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Abstract 

Photodynamical simulations are increasingly used for exploring photochemical 

mechanisms and interpreting laser experiments. The vast majority of ab initio excited-state 

simulations are performed within semiclassical, trajectory-based approaches. Apart from the 

underlying electronic-structure theory, the reliability of the simulations is controlled by a 

selection of initial conditions for the classical trajectories. We discuss appropriate choices of 

initial conditions for simulations of different experimental arrangements: dynamics initiated 

by continuum-wave (CW) laser fields or triggered by ultrashort laser pulses. We introduce a 

new technique, CW-sampling, to treat the former case, based on the ideas of importance 

sampling, combined with the quantum thermostat approach based on the Generalized 

Langevin Equation (GLE) that allows for an efficient sampling of both position and 

momentum space. The CW-sampling is particularly important for photodynamical processes 

initiated by absorption at the tail of the UV absorption spectrum. We also emphasize the 

importance of non-Condon effects for the dynamics. We demonstrate the performance of our 

approach on the photodissociation of the CF2Cl2 molecule (freon CFC-12). A quantitative 

agreement with the experimental data is achieved with the use of empirical correlation energy 

correction (CEC) factor on top of FOMO-CASCI potential energy surfaces. 
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Introduction 

Computational methods contribute a great deal to the understanding of photochemical 

mechanisms, interpretation of laser spectroscopy experiments, and quantitative simulations of 

photochemical parameters. Ab initio theories provide an insight into photochemistry primarily 

by mapping potential energy surfaces1 (PESs), but direct dynamical simulations in the excited 

states have become almost routinely used as well2,3. Explicit integration of equations of 

motion provide reaction yields, timescales, and mechanisms. Ab initio molecular dynamics, 

with forces calculated on-the-fly, became popular as no prior knowledge or intuition on the 

processes under study is needed: the dynamics itself leads us to the important parts of phase 

space. In the last decade, ab initio photodynamics has gradually become a mature field due to 

both methodological developments and ever increasing computational power – for example, 

the introduction of graphical processing computations allowed for excited-state calculations 

with hundreds of atoms4.  

Most of ab initio excited-state simulations are in some way based on trajectories, as quantum 

chemical codes provide us only with the local description of the potential energy surface. 

While the trajectory-based simulations are of classical nature, the nuclear quantum effects 

must be accounted for at least to some extent. First, we often need to treat coupled 

electron/nuclear dynamics as the failure of Born-Oppenheimer approximation is more a rule 

rather than an exception in the excited-state dynamics. Various schemes for treating 

nonadiabatic transitions are used, ranging from semiclassical schemes such as Ehrenfest 

dynamics, modified Landau-Zener approach5 or surface hopping6,7 to more “quantum” 

schemes such as the Full Multiple Spawning method8–10, variational multi-configuration 

Gaussian wavepackets11,12, or the coupled-trajectory mixed quantum/classical method13.  

Another nuclear quantum effect to consider is the ground-state vibrational delocalization of 

atomic nuclei. This relates to an important yet often underrated question: How to properly 

choose initial conditions for semiclassical calculations? In other words, how should we select 

the set of positions and momenta for each of the atoms in the system so that they correspond 

to the actual experimental setup?14 We argue in the present work that performing molecular 

dynamics with the so called “quantum thermostat” approach15 represents a convenient way to 

sample the initial state of a quantum system in thermal equilibrium. The initial conditions 

should be, however, different for experiments with ultrashort light pulses forming a 

wavepacket in the excited state than for experiments employing continuum wave (CW) laser 

field. Majority of the present day photodynamical simulations assumes the system to be 
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vertically promoted into an excited state, forming a vibrational wavepacket, which is then 

treated within a semiclassical framework. This view corresponds to an excitation via an 

ultrashort laser pulse. Experimentally, this assumption is typically not fulfilled. Most 

experiments are performed with photons of fixed energy - nanosecond lasers and even shorter 

femtosecond laser pulses do not form vertical wavepackets. Hence, the interpretation of laser 

experiments requires different methods from those presently adopted by the community.  

Vertical simulations does not allow for adequate treatment of wavelength dependent 

photochemical processes, as we encounter e.g. photochemistry of heterocycles16, photolysis of 

glyoxal17, photoinitiating reactions18 or chemistry of phytochromophores19 to name but few 

examples. Proper modeling of molecules interacting with fixed wavelength light is critical for 

a quantitative modeling of photochemical reactions. Let us consider a photochemical rate 

constant 

 � = 	� ����	
���	���	��
�
�

. (1) 

Knowing the photon flux for each wavelength ���	, we need to calculate the absolute 

absorption cross section �� and quantum yield 
� of a selected reaction channel for a 

wavelength �.  Such a task is of uttermost importance e.g. in atmospheric chemistry or 

astrochemistry where the important species are often difficult to characterize experimentally 

due to their transient character or difficult experimental realization such is the case of 

aerosols. Both the cross sections and the quantum yields can be calculated from an ensemble 

of structures obtained from semiclassical dynamical simulations. Here, we encounter the 

problem of calculating the quantum yield (or any other dynamical quantity of interest) for a 

given wavelength. Unlike in computational spectroscopy20, the field of computational 

photodynamics has not quite reached the level of accuracy at which the tools would be 

interesting for the experimental or modeling community. 

In the present study, we focus on the atmospherically important photodissociation of CF2Cl2  

as a convenient test bed for the exploration of the fixed wavelength effects on the simulation 

results. The paper is organized as follows. We first discuss the theoretical foundation of 

photoexcitation processes, and then the simulation protocols used in the work – aiming at 

providing a general strategy for simulating different types of experiments within the 

framework of semiclassical simulations. We then provide technical details of our simulation 
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protocol and introduce the test system. Finally, we demonstrate the performance of the 

introduced methods in the result section. 

 

Theory 

Interaction of light with molecules: what states are formed?  

