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Graphical abstract 

 
 

Highlights 

 In this manuscript, a new unidirectional SH wave EMAT with oblique permanent magnet for the 
inspection of the aluminum plate is presented for the first time. The oblique angle of the permanent 

magnet enhances the guided signal on one side and weakens the ultrasonic signal on the other side. 
Therefore, the angled bias magnetic field can improve the focusing ability of the SH guided wave transducers 
effectively. It is concluded that the oblique PPM can improve the focusing ability of the unidirectional point-
focusing SH guided wave EMAT and suppress the influence of the reflected signal, and then improve the 
resolution of the ultrasonic signal at the focusing point. In the study of the influence of the oblique angle of 
the permanent magnet on the focusing SH guided wave EMAT, the displacement amplitude at the focal point 
increases as the angle increases while the growth rate decreases. For the other side of the focal position, the 
displacement amplitude at that point decreases linearly as the angle increases. 

 

Abstract: We propose a new unidirectional point focusing shear horizontal (SH) guided wave electromagnetic ultrasonic 

transducer (EMAT) with an angled periodic permanent magnet (PPM) in this work. The angled PPM developed here provides an 

angled bias magnetic field to achieve the EMAT’s unidirectional focusing capability. The characteristics of the magnetic field 

distribution are analyzed by numerical and theoretical calculations. The simulation and experimental results are proven to be in 

good agreement when studying the bidirectional normalized amplitudes of the displacement of the single-coil SH-guided EMAT 

with oblique permanent magnets. Both the proposed angled transducer structure and the traditional paralleled transducer structure 

are performed and simulated using the three-dimensional Finite Element Method (FEM) to compare their unidirectional focusing 

capabilities. The results show that the SH guided wave EMAT of the focusing coils with an oblique permanent magnet enhances 

the signal on the focusing side and weakens the signal on the other side effectively. This performance can suppress the influence 

of the reflected signal from the unfocused side and further improve the ultrasonic signal’s resolution. Moreover, it is shown in the 
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study that increasing the oblique angle of the PPM makes it difficult to increase the signal strength at the focal point when the 

angle reaches a certain value, but it is still effective at weakening the signal on the unfocused side. 

 

Key words: Oblique periodic permanent magnet, SH guided wave, unidirectional focusing, point focusing, oblique angle 
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I. INTRODUCTION 

The ultrasonic guided wave testing technique is more sensitive, economical, and convenient than conventional non-destructive 

testing (NDT) techniques [1–5]. The testing methods of ultrasonic guided waves can be divided into piezoelectric ceramics, 

magnetostriction, piezoelectric thin films, and electromagnetic ultrasonic testing according to different excitation modes [6–8]. 

The most widely used of the above methods is piezoelectric ultrasonic testing, which uses piezoelectric transducers for the 

excitation and reception of ultrasonic guided waves. Although piezoelectric ultrasonic technology has significant advantages and 

shows greater efficacy, the presence of the couplant can restrict the application of such a transducer in extreme environments, 

including the inspection’s accuracy and efficiency. Therefore, the electromagnetic ultrasonic testing technique has excellent 

advantages in these aspects [9–14]. 

Ultrasonic guided wave technology has been widely used in the detection of large metal plates [15–17]. Due to the dispersion 

characteristics of ultrasonic guided waves and the characteristics of the different modes of ultrasonic waves, it is necessary to 

consider how the material performs when selecting an appropriate mode of ultrasonic guided wave for the plate inspection. The 

electromagnetic acoustic transducer (EMAT), which acts as an essential energy excitation and reception transducer in 

electromagnetic ultrasonic guided wave testing, relies on electromagnetic coupling to achieve the vibration of particles on the plate 

surface and wave propagation. However, the energy conversion efficiency of EMAT is much lower than that of conventional 

piezoelectric ultrasonic transducers, only about one percent. Since the energy signal is so weak, EMAT requires a high signal 

receiving circuit, a high signal-to-noise ratio (SNR), and high-gain operational amplifier is required to identify and amplify the 

extracted signal. Therefore, to increase the sensitivity and efficiency of the EMAT, the guided wave mode and structure of the 

transducer are required to be selected properly. Shear-Horizontal (SH) ultrasonic guided wave testing is a common detecting 

technology for metal plates, where the fundamental SH0 mode guided wave has been widely used in industry [18–22]. The SH0 

guided wave has great advantages in the detection process as the group velocity is constant and does not change with the frequency 

