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Abstract: In three-dimensional gauge theories, monopole operators create and destroy vor-

tices. We explore this idea in the context of 3d N = 4 gauge theories in the presence of an

Ω-background. In this case, monopole operators generate a non-commutative algebra that

quantizes the Coulomb-branch chiral ring. The monopole operators act naturally on a Hilbert

space, which is realized concretely as the equivariant cohomology of a moduli space of vortices.

The action furnishes the space with the structure of a Verma module for the Coulomb-branch

algebra. This leads to a new mathematical definition of the Coulomb-branch algebra itself,

related to that of Braverman-Finkelberg-Nakajima. By introducing additional boundary con-

ditions, we find a construction of vortex partition functions of 2d N = (2, 2) theories as

overlaps of coherent states (Whittaker vectors) for Coulomb-branch algebras, generalizing

work of Braverman-Feigin-Finkelberg-Rybnikov on a finite version of the AGT correspon-

dence. In the case of 3d linear quiver gauge theories, we use brane constructions to exhibit

vortex moduli spaces as handsaw quiver varieties, and realize monopole operators as interfaces

between handsaw-quiver quantum mechanics, generalizing work of Nakajima.
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1 Introduction

1.1 Summary

In this paper, we study various setups involving a three-dimensional gauge theory T with

N = 4 supersymmetry placed in an Ω-background R2
ε × R (Figure 1). Such a theory is

labelled by a compact gauge group G and a quaternionic representation R describing the

hypermultiplet content. We will require that the theory has only isolated massive vacua

when generic mass and FI parameters are turned on, and place the system in such a vacuum

ν at infinity in the plane of the Ω-background.

✏R2
✏

⌫

R

Figure 1. A 3d N = 4 theory in the Ω-background, with a fixed vacuum ν at spatial infinity.

The vacuum and Ω-background effectively compactify this system to one-dimensional

N = 4 supersymmetric quantum mechanics at the origin of R2
ε , with a Hilbert space Hν

of supersymmetric ground states. By analyzing solutions of the BPS equations that are

independent of the coordinate along R, we find the following description of the Hilbert space:

• The half-BPS particles of the three-dimensional gauge theory that preserve the same

supersymmetry as the Ω-background are vortices localized at the origin of R2
ε . They
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are characterized by a vortex number n: the flux of the abelian part of the gauge field

through R2
ε . The Hilbert space

Hν =
⊕
n

H∗Gν
(
Mn

ν

)
, (1.1)

is the direct sum of the equivariant cohomology of vortex moduli spacesMn
ν with respect

to the symmetries Gν preserved by the vacuum ν.

We also provide a mathematical description of the vortex moduli spaceMn
ν as the moduli

space of based holomorphic maps from CP1 into the Higgs branchMH of the theory T where

the vortex number n corresponds to the degree of the map. More precisely, it is the moduli

space of such maps into a Higgs-branch “stack.” We expect that this description is more

general and holds even when the theory T does not have vortex solutions in the standard

sense, for example when T is a pure gauge theory.

The theory T has monopole operators labelled by cocharacters A of the gauge group G,

which create or destroy vortices. Together with vectormultiplet scalar fields, the monopole

operators generate a Coulomb-branch chiral ring, which is the coordinate ring C[MC ] of the

Coulomb branch in a given complex structure. The Coulomb-branch chiral ring is quantized

to a noncommutative algebra Cε[MC ] in the presence of the Ω background. A systematic

construction of this ring and its quantization was the topic of [1–3]. One motivation for the

present paper is to provide a new construction of Cε[MC ] from its action on vortices.

We will compute the action of monopole operators on Hν by analyzing solutions of

three-dimensional BPS equations in R2
ε × R. Schematically, a monopole operator labelled

by a cocharacter A takes a vortex with charge n to one with charge n + A. The following

statement is one of the main results of this paper:

The action of monopole operators on Hν endows it with the structure of a Verma

module for the quantized Coulomb branch algebra Cε[MC ].

Intuitively, this corresponds to the statement that the entire Hilbert space is generated from

the vacuum state by acting with monopole operators of positive charge. We will demonstrate it

explicitly for various theories with unitary gauge groups, and prove it given some assumptions

on the structure of the Coulomb branch.

We can now enrich the setup of Figure 1 by adding a boundary condition B at some

point in the R direction and filling R2
ε , as in Figure 2. We will consider boundary conditions

that preserve 2d N = (2, 2) supersymmetry on the boundary and are therefore compatible
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✏

B

Figure 2. A 3d N = 4 theory in the Ω-background, with a boundary condition.

with the Ω background. Such a boundary condition defines a state in the supersymmetric

quantum mechanics:

Boundary Condition B −→ State |B〉 ∈ Hν . (1.2)

The state is characterized by the additional relations obeyed by operators in Cε[MC ] when

acting on it. In physical terms, the state is characterized by the behavior of monopole

operators brought to the boundary.