Molecules, when excited by laser pulses, can end up in different quantum states depending on 

the pulse shape and phase structure. We begin by a short formal exploration of the states 

formed with a weak laser field, following the well-known perturbation theory treatment as 

pedagogically outlined e.g. by Persico21. In this framework, one defines a time-dependent 

perturbation ��  which, once applied onto an unperturbed system with set of eigenstates |���, 
generates the time-dependent molecular wavefunction |Ψ�t	� = ∑ ��� ��	|���exp	�−!"��/ℏ	. 
Here, "� stands for the eigenvalue � of the unperturbed time-independent Schrödinger 

equation.  Considering that only |�%� is populated initially, the perturbation is not too strong 

and we are interested only in the short-time evolution, the time derivatives of the expansion 

coefficients are given as: 

 �&� = − !ℏ exp	�!�"� − "%	�/ℏ	��%	, (2) 

with ��% = (��)��)�%�. For a molecule in an external electromagnetic field we get in the dipole 

approximation �� = −*+ ⋅ -��	, containing the molecular dipole moment *+	and the electric 

field -��	, taken here as a linearly-polarized light pulse defined by -��	 = -%.��	cos	�2�	. 
.��	 is a time envelope for the pulse and -% is a constant vector given by -% = 3%4 , where 3% 
is the maximum amplitude of the field and 4 a polarization vector. It then follows for time-

dependent coefficients 

 �&� = !
ℏ exp 5

!2�%�ℏ 6*�% ⋅ -%.��	 cos�2�		, (3) 

with *�% = (��)*+)�%�. Upon integration of this equation from � = −∞ to � = ∞, that is, from 

before the pulse starts to after it ends, we obtain 

 ���∞	 = !
2ℏ*�% ⋅ -%� 9exp9!:2�% + 2<�ℏ = + exp 9!:2�% − 2<�ℏ ==.��	>

?>
�� (4) 
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= !√A√2ℏ*�% ⋅ -% B.C:−2 − 2�%< + .C:2 − 2�%<D	. 

 

We will further consider only excitation processes (.C:−2 − 2�%< = 0), so that we get 

 |Ψ� = !
ℏF

A
2G|���*�% ⋅ -%.C�2 − 2�%	

�
	. (5) 

The Fourier transform of the time envelope, .C:2 − 2�%<, encodes the distribution of 

frequency components of the laser pulse. .C:2 − 2�%< falls rapidly around .C�0	 for a long 

pulse, i.e., we get a narrow spectrum around the central frequency 2, whereas a very short 

laser pulse will be broad in the frequency domain.  

Next, we focus our attention on a given electronic state, say the first electronic excited state 

|HI�, and will approximate each eigenstate |��� as a vibronic state |HIJIK�, where |	JIK� is 
the uth vibrational state of the electronic state |HI�. We note at this stage that we neglect the 

interaction of the vibronic (bound) states of |HI�	with quasi-continuum or continuum 

vibrational states from a lower electronic state |H%�. The coupling between the initial (ground 

vibrational and electronic) state |H%J%%� and the state |HIJIK� mediated by an external field is 

dictated by the transition dipole moment 

 *IK,%% = LHIJIK|*+|H%J%%�. (6) 

Equation (5) then turns into:  

 |Ψ� ≅ !
ℏF

A
2G*IK,%% ⋅ -%|HIJIK�.C:2 − 2IK,%%<

K
. (7) 

This last equation constitutes our starting point to compare the effect of an ultrashort and a 

long laser pulse on a molecular system.  

In the case of a long pulse of light, the term .C:2 − 2IK,%%< will display a narrow peak 

centered around the pulse (almost monochromatic) frequency 2. Hence, if one considers that 

the separation between the vibrational states of |HI� is large enough, the long pulse can select 

only one specific state |HIJIK� if its frequency is tuned to 2 ≈ 2OPQ = �"IK − "%%	/ℏ. As a 

result, the wavefunction turns into   
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|Ψ� ≈ !
ℏF

A
2*IK,%% ⋅ -%.C�2 − 2OPQ	|HIJIK� (8) 

Hence, the wavefunction generated by this laser pulse is simply proportional to the state 

|HIJIK�, i.e., we excite the molecule into one of its vibrational state in the excited electronic 

state (Fig. 1A). 

Considering now an ultrashort laser pulse, its bandwidth is large enough to cover different 

vibrational states in the excited states, i.e., .C:2 − 2IK,%%< in Eq. (7) is independent on the 

vibrational quantum number and replaced by the almost constant .C�2 − 2RPOS	 term, where 

2RPOS = �"I − "%	/ℏ	 is the vertical excitation energy. In addition, we rewrite the transition 

dipole moment as *IK,%% = LJIK|LHI|*+|H%�|J%%� = LJIK|*I%P |J%%�, with *I%P �T	 being the 

electronic transition dipole. Starting from Eq. (8), we obtain 

 

|Ψ� ≅ !
ℏF

A
2G*IK,%% ⋅ -%|HIJIK�.C:2 − 2IK,%%<

K
 

≅ !
ℏF

A
2 .C�2 − 2RPOS	G|HIJIK�LJIK|*I%P ⋅ -%|J%%�

K
 

= !
ℏF

A
2.C�2 − 2RPOS	G|JIK�LJIK|*I%P ⋅ -%|J%%�

K
|HI� 

= !
ℏF

A
2.C�2 − 2RPOS	*I%P �T	 ⋅ -%|HIJ%%�. 

(9) 

 

Hence, in the limit of an ultrashort pulse, the nuclear wavepacket formed on the excited state 

|HI� is a copy of the original nuclear wavefunction J%%, multiplied by the electronic transition 

dipole moment *I%P �T	 (Fig. 1B). We note that one could also invoke the Condon 

approximation, *I%P �T	 ≅ *I%P �TPU% 	, where *I%P �TPU% 	 is the electronic transition-dipole 

moment at the ground-state equilibrium geometry, owing to the presumably small variation of 

the electronic transition-dipole moment with nuclear positions.* 

                                                
* Nonequilibrium vibrational wavepacket is formed even if one perturbs the system with CW laser field. A first 
example of such cases is given by a system promoted into a metastable (decaying) state with a finite lifetime V. 
Such a situation occurs whenever the system is embedded in a continuum of states – the continuum can be 
vibrational (predissociation) or electronic (autoionization). If the energy separation corresponding to the lifetime 
ℏ
W is larger than the energy separation between the states, we form a wavepacket rather than a stationary state. A 
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Figure 1. Sketch of different states formed upon the interaction of a molecule with laser field. (A) Interaction 

with CW laser, forming a stationary state (B) Interaction with ultrashort laser pulse, forming a wavepacket. 

