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The Antarctic ice sheet is an important indicator of climate change and driver of sea level rise. 32 

Here, we combine satellite observations of its changing volume, flow, and gravitational attraction 33 

and surface mass balance modelling, to show that it lost 2720 ± 1390 Gt of ice between 1992 and 34 

2017 - a 7.6 ± 3.9 mm contribution to mean sea level. Ocean-driven melting has caused rates of ice 35 

loss from West Antarctica to rise from 53 ± 29 Gt/yr in the 1990s to 159 ± 26 Gt/yr in the 2010s. Ice 36 

shelf collapse has driven Antarctic Peninsula ice loss up from 7 ± 13 Gt/yr in the 1990s to 33 ± 16 37 

Gt/yr in the 2010s. We find large variations in and among model estimates of surface mass 38 

balance and glacial isostatic adjustment in East Antarctica, and its 25-year mass trend (5 ± 46 39 

Gt/yr) is still the least certain. 40 

The Antarctic ice sheets hold enough water to raise global sea level by 58 metres 1. They channel ice 41 

to the oceans through a network of glaciers and ice streams 2, each with a substantial inland 42 

catchment 3. Fluctuations in the grounded ice sheet mass arise due to differences between net snow 43 

accumulation at the surface, meltwater runoff, and ice discharge into the ocean. In recent decades, 44 

reductions in the thickness 4 and extent 5 of floating ice shelves have disturbed inland ice flow, 45 

triggering retreat 6,7, acceleration 8,9, and drawdown 10,11 of many marine terminating ice streams.  A 46 

variety of techniques have been developed to measure changes in ice sheet mass, based on satellite 47 

observations of their speed 12, volume 13, and gravitational attraction 14 combined with modelled 48 

surface mass balance 15 and glacial isostatic adjustment16. Since 1989, there have been more than 49 

150 assessments of ice loss from Antarctica based on these approaches 17. An inter-comparison of 12 50 



such estimates 18, demonstrated that the three principal satellite techniques provide similar results 51 

at the continental scale and, when combined, lead to an estimated mass loss of 71 ± 53 Gt of ice per 52 

year averaged over the period 1992 to 2011. Here, we extend this assessment to include twice as 53 

many studies, doubling the overlap period and extending the record through to 2017. 54 

We collated 24 independently-derived estimates of ice sheet mass balance (Figure 1) determined 55 

within the period 1992 to 2017 and based upon the techniques of satellite altimetry (7 estimates), 56 

gravimetry (15 estimates) or the input-output method (2 estimates). Altogether, there were 24, 24, 57 

and 23 individual estimates of mass change computed within defined geographical limits 19,20 for the 58 

East Antarctic, West Antarctic and the Antarctic Peninsula ice sheets, respectively. Rates of ice sheet 59 

mass change were compared (see Methods) over common intervals of time 18.  We then averaged 60 

rates of ice sheet mass balance based on the same class of satellite observations to produce three 61 

technique-dependent time series of mass change in each geographical region (see Methods). Within 62 

each class, the annual mass rate uncertainty was computed as the mean uncertainty of the 63 

individual contributions. The final, reconciled estimate of ice sheet mass change for each region was 64 

computed as the mean of the technique-dependent values available at each epoch (Figure 1). In 65 

computing the associated uncertainty, we assumed that the errors for each technique are 66 

independent. To estimate the cumulative mass change and its uncertainty (Figure 2), we integrated 67 

the reconciled estimates for each ice sheet and weighted the annual uncertainty by 1/√n, where n is 68 

the number of years elapsed relative to the start of each time series. Antarctic ice sheet mass trends 69 

and their uncertainties (Table 1) were computed as the linear sum and root sum square of the 70 

regional trends and their uncertainties, respectively. 71 

The level of disagreement between individual estimates of ice sheet mass balance increases with the 72 

area of each ice sheet region, with average per-epoch standard deviations of 11, 21, and 37 Gt/yr at 73 

the Antarctic Peninsula, West Antarctica, and East Antarctica, respectively (Figure 1 and Methods). 74 

Among the techniques, gravimetric estimates are the most abundant and also the most closely 75 



aligned, though their spread increases in East Antarctica where glacial isostatic adjustment remains 76 

poorly constrained 21 and is least certain when spatially integrated 22-33 due to the region’s vast 77 

extent. Solutions based on satellite altimetry and the input-output method run for the entire record, 78 

roughly twice the duration of the gravimetry time series. Although most (59 %) estimates fall within 79 

one standard deviation of the technique-dependent mean, a few (6 %) depart by more than three. 80 

At the Antarctic Peninsula, the 25-year average rate of ice sheet mass balance is -20 ± 15 Gt/yr, with 81 

a ~15 Gt/yr increase in losses since 2000. The strongest signal and trend has occurred in West 82 

Antarctica, where rates of mass loss rise from 53 ± 29 Gt/yr to 159 ± 26 Gt/yr between the first and 83 

final 5 years of our survey, with the largest increase occurring during the late 2000’s when ice 84 

discharge from the Amundsen Sea sector accelerated 34. Both of these regional losses are driven by 85 

reductions in the thickness and extent of floating ice shelves, which has triggering retreat, 86 

acceleration, and drawdown of marine terminating glaciers 35. The least certain result is in East 87 

Antarctica, where the average 25-year mass trend is 5 ± 46 Gt/yr. Overall, the Antarctic ice sheet lost 88 

2720 ± 1390 Gt of ice between 1992 and 2017, an average rate of 109 ± 56 Gt/yr. 89 

