
Electron-Nuclear Entanglement in the
Time-Dependent Molecular Wavefunction

Federica Agostinia, E. K. U. Grossb,c, Basile F. E. Curchodd

aLaboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, 91405 Orsay, France
bMax-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

cFritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel

dDepartment of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom

Abstract

We address the problem of electron-nuclear entanglement in time-depen-
dent molecular wavefunctions, key quantities of quantum nonadiabatic
molecular dynamics. The most natural way of tackling this question con-
sists in comparing the nonadiabatic dynamics obtained from time-depen-
dent self-consistent field and the exact factorization of the time-dependent
electron-nuclear wavefunction. Both approaches are based on a single-
product Ansatz for the molecular wavefunction, with both a time-depen-
dent electronic and nuclear wavefunction. In the former, however, electron-
nuclear coupling is treated within the mean-field approximation, whereas
in the latter the entanglement is completely accounted for. Based on a
numerical model study, we analyze the nature of the electron-nuclear en-
tanglement in the exact factorization.

Keywords: Electron-nuclear entanglement, Nonadiabatic dynamics,
Excited-state dynamics, Ehrenfest dynamics, Exact factorization

1. Introduction

The mean-field approach is widely used in the fields of theoretical
chemistry and chemical physics for electronic structure [1, 2] and nuclear
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dynamics calculations [2, 3, 4, 5]. The major drawback of this strategy re-
sides in its lack of correlation, or entanglement, among the degrees of free-
dom treated within the mean-field approximation. The purpose of this
work is to propose a different perspective on this concept, the electron-
nuclear entanglement, in the context of the time-dependent molecular wa-
ve-function, thus employing the time-dependent self-consistent field (TD-
SCF) scheme [6, 7, 8, 9]. Specifically, here we refer to TDSCF as the approx-
imation used to describe the electron-nuclear coupling in the molecular
wavefunction, rather than as a particular numerical procedure.

TDSCF allows to perform calculations on large molecular systems, ef-
fectively reducing the “exponential complexity” of the exact quantum-
mechanical problem. For an increasing number of degrees of freedom, it
might be expected that the mean-field approximation becomes more and
more accurate. In addition, the choice of coordinates used to describe the
problem plays an important role [10, 11, 12], even though the difficulty
lies on the definition of a systematic way to select the appropriate set of
variables for which the mean-field description is adequate. TDSCF, espe-
cially in its quantum-classical version [13, 14, 15, 16], i.e., the Ehrenfest
approach, is often employed for excited-state molecular dynamics, in par-
ticular for the early dynamics following photoionization (see for exam-
ple Ref. [17]). However, the underlying treatment of quantum decoher-
ence [18, 19, 20, 21, 22] and energy exchange mechanisms [23, 24, 25, 26, 27]
is sometimes a source of debate. Ehrenfest dynamics is also sometimes
used in combination with more advanced strategies for nonadiabatic dy-
namics [28], for example as a mean to propagate a time-dependent basis
for the nuclear wavefunction [29, 30].

Rather than analyzing the quality of the mean-field approximation,
which clearly depends on the problem at hand and as such cannot be gen-
erally assessed, our purpose here is to investigate the nature of the missing
entanglement between electronic and nuclear degrees of freedom. To this
end, we compare TDSCF with the time-dependent version of the exact fac-
torization of the electron-nuclear wavefunction [31, 32]. The focus will be
put on the Ansatz for the molecular wavefunction, and on the correspond-
ing equations of motion derived for the two components of the total wave-
function. In previous work, the exact factorization has been compared to
the Born-Oppenheimer approximation [33, 34, 35] and to the Born-Huang
expansion [36, 37, 38, 39], but the relation between TDSCF and exact fac-
torization is still lacking. It seems natural, however, to investigate their
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connection, since the formal structure of the molecular wavefunction, rep-
resented as a single product of an electronic and a nuclear wavefunction,
lends itself for a direct comparison.

We start our analysis by addressing the concept of electron-nuclear
entanglement from a quantum-mechanical perspective, in Section 2, and
then by discussing the effect of the quantum-classical approximation, in
Section 3. Our observations are supported by calculations performed on
a model test system representing a nonadiabatic proton-coupled electron
transfer. Conclusions are summarized in Section 4.