Semiclassical representation of the photoexcited states: Franck-Condon factor perspective  

We further focus on a semiclassical representation of the vibrational states formed upon 

excitation with a laser field. Representing the wavepacket formed upon the interaction of a 

molecule with an ultrafast laser pulse is straightforward: we need to represent the ground state 

density by a set of atomic position and momenta and assign a weight of |*I%P �T	|X to each of 

the points. We comment on ways to achieve this goal below.    

The situation is more difficult for the CW laser excitation as we rarely can model all of the 

possible final stationary states. Would we be able to do this, we would just analyze the 

properties of all the final states to get any of the observable quantities. However, the only 

easily available quantity is a single ground-state wavefunction or density. What is then the 

best classical representation of the final states formed upon the excitation? The analysis of 

Franck-Condon factors (FCFs) provides a clue.   

We first assume one-dimensional system with an excited state exhibiting a dissociative 

character with a continuum of final vibrational states. We can linearize the excited potential 

energy surface along a classical turning point Y% defined by the equation "Z�Y%	 − "[�Y%	 =
"\]^S^_ (with "Z the energy of the final state and "[ that of the initial state)  

                                                                                                                                                   
vibrational wavepacket is also formed during photoemission processes with high-energy photons once we 
integrate the outcome over all energies of the outgoing electron.  
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 "Z�Y	 = "Z�Y%	 + "Z̀�Y%	�Y − Y%	 + ⋯ (10) 

Using energy normalization, the solution of Schrödinger equation for this potential is 

 JZ�", Y		~	)"Z̀�Y%	)?
c
dAi[h�Y − Y%	] , (11) 

where Ai(x) stands for Airy function and  h = jXklmn�op	ℏd q
c
r
. Replacing the Airy with δ function 

at the classical turning point  

 JZ�", Y		~	)"Z̀�Y%	)?
IXs�Y − Y%			, (12) 

yields FCF tZ[ for the bound-to-free transition 

 tZ[�J[K		~)"Z̀�Y%	)?IJ[K�Y%	X	 (13) 

which is equivalent to the exact FCF to the order a-2. It is therefore reasonable to represent the 

scattering state by δ at a classical turning. The same FCF is equivalently achieved as  

 tZ[:"\], J[K<~�J[K�Y	Xs:"Z�Y%	 − "% − "\]< �Y	. (14) 

This is in fact the reflection principle for the absorption cross section22: the nuclear density is 

reflected onto the excited state and further onto the energy axis. We end up with the same 

result in the time domain using a short time approximation for the propagator23. RP can be 

used therefore both for absorption cross-section estimates but also as a starting point for 

semiclassical molecular dynamics simulations. In the latter case, we just consider a particle 

starting from a classical turning point for a given photon energy. The RP is primarily designed 

for dissociative processes. However, it can also be used to approximate final bound excited 

state22.* 

The reflection integral can be generalized into multiple dimensions24: 

                                                
* One can immediately see certain drawbacks of the reflection approximation outlined above. First, the real 
potential is not strictly linear, which however does not pose a problem if we evaluate an integral in Eqs. (15) or 
(16) numerically. A second problem arises from the approximation of the Airy function by a delta function, as 
this approximation will fail in areas with rapidly changing wavefunctions (e.g. at nodes) and especially at the 
wings of the distribution, where the third derivative of a wavefunction vanishes slower as compared to the 
wavefunction itself.  
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 uZ[�"\], v[	~�v[�T	:*Z[P �T	<Xs:"Z�T	 − "[�T	 − "\]<�T (15) 

where T is the vector of nuclear coordinates, v[�T	 is the ground state coordinate density (the 

formula holds true even for mixed states). uZ[:"\], v[< is called the intensity factor and, unlike 

FCF, includes a square of the transition-dipole moment. It is even more relevant to look at the 

expression for the intensity factor in the classical limit of the Fermi Golden rule in the Wigner 

representation25 

 uZ[�"\], wx	 ∼ �wx�z[�T, {		:*Z[P �T	<Xs:zZ�T,{	 − z[�T, {	 − "\]< �T�{ (16) 

where z[ and zZ  are the classical Hamiltonians in the initial and final states and wx  is the 

thermal probability, factor which can be replaced by the nuclear density. The expression is in 

fact identical to (15), assuming processes in which momentum does not change. Note that in 

the multidimensional case we use energy resonance condition "Z�T	 − "[�T	 = "\] rather 

than "Z�T	 − "% = "\] - while the latter expression approximate well the bound-unbound 

transition, the former expression represents a well-defined general approximation26.  

Despite its limitations, the reflection principle is pictorially appealing and it has been 

successfully applied for single and two photon spectroscopies27, predissociation28, imaging 

ground state vibrational wavefunctions29–33 or extraction potentials from experimental data34. 

The approach can be extended to polyatomic molecules24,35–38 and it is also the basis for the 

semiclassical initial condition selection. The approach is in fact known under different names, 

e.g. “nuclear ensemble method”38 or δ-method27. 

Initial conditions for semiclassical simulations: short pulse 

Armed with the theoretical background of the previous sections, we can now turn our 

attention to the central question how to properly choose the initial conditions for excited-state 

semiclassical MD simulations. As stated above, the answer to this question is relatively clear 

for the case of processes forming a nuclear wavepacket in the excited electronic state. To start 

a swarm of classical trajectories, we need to map the ground-state wavefunction or more 

generally density matrix onto a phase space. There are several ways in which one can 

formally perform this mapping39, most famously with a Wigner transform of the initial 

vibrational wavefunction40,41 
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 |�T,{	 = 1
�2A	~� � J[K∗ 5T + ℏ�2 6	J[K 5T −

ℏ�
2 6 �[{.���

>

?>
	, (17) 

where J[K is the initial vibrational wavefunction and N is the dimensionality of the 

configurational space. Quantum evolution of Wigner distribution is governed by a quantum 

Liouville operator and the semiclassical approach is recovered with corresponding classical 

Liouvillian42. Each classical trajectory sampled from the initial Wigner distribution should be 

weighted by a square of the electronic transition dipole moment *Z[P �T	. The Wigner function 

resembles a classical probability distribution function in the phase space, yet the function is 

generally not positive definite.43 The evaluation of a Wigner function is generally also not 

straightforward for multidimensional anharmonic system and the Wigner approach is 

therefore typically used within the harmonic approximation. Here, the Wigner function is 

simply given as23 

 |�T,{	 = |J�T	|X	|
�{	|X (18) 

where J�T	 and 
�{	 are the corresponding harmonic vibrational wavefunction in position 

and momentum representation, respectively. The evaluation of the Wigner transform is then 

easy within ab initio calculations using normal-mode frequencies, both in the ground state and 

at finite temperature44. However, harmonic approximation is problematic for soft normal 

modes, in practice below 500 cm-1 45. It is thus not at all clear what one should do for 

photodynamical simulations of liquids or in complex environments such as proteins.  