We will also consider the setup shown in Figure 3, with boundary conditions B and B′

at either end of an interval R2
ε × I. At low energies, this system has an effective description

as a 2d N = (2, 2) theory TB,B′ in the Ω-background. The partition function of this system

admits two equivalent descriptions: directly as the partition function of the two-dimensional

theory, or as an inner product

ZB,B′ = 〈B|B′〉 (1.3)

in the Hilbert space Hν of the three-dimensional theory T .

✏ B

B0

Figure 3. A 3d N = 4 theory in the Ω-background, sandwiched between half-BPS boundary condi-

tions.

It is particularly interesting to consider boundary conditions B and B′ that preserve

the gauge symmetry G. Such ‘Neumann’ boundary conditions were studied extensively in [4].

They depend on a choice of G-invariant Lagrangian splittingR = L⊕L∗ of the hypermultiplet

representation, and on complex boundary FI parameters ξ = et2d . The states |NL,ξ〉 ∈ Hν
created by these boundary conditions have an explicit description as an equivariant coho-

mology class in the vortex moduli space, or rather a sum of classes for all vortex numbers.
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They turn out to be coherent states in the supersymmetric quantum mechanics, satisfying an

equation of the form

VA
∣∣NL,ξ〉 ∼ ξA

∣∣NL,ξ〉 . (1.4)

Mathematically, these conditions identify
∣∣NL,ξ〉 as a generalized “Whittaker vector” for the

Coulomb-branch algebra Cε[MC ].

If we now consider an interval with Neumann boundary conditions NL,ξ and NL′,ξ′ at

either end, we will find at low energies a 2d N = (2, 2) gauge theory TL,L′ with gauge group G,

chiral matter content transforming in the representation L∩(L′)∗, and FI parameter q = ξ/ξ′.

Its partition function ZL,L′ acquires two equivalent descriptions:

• The partition function is a standard vortex partition function [5, 6] of the two-dimensional

theory TL,L′ . This is an equivariant integral

ZL,L′ =
∑
n

qn
∫
Mn

L,L′;ν

11 (1.5)

of a fundamental class over the moduli space of n vortices in the two-dimensional gauge

theory TL,L′ .

• The partition function is an inner product

ZL,L′ =
〈
NL′,ξ′

∣∣NL,ξ〉 (1.6)

of states defined by the boundary conditions NL,ξ, NL′,ξ′ in the Hilbert space Hν of the

three-dimensional theory T on R2
ε × R.

The equivalence of these two descriptions means that

The vortex partition function of a 2d N = (2, 2) theory TL,L′ arising from a 3d

N = 4 theory T on an interval with Neumann boundary conditions NL and NL′ is equal

to an overlap of generalized Whittaker vectors for the quantized Coulomb branch algebra

Cε[MC ] in Hν .

As we explain in Section 1.2.3 below, this can be seen as a “finite” version of the AGT

correspondence. Indeed, in very particular examples the Coulomb-branch algebra Cε[MC ]

is known to be a finite W-algebra, motivating the name. One consequence of writing the

partition function ZL,L′ as an inner product of vectors that satisfy the Whittaker-like condi-

tion (1.4) is that the vortex partition function itself must satisfy differential equations in the

parameters q that quantize the twisted chiral ring of TL,L′ .
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Throughout the paper, we find it useful to describe the physics of half-BPS vortex parti-

cles via an N = 4 supersymmetric quantum mechanics on their worldlines. For each vacuum

ν and vortex number n, there is an N = 4 supersymmetric quantum mechanics Q(ν, n) whose

Higgs branch is the moduli space of vortices Mvortex
n . Its space of supersymmetric ground

states coincides with subspace of the 3d Hilbert space (1.1) of vortex number n,

HQ(ν,n) = H∗Gν (Mn
ν) . (1.7)

Both the complex mass parameters of T and the Ω-background deformation parameter ε are

twisted masses in the supersymmetric quantum mechanics; they are the equivariant parame-

ters for the symmetry Gν preserved by the vacuum ν.

The quantum mechanics Q(ν, n) can be given a simple description as a 1d gauge theory

(with finite-dimensional gauge group) when T itself is a type-A quiver gauge theory. Then T
can be engineered on a system of intersecting D3 and NS5 branes [7] and a vortex of charge

n corresponds to adding |n| finite-length D1 branes to this geometry in appropriate positions

[8, 9]. From the brane construction one reads off Q(ν, n) as a quiver quantum mechanics

whose moduli space is precisely Mn
ν .

The monopole operators of T change vortex number and so should correspond to inter-

faces between different supersymmetric quantum mechanics. Very schematically, a monopole

operator VA is represented as an interface between the quantum mechanics Q(ν, n) and

Q(ν, n + A). It defines a correspondence between the moduli spaces; roughly speaking, this

is a map

LA →Mn
ν ×Mn+A

ν (1.8)

from a monopole moduli space LA to the product of vortex moduli spaces. Upon taking co-

homology, this induces a map of Hilbert spaces (1.7). We will construct such correspondences

for general theories T , and explain how they reproduce the Coulomb-branch algebra.