[23–26]. Besides, when the SH0 mode guided wave encounters a defect in the process of propagation in the metal plate, the SH 

waves with mode conversion are hardly recognized and received by the reception transducer. This can be explained by the fact 

that the frequency region of the SH0 guided wave is appropriately selected and narrowband filtering of the signal processing 

module is performed at the reception transducer. The SH guided mode can be controlled when the frequency is relatively low and 

the analysis efficiency of the guided wave detection signal and detection efficiency of the metal plate guided wave are also 

improved. Furthermore, the SH wave does not produce any out-of-plane displacement in the particle, so the particle motion and 

wave propagation are not affected by the medium of the steel plate. Thus, SH guided wave is suitable for electromagnetic ultrasonic 

guided wave testing in metal plates. 

At present, the mechanism of SH ultrasonic guided wave mainly includes the magnetostriction and the Lorentz force. Ribichini 

compared and analyzed the advantages and disadvantages of these two types of EMAT through experimental and numerical 

investigations and concluded that while ultrasonic transducers based on magnetostriction mechanisms could produce larger signal 

amplitudes, the use of magnetostriction coupling materials removed the non-contact characteristics of the transducers [27]. An SH 

guided wave EMAT that uses a periodic permanent magnet (PPM) in the detection of an aluminum plate is utilized in this study. 

The structure of the transducer includes a PPM and the coils excited by the alternating current. Therefore, due to the EMAT’s low 

energy conversion efficiency, the strength of the signal can generally be improved by optimizing these two parts of the transducer. 

Song developed a focusable and rotatable SH Wave EMAT to improve the amplitude and directivity of the signals, which increased 

the energy conversion efficiency of the traditional transducers [28]. However, focusing such a signal is achieved by the cooperation 

of two rotatable transducers, so the configuration has a complicated structure that is both hard to control and expensive, and the 

signal’s focusing effect is not particularly obvious. In practical applications, the size and blind area of multiple transducers are too 

large to utilize in aluminum plate defect detection. Ogi improved the coupling efficiency of the SH guided wave EMAT by 

changing the angle of the bias magnetic field based on magnetostriction theory [29]. However, the non-contact characteristics of 

the PPM EMAT meant that it was necessary to study the angle of the PPM EMAT in the specimen inspection. Therefore, it is 

significant to arrange the coils and permanent magnets reasonably to improve the detection signal’ strength, which is the purpose 
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of this study. 

In this work, we propose a new unidirectional point-focusing SH guided wave EMAT that uses a fan-shaped PPM with an 

oblique angle by comparison with the bidirectional and unidirectional three-parallel coils SH guided wave EMAT. The effect of 

the PPM’s oblique angle on the unidirectional focusing of the ultrasonic signal is calculated using a 3-D model and verified by 

experiments. Then, the effect of the oblique permanent magnets on the amplitude of the SH guided waves that are generated by a 

single coil is investigated at different angles. This study also investigates the variation in the displacement at the focal point and 

the corresponding symmetrical position with the oblique angle of the bias magnetic field. 

 

II. METHOD 

A. Magnetic field calculation of the rectangular permanent magnet 

Permanent magnets are critical in the generation of ultrasonic signals as a source of the bias magnetic field in the EMATs. The 

magnetic field of a finite-size permanent magnet can be regarded as a superposition of the magnetic field generated by magnetic 

charges. According to the theory of the equivalent magnetic charge, the magnetic field in space can be expressed as follows. 

                          m
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where H is the magnetic field vector, σm is the surface magnetic charge density, μ is the magnetic permeability, r is the distance 

vector from the source point, S is the boundary of the permanent magnet. 

According to the equation (1) and the schematic diagram of the rectangular permanent magnet shown in Fig. 1, the spatial 

magnetic field generated by the rectangular permanent magnet at each point can be obtained. In the coordinate system shown in 

Fig. 1, the magnetic field at point P(x, y, z) is 

        m m

3 3
= d d

4 4
S S

S S
r r

 

 
 

 

 

 

   
r r

H H H       (2) 

 

 
Fig. 1. Schematic diagram of the rectangular permanent magnet. 

 

Although all the components of the magnetic field are not negligible in practice, in order to simplify the analysis in this study, 

since the transducer that generates the SH guided wave is based on the Lorentz force, the effective component of the magnetic 

field vector is considered to have only the z component. Moreover, the coil is located directly below the permanent magnet. 

Therefore, the solution of the magnetic field in the three directions can be simplified to that only in the z-direction. 