The sampling of an approximate Wigner distribution for uncoupled harmonic oscillators is the 

most commonly employed strategy for trajectory trajectory-based simulations14,46. The 

simplicity of its construction, requiring only a frequency calculation at the ground-state 

equilibrium geometry, may explain the popularity of this approach. However, the deficiencies 

listed above, that is the lack of coupling between the modes and the neglect of anharmonicity, 

are particularly problematic for molecules and can lead to serious artifacts46. The use of 

classical ab initio molecular dynamics in the ground electronic state to generate initial 

conditions was questioned recently in the context of trajectory surface hopping method14. 

While this strategy adequately incorporates anharmonicities in the sampling, the classical 

treatment of the nuclear degrees of freedom implies that the resulting distribution at room 

temperature would correspond to an average energy substantially lower than the zero-point 

energy. In the context of QM/MM nonadiabatic dynamics, initial conditions have been 

obtained from an approximate Wigner sampling for the QM part and molecular dynamics for 
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the environment (MM part)47. Another strategy consists in sampling a classical Boltzmann48 

distribution using Brownian trajectories49. Recent works proposed to transform an 

approximate Wigner distribution to a more accurate one by performing an adiabatic 

switching50,51. This strategy was applied to different systems52 but up to now it has not been 

used in the context of excited-state dynamics of molecules, to the best of our knowledge.  

Density in coordinate space is efficiently sampled with path-integral molecular dynamics 

(PIMD) simulations53. Here each particle is represented by a ring polymer composed of 

“beads” or “random walkers” connected by “quantum forces”. By increasing the number of 

the beads, the distribution of beads converges to the quantum distribution of a particle. The 

PIMD simulations were applied in the context of electronic spectroscopy for isolated 

molecules54 and liquids55,56 as well as for photodynamical simulations57–59. However, it is hard 

to retrieve the momentum distributions from PIMD simulations60. Another disadvantage of 

the PIMD method is its increased computational cost as compared to classical molecular 

dynamics.  

Both of the above problems (computational cost and lack of momenta) are circumvented 

within a quantum thermostat approach based on the generalized Langevin equation (QT-GLE) 

introduced by Ceriotti et al15,61. The idea is based on widening classical distributions to match 

the quantum distributions. Both classical and quantum distribution are Gaussians for 

harmonic oscillator. Classical distribution is converted into the quantum one via frequency-

dependent temperature 

 �∗ = ℏ�
X�B coth ℏ�

X�Bx  . (19) 

Such an approach has been used already in the early days of semiclassical simulations for 1D 

potentials and empirically by artificially elevating the temperature even for multidimensional 

systems62.  Even ab initio studies of liquid water tried to empirically account for quantum 

effects by elevating the temperature63. One needs, however, to maintain different temperatures 

for different normal modes, which is achieved with the Generalized Langevin equation (GLE) 

thermostat15,61. QT-GLE approach is exact for harmonic systems and provides a reasonable 

approximation even for anharmonic cases61. Importantly, the quantum thermostat approach 

also provides the distribution of momenta. Therefore, it makes a reasonable alternative to the 

harmonic Wigner approach for larger and moderately anharmonic systems. However, one 

should be aware of the potential ZPE leakage problem, in which the energy flows from high-

frequency to low-frequency normal modes64. The reliability of the quantum-thermostat based 
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simulations can be tested by performing full PIMD simulations. Using novel schemes to 

accelerate the convergence of PIMD, such simulations are becoming routine.65 

Initial conditions for semiclassical simulations: long pulse 

Proper way of treating the simulation with a long laser pulse is to include the laser field into 

the simulation.66–71 This is however not practical for excitations with weak fields as almost no 

transition would be then observed within duration of any realistic ab initio simulation.  

We can solve the issue in the semiclassical framework by a proper choice of initial conditions. 

The photon energy is well-defined and we selectively populate only vibrational levels 

fulfilling a resonance condition 

 "\] = "ZK − "[K	, (20) 

where "\] is energy of the incident photon and "ZK stands for energy of the molecules in the 

�th vibrational level of the fth electronic state (the same notation applies for the energy of the 

initial state). We have seen above that we can assume the final state to be reasonably well 

represented by a s function at a classical turning point. In practice, we sample the initial state 

density, e.g. by means of the MD simulations, and we assign each trajectory to a certain bin 

around a photon energy "\]�!	. Within the spirit of reflection principle, we approximate 

 "ZK − "[K = "Z�T	 − "[�T	. (21) 

 The practical realization of this strategy relies on running a swarm of trajectories sampled 

from the initial density, subject to the energy condition (Eq. (21)). The initial state is 

characterized by a distribution in a phase space reflecting the initial state of the system, in 

principle in thermal equilibrium. Let us assume that we use a Wigner distribution function. 

The CW laser then samples only a subspace of that distribution  

 �:T,{, "\]< = |�T, {	s:"Z�T	 − "[�T	 − "\]< (22) 

Note that we ignore kinetic energy contributions. The full distribution |�T,{		is generated 

by either explicitly calculating the wavefunction or by running MD simulations. In this work, 

we use the quantum-thermostat based MD method, which provides us with quantum 

distributions of positions and momenta. The filtering of the initial conditions was solved 

previously72, yet not in a systematic manner. 
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Realization of the resonance condition: dynamics with constraints 

In practice, we wish to select only the configurations from the MD simulation runs where the 

resonance condition is fulfilled within a predefined error. The straightforward approach based 

on running unconstrained dynamics then becomes impractical when the energy of the laser 

beam is set to the tail of the photoabsorption spectrum. We therefore apply strategies from 

accelerated dynamics or importance sampling to improve the efficiency of the simulations. 

We consider here two techniques to guarantee the resonance condition: (i) methods of 

Lagrange multipliers (LM) and (ii) umbrella sampling73–75.  