When T is an A-type quiver gauge theory, we find an explicit description of these inter-

faces by coupling the supersymmetric quantum mechanics (as a 1d gauge theory) to matrix-

model degrees of freedom at the interface. This provides a physical setup for a construction

of Nakajima [10] (see Section 1.2.4 below) and extends it to more general A-type quivers.

1.2 Relation to other work

There are numerous connections between this paper and previous work and ideas. We briefly

mention a few prominent ones.
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1.2.1 Vortices, J-functions, and differential equations

BPS vortices have a very long history in both mathematics and physics. They were initially

discovered in abelian Higgs models, i.e. U(1) gauge theories with scalar matter [11, 12].

Vortex moduli spaces were later studied by mathematicians, e.g. [13, 14], who established

an equivalence between vortices and holomorphic maps. See [15] for a review with further

references.

Vortices in 2d N = (2, 2) theories played a central role in early work on mirror symmetry

[16–19]. In mathematics, vortex partition functions such as (1.5) (and its K-theory lift) arose

in Gromov-Witten theory, and are sometimes known as equivariant J-functions, cf. [20–23]

and references therein.

From these early works it became clear that vortex partition functions should be solu-

tions to certain differential equations — interpreted either as Picard-Fuchs equations or more

intrinsically as “quantizations” of twisted-chiral rings of 2d N = (2, 2) theories (in the spirit

of [24]). Such differential equations have shown up over and over again in various guises, from

(e.g.) topological string theory [25] to the AGT correspondence with surface operators [26]

and the 3d-3d correspondence [27]. We re-derive them here using the construction of vortex

partition functions as overlaps of Whittaker vectors.

1.2.2 Ω-background

The Ω-background was originally introduced for four-dimensional gauge theories with N = 2

supersymmetry in [28], building on the previous work [29–31]. The idea that an Ω-background

is related to quantization of moduli spaces goes back to the work of Nekrasov-Shatashvili [32]

and related works such as [26, 33–35].

As explained in [1, 4], a 3d N = 4 gauge theory admits two distinct families of Ω-

backgrounds that provide a quantization of either the Higgs branch and Coulomb branch

in a given complex structure. These Ω-backgrounds may be viewed as deformations of the

two distinct families of Rozansky-Witten twists introduced in [36, 37]. The former class was

studied recently in [38] in the context of a sigma model onto the Higgs branch. In this paper,

we study the latter: the Ω-background that quantizes the Coulomb branch. This is a di-

mensional reduction of the usual four-dimensional Ω-background in the Nekrasov-Shatashvili

limit where the deformation is confined to a single plane [32].

In Section 3, we demonstrate that the Hilbert space Hν is given by the equivariant

cohomology of a moduli spaces of vortices. This observation is not unexpected: a 2d theory

with at least N = (2, 2) supersymmetry localizes to BPS vortex configurations in the presence
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of an Ω-background [5]. It is therefore natural to find a Hilbert space populated by BPS vortex

particles in three dimensions.

1.2.3 Finite AGT correspondence

One of our main results is that the Hilbert space Hν of a 3d theory in the Ω-background

is a Verma module for the quantized Coulomb branch algebra, and that 2d vortex partition

functions arise as overlaps of Whittaker-like vectors in Hν . Special cases of these statements

were discovered in mathematics by Braverman and Braverman-Feigin-Finkelberg-Rybnikov

[39, 40]. Much earlier, Kostant [41] introduced overlaps of Whittaker vectors to construct

eigenfunctions of the Toda integrable system, which happen to be examples of 2d vortex

partition functions.

The physical setup for these references is the 3d N = 4 theory T [G] and its generalization

Tρ[G], introduced by Gaiotto and Witten as an S-duality interface in 4d gauge theory [42].

The Higgs branch of Tρ[G] is the cotangent bundle of a partial flag variety T ∗(GC/Pρ) for

G, and its quantized Coulomb-branch algebra is a finite W-algebra Wρ[g
∨] for the Langlands

dual algebra.1 Notice that holomorphic maps to T ∗(GC/Pρ) are all supported on the base

GC/Pρ. By studying the Hilbert space of Tρ[G] in an Ω-background, one therefore expects to

find (roughly) that the equivariant cohomology

H∗(based maps CP1 → GC/Pρ) (1.9)

is a Verma module for Wρ[g
∨]. Moreover, one expects that the vortex partition function for a

2d sigma-model with target GC/Pρ is an overlap of Whittaker vectors for Wρ[g
∨]. These are

precisely the claims made by [39, 40] (after modifying (1.9) by partially compactifying the

space of based maps and passing to intersection cohomology to to account for the fact that

this compactification is not necessarily smooth).

When G = U(n) is of type A, the theory Tρ[U(n)] is a linear-quiver gauge theory. More-

over, in the presence of generic mass and FI deformations, it has isolated massive vacua.