Knowledge of the ice sheet surface mass balance is an essential component of the input-output 90 

method, which subtracts solid ice discharge from net snow accumulation, and also aids 91 

interpretation of mass trends derived from satellite altimetry and gravimetry. Snowfall is the major 92 

driver of temporal and spatial variability in Antarctic ice sheet surface mass change 36,37. Although 93 

locally important, spatially integrated sublimation and meltwater runoff are typically one to two 94 

orders of magnitude smaller, respectively. In the absence of observation-based maps, Antarctic ice 95 

sheet surface mass balance is usually taken from atmospheric models, evaluated with in-situ and 96 

remotely-sensed observations 15,38-41.  To assess Antarctic surface mass balance, we compared two 97 

global reanalysis products (JRA55 and ERA-Interim) and two regional climate models (RACMO2 and 98 

MARv3.6)(see Methods). ERA-Interim is usually regarded as the best performing reanalysis product 99 

over Antarctica, albeit with a dry bias in the interior and overestimated rain fraction 40,42,43.  Spatially 100 

averaged accumulation rates peak at the Antarctic Peninsula, and are ~3 and ~7 times lower in West 101 



and East Antarctica, respectively (Extended Data Figure 2 and Extended Data Figure 3). Compared to 102 

the all-model average surface mass balance of 1994 Gt/yr, the regional climate models have 4.7% 103 

higher and the reanalyses 7% lower values. These differences can be attributed to the higher 104 

resolution of the regional models, which resolve the steep coastal precipitation gradients in greater 105 

detail, and also their improved representation of polar processes. The temporal variability of all 106 

products is similar, and they all agree on the absence of an ice sheet wide trend in surface mass 107 

balance over the period 1979 to 2017, implying that recent Antarctic ice sheet mass loss is 108 

dominated by increased solid ice discharge into the ocean. 109 

Gravimetric estimates of mass change are strongly influenced by the method used to correct for 110 

glacial isostatic adjustment (GIA)16. In this study, six different GIA models were used for this purpose 111 

22,25,27,31,32,44. We also assessed nine continent-wide forward-model and two regional model 112 

simulations to better understand uncertainties in the GIA signal itself, and we reprocessed the 113 

gravimetry estimates of mass balance using just the W12a 27 and IJ05_R2 32 GIA models for 114 

comparison with earlier work18 (see Methods). The net gravitational effect of GIA across Antarctica is 115 

positive, and the mean and standard deviation of the continent-wide GIA models (54 ± 18 Gt/yr) is 116 

very close to that of W12a (56 ± 27 Gt/yr) and IJ05_R2 (55 ± 13 Gt/yr). The narrow spread likely 117 

reflects the difficulty of quantifying the timing and extent of past ice sheet change, and the absence 118 

of lateral variations in Earth rheology within some models 45. In areas where GIA is a significant 119 

component of the regional mass change, such as the Amundsen, Ross and Filchner-Ronne sectors of 120 

West Antarctica (see Extended Data Figure 4), models predict the greatest uplift rates (5 to 7 mm/yr 121 

on average) but also the greatest variability (e.g. standard deviation > 10 mm/yr in the Amundsen 122 

sector). Away from areas with large GIA signals there is low variance among the models and broad 123 

agreement with GPS observations 46. Nevertheless, most models considered here do not account for 124 

ice sheet change during the last few millennia, because it is poorly known. Inaccurate treatment of 125 

low degree harmonics associated with the global GIA signal can also bias gravimetric mass balance 126 



calculations 47. If the GIA signal includes a transient component associated with recent ice sheet 127 

change this will bias mass trend estimates and should be accounted for in future work. 128 

Improvements in ice sheet mass balance assessments are still possible. Airborne snow radar 48,49 is a 129 

powerful tool for evaluating surface mass balance and firn compaction models over large spatial 130 

(1000’s of km) and temporal (centennial) scales, in addition to the ice cores that have been 131 

traditionally used50. Geological constraints on the ice sheet history 21 and GPS measurements of 132 

contemporary uplift 46,51 allow GIA models to be scrutinised and calibrated. More of both these data 133 

sets are needed, especially in East Antarctica. Given their apparent diversity, the spread of GIA and 134 

surface mass balance models should be evaluated in concert with the satellite gravimetry, altimetry, 135 

and velocity measurements. A reassessment of satellite measurements acquired during the 1990s 136 

would address the imbalance that is present in the current record. Alternative techniques (e.g. 52) for 137 

the combination of satellite data sets should be explored, and satellite measurements with common 138 

temporal sampling should be contrasted. The ice sheet mass balance record should now be 139 

separated into the contributions due to short-term fluctuations in surface mass balance and longer-140 

term trends in glacier ice. In addition to these obvious improvements, continued satellite 141 

observations are, of course, essential. 142 
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A table summarising the details of the satellite datasets is included as Supplementary Information 277 

(Supplementary Information Table 1). 278 
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 299 

Tables 300 

Region 1992-

1997 

(Gt/year) 

1997-

2002 

(Gt/year)

2002-

2007 

(Gt/year)

2007-

2012 

(Gt/year)

2012-

2017 

(Gt/year)

1992-

2011 

(Gt/year) 

1992-

2017 

(Gt/year)