2. Definition of electron-nuclear entanglement

Electron-nuclear entanglement can be defined as everything that can-
not be described by the TDSCF approximation [6, 7, 13, 5] of the molecular
wavefunction:

ΨTDSCF(r,R, t) = χ(R, t)Φ(r, t). (1)
Here, χ(R, t) is the nuclear wavefunction, depending on the nuclear coor-
dinates R, whereas Φ(r, t) is the electronic wavefunction with r describ-
ing the electronic coordinates. Both components of the full wavefunction
depend on time, making this Ansatz suited to describe electronic excited-
state dynamics. However, the coupling between electronic and nuclear
motion can be treated only approximately, in a mean-field fashion, as in-
tensively discussed in the literature (see Ref. [13] for example). In its ex-
act form, the electron-nuclei coupling should, in principle, account for
the effects on the nuclear evolution resulting from changes in electronic-
state occupations (and coherences), and for the role of nuclear dynamics
in inducing those changes. The TDSCF approximation is likely to miss
some of these critical effects. Therefore, how can the electron-nuclear
entanglement in the product form of the full wavefunction be restored?
Comparing Eq. (1) with the exact form of the electron-nuclear wavefunc-
tion [31, 32, 40],

Ψ(r,R, t) = χ(R, t)ΦR(r, t), (2)
suggests that the parametric dependence of the electronic wavefunction
ΦR(r, t) on nuclear positions is everything that is needed to fully account
for electron-nuclear entanglement. In fact, this “correlated-product” form
has been shown to yield exactly the full wavefunction at all times, pro-
vided that ΦR(r, t) is normalized to one ∀R, t (partial normalization con-
dition, PNC), and that the evolution equations for ΦR(r, t) and χ(R, t)
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are determined from the full time-dependent Schrödinger equation (for
Ψ(r,R, t)). The symbol used in Eq. (2) for the nuclear wavefunction is the
same as in Eq. (1), even though the two functions can be very different
from one another, as shown below. In both cases, the nuclear density |χ|2
can be determined by integrating |Ψ|2 (or |ΨTDSCF|2) over electronic vari-
ables.

We will analyze the two forms of the time-dependent molecular wave-
function based on a model for nonadiabatic proton-coupled electron trans-
fer [41]. The details of the system Hamiltonian and the simulations are
given in Appendix A. The model is one-dimensional; thus, we will drop
the bold symbols henceforth for r and R.

The exact wavefunction Ψ(r, R, t) is obtained by solving the full time-
dependent Schrödinger equation,

i~∂tΨ(r, R, t) = ĤΨ(r, R, t). (3)

Here, Ĥ(r, R) = T̂n(R) + T̂e(r) + V̂ (r, R), where T̂n is the nuclear kinetic
energy, T̂e is the electronic kinetic energy, and V̂ the interaction potential.
In the following, we will also use the symbol ĤBO = T̂e + V̂ to indicate the
electronic Born-Oppenheimer (BO) Hamiltonian. ΨTDSCF(r, R, t) is con-
structed by solving the coupled equations

i~∂tΦ̃(r, t) =
[
T̂e + 〈V̂ 〉χ

]
Φ̃(r, t) (4)

i~∂tχ(R, t) =
[
T̂n + 〈V̂ 〉Φ̃

]
χ(R, t). (5)

The symbols 〈 · 〉χ and 〈 · 〉Φ̃ stand for an average operation over the in-
stantaneous nuclear or electronic wavefunction, respectively. Therefore,
Eq. (4) describes the evolution of the electronic wavefunction in the mean
field created by the nuclei, whereas the nuclei move according to Eq. (5)
in the mean field of the electrons. In addition, note that, in order to obtain
this form of the TDSCF equations (the procedure is described in Appendix
B), we have multiplied Φ(r, t) by a purely time-dependent phase, namely

Φ̃(r, t) = e
i
~
∫ t
0 dt

′EBO(t′)Φ(r, t), (6)

withEBO(t) = 〈Φ(t)|i~∂t|Φ(t)〉r [13, 21]. The symbol 〈 · 〉r is used to indicate
an integration over the electronic variable.
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Comparing the dynamics resulting from the TDSCF to the exact-propa-
gation one will allow us to point out the qualitative features that are miss-
ing as a consequence of the mean-field character of the electron-nuclear
coupling. To identify the source of the qualitative disagreement, we will
focus on the equations that generate the time evolution in the approxi-
mate, TDSCF case, and in the exact, factored form.