It is thus amenable to the gauge-theory methods of the current paper, and we will discuss

it in many examples. We also generalize to theories T ρ
∨

ρ [U(n)] whose Higgs branches are

intersections of nilpotent orbits and Slodowy slices in slnC.

One of the main goals of [39, 40] was to develop and prove a ‘finite’ analogue of the

AGT conjecture. To relate to AGT, recall that the AGT conjecture [46] states that instanton

partition functions of 4d N = 2 theories of class S are conformal blocks for a W-algebra. In

1Finite W-algebras originated in [43, 44] and thereafter explored extensively in mathematics, as summarized

in the review [45].
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mathematics (see for instance [47–49]), this conjecture has been viewed as a consequence of

two more fundamental statements: 1) that a W-algebra acts on the equivariant cohomology

of instanton moduli spaces; and 2) that the instanton partition function is an inner product of

Whittaker vectors for the W-algebra. Together, (1) and (2) imply that the instanton partition

function satisfies conformal Ward identities that ensure it is W-algebra conformal block. By

analogy, the statement that 2d vortex partition functions arise as inner products of Whittaker

vectors (1.4) for finite W-algebras can be viewed as a finite version AGT.

We expect it should be possible to understand the full AGT conjecture using a higher-

dimensional analogue of the setup in this paper, as outlined in [50] (cf. [51–53]. Specifically,

one would like to consider a 5d N = 2 theory in an Ω background R4
ε1,ε2 ×R, with instanton

operators generating a W-algebra or generalization thereof. Compatifying on an interval

R4
ε1,ε2 × I with half-BPS Neumann boundary conditions would lead to a 4d N = 2 theory,

whose instanton partition function naturally becomes interpreted as an overlap of Whittaker

vectors. This geometry could be further enriched with codimension-two defects along R2
ε1×R

or R2
ε2 × R, leading to similar statements about ‘ramified’ instanton partition functions and

affine Lie algebras [54, 55]. This would be very interesting to explore.

1.2.4 Handsaw quivers and interfaces

In Section 6, we employ a description of BPS vortex-particles using N = 4 supersymmetric

quantum mechanics. For type-A quiver gauge theories T whose Higgs branches are cotangent

bundles of partial flag varieties, the supersymmetric quantum mechanics describing vortex

particles are precisely the “handsaw” quivers that appeared in work of Nakajima [10]. The

infrared images of the interfaces that represent the action of monopole operators were defined

in [10] as correspondences between pairs of vortex moduli spaces, as in (1.8). Here we develop

gauge-theory definitions of these interfaces and extend the discussion to more general type-

A quiver gauge theories T . The interfaces are closely analogous to those found in [56] for

five-dimensional gauge theories.

1.2.5 Symplectic duality

There are many relations known between geometric structures assigned to Higgs and Coulomb

branches of 3d N = 4 gauge theories, often referred to collectively as “symplectic duality”

[57, 58]. This includes an equivalence of categories of modules associated to the Higgs and

Coulomb branches, whose physical origin was studied in [4]. The relation proposed in this

paper might also be included in the symplectic duality canon. It is somewhat different in

character from the equivalence of categories discussed in [4], most notably in its asymmetric
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treatment of the Higgs and Coulomb branches. The Ω-background that quantizes the Higgs

branch (related to the one studied here by mirror symmetry) should lead to a relation between

quasi-maps to the Coulomb branch and Verma modules for Higgs-branch algebras.

1.3 Outline of the paper

We begin in Section 2 by reviewing the basic structure of 3d N = 4 theories, their BPS

operators and excitations, and the Ω-background. In Section 3 we describe the Hilbert space

Hν , and give it a mathematical definition in terms of holomorphic maps to a Higgs-branch

stack. In Section 4 we then derive the action of monopole operators (more generally, the

Coulomb-branch algebra) on Hν . We construct this action mathematically in terms of corre-

spondences, leading to a new “definition” of the Coulomb-branch algebra complementary to

that of Braverman-Finkelberg-Nakajima. In Section 5 we introduce half-BPS boundary con-

ditions and 2d vortex partition functions as overlaps of Whittaker vectors. Finally, in Section

6 we use D-branes to derive quiver-quantum-mechanics descriptions of the 1d theories on the

worldlines of vortices, and describe the matrix-model interfaces corresponding to monopole

operators. In Section 7 we demonstrate our various constructions in the case of a simple 3d

abelian quiver gauge theory, whose Higgs branch is a resolved C2/ZN singularity and whose

Coulomb-branch algebra is a central quotient of slN .