EAIS 11 ± 58 8 ± 56 12 ± 43 23 ± 38 -28 ± 30 13 ± 50 5 ± 46 

WAIS -53 ± 29 -41 ± 28 -65 ± 27 -148 ± 27 -159 ± 26 -73 ± 28 -94 ± 27 

APIS -7 ± 13 -6 ± 13 -20 ± 15 -35 ± 17 -33 ± 16 -16 ± 14 -20 ± 15 

AIS -49 ± 67 -38 ± 64 -73 ± 53 -160 ± 50 -219 ± 43 -76 ± 59 -109 ± 56 

Table 1 | Rates of ice sheet mass change. Rates were determined from all satellite measurements 

over various epochs for the East Antarctic (EAIS), West Antarctic (WAIS), Antarctic Peninsula (APIS) 

and Antarctic (AIS) ice sheets. The period 1992-2011 is included for comparison to a previous 

assessment 18, which reported mass balance estimates of 14 ± 43 Gt/yr for the EAIS, -65 ± 26 Gt/yr 

for the WAIS, -20 ± 14 Gt/yr for the APIS, and -71 ± 53 Gt/yr for the AIS. The small differences in 

our updated estimates are due to increases in the datasets used. 

 301 

Figure Legends 302 

Figure 1. Antarctic ice sheet mass balance. Rate of mass change of the Antarctic Peninsula (a), West 303 

Antarctic Ice Sheet (b), and East Antarctic Ice Sheet (c) as determined from satellite altimetry (red), 304 

input-output (blue), and gravimetry (green) observations and an average of estimates across each 305 

class of measurement technique (black) The estimated one-, two-, and three-sigma range of the 306 



class average are shaded in dark, mid, and light grey, respectively, and the number of individual 307 

mass balance estimates collated at each epoch is shown along the top of each chart. 308 

 309 

Figure 2. Cumulative Antarctic ice sheet mass change.  Cumulative ice sheet mass changes (solid 310 

lines) are determined from the integral of the measurement class average (Figure 1) for each ice 311 

sheet. The estimated one-sigma uncertainty of the cumulative change is shaded. 312 

 313 

Methods 314 

Data 315 

We analyse five groups of data; mass balance estimates determined from satellite altimetry, 316 

gravimetry, and the input-output method, and model estimates of surface mass balance and glacial 317 

isostatic adjustment.  The data sets are computed using common spatial and temporal domains to 318 

facilitate their aggregation, and according to methods report in the peer reviewed literature. In total 319 

24 individual mass balance data sets were included. The data include 25 years of satellite radar 320 

altimeter measurements, 24 years of satellite input-output method measurements, and 14 years of 321 

satellite gravimetry measurements (Extended Data Figure 1). Among these data are estimates of ice 322 

sheet mass balance for each ice sheet derived from each satellite technique. In comparison to the 323 

first IMBIE assessment, new satellite missions, updated methodologies and improvements in 324 

geophysical corrections have contributed to an increase in the quantity, duration and overlap period 325 

of data used in this second assessment. In addition, two new experiment groups have assessed 11 326 

Glacial Isostatic Adjustment models and 4 Surface Mass Balance models. The complete list of data 327 

sets can be found in Supplementary Information Table 1. 328 



Drainage Basins 329 

In this assessment, we analyse mass trends using two sets of ice sheet drainage basin (Extended 330 

Data Figure 2), to ensure consistency with those used in the first IMBIE assessment 18, and to 331 

evaluate an updated definition tailored towards input-output method assessments. The first 332 

drainage basin set was delineated using surface elevation maps derived from ICESat-1 based on the 333 

provenance of the ice, and includes 27 basins 3. The second set are updated to consider other factors 334 

such as the direction of ice flow, and include 18 basins in Antarctica 2,20. To assess the effect of the 335 

different basin outline sets on the estimates of ice sheet mass balance, we compared mass balance 336 

determinations between the two delineations of ice sheet drainage basins. This evaluation was 337 

facilitated by seven estimates (altimetry or gravimetry) determined using both drainage basin sets. 338 

At the scale of the major ice sheet divisions, the delineations produce similar total extents. By far the 339 

largest differences occur in the delineation (or definition) of East and West Antarctica, due to 340 

differences in the position of the ice divide separating them. Within these regions, the root mean-341 

square difference between 26 pairs of ice sheet mass balance estimates computed using the two 342 

drainage basin sets is 8.7 Gt/yr. This difference is small in comparison to the certainty of individual 343 

ice sheet mass balance assessments. 344 

Computing Rates of Mass Change 345 

The raw satellite mass balance data are either time-series of either relative mass change, ∆M(t), or 346 

the rate of mass change, dM(t)/dt, plus their associated uncertainty, integrated over at least one of 347 

the ice sheet regions defined in the standard drainage basin sets. In the case of ∆M(t), the time 348 

series represents the change in mass through time relative to some nominal reference value. The 349 

duration and sampling frequency of the time-series was not restricted. In practice, few mass time-350 

series were of ∆M(t) and dM(t)/dt. Because the inter-comparison exercise is based on comparing 351 

and aggregating rates of mass change, dM(t)/dt, a common solution was implemented to derive 352 

dM(t)/dt values from data sets that comprised ∆M(t) only. Each ∆M(t) time series was used to 353 



generate a time-varying estimate of the rate of mass change, d(∆M(t))/dt=dM(t)/dt, and an estimate 354 

of the associated uncertainty, using a consistent approach. Time varying rates of mass change were 355 

computed by applying a sliding fixed-period window to the ∆M(t) time series. At each node, defined 356 

by the sampling period of the input time series, dM(t)/dt and its standard error, σdM(t)/dt, were 357 

estimated by fitting a linear trend to data within the window using a weighted least-squares 358 

approach, with each point weighted by its respective error variance, σ∆M(t)
2. The regression error, 359 