Figure 1: Results of the propagation using the exact time-dependent Schrödinger equa-
tion. Upper panels: the three lowest adiabatic PESs for a proton-coupled electron trans-
fer model (ground state S0, green curve, first excited state S1, palatinate curve, second
excited state S2, cyan curve). The nuclear density is shown as a black line at times
t1 = 10.8 fs (left) and t2 = 31.2 fs (right). Lower panels: modulus of the molecular
wavefunction, |Ψ(r,R, t)|, at times t1 = 10.8 fs (left) and t2 = 31.2 fs (right).

Fig. 1 (upper panels) shows three adiabatic potential energy surfaces
(PESs), i.e., the eigenvalues of ĤBO as functions of R. The two lowest sur-
faces, ε(S0)

BO (R) and ε
(S1)
BO (R), present an avoided crossing at about Rac =

−2.0 bohr. Therefore, when the nuclear wavepacket, prepared at the initial
time on ε(S1)

BO centered at R0 = −4 bohr, passes through the avoided cross-
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ing, population transfer from S1 to S0 is observed. The resulting nuclear
dynamics is shown at times t1 = 10.8 fs (upper left panel of Fig. 1) and
t2 = 31.2 fs (upper right panel of Fig. 1), when the nuclear density is close
to the avoided crossing and after the transfer is completed, respectively.
For the very same times, Fig. 1 (lower panels) shows the modulus of the
full molecular wavefunction, |Ψ(r, R, t)|. Notice how the two-dimensional
distribution of Ψ(r, R, t) mirrors the different structures of the nuclear den-
sity. At time t1, the nuclear probability density is unimodal, approximately
localized between R = −1 bohr and R = −4 bohr, while |Ψ(r, R, t)| is
mainly peaked between 0 and r = 15 bohr, along the electronic coordi-
nate. At later times, t2 in Fig. 1, population has transferred from S1 to
S0, the nuclear density is now bimodal, and a more complex structure of
|Ψ(r, R, t)| emerges along the electronic component: for R between 4 and
8 bohr, the probability distribution along the electronic coordinate has a
single-peak shape, while for R between 1 and 4 bohr, two main peaks
can be observed. Such (abrupt) change of character for |Ψ(r, R, t)| sug-
gests that the two portions of the nuclear density, and thus of the nuclear
wavepacket, are associated to different electronic characters. We will now
show that this feature cannot be captured by the TDSCF form of the full
wavefunction.

Within the TDSCF approximation, the molecular wavefunction is con-
structed as the product of an electronic and a nuclear wavefunction, re-
spectively evolved according to Eqs. (4) and (5). For the same times pre-
sented in Fig. 1, t1 and t2, we report in Fig. 2 the results of the TDSCF prop-
agation. At time t1 (left panels of Fig. 2), only the distribution |ΨTDSCF(r, R, t)|
along the electronic coordinate shows a small difference in the negative r-
region when compared to the exact result of Fig. 1. However, at a later
time t2, a qualitative difference with the exact result is observed in the
nuclear density (upper panel), which translates in a very different shape
of |ΨTDSCF(r, R, t)| as compared to |Ψ(r, R, t)|. The TDSCF nuclear density,
despite being well localized in the positiveR-region between 2 and 8 bohr,
has an unimodal distribution. Therefore, the abrupt change of charac-
ter along the r-direction, previously observed in |Ψ(r, R, t)|, is suppressed
within the mean-field approximation. At this stage, a question naturally
arises: How can the source of this disagreement be identified? As the lack
of the appearance of a bimodal nuclear distribution can only be rooted in
the difference between |ΨTDSCF(r, R, t)| and |Ψ(r, R, t)|, we shall look in de-
tail at the equations of motion for the nuclear wavefunctions in the TDSCF
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Figure 2: Results of the propagation using the TDSCF approximation. The panels show
similar quantities as in Fig. 1.