2 Basic setup

We begin with a review of 3d N = 4 theories, their symmetries, and their moduli spaces,

setting up some basic notation. We then describe various half-BPS excitations and operators

in 3d N = 4 theories. Notably, half-BPS monopoles, vortices, and boundary conditions

can be aligned so as to preserve two common supercharges. The BPS equations for this

pair of supercharges will feature throughout the paper. In Section 2.4 we rewrite the 3d

theory on C×R as a 1d N = 4 quantum mechanics along R (with infinite-dimensional gauge

group and target space). In terms of the quantum mechanics, vortices are simply identified

as supersymmetric ground states, and monopoles as half-BPS operators or interfaces. The

quantum-mechanics perspective also gives us an easy way to describe the Ω-background, as

an ordinary twisted-mass deformation.

2.1 3d N = 4 theories

We consider a 3d N = 4 supersymmetric gauge theory with compact gauge group G and

hypermultiplets transforming in the representation R⊕ R̄ where R is a unitary representation

of G.
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Recall that this theory has an R-symmetry SU(2)C ×SU(2)H , where the two factors ro-

tate vectormultiplet and hypermultiplet scalars, respectively. (Alternatively, these are metric

isometries that rotate the CP1’s of complex structures on the Coulomb and Higgs branches.)

The theory also has flavor symmetry GC ×GH , acting via tri-Hamiltonian isometries of the

Coulomb and Higgs branches. Explicitly, GC is the Pontryagin dual

GC = Hom(π1(G), U(1)) ≈ U(1)# U(1) factors in G . (2.1)

In the infrared, GC may be enhanced to a nonabelian group. This Higgs-branch symmetry

GH is the group of unitary symmetries of R acting independently of G; it fits into the exact

sequence

G→ U(R)→ GH → 1 . (2.2)

Momentarily, we will fix a choice of complex structures on the Coulomb and Higgs

branches, left invariant by a U(1)C × U(1)H subgroup of the R-symmetry. All choices are

equivalent. In the fixed complex structures, we denote the holomorphic hypermultiplet scalars

as (X,Y ) ∈ R⊕R̄, with U(1)H charges (+1
2 ,+

1
2); the vectormultiplet scalars split into a holo-

morphic field ϕ ∈ gC of U(1)C charge +1, and a real σ ∈ g that enters the construction of

holomorphic monopole operators.

The Higgs branch can be described either as a hyperkähler quotient or an algebraic

symplectic quotient

MH = (R⊕ R̄)///G = {µR = µC = 0}/G = {µC = 0}/GC , (2.3)

where µR, µC are the real and complex moment maps for the action of G on the representation

R⊕ R̄. The moment maps are given by

µR = X̄TX − Y T Ȳ µC = Y TX (2.4)

where T are the generators of G. The Coulomb branch was constructed in full generality in

[1–3]. It takes the form of a holomorphic Lagrangian fibration

MC −→ tC/W , (2.5)

where the base is parameterized by G-invariant polynomials in ϕ, and generic fibers are

‘dual complex tori’ T∨C ' (C∗)rank G. The fibers are parameterized by expectation values of

monopole operators, which we will return to later.

The theory admits canonical mass and FI deformations that preserve 3d N = 4 super-

symmetry. Masses are constant, background expectation values of vectormultiplet scalars
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associated to the GH flavor symmetry, and thus take values in the Cartan subalgebra of GH ,

mR ∈ t(H) , mC ∈ t
(H)
C . (2.6)

By combining the masses with the dynamical vectormultiplet scalars, we can lift them to

elements in the Cartan of the full U(R) symmetry of the hypermultiplets, schematically

denoted σ+mR and ϕ+mC. One can think of mC as generating an infinitesimal complexified

u(1)m action on the Higgs branch, and ϕ+mC as generating a corresponding u(1)ϕ+m action

on the hypermultiplets. We shall mostly be interested in complex masses, which deform the

ring of holomorphic functions on the Coulomb branch (the Coulomb-branch chiral ring).

Similarly, FI parameters are constant, background values of twisted vectormultiplet scalars

associated to the GC Coulomb-branch symmetry,

tR ∈ t(C) , tC ∈ t
(C)
C . (2.7)

These transform as a triplet of SU(2)H rather than the usual SU(2)C . We shall mostly be

interested in real FI parameters tR, which resolve the Higgs branch,

MH = {µR + tR = 0 = µC}/G . (2.8)

Algebraically, we also have

MH ' {µC = 0}stab/GC , (2.9)

where the stable locus is a certain open subset of {µC = 0} determined by the choice of tR.

We make a major simplifying assumption: that for generic mC and tR the theory is fully

massive, with a finite set {ν} of isolated massive vacua. Geometrically, this means that the

Higgs branch is fully resolved and the u(1)m action on the Higgs branch has isolated fixed

points; or equivalently that the Coulomb branch is fully deformed to a smooth space on which

the u(1)t action has isolated fixed points. In either description, the fixed points correspond

to the massive vacua {ν}.

2.2 The half-BPS zoo

We are interested in the interactions of half-BPS monopole operators, vortices, and boundary

conditions in a 3d N = 4 theory. Each of these objects preserves a different half-dimensional

subalgebra of the 3d N = 4 algebra, which we summarize in Table 1.