σdM(t)/dt, incorporates measurement errors and model structural error due to any variability that 360 

deviates from linear trends in ice mass, and may be a conservative estimate in locations where such 361 

deviation is present. Time series of dM(t)/dt computed using this approach were truncated by half 362 

the moving average window period. When integrated, the dM(t)/dt time series correspond to a low-363 

pass filtered version of the original ∆M(t) time-series. Although the current linear regression 364 

assumes uncertainties are uncorrelated, the smoothing we apply during the trend calculation does 365 

cause data points to be correlated during a number of epochs beyond the sliding window.  366 

Surface Mass Balance 367 

Ice sheet surface mass balance (SMB) comprises a variety of processes governed by the interaction 368 

of the superficial snow and firn layer with the atmosphere. A direct mass exchange occurs via 369 

precipitation and surface sublimation. Snow drift and the formation of meltwater and its subsequent 370 

refreezing or retention redistribute mass spatially or lead to further mass loss via erosion and 371 

sublimation, or runoff. In this assessment, a range of SMB products are compared. Four SMB model 372 

solutions were considered for Antarctica (Extended Data Table 1); two regional models - RACMO2.3 373 

41 and MARv3.6 53 - and two global reanalysis products - JRA55 54 and ERA-Interim 55. The two 374 

regional climate models agree well in terms of their spatially integrated SMB, apart from the 375 

Peninsula where there is an offset of about 10 Gt/month between them (Extended Data Figure 3). 376 

However, the reanalysis data underestimated the average SMB compared to the regional climate 377 

models by 200 to 350 Gt/yr. The SMB assessment illustrates that products of similar class (climate 378 



models, reanalysis product) agree well, suggesting that groupings of their output may be 379 

appropriate. Model resolution is, however, found to be an important factor when estimating SMB 380 

and its components, as respective contributions where only the spatial resolution differed yield 381 

regional differences.  382 

Glacial Isostatic Adjustment 383 

Glacial isostatic adjustment (GIA) is the delayed response of the solid Earth to changes in time-384 

variable surface loading through the growth and decay of ice sheets, and associated changes in sea 385 

level. Because GIA contributes to changes in the ice sheet surface elevation and gravity field, it must 386 

be accounted for in measurements of the change in elevation and gravity for the purpose of isolating 387 

the contribution solely caused by ice sheet imbalance. In this assessment, we compare different 388 

solutions derived from continuum-mechanical forward modelling to inform the interpretation of the 389 

satellite altimetry and gravimetry data which depend on the correction, and to advise future 390 

assessment exercises. Twelve GIA contributions were received covering Antarctica (Extended Data 391 

Table 2), ten of which are global 23-30,32 and two of which are regional models 33. As a broad array of 392 

data may be used to constrain GIA forward models, we anticipate spread in the predictions. 393 

In the present analysis, the degree of similarity between the various GIA model solutions is assessed. 394 

Areas of enhanced present-day vertical surface motion and (dis-)agreement between contributions 395 

have been identified by averaging the uplift rates over the contributions and computing respective 396 

standard deviations (Extended Data Figure 4). In some cases, it was necessary to estimate the GIA 397 

contribution to gravimetric mass trends; this was done using common geographical masks and 398 

truncation, and a standardized treatment of low degree harmonics. In Antarctica, the Amundsen Sea 399 

sector and the regions covered by the Ross and Filchner Ronne Ice Shelves stand out as having both 400 

high uplift rates (5-7 mm/yr on average) and high variability in uplift rates (peaking at >10 mm/yr 401 

standard deviation in the Amundsen sector) among the models considered. Elsewhere in coastal 402 

regions, uplift occurs at more moderate rates (~2 mm/yr on average), and the interior of East 403 



Antarctica exhibits slow subsidence. In these regions, the average signal is accompanied by relatively 404 

low variance among the GIA models (0-1.5 mm/yr standard deviation). None of the models fully 405 

capture portions of the uplift that are observed to be very large (e.g. 56), hence, we can anticipate a 406 

bias toward low values for the GIA correction averaged over such regions. In areas of low mantle 407 

viscosity, however, such as part of the WAIS, the LGM-related GIA signal may be over-predicted, and 408 

it is not clear whether a bias exists at the continental scale. 409 

Differences between the model predictions arise for a variety of additional reasons. Technical 410 

differences in the modelling approach, for example relating to the consideration of self-gravitation, 411 

ocean loading, rotational feedback, and compressibility, will be most important at the global scale, 412 

but may explain only small differences among the regional models. Differing treatment of ice/ocean 413 

loading in regions that have experienced marine-based grounding line retreat during the last glacial 414 

cycle may explain the differences in model predictions for the ICE_6G_C/VM5a combination (see 415 