  

   

  

   

  

   

  

   

2 22 2

r

z

2 22 2

2 22 2

r

2 22 2

arcsin

4
arcsin

arcsin

4
arcsin

x a y b

x a z y b zB
H

x a y b

x a z y b z

x a y b

x a z y b zB

x a y b

x a z y b z







 

   


 


   

 

   


 


   

 
 
 
 
 
  

 
 
 
 
 
  

  

(3) 

ACCEPTED M
ANUSCRIP

T



 4 

  

       

  

       

  

       

  

       

2 2 2 2

r

z

2 2 2 2

2 2 2 2

r

2 2 2 2

arcsin

4
arcsin

arcsin

4
arcsin

x a y b

x a z h y b z hB
H

x a y b

x a z h y b z h

x a y b

x a z h y b z hB

x a y b

x a z h y b z h







 

     


 


     

 

     


 


     

 
 
 
 
 
  

 
 
 
 
 
  

 

(4) 

Therefore, when the P(0, 0, r) point is known on the z-axis, the magnetic flux density is 
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where Br is the residual flux density of the permanent magnet, r is the coordinate of the z-axis, Bz is the magnetic flux density 

amplitude in the z-direction, Bx=By=0. 

B. Physical model 

In the calculation of the coupled electromagnetic field, the primary physical process can be described by the Maxwell equations. 

 H J                                        (6) 

=
t


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

B
E                                     (7) 

where H is the magnetic field; J is the current density; E is the electric field; B is the magnetic flux density. Moreover, Gauss’s 

law for the electric field and magnetic field should be satisfied as follows. 
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where ρ is the charge density. Two constitutive equations are utilized to solve the equations above:     

=D E                                          (10) 

B H                                         (11) 

where ε is the dielectric constant and μ is the magnetic permeability. 

Eddy current mainly exists in the skin depth of the specimen’s surface, and the periodic Lorentz force is generated to excite the 

ultrasonic wave with the bias magnetic field. The dynamic magnetic field equation of the pulse eddy current is  
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where A is the magnetic vector potential; σ is the conductivity of the material; i is the total current; S is the cross-sectional area of 

the coil conductor. The induced eddy current density is 

e
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Also, the Lorentz force Fv will increase with the increase of the eddy current density. 

 v e d s  F J B B                          (14) 

where Bd is the dynamic magnet flux density; Bs is the static magnetic flux density of the permanent magnet. Lorentz force plays 

a vital role as a coupling factor connecting the two models in the simulation. 

The wave equation is shown which equals the Navier’s equation in the isotropic elastic solid medium. 
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where u is the displacement vector; t the time; ρ the density; Fv the volume force vector which can be obtained from the calculation 

of the Lorenz force in the electromagnetic field model; λ and μ are the Lame’s constants of the material. 
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C. Geometric model 

In the Lorentz-based SH guided wave transducer, the applied bias magnetic field is generally along the normal direction of the 

aluminum plate surface, because this method can maximize the energy of the bias magnetic field to generate ultrasonic waves. Due 

to the bidirectional propagation characteristics of the SH guided wave, it is usually necessary to focus the signal on the detected 

side to improve the resolution of the signal while reducing the interference on the other side. Therefore, the direction of the bias 

magnetic field generated by the permanent magnet can be changed to achieve the unidirectional concentration of the signal. 

 

 
(a) 

 
(b) 

Fig. 2. Schematic diagram of the oblique permanent magnet EMAT: (a) Three-dimensional schematic diagram; (b) Two-dimensional geometry schematic 

diagram. 

 

Fig. 2(a) shows the schematic diagram of the oblique permanent magnet EMAT proposed in this work. BH is the magnetic flux 

density produced by the horizontal permanent magnet while BO is produced by the oblique permanent magnet. In order to avoid 

the magnetostriction effect of the alternating magnetic field on the ferromagnetic material, the specimen is selected as an aluminum 

plate. Fig. 2(b) is a two-dimensional geometrical diagram that can analyze the principle of the oblique permanent magnet EMAT 

more intuitively from the perspective of analytical geometry. 