Here and throughout the paper the Euclidean spacetime coordinates are denoted x1, x2, x3,

or

z = x1 + ix2 , z̄ = x1 − ix2 , t = x3 . (2.10)
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The 3d supercharges are denoted Qaȧα , where α is an SU(2)E Lorentz index, and a, ȧ are

SU(2)H , SU(2)C R-symmetry indices. There is a distinguished U(1)E ⊂ SU(2)E that pre-

serves the complex z-plane in spacetime, rotating z with charge one. Similarly, there are

distinguished U(1)H × U(1)C ⊂ SU(2)H × SU(2)C subgroups of the R-symmetry that pre-

serve a fixed choice of complex structures on the Higgs and Coulomb branches. We index

the supercharges so that they transform with definite charge under U(1)E ×U(1)H ×U(1)C ,

namely

Q11̇
− Q12̇

− Q21̇
− Q22̇

− Q11̇
+ Q12̇

+ Q21̇
+ Q22̇

+

U(1)E − − − − + + + +

U(1)H + + − − + + − −
U(1)C + − + − + − + −

(2.11)

where +,− denote charges +1
2 , −1

2 . The superalgebra then takes the form

{Qaȧα , Qbḃβ } = −2εabεȧḃσµαβPµ + 2εαβ(εabZ ȧḃ + εȧḃZab) , (2.12)

where σαβ are the standard Pauli matrices, and the central charges act as infinitesimal gauge

or flavor transformations with parameters

Z11 = (Z22)† ∼ tC , Z12 ∼ itR ; Z 1̇1̇ = (Z 2̇2̇)† ∼ ϕ+mC , Z 1̇2̇ ∼ i(σ +mR) . (2.13)

We can partially align the half-BPS subalgebras preserved by various objects by requiring

that the subalgebras all have a common U(1)H ×U(1)C R-symmetry. This fixes the algebras

to the form in Table 1. Although we are mainly interested in Coulomb-branch chiral ring

operators, vortices, and N = (2, 2) boundary conditions, it is instructive to include a few

other half-BPS objects as well.

Q11̇
− Q12̇

− Q21̇
− Q22̇

− Q11̇
+ Q12̇

+ Q21̇
+ Q22̇

+

3d N = 4 SUSY vacua • • • • • • • •
2d N = (2, 2) b.c. filling z-plane • • • •
particles & Wilson lines along t • • • •
vortices & vortex lines along t • • • •
MH chiral ring operators • • • •
MC chiral ring operators • • • •

Table 1. Supercharges preserved by various half-BPS boundary conditions, line operators, and local

operators in 3d N = 4 theory.

Some brief comments are in order:

– 12 –



• There exist half-BPS boundary conditions preserving any 2d N = (p, q) subalgebra with

p+ q = 4. The 2d N = (2, 2) b.c. shown here are rather special in that this subalgebra

is preserved under 3d mirror symmetry, which swaps dotted and undotted R-symmetry

indices on the Q’s. Such b.c. were studied in [4].

• The half-BPS particles come in two varieties, related by mirror symmetry. In a gauge

theory they can be identified as ordinary “electric” particles and vortices. Each preserve

a particular 1d N = 4 subalgebra. Similarly, a 3d N = 4 theory has two types of half-

BPS line operators (Wilson lines and vortex lines), discussed in [59], which preserve the

same 1d N = 4 subalgebras as the BPS particles.

• There are two half-BPS chiral rings. They only contain bosonic operators, whose ex-

pectation values are holomorphic functions on either the Higgs or Coulomb branches.

Two supercharges (Q11̇
− and Q11̇

+ ) are preserved by both types of operators; these are

the supercharges that would define the chiral ring of a 3d N = 2 theory, which has no

distinction between Higgs and Coulomb branches.

Most importantly for us, there is a pair of supercharges Q11̇
− and Q21̇

+ preserved by all

three of the objects we want to study: boundary conditions, vortices, and Coulomb-branch

chiral ring operators. We will denote these as

Q := Q11̇
− , Q′ := Q21̇

+ (2.14)

in the remainder of the paper. Their sum is the twisted Rozansky-Witten supercharge Q̃RW =

Q+Q′. They do not quite commute with each other, but rather have

(Q̃RW )2 = 2{Q,Q′} = 4Z 1̇1̇ ∼ ϕ+mC· (2.15)

In other words, their commutator in a gauge theory is a combined gauge and flavor rotation,

with parameters ϕ, mC. This is good enough for many purposes. In particular, if we consider

a path integral with operator insertions and boundary conditions all of which preserve Q and

Q′ (and thus are invariant under ϕ+mC), the path integral will localize to field configurations

that are invariant under both Q and Q′.2

2The localization can be understood as a two-step procedure. First, one localizes with respect to the twisted

RW supercharge Q̃RW . Its fixed locus is invariant under ϕ+mC, and thus has an action of Q. Then one can

localize with respect to Q.
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2.3 The quarter-BPS equations

The field configurations in a 3d N = 4 gauge theory preserved by both Q and Q′ from (2.14)

satisfy an interesting set of equations. They can easily be derived by considering the action

of Q and Q′ on the various fields of the 3d theory; however, a more conceptual derivation

follows from the quantum-mechanics perspective of Section 2.4.