Supplementary Information Table 1). Some small differences should be expected when comparing 416 

models that use spherical harmonic and finite element approaches. Looking beyond consideration of 417 

the model physics, larger differences arise due to the various approaches used to determine the two 418 

principal unknowns associated with forward modelling of GIA, namely ice history and Earth 419 

rheology. There is no generally accepted ‘best approach’ to determining these inputs, and indeed 420 

useful advances can be made by comparing the results of complementary approaches. In the models 421 

considered here, approaches to determining the ice history include dynamical ice-sheet modelling, 422 

coupled ice-sheet–GIA modelling, tuning to fit geodetic constraints, tuning to fit geological 423 

constraints, and use of direct observations of historical ice sheet change. When defining the 424 

rheological properties of the solid Earth, most studies have opted to use a Maxwell rheology to 425 

define a radially-symmetric Earth, but the use of a power-law rheology and/or fully-3D Earth model 426 

to capture the spatial complexity of mantle properties is increasingly popular. An intermediate 427 

approach used in many of the data sets included in this study has been to develop a regional GIA 428 

model that reflects local Earth structure. Such models can be tuned, albeit imperfectly, to provide as 429 



accurate a representation of GIA in that region as is possible. However, it remains a difficult and 430 

important challenge to incorporate these regional studies into a global framework. Finally, although 431 

four of the considered GIA models do provide a measure of uncertainty, and a number of studies 432 

have used an ensemble modelling approach 24,30, an important future goal for the GIA modelling 433 

community is the inclusion of robust error estimates for all model predictions. 434 

To compare the GIA models, Stokes coefficients relating to their gravitational signal were used to 435 

determine the approximate magnitude of the effect of applying each correction to GRACE data 436 

(Extended Data Table 2). This is a preliminary assessment, because the effect of applying a GIA 437 

correction depends also on the methods used to process the GRACE data. Moreover, an agreement 438 

on the modelling of the rational feedbacks has so far not been reached within the GIA community, 439 

leading to a large spread in the modeled degree 2 coefficients and possibly a strong bias when a 440 

correction is applied that is inconsistent with the GRACE observations (up to ca. 40 Gt/yr). In 441 

addition, none of the current GIA data sets include estimates of the GIA-induced geocenter motion 442 

(degree 1 coefficients). Therefore, we omit degree 1 and 2 coefficients in this assessment of the GIA-443 

induced apparent mass change at this stage. From models representing GIA in Antarctic only, we 444 

estimate that this omission may change the apparent mass change value by up to 20 %, which is 445 

currently not included in the GIA error budget. There is relatively good agreement between the ten 446 

models that cover all of Antarctica (Extended Data Table 2); the estimated GIA contribution ranges 447 

from +12 to +81 Gt/yr, and the mean value is 56 Gt/yr. Although van der Wal et al. is a notable 448 

outlier, this is the only solution to account for 3D variations in Earth rheology, and it will be 449 

interesting to compare this result with other such models that are in development. It is important to 450 

note that two of the GIA models are regional (Nield, Barletta); although they cannot be directly 451 

compared with the continental-scale models, the magnitude of their signals is nonetheless included 452 

for interest. 453 



Mass Balance Intra-comparison 454 

First, we compare estimates of mass change within each of the three geodetic technique experiment 455 

groups, separately, to assess the degree to which results from common techniques concur and to 456 

then arrive at individual, aggregated estimates of mass change derived from each technique alone. 457 

In each case we compare estimated rates of mass change derived from a common technique over a 458 

common geographical region and over the full period of the respective data sets. Where data sets 459 

were computed using both drainage basin definitions, the arithmetic mean of the two estimates is 460 

presented. This is justified because the choice of drainage basin set has a very small (<10 Gt/yr) 461 

impact on estimates of mass balance at the ice sheet scale and even less at the regional scale. Within 462 

each experiment group, we perform an unweighted average of all individual data to obtain a single 463 

estimate of the rate of mass change per ice sheet for each geodetic technique In a few cases, it was 464 

not possible to determine time-varying rates of mass change from individual estimates, because only 465 

constant rates of mass change and constant cumulative mass changes were supplied. Although the 466 

effect of averaging these data sets with time-varying solutions is to dampen the temporal variability 467 

present within the series of finer resolution, they are retained for completeness.  We estimate the 468 

uncertainty of the average mass trends emerging from each experiment group as the average of the 469 

errors associated with each individual estimate at each epoch.  470 

To aid comparison, we (i) computed time-variable rates of mass change and their associated 471 

uncertainty over successive 36-month periods stepped in 1-month intervals from time-varying 472 

cumulative mass changes, and we then (ii) average rates of mass change over 1-year periods to 473 

remove signals associated with seasonal cycles. Time-varying rates of mass change are truncated at 474 

the start and end of each series to reflect the half-width of the time interval over which rates are 475 

computed, though this period is recovered on integration to cumulative mass changes. The extent to 476 

which we are able to analyse differences in mass balance solutions emerging from common satellite 477 

approaches is limited by the mismatch in temporal resolution of the individual datasets, which 478 

makes methodological and sampling differences difficult to separate.  479 



Gravimetry Mass Balance Intra-comparison 480 

Within the gravimetry experiment group, 15 estimates of mass balance derived from the GRACE 481 

satellites were assessed, in entirety spanning the period July 2002 to September 2016. Of these 482 

datasets, four (Luthcke, Moore, Save, Wiese) are derived with direct imposition of the GRACE Level-1 483 

K-band range-data 57-60. These impositions result in 4 different, and quite independently derived, 484 

mascon approaches. Other methods often refer to ‘mascon analysis’, but are conducted on post-485 

spherical harmonic (post-SH) expansions and without imposing the Level 1 K-band range data. We 486 

distinguish the later methods, referring to them as ‘post-SH mascons’. Eleven contributions are 487 

derived from monthly spherical harmonic solutions of the global gravity field using somewhat 488 

different approaches 61-67, which can be loosely classified as region integration approaches for 3 489 

contributions (Blazquez, Groh, Horvath), post-SH mascon approaches for 4 contributions (Bonin, 490 

Forsberg, Schrama, Velicogna). Forward-modelling is also an approach used in two contributions 491 