Since the permanent magnet has a thickness h, in order to simplify the analysis process, the center of the lower surface of the 

permanent magnet can be regarded as the rotation axis. Then an angled bias magnetic field varies with the increase in the rotation 

angle φ of the periodic permanent magnet. Since the eddy current on the surface of the aluminum plate mainly exists on its surface, 

it can be assumed that the distance between the eddy current position and the periodic permanent magnet is r and the center distance 

of the different magnetic poles of the periodic permanent magnet is l. The wave velocity of the shear wave is a constant value, and 

the AC frequency applied on the coil is 1 MHz, and the phase superposition of the ultrasonic waves can be realized when the 

spacings of the SH guided wave radiation points are half wavelength, the spacings of the periodic permanent magnets is 1.6 mm 

in this study. Four points x1, x2, x3, and x4 are selected and located directly below each pole of the periodic permanent magnet, and 

on the surface of the aluminum plate, so the spacing between the adjacent points is 1.6 mm. 

D. Numerical algorithm 

As a multi-physical calculation & analysis software, COMSOL has excellent advantages in solving physical problems such as 

electromagnetic field coupled with the ultrasonic field in this study. The basic principle of the SH guided wave excitation by an 

EMAT is: The alternating eddy current generated by the alternating current in the coils causes the specimen to generate periodic 

vibration under the effect of the external bias magnetic field, thereby exciting and propagating the ultrasonic SH guided waves in 

two directions. Therefore, two modes in COMSOL are required to implement the simulation process: electromagnetic field and 

elastic dynamic field (also named as the solid mechanics’ mode). 

Using the numerical solution of Partial Differential Equation (PDE), the Finite Element Method (FEM) technique provides an 

approximate numerical method for solving the electromagnetic ultrasonic coupling problem. The algorithm utilized in the 

simulation includes solving the differential equations completely, or transforming the partial differential equation into an 

approximate system of ordinary differential equations, and then solving the numerical solution by Euler method. In the simulation, 

the joint solution method of three modes is mainly used for transient calculation. The magnetic field without current mode is mainly 
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implemented to calculate the bias magnetic field generated by the periodic permanent magnet. Moreover, the magnetic field module 

calculates the eddy current density induced by the alternating coil inside the aluminum plate. For the solution of the Lorentz force, 

the current density and magnet flux density calculated by the above two modes can be utilized to generate and propagate the 

ultrasonic waves in the solid mechanic’s mode. 

In the simulation, a three-dimensional model is used to analyze the generation and focusing characteristics of SH ultrasonic 

guided waves. It is significant to set the size of the grid cells when meshing the solution area. In order to ensure the accuracy of 

the eddy current calculation, at least seven grids should be ensured to be divided in the skin depth. Also, to ensure the accurate 

calculation of the ultrasonic SH waves, there should be at least seven grids in one wavelength. Therefore, in the simulation, the 

meshing of the computation domain is shown in Fig. 3 where the air domain is omitted and the meshing parameters are shown in 

Table 1. In the analysis of the simulation and experiment, except for particular explanations, the values of the parameters utilized 

are shown in Table 2 in this study. 

The phase velocity of the SH0 mode wave does not change with the frequency-thickness product, and the SH0 wave mode has 

no dispersion. In order to utilize the characteristics of the SH0 mode guided wave, the following formula needs to be satisfied. 

                              
2

Tnc
fd                               (16)   

In this work, the frequency is selected to be below the cut-off frequency for all modes n>0, and the thickness of the aluminum 

plate remains unchanged at 1 mm, and the transverse wave velocity in the aluminum plate is 3.2 km/s. Then the cutoff frequency 

of the SH1 mode guided wave is 1.6 MHz. Therefore, in order to obtain a pure SH0 mode guided wave, the drive frequency of the 

AC coil is selected as 1 MHz in the simulation and experiment. 

 

 
Fig. 3. The meshing of the computation domain. 

 
Table 1 

UNIT DIMENSION PARAMETER OF MESH GENERATION 

Parameters Value 

Mesh vertices 1 206 434 

Tetrahedron 7 091 087 

Triangle 173 300 

Edge element 2 444 

Vertex element 28 

Number of elements 7 091 087 

Minimum unit quality 0.387 

Average unit quality 0.975 

Unit volume ratio 2.611×10-5 

Mesh volume (mm3) 4×106 

 

Table 2 

PARAMETERS OF THE SH WAVE EMAT. 