We start with the LM approach, defining the holonomic constrain  

 �T��	 = "Z�T��		 − "[:T��	< − � = 0	, (23) 

where constant � = ℏ2 is the photon energy. This leads to an additional force term in the 

classical equations of motion, which then read (for N atoms) 

 �� �
XT���	��X = −∇T� �" BT���	D + ��T���	� , � = 1…� (24) 

where the Lagrange multiplier � is set in such a way that the constraint (Eq. (23)) is fulfilled. 

The equations of motion are (numerically) integrated  

 T��� + ∆�	 = T�%�� + ∆�	 + �∇T��T���	�∆�	X��?I, � = 1…� (25) 

where T% is the position of the particles if no additional force were applied. The gradient of 

�T��	 is calculated as the difference between the gradients in the final and initial state. The 

holonomic constraint at time � + ∆� is expanded as 

 �T�� + ∆�	 ≅ ∆"��	 + �∆"�∆T∆T	, (26) 

where ∆" represents a deviation from the target energy, ∆" = �"Z�T	 − "[�T	 − �	, and ∆T 

is the change in positions ∆T = T�� + ∆�	 − T��	, depending on �. We wish the value of �T 

to remain zero. Using a stationarity condition for the Lagrangian ��T, �	 = �"Z�T	 −
"[�T		 − ��T��	 

 
���T, �	
�� = 0 − �T�� + ∆�	 − � ��T�� + ∆�	�� = 0 (27) 

we obtain: 

Page 13 of 32 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
5 

M
ay

 2
01

8.
 D

ow
nl

oa
de

d 
by

 D
ur

ha
m

 U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
25

/0
5/

20
18

 1
4:

41
:0

7.
 

View Article Online

DOI: 10.1039/C8FD00088C

http://dx.doi.org/10.1039/c8fd00088c


14 
 

 
� = 	− ∆"

∑ 5��T��	�T� 6
X ∆�X���

		. 
(28) 

In the umbrella sampling approach, the system is forced to stay close to certain structures 

defined by a set of coordinates (collective variable, CV) via a restraining potential, but free to 

move in all remaining coordinates. The approach is routinely used for calculating free energy 

differences in classical molecular dynamics simulations76,77. In our case, the CV is not a direct 

combination of geometrical parameters. Instead, we define the CV via ∆"�T	 = "Z�T	 −
"[�T	. The energy of both the initial and final electronic states depends on molecular 

geometries.  We then choose a quadratic restraining potential in these coordinates such that 

the dynamics only samples the relevant part of the phase space for the selected excitation 

energy. The dynamics will then take place on a modified potential  

 "���T	 = "[�T	 + �:∆"�T	 − ∆"S�O�PS<X, (29) 

where k is the restraining force constant. To calculate forces acting on each atom, we need to 

know both the gradient in the ground state as well as the gradient in the excited state. This 

leads to an increase in computational cost, as excited-state methods are typically more time 

consuming compared to their ground-state counterparts. But even if one has to calculate 

excited-state energies at each step, the procedure is efficient for the tails of the distribution as 

the probability of reaching these structures without a bias decay exponentially with energy.  

There are certain problems related to the coupling of importance sampling techniques with a 

thermostat. Classical thermostats are used without any further adaptation. On the contrary, the 

quantum thermostat “feels” the artificial force acting on the system to constrain the motion, 

recognizing the fast oscillations brought by the restraining force and will attempt to 

thermalize this degree of freedom as a quantum harmonic oscillator. Confining the position 

then leads to unphysical momenta generated in the system. We cope with the problem by 

constructing a quantum thermostat with damping78 of artificial frequencies introduced by the 

Lagrangian dynamics. 

Non-Condon effects in excited-state simulations  

The transition dipole moment *[ZP �T	 or associated oscillator strength �[Z�T	 are not 

independent of molecular geometries and non-Condon effects can sometimes have profound 

effects on molecular spectra. As an example, the dissociation of nitrate anion never takes 
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place from structures close to the minimum ground-state geometry as the transition to the first 

excited band is forbidden at this molecular configuration56. To account for these non-Condon 

effects, we assign a weight to each trajectory so that any dynamical quantity A�T, {	 is then 

calculated as 

 〈.〉��	 = G�:T�%<. BT���	, {���	D ,
�

 (30) 

where T�% denotes the initial positions taken from the ground-state sampling (� runs over the 

sampled structures). In the present case, the quantity A is the kinetic energy of the outgoing 

chlorine fragment. The additional weight can reflect different electronic populations at each 

time. The weight factor is then given as 

 �:T�%< = �[Z:T�%<∑ �[Z�T�%	� 			, (31) 

 where the denominator is a normalization constant. 

            

Test System: CF2Cl2 (Freon-12) 

The CFCs absorb readily in the UV, producing chlorine radical, which catalyzes the well-

known ozone decomposition79. Somewhat surprisingly, the photodissociation dynamics of 

these species is still not fully understood at the molecular level. The CF2Cl2 molecule starts to 

absorb UV photons around 205 nm, which is enough to dissociate the C-Cl bond 

CF2Cl2 → CF2Cl + Cl 

The absorption spectrum of CFC-12 peaks below 180 nm and the spectrum is rather narrow80, 

with a half-width at half-maximum of less than 10 nm.  

The photodissociation of the CF2Cl2 molecule was studied several times, always with laser 

frequencies on the red tail of the spectrum81–86,  with somewhat contradictory results. In the 

experiments by Baum and Huber84 and Yen et al.85, the chlorine fragment kinetic energy 

distributions were measured by TOF technique, using excitation laser with 193.3 nm84  and 

187 nm wavelength85, respectively. While Baum and Huber observed only a single reaction 

channel characterized by a total kinetic energy (TKER) release of 1.475 eV,84 Yen et al. 

observed also additional channels with the energy of 0.53 eV and 0.12 eV (together with the 
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main channel at TKER=1.63 eV)85. These two channels were tentatively assigned as 

fragments resulting from a second dissociation 

    CF2Cl → CF2 + Cl 

and formation of an excited-state CF2Cl* fragment. More recently, the photodissociation 

dynamics was re-measured by Poterya et al.87,88 at 193 nm using velocity map imaging 

technique. They found a dominant molecular peak at a chlorine fragment energy of 0.97 eV 

(corresponding to TKER=1.368 eV), but slower fragments were observed as well. On the 

other hand, the laser-induced fluorescence measurement of the quantum yield for the chlorine 

photodissocation was reported to be 1.03 at 193 nm, suggesting that only a single chlorine 

atom is dissociated.86 In our work, we simulate the photodissociation dynamics at 193 nm. We 

compare our results to the most recent data of Poterya et al87,88. This test case was chosen as 

(i) enough high-quality experimental data are available, (ii) dynamical aspects are important 

as we need to find out the distribution of the excess energy between different fragments and 

(iii) simulations can answer the question whether double dissociation takes place. 