(Wouters, Seo) and this essentially involves modelling of mass change with iterative comparison to 492 

the GRACE-derived signal. One estimate (Harig) uses Slepian functions 68. One esimate (Rietbroek) 493 

uses a hybrid approach involving satellite altimetry that does not fall within the above categories 69; 494 

although these results are excluded from our gravimetry-only average, we present them alongside 495 

the gravimetry-only results for comparison. No restrictions were imposed on the choice of glacial 496 

isostatic adjustment correction, and among the GRACE solutions we consider six different models 497 

were used for this purpose 22,25,27,31,32,44. We did, however, assess a wider set of nine continent-wide 498 

forward models and two regional models to better understand uncertainties in the GIA signal itself. 499 

In total, there were 15 estimates of mass balance for each of the APIS, WAIS, and EAIS. All were 500 

time-varying cumulative mass change solutions - the primary GRACE observable - and we computed 501 

time-varying rates of mass change from these data. Combining all of the individual mass balance 502 

estimates, the effective (average) temporal resolution of the aggregated solution is 1 year. Further 503 

details of the gravimetry data sets and methods are included in Supplementary Information Table 1. 504 



Extended Data Figure 5 shows a comparison of rates of mass change obtained from all gravimetry 505 

mass balance solutions, calculated over the three main ice sheet regions. At individual epochs, 506 

differences between time-varying rates of mass change are generally smaller than 50 Gt/yr in each 507 

ice sheet region, and typically fall in the range 10 to 20 Gt/yr. Over the full period of the data, 508 

individual rates of mass balance for the APIS, WAIS, and EAIS vary between -80 to +10, -260 to -20, 509 

and -120 to +200 Gt/yr, respectively. Considering all of the gravimetry data (Extended Data Table 3); 510 

the standard deviation of mass trends estimated during the period 2005 to 2015 is less than 24 Gt/yr 511 

in all three ice sheet regions, with the largest spread occurring in the EAIS. In all three ice sheet 512 

regions, the spread of individual mass balance estimates is well represented by the mean 513 

considering the uncertainties of the individual and aggregated datasets.  514 

Altimetry Mass Balance Intra-comparison 515 

We assessed 7 radar and laser altimetry derived estimates of Antarctic ice sheet mass balance data 516 

sets, in entirety spanning the period April 1992 to July 2017. In total, 6 estimates of mass change 517 

were for the APIS, 7 for the EAIS, and 7 for the WAIS. Of these, 4 included data from radar altimetry, 518 

and 6 from laser altimetry. A variety of different techniques were employed to arrive at elevation 519 

and mass trends 70-76. Only 2 of the altimetry data sets were time-series of cumulative mass change, 520 

from which we computed time-varying rates of mass change. The remaining altimetry data sets were 521 

constant rates of mass change, which appear in our altimetry average as time-invariant solutions. 522 

The period over which altimetry rates of mass change were computed ranged from 2 to 24 years. In 523 

consequence, the aggregated dataset has a temporal resolution that is lower than annual. Including 524 

all individual mass balance data sets, the effective (average) temporal resolution of the aggregated 525 

solution is 3.3 years. Further details of the altimetry data sets and methods are included in 526 

Supplementary Information Table 1. 527 

With a few exceptions, rates of mass change determined from radar and laser altimetry tend to 528 

differ by less than 100 Gt/yr at all times in each ice sheet region (Extended Data Figure 5). The main 529 



exceptions are in the EAIS, where one estimate (Zwally) reports mass trends that are ~100 Gt/yr 530 

more positive than all others during the ERS and ICESat periods and the WAIS, where two estimates 531 

(Zwally and Helm) report rates that are ~70 Gt/yr less negative than the others during the ICESat 532 

period. Among the remaining data sets, the closest agreement occurs at the APIS, where mass 533 

trends agree to within 30 Gt/yr at all times, and the poorest agreement occurs at the EAIS, where 534 

mass trends depart by up to 100 Gt/yr. The largest differences are among datasets that are constant 535 

in time during periods where rapid changes in mass balance occur in the annually resolved time 536 

series, suggesting that a proportion of the difference is due to their poor temporal resolution. Mass 537 

balance solutions from the relatively short (six-year) ICESat mission also appear to show larger 538 

spreads compared to those determined from longer (decade-scale) radar-altimetry missions.  This 539 

larger spread is due in part to differences in the bias-correction models applied to ICESat data 75,77-79 540 

and in part to the large influence of firn densification on altimetry measurements over short periods, 541 

which have been corrected for using different models. Firn-densification models are generally not 542 

applied to mass balance solutions determined from radar altimetry. Further analysis of the 543 

corrections for bias between ICESat campaigns and firn compaction is required to establish the 544 

significance of the differences and to reduce their collective uncertainty. Comparing rates of mass 545 

change (Extended Data Table 3), the average standard deviation of all mass trends at each epoch 546 

over the common period 2005 to 2015 is less than 54 Gt/yr in all four ice sheet regions. The largest 547 

spread among the individual values occurs in the EAIS. Other than this sector, all of the individual 548 

estimates lie close to the ensemble average, considering the respective uncertainty of the 549 

measurements. 550 

Input-Output Method Intra-comparison 551 

Although the input-output method is a most direct measure of changing in mass fluxes, a main 552 

difficulty is that it must differ two large numbers - one for annual SMB and the other for discharge 553 

plus grounding line migrations - and deal appropriately with the error budgets of both, in order to 554 

assess mass balance. A consequence of this complexity is that few input-output method data sets 555 



exist at the ice sheet scale. In this assessment, we collate just two input-output data sets, both based 556 

on the same method 80 -  far fewer than were considered for altimetry and gravimetry. The first 557 

input-output method dataset spans the period 1992 to 2010 18. The second input-output method 558 

dataset is limited to the period 2002 to 2016. The same SMB model was used in both assessments - 559 