To describe the equations, we introduce the complexified covariant derivatives3

2Dz = D1 − iD2 ,

2Dz̄ = D1 + iD2 ,

Dt = Dt − (σ +mR) .

(2.16)

The equations state that the chiral scalars in a hypermultiplet are holomorphic in the z-plane

and constant in “time” with respect to the modified Dt derivative

Dz̄X = Dz̄Y = 0 , DtX = DtY = 0 . (2.17)

In addition, the Dz̄ derivative is constant in time, and real and complex moment-map con-

straints are imposed as

[Dt, Dz̄] = 0 ,

4[Dz, Dz̄] + [Dt,D†t ] = µR + tR ,

µC + tC = 0 .

(2.18)

Finally, the vectormultiplet scalars obey

[Dz, ϕ] = [Dz̄, ϕ] = [Dt, ϕ] = 0 , [σ, ϕ] = 0 , [ϕ,ϕ†] = 0 , (2.19)

and

(ϕ+mC) ·X = 0 , (ϕ+mC) · Y = 0 . (2.20)

As usual, we write (ϕ + mC) · Φ or (σ + mR) · Φ to mean the action of a combined gauge

and flavor transformation on Φ in the appropriate representation — say R for Φ = X or

R̄ for Φ = Y . Most of the equations in (2.19)–(2.20) can be understood as requiring that

the anticommutator {Q,Q′} ∼ ϕ + mC vanish when acting on any field. The final equation

in (2.19) requires that the complex scalar ϕ lie in a Cartan subalgebra t ⊂ g.

These equations have several specializations, corresponding to the fact that Q and Q′ are

simultaneously preserved by 3d SUSY vacua, vortices, and Coulomb-branch operators (Table

1).

3Throughout the paper we will assume the gauge field Aµ (and the scalar σ) to be Hermitian, so D = d−iA
and F = i[D,D].
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2.3.1 Supersymmetric vacua

The classical supersymmetric vacua of the 3d N = 4 gauge theory correspond to solutions of

the BPS equations that are independent of t and z, z̄, and have vanishing gauge field:

µC + tC = 0 µR + tR = 0

[ϕ,ϕ†] = 0 [ϕ, σ] = 0

(ϕ+mC) ·X = 0 (σ +mR) ·X = 0

(ϕ+mC) · Y = 0 (σ +mR) · Y = 0

(2.21)

We are interested in situations where mR and tC vanish, but mC and tR are generic. We

require that for generic mC and tR these equations have a finite number of isolated solutions

{ν}, i.e. that the theory is fully massive. As mentioned at the end of Section 2.1, these

solutions can be identified as fixed points on the Higgs branch of a complexified C∗ flavor

symmetry generated by mC.

2.3.2 Vortices

Next, let us consider time-independent solutions of the BPS equations. In temporal gauge

At = 0, equations (2.18) and (2.17) imply that

Dz̄X = Dz̄Y = 0 ,

µC + tC = 0 ,

4[Dz, Dz̄] = µR + tR .

(2.22)

These are generalized vortex equations, which describe half-BPS vortex excitations of the 3d

N = 4 gauge theory. They generally only have solutions when tC = 0. Quantizing the moduli

space of solutions to these equations is the main goal of Section 3.

The generalized vortex equations should be supplemented by the additional constraints

Dz̄ϕ = Dzϕ = Dz̄σ = Dzσ = 0 and

(ϕ+mC) ·X = 0 (σ +mR) ·X = 0

(ϕ+mC) · Y = 0 (σ +mR) · Y = 0
(2.23)

from (2.17) and (2.20). When mR = mC = 0, we can simply set ϕ = σ = 0 to satisfy these

constraints. In this case, the time-independent BPS equations are fully equivalent to (2.22).

As mC is turned on, the additional constraints (2.23) have the effect of restricting the moduli

space of solutions of (2.22) to fixed points of a combined gauge and flavor rotation. This will

lead to the use of equivariant cohomology when quantizing the moduli space of vortices.
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2.3.3 Monopoles

Finally, if we turn off the FI parameters tR = tC = 0 and set the hypermultiplets to zero,

X = Y = 0, equations (2.18) become the monopole equations

F = ∗Dσ . (2.24)

Together with Dϕ = [σ, ϕ] = [ϕ,ϕ†] = 0 from (2.19), these describe half-BPS monopole

solutions of the 3d N = 4 gauge theory.