Parameters Value 

Focal radius (mm) 20 

Lift-off distance (mm) 1 

Lame’s constants λ (GPa) 58 

Lame’s constants μ (GPa) 29 

Aluminum specimen mass density (kg/m3) 2 832 

Aluminum specimen conductivity (S/m) 3.65×107 
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Remanent magnetism of the magnet (T) 1.21 

Relative permeability of the magnet 400 

Permanent magnet oblique angle (°) 20 

Permanent magnet size (mm) 8×1.6×2 

 

III. RESULTS 

A. Magnetic field calculation of permanent magnets  

In this section, we conduct a 3-D simulation using FEM in the COMSOL software for a rectangular permanent magnet, and the 

material parameters utilized in the simulation are shown in Table 2. The residual magnetic flux density of the rectangular permanent 

magnet is set to 1.21 T, and the direction of the vector is opposite to the normal direction of the aluminum plate. To validate the 

equation (5) through numerical simulation, Fig. 4(a) shows the vector distribution of magnetic flux density in the domain around 

the permanent magnet. It is shown in the figure that the closer to the permanent magnet surface and the permanent magnet edge, 

the larger the flux density vector exists. So near the center point of the permanent magnet such as P(0, 0, r), the magnetic flux 

density vector shows only the z-direction component, which is consistent with the method research above. Figure 4(b) shows a 

two-dimensional slice schematic of the magnetic flux density amplitude distribution. The eddy current density induced in the 

aluminum plate during the excitation of the high-frequency pulse current is shown in Fig. 4(c). It can be found that due to the edge 

effect, although the maximum value of the magnetic flux density appears at the edge position of the permanent magnet, the only 

contribution of the SH guided wave excitation is the z component of the magnetic field. Therefore, for such a simple rectangular 

permanent magnet, the corresponding relationship between magnetic flux density and distance can be obtained through numerical 

simulation and theoretical calculation by equation (5). 

 

 
(a) 

 
(b) 
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(c) 

Fig. 4. Magnetic flux density calculation of permanent magnets: (a) 3-D vector schematic; (b) 2-D slice schematic; (c) The 2-D eddy current density distribution. 

 

Fig. 5 shows a comparison between the simulation results and the analytical calculations under the same conditions and the 

calculated axis is located on the normal line at the center of the x-y plane of the permanent magnet, and it can be found that the 

two methods are highly consistent. It can be seen from the figure that as the distance in the z-direction increases, the magnetic flux 

density of the permanent magnet decreases nonlinearly. In the numerical solution of multi-physics problems, the description of the 

nonlinear problems by partial differential equations is accurate and reasonable. Therefore, it proves that the Finite Element Method 

is suitable for calculating the electromagnetic field of a simple geometry structure, and it makes it easier to solve the complex 

geometry that hard to obtain an analytical solution. 

 

 
Fig. 5. Comparison of simulated and analytical solutions for the magnetic flux density of rectangular periodic permanent magnets. 

 

B. Effect of the angled bias magnetic field by a single coil SH wave EMAT 

In order to analyze the influence of the oblique permanent magnet on the excitation and propagation of the SH guided wave, it 

is assumed that there is only a single coil under the periodic permanent magnet. The points x1, x2, x3 and x4 on the surface of the 

aluminum plate shown in Fig. 2 represent the corresponding positions below the central points of each part of the periodic 

permanent magnet. When the permanent magnet is placed horizontally, for PPM with more permanent magnets, the magnetic flux 

densities at central positions of each magnet are approximately the same except for the permanent magnets on both sides. However, 

if the permanent magnet has an angle, the magnetic field between the points will be significantly different. Therefore, the 

magnitudes of the Lorentz forces at each point are different while the frequency remains the same. 

Fig. 6(a) shows the time-varying Lorentz forces at x1, x2, x3 and x4 on the surface of the plate. In order to facilitate the comparison 

of the force at each point, normalization is used in this figure. The parameters utilized in the simulation refer to the values shown 

in Table 2, in which the oblique angle of the permanent magnet is set to 20 °. Therefore, it is shown in Fig. 6(a) that the magnitudes 

of the Lorentz forces at each point are different. Ultrasonic waves generated by the points with greater force are stronger while 

ultrasonic waves generated by the points with smaller force are weaker. Therefore, an asymmetrically distributed ultrasonic field 

can be obtained by tilting the bias magnetic field to achieve single-sided focusing of the ultrasonic guided wave signal. 
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(a) 

 
(b) 

Fig. 6. The characteristics of the oblique permanent magnet at different positions such as x1, x2, x3 and x4 on the surface of the plate: (a) Time-varying Lorentz force 

at each point along the direction perpendicular to the wave’s propagation direction at an angle of 20 °; (b) The effect of the oblique angle φ on the magnetic flux 

density at each point. 