Electronic structure 

To describe bond dissociation, we need to cover the static correlation89. The simplest way is to 

use the complete active space self-consistent field method (CASSCF);  we used even its 

cheaper alternative known as the Floating Occupation Molecular Orbitals CASSCI (FOMO-

CASCI) method90, which turned out to be an appealing alternative for the computational 

photodynamics91.  The missing dynamical correlation could be added at the price of an 

increase in computational cost, e.g. with perturbative (CASPT2) or variational (MRCI) 

treatment. Here, we develop a simple empirical correction to obtain correct energetics in the 

dissociation limit. We start with the FOMO-CASCI energies and add an additional correlation 

energy correction (CEC). The correction is based on the assumption that the correlation 

contribution depends solely on the C-Cl bond distance and is independent of the electronic 

state. The imperfection of the FOMO-CASCI method is then manifested already at the ground 

state, yielding incorrect bond dissociation energies. We suggest a functional form to correct 

for the FOMO-CASCI deficiencies and tune the parameters against high-level ab initio 

calculations. The technical details of our approach are explained in the Supplementary 

Information. 

 The ground-state PES of CF2Cl2 was sampled at the B3LYP/6-31+g* level, since the B3LYP 

geometry matches the experiment. The energy constraint condition and subsequent excited-
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state dynamics were performed using the FOMO-CASCI method with an active space of 12 

electrons in 8 orbitals and a 6-31+g* basis sets90. The broadening parameter beta was set to 

0.42 a.u. to obtain energies close to the reference CASSCF values. 

Simulation details 

We maintained a temperature of 200 K in the simulations, using a Nosé-Hoover thermostat for 

the classical simulations, or a quantum thermostat based on GLE for the simulations 

incorporating nuclear quantum effects61. GLE matrices were obtained from an online library92 

and were further modified to employ the so-called delta thermostat78 in order to damp the 

high-frequency modes introduced by the additional constraints (additional details can be 

found in the SI). A time step of 20 a.u. was used for the MD sampling without any constraint, 

while a time step of 5 a.u. was employed in the constrained MD simulations to better conserve 

the resonance energy condition. The equations of motion were integrated using the velocity 

Verlet algorithm. The MD simulations were executed using a development version of the 

ABIN MD code93, coupled either with the Gaussian 0994 or GPU-accelerated TeraChem95 

electronic-structure codes. The photodynamical simulations were performed in the ABIN code 

coupled with the TeraChem.  

 

Results and Discussion   

The excitations of the CF2Cl2 molecule into its first 8 excited singlet states correspond to the 

promotion of an electron from a lone-pair (located on one of the chlorine atom) into one of the 

σ*(C-Cl) antibonding orbitals. The first excitation energy at the Franck Condon point is 7.26 

eV (calculated at the EOM-CCSD/aug-cc-pVTZ level) and the second excited state of similar 

character is located only 0.30 eV above the first state. These values are close to the center of 

the first peak in the absorption spectrum. 

Figure 3 shows the topography of the S0 and S1 PESs of the CF2Cl2 molecule, using the two 

C-Cl bond distances as reaction coordinates. The S1 PES is purely repulsive with respect to 

both of the C-Cl bonds. The simultaneous dissociation of chlorine atoms is in principle 

energetically allowed, yet the process is not probable as we discuss below. We also see a non-

smooth behavior at the r(C-Cl1) = r(C-Cl2) line. The lack of differentiability originates from 

the crossings with the upper electronic states – the dissociation along the two C-Cl 

coordinates takes place on two diabatic surfaces crossing at the symmetric C2v geometries. 
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Upon the excitation, the system should follow either one or the second valley, corresponding 

to the CF2Cl + Cl products. The molecule is bound with respect to the C-F bonds in the first 

excited states. At the dissociation limit, three electronic states merge for the channel with a 

single dissociated chlorine atom, and nine states merge when both chlorine atoms are 

dissociated simultaneously. The degeneracy stems from the degeneracy of the atomic p-states 

of the free chlorine radicals. The potential energy scans including first 9 singlet states are 

shown in the Supplementary material. 

 

   

Figure 3. Scan of the S0 and S1 PESs of CF2Cl2 along the two dissociative C-Cl coordinates. The two electronic 

states were calculated at the FOMO-CASCI level, using an active space of 12 electrons in 8 orbitals and a 6-

31+g* basis set.  

The FOMO-CASCI PES is qualitatively reasonable, even if it does not provide a quantitative 

description of the system. The excitation energy is higher by ~1 eV and the asymptotic 

energetics is incorrect due to the lack of dynamical correlation.  Figure 4 shows the ground-

state potential energy curve along the C-Cl coordinate calculated at the FOMO-CASCI level, 

together with a corrected potential energy curve with the CEC correction. The correction is 

relatively large as it exceeds 1 eV. 
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Figure 4. One-dimensional potential energy curves rigid scan of CF2Cl2 molecule calculated at the FOMO-

CASCI level and compared with the corrected potential energy curves using the simple CEC empirical 

correction. 

Let’s now compare the ground-state energetics of the C-Cl bonds calculated with the FOMO-

CASCI+CEC approach against the CCSD(T) calculations. For a dissociation of the single 

chlorine atom, CCSD(T) gives a dissociation energy of 3.59 eV, which compares well with 

the experimental value96. The FOMO-CASCI+CEC was fitted to match this value. The 

correction works, however, equally well for a double dissociation: here the CCSD(T) method 

predicts a dissociation energy of 5.60 eV, while FOMO-CASCI+CEC gives 5.55 eV. 