approximation and in the exact factored form of the full wavefunction.
When the exact product form of the molecular wavefunction in Eq. (2)

is inserted into the time-dependent Schrödinger equation (3), the evolu-
tion equations

i~∂tΦR(r, t) =
[
T̂e + V̂ + Ûen[χ]− ε(R, t)

]
ΦR(r, t) (7)

i~∂tχ(R, t) =
[
T̂n + ε(R, t)

]
χ(R, t) (8)

are derived by imposing the PNC. The electron-nuclear coupling operator
is Ûen[χ] = (−i~∂R)2/(2M)− i~∂Rχ/(Mχ)(−i~∂R).

These equations have been reported here in a particular gauge. The
product form of the full wavefunction in Eq. (2) is invariant under a (R, t)-
dependent phase transformation, which represents the only freedom in
determining the electronic and nuclear wavefunctions. If a condition is
given to fix this gauge freedom, the solutions of Eqs. (7) and (8) are unique.
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Here, the choice of gauge (as detailed in Appendix A) is made to ensure
that the nuclear Hamiltonian of Eq. (8) only contains a time-dependent
scalar potential, or time-dependent potential energy surface (TDPES), as a
generator of the nuclear dynamics.1

The TDPES in Eq. (8) has an expression strikingly similar to the poten-
tial energy term 〈V̂ 〉Φ̃ in Eq. (5). The expression of the TDPES is obtained
by multiplying Eq. (7) by Φ∗R(r, t) and integrating over the electronic vari-
able, that is

ε(R, t) = 〈ΦR(t)| T̂e + V̂ |ΦR(t)〉r +
~2

2M
〈∂RΦR(t)| ∂RΦR(t)〉r

−〈ΦR(t)| i~∂t |ΦR(t)〉r , (9)

while in Eq. (5) the corresponding potential is

〈V̂ 〉Φ̃ = 〈V̂ 〉Φ = 〈Φ(t)| T̂e + V̂ |Φ(t)〉r . (10)

Note that in Eq. (10) the average of T̂e on Φ(r, t) yields a constant function
of R, thus it does not have any effect on the dynamics.

We will now compare the first term on the right-hand side of Eq. (9) to
the formally identical term in Eq. (10). It is worth recalling [33] here that
the second term on the right-hand side of Eq. (9) is negligible if compared
to the other two, as it isO(M−1), and will not alter in any way the analysis
we will report shortly. The last term in Eq. (9), on the other hand, can
have a strongR-dependence and, thus, can have an important effect on the
dynamics. This point has been already extensively discussed in previous
work [37, 36, 38]. Hence, comparing side by side 〈Φ(t)| T̂e + V̂ |Φ(t)〉r to
〈ΦR(t)| T̂e + V̂ |ΦR(t)〉r will allow us to investigate the influence of the R-
dependence encoded in the exact electronic wavefunction.

Fig. 3 shows the (first two terms of the) exact TDPES and the TDSCF
potential, i.e., 〈V̂ 〉Φ, at times t1 (left panel) and t2 (right panel) and clearly
shows the crucial importance of the parametric R dependence in the elec-
tronic wavefunction. Formally, the two mathematical expressions are the

1In general, a time-dependent vector potential also appears in Eq. (8), but the choice
of gauge introduced here guarantees that the vector potential is identically zero. This
choice can always be made in one-dimensional situations, but cannot be generalized in
higher dimensions [42, 43].
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same: the average of the electronic BO Hamiltonian ĤBO = T̂e+ V̂ over the
time-dependent electronic wavefunction. However, the two curves largely
differ from each other. At time t1, the TDPES and 〈V̂ 〉Φ are very similar in

Figure 3: Comparison between εSCF(R, t) = 〈V̂ 〉Φ(R, t) of Eq. (10) (orange dots) and the
first two terms, named εGI(R, t), on the right-hand side of Eq. (9) (blue dots), at times
t1 = 10.8 fs (left panel) and t2 = 31.2 fs (right panel). εGI(R, t) is the gauge-invariant part
of the TDPES as it is not affected by the change of gauge. For reference, the three lowest
adiabatic PESs are shown in light colors (with a color code similar to the one of Fig. 1).