 

Since the angle φ of the permanent magnet affects the distribution of the ultrasonic field, it is necessary to analyze the magnetic 

flux density generated by the permanent magnets with different oblique angles at different positions, such as x1, x2, x3, and x4. As 

the rotation axis of the permanent magnet is assumed to be in the middle position herein, then as the angle φ increases, the magnetic 

flux density increases the fastest at x1 while it becomes slower at x2. The magnitude of the magnetic flux density at the x3 and x4 

positions decreases as the oblique angle φ increases. It can explain the difference in the magnitude of the Lorentz force between 

different positions in Fig. 6(a). 

Fig. 7(a-c) shows the displacement field distribution of the aluminum plate surface at different moments, in which the angle is 

20 °. It can be seen that the SH ultrasonic guided wave propagates bidirectionally along the x-axis direction as time increases. In 

order to analyze the effect of the angled bias magnetic field on the ultrasonic wave propagation in detail, Fig. 7(d-f) shows the 

normalized displacement distribution at different moments along the x-axis direction. It can be seen from the figure that when the 

permanent magnet has an oblique angle, the displacement field distribution in the negative direction of the x-axis is 10% to 20% 

larger than that of the corresponding position on the other side. Therefore, the presence of the oblique permanent magnets can 

focus the signal on one side effectively. 

 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7. Displacement field distribution under the angled bias magnetic field at different moments: (a, d) Displacement field distribution at 5000 ns; (b, e) 

Displacement field distribution at 10000 ns; (c, f) Displacement field distribution at 15000 ns. 

 

In order to study the effect of permanent magnets with different oblique angles on the ultrasonic guided wave focusing capability, 

Fig. 8 shows the difference in the displacement amplitudes of the two symmetric coordinate points (±20 mm, 0) of the aluminum 

plate surface at different angles. It can be found that as the oblique angle increases, the difference in displacement amplitude 

between the focusing side and the unfocused side increases parabolically. It can be concluded that a larger permanent magnet angle 

can improve the effect of a unidirectional focusing EMAT. However, it should be noted that due to the geometry and insulation 

requirements, the angle has a maximum value which is related to the lift-off distance of the transducer and the size of the permanent 

magnet. 
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Fig. 8. The difference in the amplitude of the displacement amplitudes of the two symmetric coordinate points (±20 mm, 0) at different oblique angles of the 

permanent magnet. 

 

C. Measurement 

The aluminum plate used in the experiment is consistent with the simulation conditions in section B. Pulsed power (RPR 4000) 

is utilized in the experimental research in Fig. 9 to generate and receive signals. The power not only produces strong and stable 

sinusoidal high-frequency pulses but also identifies and receives the desired signals over a broad frequency band. The oscilloscope 

(TDS 1002) is utilized to display the waveform acquired by the RPR-4000, which has a bandwidth of 60 MHz and the sampling 

rate of 1 Gs/s. Impedance matching is achieved by connecting a 150-ohm resistor in parallel with the coil. To measure the magnetic 

flux density vector under the PPM magnet for validation purpose, we used a 3-D magnetic field measurement chip with three Hall 

sensors in three directions. Through three Hall probes, the components of the magnetic flux density at a certain point in space can 

be measured in the three directions of x, y, and z. 

 

 
Fig. 9. Experimental configuration of oblique permanent magnet SH guided wave. 

 

In order to compare with the simulation results, the oblique angle of the PPM used in the experiment can be adjusted within a 

certain range. The 3-D printing technology is utilized to obtain a wedge-shaped part with a fixed precise oblique angle to achieve 

the angular variability of the transducer. The non-magnetically conductive material used in printing is acrylonitrile-butadiene-

styrene (ABS) to produce the required component. The comparison between the simulation results and the experimental results 

under the same conditions is shown in Fig. 10. The results have been normalized to make an intuitive comparison, and it can be 

found that the simulation results are in good agreement with the experimental results. Moreover, the maximum difference between 

the two values is less than 15%. The strong signal on the focusing side makes the detection of the defect more accurate while the 

weak signal on the unfocused side can effectively avoid the influence of the reflected signal on the signal extraction of the 

measurement point. 
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Fig. 10. The comparison between the simulation results and the experimental results at different angles of the permanent magnet. 