RACMO2.3. Further details of the input-output method data sets and methods are included in 560 

Supplementary Information Table 1.  561 

We compared the two input-output method data sets during the period 2002 to 2010 when they 562 

overlap (Extended Data Table 3). The smallest differences (up to 30 Gt/yr) arise in the APIS and the 563 

WAIS, and the largest differences (up to 70 Gt/yr) occur at the EAIS. In all cases, the average 564 

difference between estimates of mass balance derived from each dataset is comparable to the 565 

estimated certainty. Including both datasets, rates of mass balance over the period 1992 to 2016 for 566 

the APIS, WAIS and EAIS fall in the range -125 to +25 Gt/yr, -300 to +100 Gt/yr and -200 to +200 567 

Gt/yr, respectively (Extended Data Figure 5). The origin of the differences between the two datasets 568 

requires further investigation. 569 

Ice Sheet Mass Balance Inter-comparison 570 

To assess the degree to which the satellite techniques concur, we used the aggregated time series 571 

emerging from each geodetic technique experiment group to compute changes in ice sheet mass 572 

balance within common geographical regions and over a common interval of time (the overlap 573 

period). The aggregated time series were calculated as the arithmetic mean of all available rates of 574 

ice sheet mass balance derived from the same satellite technique at each available epoch. We used 575 

the individual ice sheets and their integrals as common geographical regions. The maximum duration 576 

of the overlap period is limited to the 14-year interval when all three satellite techniques were 577 

optimally operational, namely 2002 to 2016. However, we also considered the availability of mass 578 

balance data sets, which leads us to select the period 2003 to 2010 as the optimal interval (see 579 

Figure 1). When the aggregated mass balance data emerging from all three experiment groups are 580 



degraded to a common temporal resolution of 36 months, the time-series are on average well 581 

correlated (0.5<r2<0.9) at the APIS and WAIS. At the EAIS, however, the aggregated altimetry mass 582 

balance time series are poorly correlated (r2<0.1) in time with the aggregated gravimetry and input-583 

output method data. Possible explanations for this include the relatively high short-term variability 584 

in mass fluctuations in this region, the relatively low trend in mass, and the heterogeneous temporal 585 

resolution of the aggregated altimetry data set. Over longer periods, marked increases in the rate of 586 

mass loss from the WAIS are also recorded in all three satellite data sets.  587 

Because the comparison period is long in relation to the timescales over which surface mass balance 588 

fluctuations typically occur, their potential impact on the overall inter-comparison is reduced. The 589 

closest agreement between individual estimates of ice sheet mass balance occurs at the APIS and 590 

the WAIS, where the standard deviation across all techniques falls between 15 and 41 Gt/yr 591 

(Extended Data Table 4). The greatest departure occurs at the EAIS, where the input-output method 592 

and gravimetry estimates of mass balance differ by ~80 Gt/yr, and where the standard deviation of 593 

all three estimates is ~40 Gt/yr. This high degree of variance is expected due to the relatively large 594 

size of the region, small amplitude of signals and poor independent controls on coastal SMB. When 595 

compared to the mean, there are no significant differences between estimates of ice sheet mass 596 

balance determined from the individual satellite techniques and, in contrast to the first assessment, 597 

this finding also holds at continental and global scale. We conclude, therefore, that estimates of 598 

mass balance determined from independent geodetic techniques agree when compared to their 599 

respective uncertainties. 600 

Several noteworthy patterns in the distribution of mass balance estimates determined during the 601 

overlap period (2003 to 2010) merit further discussion. Estimates of mass balance derived from 602 

satellite altimetry and gravimetry are agree to within 15 Gt/yr, on average, and with the mean of all 603 

three techniques, in all ice sheet regions. In contrast, estimates of mass balance determined from 604 

the input-output method are 55 Gt/yr more negative, on average, than the mean in all ice sheet 605 



regions. However, despite the bias, the input-output method estimates remain in agreement 606 

because their estimated uncertainty is relatively large (approximately three times larger than that of 607 

the other techniques). A more detailed analysis of the primary and ancillary datasets is required to 608 

establish whether this bias is significant or systematic.  609 

Ice Sheet Mass Balance Integration 610 

We combined estimates of ice-sheet mass balance derived from each geodetic technique 611 

experiment group to produce a single, reconciled assessment, following the same approach as the 612 

first assessment exercise. This was computed as the arithmetic mean of the average rates of mass 613 

change derived from each experiment group, within the regions of interest and at the time periods 614 

for which the experiment group mass trends were determined. We estimated the uncertainty of the 615 

mass balance data using the following approach. Within each experiment group, the uncertainty of 616 

mass trends was estimated as the average of the errors associated with each individual estimate. 617 

The uncertainty of reconciled rates of mass change (e.g. Table 1) was estimated as the root mean 618 

square of the uncertainties associated with mass trends emerging from each experiment group. 619 

When summing mass trends of multiple ice sheets, the combined uncertainty was estimated as the 620 

root sum square of the uncertainties for each region. Finally, to estimate the cumulative uncertainty 621 

of mass changes over time, we weighted the annual uncertainty by 1/√n, where n is the number of 622 

years elapsed relative to the start of each time series, and then summed the weighted annual 623 

uncertainties over time 81. 624 

Across the full 25-year survey, the average rates of mass balance of the AIS was -109 ± 56 (Table 1). 625 