the region where the nuclear density is considerably different from zero,
between R = −4 bohr and R = −1 bohr, explaining the similarity between
|Ψ(r, R, t)| and |ΨTDSCF(r, R, t)| at this time. At a later time t2, while 〈V̂ 〉Φ
is very similar, in shape, to what it was at t1, the TDPES presents at the
same time (i) abrupt changes of character, switching from one adiabatic
PES to another, and (ii) a shape that is very different from its TDSCF coun-
terpart. It is this strong R-dependence of the TDPES that allows for the
buildup of a bimodal distribution in the nuclear density (compare with
Fig. 1), and, more importantly, that allows for the proper change in the
electronic character of the full molecular wavefunction. It is now clear,
from the comparison of Figs. 1 and 3 (right panels), that the portion of the
wavefunction localized between R = 4 bohr and R = 8 bohr is associ-
ated with the electronic state S0, as the shape of the TDPES in this region
perfectly follows ε(S0)

BO (R), whereas the portion between R = 1 bohr and
R = 4 bohr corresponds to S1. For smaller values of R a similar analysis
is not possible because the nuclear density is too small (see Fig. 1), but the
change of electronic character could easily be deduced based on the shape
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of the TDPES.
In summary, the comparison between the two product-form expres-

sions of the molecular wavefunction has permitted to shed new lights on
the importance of the parametric dependence in the electronic wavefunc-
tion. A mean-field expression of the molecular wavefunction, by defini-
tion, cannot capture abrupt changes of character on either component of
the product. This feature, however, can be reproduced if a parametric
dependence of the electronic wavefunction on R is introduced, that is,
if entanglement is correctly accounted for. Note that, in a totally equiv-
alent way, electron-nuclear entanglement can also be expressed via the
parametric dependence on r of the nuclear wavefunction, i.e., Ψ(r,R, t) =
χr(R, t)Φ(r, t) (this possibility was investigated in Refs. [44, 45, 46]). We
also highlight that an analysis of the importance of the parametric nu-
clear dependence in the context of the (time-independent) BO wavefunc-
tion was discussed in Ref. [47].

3. Different flavors of electron-nuclear entanglement

In Section 2 we have analyzed the concept of electron-nuclear entan-
glement from a quantum-mechanical perspective, by comparing the exact
molecular wavefunction to its TDSCF approximation. In this section, we
report a similar comparison based on the quantum-classical treatment of
the coupled electronic and nuclear dynamics. The motivation for this anal-
ysis is the following. The quantum-classical limit of the TDSCF equations
yields the well-known Ehrenfest algorithm (see Ref. [13, 15] for deriva-
tions). Deriving the equations of motion for Ehrenfest dynamics implies
taking the classical limit of the nuclear wavefunction in TDSCF, which has
the effect of introducing (what is often noted as) a parametric dependence
in the electronic wavefunction. Therefore, we address in this section the
question: Has the classical limit of the nuclear wavefunction the effect
of inducing a local entanglement in the electronic wavefunction? If yes, we
would expect better agreement of Ehrenfest results with exact calculations.

To analyze the effect of the classical limit on the nuclear degrees of free-
dom, we first start by employing the nuclear potential 〈V̂ 〉Φ̃ = 〈V̂ 〉Φ̃(R, t)
to propagate classical trajectories, and we compare the resulting distri-
bution of trajectories thus obtained with the distribution of trajectories
propagated with the TDPES ε(R, t). Fig. 4 shows the histograms con-
structed from the classical-trajectory distribution at times t1 (left panel)
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and t2 (right panel). As a benchmark, we also present the quantum me-
chanical, TDSCF and exact, nuclear densities. As expected from previous
work [36, 48, 38, 49, 39, 50], classical trajectories evolved according to a
force that is derived from the exact TDPES perfectly reproduce the quan-
tum mechanical distribution. Analogously, classical trajectories generated
via the TDSCF nuclear potential 〈V̂ 〉Φ̃ follow the quantum-mechanical dis-
tribution, even though this is not the correct one. According to these proof-
of-concept calculations, no major changes are observed in the numerical
results in going from the quantum to the quantum-classical approach.