Let us now focus on the proper sampling of the system in its ground state in the coordinate 

domain. Figure 5 shows the nuclear density along the two dissociative C-Cl coordinates in the 

ground-electronic state of the CF2Cl2 molecule. First, we can compare the quantum-

thermostat generated density against the classical distribution. If no constraints are applied, 

the quantum distribution is significantly extended, reaching to C-Cl distances of 1.95 Å while 

the classical distribution essentially ends at a distance of 1.87 Å.  It is also clearly seen that 

the data get sparser at the tail of the distribution, and we observe traces of particular 

trajectories. Quite different is the density distribution satisfying the energy resonance 

condition Eq. (21), i.e., corresponding to semiclassical simulations with a constant 

wavelength. The selected points are all characterized by extended C-Cl distances. We also 

observe that the classical and quantum distributions do not differ too much in the present case 

– this is, however, only true for the coordinates strongly affecting the excitation energies, e.g. 

the densities along the C-F bonds are not influenced by the energy constraint to that extent. 
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In principle, we should worry about the non-ergodicity brought about by the energy 

constraint. Apparently, we did not face such an issue in the present simulations. Would we 

focus, however, on even longer excitation wavelengths, there might be only a small 

probability to sample points with both C-Cl bonds extended. The sampling would then not 

respect the symmetry of the problem – an issue that could be solved by running several 

independent sampling runs starting from an unconstrained simulation, for example.        

 

 Quantum (QT-GLE) Classical (NH) 

C-Cl 

  

C-F 

  

Figure 5. Ground-state density of the CF2Cl2 molecule plotted along the two C-Cl coordinates, governing the 

dissociation of the molecule. Panel A shows the results for the quantum thermostat, panel B shows the results for 

a Nosé-Hoover thermostat, i.e., a classical distribution is generated. The points are generated along the MD 

trajectories lasting 100 ps. The orange points indicate simulations with the Lagrange multiplier constraints 

corresponding to the excitation wavelength of 193 nm. The ground-state PES was calculated at the FOMO-CAS-

CI/6-31+g* level.   

 

The relevance of the sampling is best visualized by a direct comparison of the excited-state 

simulation data with experiment. Here, we compare the kinetic energy distributions of the 
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outgoing chlorine atoms with the measurements at 193 nm obtained with the velocity map 

imaging approach88. The photodissociation of CF2Cl2 is an example of an almost direct 

photodissociation process. The molecule is excited on the steep second excited-state PES and 

one of the chlorine atoms immediately dissociates. The excess energy gets distributed among 

the kinetic energy of the chlorine atom and the remaining CF2Cl molecular fragment. Most of 

the energy has been deposited into the fragment, especially in its internal degrees of freedom. 

Based on momentum conservation we can estimate the distribution ratio to be 2.31:1 for 

CF2Cl : Cl. While the simulations were performed with the nonadiabatic surface hopping 

technique, the dynamics was overall essentially adiabatic. We could observe nonadiabatic 

transitions only during the latest stage of the reaction, essentially between degenerate 

electronic states. The second chlorine atom typically remained bound to the molecule within 

the duration of the simulations (200 fs) or scarcely dissociated after few vibrations of the 

remaining fragment. We did not observe an immediate double dissociation in a concerted 

fashion. 

Figure 6A shows the resulting distribution of kinetic energies for simulations considering a 

vertical excitation. We always compare the simulations on the original FOMO-CASCI PESs 

against the simulations using the CEC modified PESs. The width of the spectrum is in both 

cases significantly narrower for the simulations starting from classical densities compared to 

the quantum distribution. Clearly, the zero-point energy allows for inspection of much more 

extended part of the coordinate space. The maximum of the KED for the FOMO-CASCI 

simulation is shifted by 0.8 eV up with respect to the experiment, i.e., the chlorine fragments 

are almost twice as fast. We even observe a peak of slower chlorine atoms at around 0.6 eV, 

corresponding to the dissociation of the second chlorine atom. The second chlorine in this 

case dissociates almost simultaneously with the first atom. Application of the CEC correction 

makes, however, the fraction of the fast chlorine atoms seen in the direct photodissociation 

almost negligible.  Furthermore, the center of the kinetic energy distribution shifts to 1.3 eV 

and it is now much closer to the experiment. However, the mean vertical excitation energy 

(that is, from the minimum ground state geometry) at the FOMO-CASCI level is almost 8 eV, 

i.e., much larger than the experimentally used value of 6.43 eV. We also observe that the 

width of the KED peak is larger than the one seen in the experiment, the FWHM is 0.60 eV 

for the QT-GLE simulations while it is only 0.35 eV in the experiment. 
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We achieve an almost quantitative agreement with the experiment when the QT-GLE 

thermostat is coupled with the Lagrange multipliers to ensure the resonance conditions (Eq. 

(21)). Figure 6B show the spectrum calculated using the QT-GLE thermostat the CEC for 

energy constraints (i) 6.43 eV (193 nm) and (ii) 7 eV (close to the experimental maximum of 

absorption).  For comparison, the 6.43 eV simulation results are also shown for classical MD 

sampling. The 6.43 eV QT-GLE simulation faithfully describes the KED of the chlorine 

atoms in the fast peak. The energy maximum of the peak at around 0.97 eV as well as the 

FWHM 0.37 eV are almost the same as the experimental values (0.98 eV and 0.35 eV, 

respectively). The 7 eV simulation is shifted to larger energy values while the width of the 

spectrum remains approximately correct. The classical spectrum is almost as wide as the 

quantum one. This contrasts with the spectrum for the vertical wavepacket simulation. 

Clearly, the energy condition (21) mitigates the quantum delocalization in the position space. 

 

Page 22 of 32Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
5 

M
ay

 2
01

8.
 D

ow
nl

oa
de

d 
by

 D
ur

ha
m

 U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
25

/0
5/

20
18

 1
4:

41
:0

7.
 

View Article Online

DOI: 10.1039/C8FD00088C

http://dx.doi.org/10.1039/c8fd00088c


23 
 

 

Figure 6. Kinetic energy distributions calculated with initial conditions corresponding to Figure 5, using either 

direct FOMO-CASCI or the FOMO-CASCI+CEC PESs. Upper panel shows the results for unconstrained 

simulations (corresponding to vertical excitations), lower panel shows the results with the resonance condition 

(21) imposed by means of Lagrange multipliers technique. Experimental data corresponding to a nanosecond 

laser pulse of 193 nm is showed for comparison88.   