To investigate inter-annual variability, we also calculated mass trends during successive 5-year 626 

intervals. While the APIS and WAIS each lost mass throughout the entire survey period, the EAIS 627 

experienced alternate periods of mass loss and mass gain, likely driven by inter-annual fluctuations 628 

in SMB. The rate of mass loss from the WAIS has increased over time due to accelerated ice 629 

discharge in the Amundsen Sea sector 34,48,74,82-84. The most significant rise – a twofold increase in the 630 



rate of ice loss - occurred between the periods 2002-2007 and 2007-2012 (Table 1).  Overall, the 631 

WAIS accounts for the vast majority of ice mass losses from Antarctica. At the APIS, rates of ice mass 632 

loss since the early 2000’s are notably higher than during the previous decade, consistent with 633 

observations of surface lowering 72,74 and increased ice flow in southerly glacier catchments 85. The 634 

approximate state of balance of the wider EAIS suggests that the reported dynamic thinning of the 635 

Totten and Cook glaciers 86,87 has been offset by accumulation gains elsewhere 88.  636 
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Extended Data Legends 733 

Extended Data Figure 1 | Ice sheet mass balance data sets included in this assessment. Some data 734 

sets did not encompass all three ice sheets. 735 

Extended Data Figure 2 | Ice sheet drainage basins. Antarctic ice sheet drainage basins according to 736 

the definitions of Zwally 3 (top) and Rignot 2,20(bottom). Basins falling within the Antarctic Peninsula, 737 

West Antarctica, and East Antarctica are shown in green, pink and blue, respectively. For the Zwally 738 

definition, the Antarctic Peninsula, West Antarctica, and East Antarctica basins cover areas of 227 739 

725 km2, 1 748 200 km2 and 9 909 800 km2, respectively. For the Rignot definition, the Antarctic 740 

Peninsula, West Antarctica, and East Antarctica basins cover areas of 232 950 km2, 2 039 525 km2 741 

and 9 620 225 km2, respectively. 742 

Extended Data Table 1 | Spatially-averaged Antarctic ice sheet surface mass balance.  Estimates of 743 

the average surface mass balance (SMB) over the period 1980 to 2012 were derived from regional 744 

climate models (RCM) and global reanalyses (GCM). Data were evaluated using the Rignot drainage 745 

basins 2,20.  746 

Extended Data Figure 3 | Temporal variations in Antarctic ice sheet surface mass balance. Time 747 

series of integrated surface mass balance in Antarctic ice sheet drainage regions (Rignot et al., 748 

2011a, 2011b) from the MAR (blue) and RACMO2.3p (red) models. 749 



Extended Data Figure 4 | Modeled glacial isostatic adjustment beneath the Antarctic Ice Sheet. 750 

Bedrock uplift rates in Antarctica averaged over the GIA model solutions submitted to the second 751 

IMBIE assessment (a), as well as their respective standard deviation (b). 752 

Extended Data Table 2 | Glacial Isostatic Adjustment model details. Regional changes in mass 753 

associated with the glacial isostatic adjustment signal were determined from the model data (†) or 754 

calculated as an indicative rate using degrees 3-90 (‡). 755 

a Main publication listed, in all cases additional supporting publications should be acknowledged in supp. info. 756 

b Own model if not otherwise stated. Comma-separated values refer to properties of radially-varying (1D) Earth model: first 757 

value is lithosphere thickness (km), other values reflect mantle viscosity (x1021 Pa s) for specific layers – see relevant 758 

publications for details 759 

c Ice model covers at least Last Glacial Maximum to present, unless indicated 760 

d GIA model details: SH=spherical harmonic (maximum degree indicated), FE=finite element, C=compressible, 761 

IC=incompressible, RF=rotational feedback, SG=self-gravitation, OL=ocean loading, ‘x’ = feature not included, 762 

UQ=uncertainty quantified 763 

e RSL = relative sea-level data; GPS rates all corrected for elastic response to contemporary ice mass change 764 

f Different to ICE-6G_C in Antarctica, due to use of BEDMAP2 1 topography in that region 765 

g Model relates to GIA in the northern Antarctic Peninsula only 766 

h Model relates to GIA in the Amundsen Sea Embayment only 767 

i 25 768 

j 89 769 

k 90 770 

Extended Data Figure 5 | Individual rates of ice sheet mass balance. Mass balance estimates were 771 

determined from satellite altimetry (left), gravimetry (centre), and the input-output method (right) 772 

in the Antarctic Peninsula (top), East Antarctica (middle) and West Antarctica (bottom). The 773 



ensemble average is shown as a dashed black line, with the estimates one sigma uncertainty as light 774 

grey shading. Also shown is the standard error of the mean solutions, per epoch (dary grey). 775 

Extended Data Table 3 | Features of mass balance data sets included in this study. Details shown 776 

include their maximum span and ranges of temporal sampling, amplitude, estimated error, and 777 

standard deviation at each epoch. 778 

Extended Data Table 4 | Aggregated estimates of ice sheet mass balance determined from satellite 779 

altimetry, gravimetry, and input-output method. In this comparison, the data were averaged over 780 

the period 2003 to 2010. Also shown is the arithmetic mean of each individual result for given 781 

regions, and the combined imbalance of the AIS, calculated as the sum of estimates from the 782 

constituent regions. 783 
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