Figure 4: Distribution of classical trajectories evolved according to a force determined
from the TDSCF nuclear potential, i.e., 〈V̂ 〉Φ̃(R, t) (orange dots), and according to a force
determined from ε(R, t) (blue squares), at times t1 = 10.8 fs (left panel) and t1 = 31.2 fs
(right panel). For reference, the corresponding quantum probability distributions are
shown as continuous lines (orange for TDSCF and blue for the exact one).

Note that the studied test case does not involve phenomena such as
multiple passages of the wavepacket through the avoided crossing, which
would cause interferences or revival of coherence. However, we have
studied in a previous work [39] a case of nonadiabatic quantum inter-
ferences, where we also have propagated purely classical trajectories on
the exact TDPES. We have concluded that, despite the complex quantum
effects taking place during the nonadiabatic interference process, the clas-
sical distribution mimics well (at least for short times) the nuclear quan-
tum distribution. This analysis confirmed that the TDPES encodes critical
information about the coupled electron-nuclear dynamics, such that clas-
sical trajectories propagated on the support of the TDPES capture more
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accurately the quantum behavior of nuclei in the presence of nonadiabatic
effects than they would do on the support of (time-independent) BO PESs.

Armed with this knowledge, we move towards our final test on Ehren-
fest dynamics. Following a standard procedure for the derivation of Ehren-
fest equations starting from TDSCF, we replace the nuclear density |χ(R, t)|2
with a δ-function centered at all times at the position of the classical trajec-
tory Rcl(t), i.e., δ(R−Rcl(t)). As a result,

〈V̂ 〉χ →
∫
dRV (r, R) δ(R−Rcl(t)) = V (r, Rcl(t)) (11)

and the electronic evolution equation (4) becomes

i~∂tΦ̃Rcl(t)(r, t) =
[
T̂e + V (r, Rcl(t))

]
Φ̃Rcl(t)(r, t). (12)

As a consequence of the dependence of the potential on the position of
the classical trajectory, Rcl(t), triggered by the classical limit performed
in Eq. (11), the electronic wavefunction seems to acquire a “point-wise”
parametric dependence on the classical position of the nucleus. Such de-
pendence is clearly different from the parametric dependence in ΦR(r, t)
of Eq. (2), because it introduces only a local entanglement, at the position
Rcl(t), between the electronic and the nuclear wavefunction. Even if a
set of trajectories, R(I)

cl (t), is considered to mimic the delocalization of the
nuclear density, each trajectory I will be locally entangled to the corre-
sponding electronic wavefunction Φ

R
(I)
cl (t)

(r, t). The situation is different
if the classical limit is similarly introduced in the electronic equation of
motion of the exact factorization (Eq. (7)). A detailed derivation of the
quantum-classical equations derived from Eqs. (7) and (8) is beyond the
scope of this work, and has been discussed extensively elsewhere [18, 19,
51, 40, 52, 21, 20, 53, 54, 55, 56]. However, it is worth comparing here the
effect on Eq. (7) of an operation analogous to what is proposed in Eq. (11).
In Eq. (7), the electron-nuclear coupling operator Ûen[χ] depends explic-
itly on the nuclear wavefunction χ(R, t) (and on its gradient), and there
is no integral over nuclear coordinates to be performed. Therefore, if a
set of trajectories is used to mimic the evolution of the nuclear wavefunc-
tion, the electronic equation acquires a dependence on the position of all
trajectories. That is, entanglement is non-local in the quantum-classical ap-
proximation of Eqs. (7) and (8), as is in their exact form.
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Figure 5: Comparison at time t2 = 31.2 fs of the classical distribution of trajectories prop-
agated according to the Ehrenfest algorithm (red dots), the quantum-mechanical nuclear
distribution predicted by TDSCF (orange line), and the exact nuclear distribution (blue
line).

To investigate the effect of the local entanglement in Ehrenfest dynam-
ics, we have evolved classical trajectories according to the potential 〈V̂ 〉Φ̃Rcl(t)

,
where the potential is determined by solving Eq. (12), that is, according to
the Ehrenfest algorithm. Fig. 5 shows at time t2 the distribution of classi-
cal trajectories, in comparison to the TDSCF nuclear density and the exact
nuclear density. As before, local entanglement does not appear to have a
major effect on the nuclear probability distribution. The major issue of this
distribution, i.e., the unimodal character, is not cured by the inclusion of
entanglement in its local form.