 

IV. DISCUSSIONS 

The oblique angle of the permanent magnet enhances the guided signal, and using the method above can improve the focusing 

ability of the SH guided wave transducers effectively. In the design of a conventional SH-guided EMAT structure, the coils are 

generally arranged in parallel, and the permanent magnets are placed horizontally above the plate. The arrangement of such a 

transducer structure can excite a bidirectional propagating SH guided wave and achieve a good phase superposition effect by 

adjusting the spacings of the periodic permanent magnets. However, this method can only detect defects in a specific direction, 

and the generated signal is relatively weak while the reflected signal on the other side also affects the resolution and extraction of 

the waveform. Therefore, in order to improve the unidirectional propagation characteristics of the ultrasonic guided waves and to 

achieve the point focusing ability of the EMATs, a novel transducer structure with oblique permanent magnets has been developed 

in this study. 

A. The angled PPM with parallel coils 

Fig. 11(a) shows the structural arrangement of the parallel coil horizontal permanent magnet SH ultrasonic guided wave EMAT 

and Fig. 11(b) shows the transducer structure with the oblique permanent magnet. In order to simplify the analysis process and 

facilitate comparison, three coils are utilized in the simulation to simulate a multi-coil transducer configuration. The spacings of 

the three coils are fixed to 3 mm and arranged symmetrically on the x-y plane. The excitation current in the coil is a sinusoidal AC 

with a frequency of 1 MHz. The horizontal permanent magnet has an angle of 0 °, and the oblique permanent magnet has an angle 

of 20 ° in the simulation. 

 

 
(a) 

 
(b) 
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(c) 

Fig. 11. Schematic diagram of the three-parallel coils SH guided wave EMAT configuration: (a) Horizontal periodic permanent magnet; (b) Oblique periodic 
permanent magnet with an angle of 20 °; (c) The coil structure. 

 

Fig. 12(a) shows the distribution of the normalized displacement field at the moment of 15000 ns for the parallel coil EMAT 

with the horizontal permanent magnet. It can be found in the figure that due to the symmetrical configuration of the transducer 

structure, the calculated displacement field is also symmetrically distributed. The normalized displacement distribution of the 

surface of the aluminum plate in the x-axis direction of the symmetry axis is shown in Fig. 12(b). It can be found that the 

displacement component around the center point is the largest, and the displacement amplitude decreases gradually as the distance 

increases. There will be a transitional suppression zone before the guided wave is generated, so the amplitude of the displacement 

will be relatively small near this position. 

 
(a) 

 
(b) 

Fig. 12. Normalized displacement field distribution of three-parallel coils SH guided wave EMAT: (a) Two-dimensional schematic diagram; (b) Distribution along 

the x-axis on the surface of the aluminum plate. 

 

When the permanent magnet has an oblique angle, the distribution of the displacement field will be affected. Fig. 13(a, b) shows 

the displacement field distribution at 15000 ns and the normalized displacement along the x-axis for the oblique permanent magnet 

with an angle of 20 °. It can be observed from the figure that the distribution of the displacement field is not symmetrically 

distributed along both sides of the propagation direction, but shows a larger displacement on the focusing side. Since the oblique 

permanent magnet causes uneven distribution of the Lorentz force amplitude on the plate surface, a difference in the amplitude of 

the ultrasonic wave at the radiant point is generated. The particle near the oblique side of the permanent magnet produces a large 

displacement while the particle away from the side of the permanent magnet leads to a small displacement. Therefore, the figure 
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shows that the displacement on the left side is higher than that of the right side, which can be explained by the rotation direction 

of the bias magnetic field. It can be seen that it is useful to set an angle of the permanent magnet to achieve unidirectional focusing 

of the signal. Moreover, compared with Fig. 7(a-f), it can be seen that the increase in the number of the coils improves the 

unidirectional focusing effect of the signal. 

 

 
(a) 

 
(b) 

Fig. 13. Normalized displacement field distribution of three-parallel coils SH guided wave EMAT with an angled PPM: (a) Two-dimensional schematic diagram; 
(b) Distribution along the x-axis on the surface of the aluminum plate. 

 

B. The angled PPM with focusing coils  

Since the SH ultrasonic guided wave has a specific direction of the propagation, the direction of the coils can be directed to a 

certain point by rearranging the parallel coils in the transducers. In order to ensure that the ultrasonic waves generated by each coil 

also satisfy the phase superposition, it is necessary to design a fan-shaped periodic permanent magnet EMAT to improve the 

strength of the signal. The new transducer consists of a fan-shaped periodic permanent magnet with three centripetal coils while 

the center of the coil is defined as the focal point. The propagation direction of the SH guided wave excited by the Lorentz force 

is pre-determined as it propagates bidirectionally along the surface of the aluminum plate and perpendicular to the vibration 

direction of the shear waves. Therefore, the focal point of the three coils can also be regarded as the focusing position of the 

ultrasonic waves. In such a transducer configuration, unidirectional focusing characteristics of the signal can be achieved by using 

the fan-shaped permanent magnets with an angle. Fig. 14(a) shows the configuration of the SH guided wave EMAT with the 

horizontal fan-shaped permanent magnet while Fig. 14(b) shows the configuration with an angled PPM.  

