉, with pe-
riodic boundary conditions applied in the x-direction and insulating boundary con-
ditions applied in the y-direction. At each external magnetic field, the system was 
first initialised in the bulk Meissner state and the external magnetic field Bapp was 
raised to the desired value. The external current density Japp was then slowly swept 
up to above the depairing current JD. 

 
Fig. 4.   Critical current density Jc against mean external magnetic field Bapp for 
a superconducting system with 𝜅 = 10, 𝜂 = 1 and 𝑙 = 60𝜉 for varying width 𝑤. 
Jc and Bapp are expressed in units of the depairing current JD and the upper critical 
field Bc2 for each superconductor respectively. The critical current was determined 
using Ekin’s offset method using a critical electric field 𝐸𝑐 = 0.01𝜙0/2𝜋𝜉𝜏 and 
extrapolating to 〈𝐸𝑥〉 = 0.  
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current density in this regime tends to zero as the film width 

decreases, as a result of the suppression of superelectron density 

close to the highly metallic surfaces.  

In low magnetic fields, of the order of the initial vortex pen-

etration field in the film, the critical current density of wide 

films exhibits a (distorted) Fraunhöfer-like dependence with ap-

plied magnetic field. For these films, the critical current density 

of the film decreases to zero as the applied field is raised above 

𝐵c2 for films subject to highly metallic surface conditions, or 

above 𝐵c3 = 1.69𝐵c2 for films subject to insulating surface 

conditions. The critical current density can remain non-zero up 

to extremely high applied magnetic fields in very thin films 

with insulating surfaces, depending on their width. High reso-

lution simulations with a grid spacing of 0.1𝜉 suggest that the 

field at which the critical current density does vanish for thin 

films is close to the parallel critical field of the film 

𝐵c|| = 2√3𝐵c2𝜉/𝑤, consistent with Tinkham’s predictions [1]. 

B. Thin Films Containing Junctions  

Next, the effect of including a junction region in the thin film 

was investigated. Fig. 5 shows that the 𝐸(𝐽) characteristics of 

the thin film system are modified when a junction with 

ϵJunc = 0.8 is added to the film. At large applied current densi-

ties, in zero magnetic fields electric field oscillations are intro-

duced, as a result of vortex-antivortex motion along the junc-

tion. Furthermore, in all magnetic fields, the transition to the 

normal state at high current densities is broadened. This occurs 

because a non-zero superelectron density persists just outside 

the junction region that carries an associated supercurrent, alt-

hough most of the superconducting film itself is in the normal 

state.  

Finally, the effects of varying the junction properties on the 

zero field 𝐸(𝐽) characteristic of the film containing a junction 

are displayed in Fig. 6. When ϵJunc is reduced, the critical current 

density decreases and in the high E-field regime, the transition 

to the normal state broadens and the current density required to 

drive the whole system into the normal state increases. This be-

havior has previously been observed by Berdiyorov et al. for 

the specific case of ϵJunc = −1 [11]; our results in Fig. 6 show 

that this broadening is strongly dependent on the junction 𝑇c. 

IV. DISCUSSION 

A. Thin Films 

The equilibrated vortex state obtained for the thin film at 

each applied field, prior to applying current flow, is sensitive to 

noise and the rate of increase of the applied magnetic field. This 

is because variations in the locations of initial vortex penetra-

tion can introduce defects in the vortex lattice. These defects 

then introduce additional noise in the simulated 𝐸(𝐽) character-

istics of the film at low applied currents, but provided they are 

sufficiently few in number, they do not significantly affect the 

determination of the critical current density of the system pro-

vided the offset criterion 𝐸c is large enough. The convergence 

criteria and field ramp rate used here were selected as to be 

small and slow enough respectively to minimize the number of 

defects in the vortex state, whilst remaining large enough to al-

low the simulations to complete in reasonable timescales.  

In simulations of systems in high magnetic fields, because 

vortex density is higher, the number of defects increases and the 

resultant 𝐸(𝐽) characteristics are unavoidably noisier. This 

crossover to a defect-dominated lattice at high fields has been 

previously observed in simulations and experiments carried out 

by Papari et al. [21]. This affects our results in two ways; firstly, 

high field states take longer to equilibrate, and secondly, relax-

ation of the vortex lattice under small applied currents can gen-

erate significant transient electric fields as the vortex lattice re-

laxes from an initial metastable state (c.f. Fig. 3).  

B. Thin Films Containing Junctions 

Due to the presence of the junction region in these simula-

tions, the vortex lattice is more disordered than for the thin film 

alone and equilibration of the vortex lattice takes longer. The 

noise in the resultant 𝐸(𝐽) characteristics in magnetic fields is 

greater as a result. Longer equilibration times are required to 

avoid this, but are more computationally demanding. This has 

limited our ability to obtain Jc(B) data for the junction system. 

Furthermore, the junction region modelled in this work is 

highly simplified as just a region of reduced Tc, without consid-

ering any variations of 𝜅 or 𝜂 inside the junction. These issues 

will be the subject of future studies. 

V. CONCLUSION 

We have performed TDGL simulations to describe the evo-

lution of the vortex lattice in thin films subject to transport cur-

rent in a magnetic field, with and without the inclusion of nar-

row junctions of reduced Tc. We have found that the critical 

current density of thin films with insulating surface conditions 

approaches the depairing current density at applied magnetic 

fields below the initial vortex penetration field. In contrast, the 

critical current density of thin films with highly metallic surface 

conditions decreases to zero as the film width decreases, due to 

the suppression of the local superelectron density close to the 

metallic surfaces. Furthermore, we have found that the critical 

current density in very thin films with insulating surfaces sub-

ject to applied magnetic fields is limited by the parallel critical 

field 𝐵c|| = 2√3𝐵c2𝜉/𝑤, consistent with Tinkham’s analytic 

results. Finally, when narrow junction regions of reduced Tc are 

added to the thin film perpendicular to the direction of current 

flow, we observe a suppression of the critical current of the sys-

tem in zero applied magnetic field and a broadening of the tran-

sition to the normal state at all applied magnetic fields. 
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