4. Conclusions

We have analyzed the concept of electron-nuclear entanglement in a
nonadiabatic process of proton-coupled electron transfer. To this end, we
have employed the TDSCF approach, which uses an uncorrelated prod-
uct Ansatz for the molecular wavefunction composed of an electronic and
a nuclear wavefunction, both time-dependent. By construction, TDSCF
lacks entanglement between electronic and nuclear variables. This form of
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the molecular wavefunction is extremely similar to the exact-factorization
expression. However, in the exact factorization the product is not uncor-
related, as the electronic wavefunction depends parametrically on nuclear
coordinates. Such dependence is sufficient to restore entanglement in the
product form of the molecular wavefunction.

In the present work, we have studied the effect of this parametric de-
pendence on nuclear dynamics, as it can be related to the shape of the
potential that drives nuclear evolution. The analysis is presented both at
the quantum-mechanical level and within the quantum-classical approxi-
mation (when nuclear dynamics is mimicked employing classical trajecto-
ries).

In the derivation of the quantum-classical Ehrenfest approach (from
TDSCF), we have pointed out what appears as a local parametric depen-
dence of the electronic wavefunction on the position of the classical tra-
jectory. However, such dependence is not enough to restore, not even
partially, the entanglement lost in the initial TDSCF Ansatz and fully ac-
counted for in the exact factorization formalism.

Appendix A. Computational details

The model system [41] used for the analysis presented in the main text
consists of three ions, two of which are fixed at a distance L = 20.0 bohr,
and one electron. The mass of the moving ion is M = 1836, the proton
mass in atomic units; it interacts with the fixed ions via a Coulomb po-
tential and with the electron via a soft-Coulomb potential. The electron
interacts with all ions via a soft-Coulomb potential. The potential energy
V̂ (r, R) in the Hamiltonian describing the system is thus

V̂ = −
erf
(
|R−r|
Rc

)
|R− r|

−
erf

(
|r−L

2 |
Rr

)
∣∣r − L

2

∣∣ −
erf

(
|r+L

2 |
Rl

)
∣∣r + L

2

∣∣ +
1∣∣L

2
−R

∣∣+ 1∣∣L
2

+R
∣∣ . (A.1)

The parameters of the potential have been chosen as Rc = 4.5 bohr, Rl =
4.0 bohr, and Rr = 3.0 bohr.

Quantum-mechanical equations are integrated using the split-operator
technique [57] with a time-step of dt = 0.024 fs (0.1 au). The initial condi-
tion for TDSCF and the exact propagation is Ψ(r, R, t = 0) = ϕ

(S1)
R0

(r)Gσ(R−
R0) with ϕ

(S1)
R0

(r) the S1 eigenstate of the Hamiltonian ĤBO evaluated at
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the nuclear position R0 = −4 bohr, and Gσ(R−R0) = (πσ2)−1/4 exp[−(R−
R0)2/(2σ2)] with σ = 0.3 bohr. Classical trajectories are also propagated
with a time-step of dt = 0.024 fs (0.1 au) in all cases, namely when the tra-
jectories are evolved on 〈V̂ 〉Φ̃(R, t) or on the TDPES, and within the Ehren-
fest propagation. For all quantum-classical simulations, 200 trajectories
have been employed, sampled from the Wigner distribution correspond-
ing to the quantum-mechanical nuclear probability density.

In order to determine the TDPES of Eqs. (7) and (8), the time-dependent
Schrödinger equation for Ψ(r, R, t) has been solved. Having access to the
full wavefunction, the nuclear density is easily derived from the integral
over the electronic variable of |Ψ(r, R, t)|2. The phase S(R, t) of the nuclear
wavefunction, from the expression χ = |χ| exp[(i/~)S], is determined [38]
according to

S(R, t) =

∫ R

dR′
Im〈Ψ(R′, t)|∂R′ |Ψ(R′, t)〉r

|χ(R′, t)|2
, (A.2)

which guarantees that the time-dependent vector potential of the theory
is identically zero at all times. The electronic wavefunction to be used
in Eq. (9) is determined as ΦR(r, t) = Ψ(r, R, t)/χ(R, t). Note that there
might be regions where the nuclear density is very small or zero. To cir-
cumvent this numerical issue, we compute R-dependent quantities only
in the regions where |χ(R, t)| > 10−8. We dot not expect that this oper-
ation strongly affects the overall behavior of the ensemble of trajectories,
since classical trajectories are to be found in regions of large probability.
Furthermore, diverging trajectories can be neglected in the calculations of
average quantities, as the trajectories are propagated independently.