 

 
(a) 
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(b) 

 
(c) 

Fig. 14. Schematic diagram of the point-focusing coils SH guided wave EMAT configuration: (a) Horizontal periodic permanent magnet; (b) Oblique periodic 

permanent magnet with an angle of 20 °; (c) The coil structure. 

 

In the simulation, the aperture angle of the focusing coils is set to 40 ° and the center-to-center spacing of the coils is also 3 mm 

in order to facilitate the comparison with the parallel coil EMATs. The position of the focal point is predefined as (-20 mm, 0) on 

the aluminum plate. Fig. 15(a) shows the normalized displacement field distribution and Fig. 15(b) shows the distribution along 

the surface of the x-axis aluminum plate. It can be seen that the magnitude of the displacement at the focal point is much larger 

than the displacement of the position other than the point of the radiation source. Fig. 16 (a, b) shows the normalized displacement 

field distribution of a point-focusing SH guided wave EMAT with an angled bias magnetic field. It can be seen from the figure 

that the displacement at the focal point is enhanced while the displacement on the unfocused side is weakened. This proves that 

the presence of the oblique PPM can improve the focusing ability of the unidirectional point-focusing SH guided wave EMAT, 

and then improve the resolution of the ultrasonic signal. 

 

 
(a) 

 
(b) 
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Fig. 15. Normalized displacement field distribution of the point-focusing coils SH guided wave EMAT: (a) Two-dimensional schematic diagram; (b) Distribution 

along the x-axis on the surface of the aluminum plate. 
 

 
(a) 

 
(b) 

Fig. 16. Normalized displacement field distribution of the point-focusing coils SH guided wave EMAT with an angled PPM: (a) Two-dimensional schematic 
diagram; (b) Distribution along the x-axis on the surface of the aluminum plate. 

 

To investigate the effect of the angle of the biasing magnetic field on the unilateral point focusing, Fig. 17 shows the effect of 

different angles on the normalized displacement at the focal point (-20 mm, 0) and its corresponding point (20 mm, 0) on the other 

side. It can be found that as the oblique angle of the magnetic field increases, the displacement at the focal point increases while 

the rate of growth gradually decreases when it reaches 1. At the non-focus side at (20 mm, 0), the displacement amplitude at that 

point decreases approximately linearly as the angle increases. Therefore, increase the oblique angle of the permanent magnet will 

make it hard to enhance the signal strength at the focus point when the angle reaches a certain value, but it is still effective to 

weaken the signal on the unfocused side. 

 

 
Fig. 17. Effect of different angles on the normalized displacement at the focal point (-20 mm, 0) and its corresponding point (20 mm, 0) on the other side 
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V. CONCLUSIONS 

In this work, a new unidirectional SH wave EMAT with the oblique permanent magnet for the detection of the aluminum plate 

is presented. For the single coil EMAT, the experimental and simulation results are in good agreement. It indicates that the increase 

in the bias magnetic field angle leads to an increase in the EMAT’s unidirectional focusing ability. The oblique angle of the 

permanent magnet enhances the guided signal on one side and weakens the ultrasonic signal on the other side. Therefore, the 

angled bias magnetic field can improve the focusing ability of the SH guided wave transducers effectively. For a single coil EMAT, 

the use of an angled PPM increases the signal strength on the focusing side by 10% to 20%, and the focusing capability will be 

further enhanced through the increase in the coil number. To study the role of permanent magnet oblique angle in the conventional 

transducers and new focusing transducers, two different transducer structures with parallel coils and focusing coils are simulated 

and analyzed in this study. It is concluded that the oblique PPM can improve the focusing ability of the unidirectional point-

focusing SH guided wave EMAT and suppress the influence of the reflected signal, and then improve the resolution of the 

ultrasonic signal at the focusing point. In the study of the influence of the oblique angle of the permanent magnet on the focusing 

SH guided wave EMAT, the displacement amplitude at the focal point increases as the angle increases while the growth rate 

decreases. For the other side of the focal position, the displacement amplitude at that point decreases linearly as the angle increases. 
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