 
 

Next, we briefly focus on the importance of the non-Condon effects in the simulations, that is, 

on the importance of weighting the simulations by the square of transition dipole moments or 

oscillatory strength (see Eq. (9)). Figure 7 shows the resulting KEDs for simulations at 

various conditions (differing by the underlying PES or by using imposing the resonance 

condition). We observe that the effect can be very larger. In particular, the quantum 

simulation on the FOMO-CAS-CI PES shows a profound effect of the non-Condon effects for 

the peak corresponding to slower chlorine atoms at around 0.5 eV. These chlorine atoms 

result from structures with both chlorine atoms partially dissociated already from the start of 

the simulations. Such arrangement has, however, lower probability when we consider the R-

dependence of the electronic transition dipole moment, i.e., the functions *[ZP �T	 ⋅ -%|HZJ[K� 
and |HZJ[K� are quite different. The densities generated with the Lagrange-multiplier 

modified MD do not differ – in fact, this is consistent with the view that a single stationary 

state should be generated within the constant wavelength simulations.  
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Figure 7. The role of non-Condon effects on the calculated distribution of chlorine kinetics energies upon 
photodissociation of CF2Cl2 with a nanosecond 193 nm laser pulse.   

 

We obtained the data presented in the graphs above directly by analysis of the MD 

trajectories, i.e., we focused only on the chlorine atoms leaving the clusters immediately 

within the duration of the MD simulations. The best simulations considering both the 

experimental laser wavelength and CEC correction for the FOMO-CASCI PES were, 

however, not able to reproduce the appearance of the slow chlorine atoms with near zero 

kinetic85,87. The origin of these chlorine atoms is not entirely clear. It has been hypothesized 

that they can result from concerted dissociation of the two Cl atoms, secondary dissociation of 

the CF2Cl radical or two photon processes87,88. Here we assume that they result from 

statistical dissociation of the CF2Cl radical formed within the direct photodissociation. We 

can estimate the excess energy Eexc deposited as an internal energy of the fragment knowing 

the dissociation energy of the C-Cl bond in the CFC-12 "�?�� and kinetic energy of the first 

chlorine atom "�[_,�� 
 "Po  = "\] − "�?�� − "�[_,�� − "�[_,�¡d�� + Δ£w"	, (32) 

where the kinetic energy of the CF2Cl radical is estimated from momentum conservation and 

the Δ£w" correction accounts for different zero point energies of the products and reactants. 

We can then estimate the kinetic energy distribution of the second chlorine radical by means 

of statistical theory, using a simple formula97 
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 w�"Po , ¤�	 ∝ Ω�"Po  − ¤�	§¤�		, (33) 

where ¤� is the kinetic energy of the outgoing fragment, that is, the probability is proportional 

to the density of states of the chlorine atom and the density of states of the remaining 

fragment. In most cases, the dissociation of the second chlorine atom is not energetically 

available. However, the fraction of simulation with the lowest kinetic energy of the first 

chlorine atom allows for the dissociation of the second one. As a result, the total KED 

spectrum based on the combination of the MD simulations with statistical description of the 

fragment nicely fits the experiment (Figure 8). The fraction of chlorine atoms amounts to 

some 16% of the total chlorine population in the experiment, in a reasonable agreement with 

the calculated value of 8%.  

 

Figure 8. Simulations of the CF2Cl2 photodissociation on the FOMO-CASCI+CEC PESs including the slow 
chlorine atoms.  

 

Conclusions 

Semiclassical excited-state simulations are powerful as a tool for the investigation of 

photochemical processes. However, the contact with experiment is often imperfect – we gain 

insight, but not the numbers. 
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Here, we highlight two main problems in semiclassical excited-state simulations. (i) 

Electronic structure theory. Independent of the nonadiabatic scheme used, we can hardly get 

any reliable result with inadequate PESs – this aspect is widely acknowledged2,3. The problem 

is a limited choice of the techniques describing global PESs in the excited states. Two 

frequently used approaches suffer from known deficiencies: the TDDFT method lacks the 

ability to describe dissociation processes while CASSCF method is quantitatively inaccurate. 

In the present work, we show that the latter problem can sometimes be mitigated in a thrifty 

way, e.g. using the CEC potential introduced in this work. The correction is similar in spirit to 

two recently introduced (semi)empirical corrections to the CAS type wavefunctions. In the α-

CASSCF method98, a single empirical scaling factor is used to correct the CASSCF excitation 

energies. Hohenstein et al proposed a simple DFT-based correction to CASCI energies and 

showed that this approach can remove spurious barriers on excited state energy surfaces99.  

(ii) Selection of initial conditions. One should always carefully consider what are the quantum 

states formed upon photoexcitation. We have advocated the use of the QT-GLE thermostat for 

the generation of initial conditions in the phase space for MD simulations. However, the 

present example did not fully benefit from the strength of the approach, as CF2Cl2 is a fairly 

harmonic system dissociating on a steep excited-state PES. The approach is indeed very 

general, and the QT-GLE strategy can easily be used for liquids or for processes where 

momentum distribution plays a decisive role. Most of the work focused on a proper way of 

treating excitations with a long laser pulse. We introduce a new technique to sample the initial 

state for such situations based on constrained dynamics in the ground state, demonstrating its 

performance on the example of the CF2Cl2 photodissociation. 

The sampling of the initial state based on the enforcement of the energy resonance condition 

is computationally more demanding compared to a pure sampling of the ground-state 

vibrational wavefunction. Indeed, we have to sacrifice the appealing division of the 

simulation into two completely independent parts: sampling in the ground state, followed by 

excited-state dynamics. In our approach, we need to know the excited-state energies and 

forces already for the preparation of initial conditions, and the large excited-state forces 

impose a shortening of the time step. Alternatively, one could directly apply the energetic 

criterion to the distribution generated by the quantum thermostat or similar technique. The 

latter approach will be more efficient for excitation wavelengths close to the absorption 

maximum. 
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Next, we showed in our work that non-Condon effects, often neglected in excited-state 

photodynamical simulations, have in some situations a profound effect on the final observable 

quantities. We also combined the photodynamical simulations with statistical methods 

describing the dissociation of molecules in later stages of the reaction.  

Extensions of the present computational protocol would be desirable. First, the CW-sampling 

method was introduced so far for a single excited state only. If more states are present, we 

could run the sampling independently for each of them. Alternatively, we could allow for 

excited-state jumps during the initial state sampling stage. The probability of transitions 

would now depend on the oscillator strengths of the respective states. Next, we might wish to 

simulate a system subjected to a pulse of general shape, or to an excited state with a certain 

finite lifetime. In this case, the wavepacket would not directly copy the ground-state 

distribution, and the umbrella sampling technique should be able to accommodate such 

situations.   
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