It is worth mentioning here that a quantum-classical algorithm has
been derived based on the exact-factorization equations and allows for
the on-the-fly calculations of the TDPES without the need to solve the full
time-dependent Schrödinger equation. It has been applied to the study
of model systems [52, 21, 55, 19, 18] and of the photoactivated dynamics
in isolated molecules [51, 56, 40, 20]. The algorithm, dubbed coupled-
trajectory mixed quantum-classical (CT-MQC), is designed to solve the
electronic equation of the exact factorization to determine the TDPES, whi-
ch in turn is used to propagate classical trajectories. The electronic evo-
lution operator depends explicitly on the nuclear wavefunction. There-
fore, at each step of dynamics, the distribution of classical trajectories
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is employed to construct an approximate form of the nuclear wavefunc-
tion. This operation requires that the trajectories are propagated simulta-
neously. We expect that at short times the classical distribution remains
close to what would be the quantum nuclear distribution, but this cannot
guaranteed at longer times.

Appendix B. Derivation of the TDSCF equations

In order to derive expressions (4) and (5) starting from the TDSCF
Ansatz for the molecular wavefunction, we have used the following form:

ΨTDSCF(r, R, t) = χ(R, t)Φ(r, t)e
i
~
∫ t
0 dt

′ EBO(t′) = χ(R, t)Φ̃(r, t), (B.1)

with
EBO(t) =

∫
drΦ∗(r, t)i~∂tΦ(r, t). (B.2)

Clearly, multiplying the full wavefunction of Eq. (1) by a purely time-
dependent phase factor does not affect observable properties, but it al-
lows to derive a symmetric form of the evolution equations for χ(R, t) and
Φ̃(r, t).

We insert Eq. (B.1) into the time-dependent Schrödinger equation (3).
We then project onto Φ∗(r, t),

i~∂tχ(R, t) =
[
T̂n + 〈V̂ 〉Φ

]
χ(R, t) + 〈T̂e〉Φχ(R, t)

+

[
EBO(t)−

∫
drΦ∗(r, t)i~∂tΦ(r, t)

]
χ(R, t), (B.3)

and onto χ∗(R, t)

i~∂tΦ(r, t) =
[
T̂e + 〈V̂ 〉χ

]
Φ(r, t) + 〈T̂n〉χΦ(r, t)

+

[
EBO(t)−

∫
dRχ∗(R, t)i~∂tχ(R, t)

]
Φ(r, t), (B.4)

where we have imposed the normalization of the two wavefunctions. In
order to simplify the equations just derived, we note that the total energy
of the electron-nuclear system, E, is

E =

∫
dr

∫
dRχ∗(R, t)Φ̃∗(r, t)i~∂t χ(R, t)Φ̃(r, t), (B.5)
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which follows from the Schrödinger equation. Thus

E =

∫
dRχ∗(R, t)i~∂t χ(R, t) +

∫
drΦ∗(r, t)i~∂t Φ(r, t)− EBO(t). (B.6)

It follows from our choice of EBO(t) that the first term in Eq. (B.6) equals
the total energy of the system E.

The nuclear evolution equation (B.3) reduces to Eq. (5) once the con-
stant (as a function of R) term 〈T̂e〉Φ is neglected, having no effect on the
dynamics. Similarly, thanks to the relation[

i~∂t Φ(r, t)− EBO(t)Φ(r, t)
]
e

i
~
∫ t
0 dt

′ EBO(t′) = i~∂t Φ̃(r, t), (B.7)

the electronic evolution equation (B.4) reduces to Eq. (4), if we neglect the
constant (as function of r) term 〈T̂n〉χ − E.
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