We recall that near the center of a monopole the field σ has a profile

σ =
A

2r
, (2.25)

where r is Euclidean distance from the center and A ∈ Λcochar = Hom(U(1), G) ⊂ g is an

element of the cocharacter lattice of G that specifies the magnetic charge. (Charges A,A′

related by an element of the Weyl group are equivalent.) In the quantum theory, one defines

a corresponding monopole operator VA by requiring that fields have a singularity of the form

(2.25) near a given point. The Coulomb-branch chiral ring C[MC ] is then generated by such

monopole operator and by guage-invariant polynomials in ϕ.

Altogether, the full set of BPS equations can be understood intuitively as describing

vortices in the z-plane that propagate in time t, and that can be created or destroyed at the

location of monopole operators. Of the four supercharges preserved by BPS vortices, only

two are preserved by monopoles.

2.4 3d N = 4 as 1d N = 4 quantum mechanics

When describing the interactions of vortices, monopoles, and boundary conditions, an ex-

tremely useful perspective is to view the 3d N = 4 theory as a one-dimensional N = 4

quantum mechanics, whose supersymmetry algebra involves the same four supercharges pre-

served by vortices in Table 1.4 Then vortices can be understood as supersymmetric ground

states in the quantum mechanics. Similarly, boundary conditions that fill the z-plane become

half-BPS b.c. in the quantum mechanics (preserving Q and Q′); and monopoles become

half-BPS operators (also preserving Q and Q′).

We can give a rather explicit description of the N = 4 quantum mechanics — though

the details will not be relevant for most of this paper. We use the language of 2d N = (2, 2)

4This sort of gauged N = 4 quantum mechanics played a prominent role in [60]. Many of the basic results

there are directly applicable here.
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superfields and superspace, reduced to one dimension. The quantum mechanics is a gauge

theory, whose gauge group

G = Hom(Cz, G) (2.26)

is the group of gauge transformations in the z-plane. Its fields are valued in functions (or

sections of various bundles) on the z-plane.

The fields X,Y in a 3d hypermultiplet become chiral fields in the quantum mechanics,

as does the z̄-component of the gauge connection Az̄. A more gauge-covariant way of saying

that is that the covariant derivative Dz̄ should be treated as a chiral field. There is a natural

superpotential

W =

∫
|dz|2 Y Dz̄X (2.27)

that contains the z, z̄ kinetic terms for X and Y . The 1d vectormultiplet contains all the 3d

scalars ϕ, σ as well as the gauge field At; they fit in the the vector superfield

V ∼ θ+θ̄−ϕ+ θ−θ̄+ϕ† + θ+θ̄+(At + iσ) + θ−θ̄−(At − iσ) + ...+ θ4D . (2.28)

The field ϕ is a twisted chiral, the leading component of the twisted-chiral superfield

Σ = D+D−V ∼ ϕ+ θ+λ̄+ + θ̄−λ+− +θ+θ̄−(D + i[Dt,D†t ]) + ... . (2.29)

The natural Kähler potential then takes the form

K =

∫
|dz|2

(
Tr ΣΣ† +

∣∣eV2 X∣∣2 +
∣∣e−V2 Y ∣∣2 + Tr

∣∣eV2 Dz̄e
−V

2

∣∣2) . (2.30)

where e
V
2 X schematically denotes the exponentiated action of V ∈ g on X, and similarly for

Y .

To include masses mR,mC, we may introduce a background vectormultiplet for the Higgs-

branch flavor symmetry. The complex masses mC become background values of twisted-

chiral fields. Similarly, a real FI parameter tR enters in a standard twisted superpotential

W̃ =
∫
|dz|2〈tR,Σ〉.

The vortex equations of Section 2.3.2 are easily derived as equations for supersymmetric

vacua in this N = 4 quantum mechanics. Namely, Dz̄X = Dz̄Y = µC = 0 arise as F-term

equations for the superpotential (2.27), the real equation [Dz, Dz̄] = µR + tR is the D-term,

and the supplemental constraints Dz̄ϕ = (ϕ + mC) · X = (ϕ + mC) · Y = 0 (etc.) arise as

twisted-mass terms from the Kähler potential.

The quarter-BPS equations for Q and Q′ in Section 2.3 can be derived from the N = 4

quantum mechanics in a similar way. In particular, equations (2.17)–(2.18) are a combination
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of F-terms and Morse flow

dW = 0 , DtΦ = gΦΦ′ δh

δΦ′
(2.31)

with respect to a Morse function

h =

∫
|dz|2〈σ, µR(Dz̄, X, Y )〉 =

∫
|dz|2〈σ, µR(X,Y )− 4[Dz, Dz̄]〉 . (2.32)

Here µR(Dz̄, X, Y ) denotes the moment map for gauge group (2.26) of the quantum mechanics,

which contains a contribution from the chiral field Dz̄ and its conjugate.

Such Morse flows may be more familiar in N = 2 quantum mechanics, where instantons

that preserve a single supercharge appear as Morse flow for a single real function ĥ [61]. In

the present case, our N = 4 quantum mechanics has many N = 2 subalgebras embedded

inside. Each subalgebra is labelled by a phase ζ, and contains the two supercharges Rζ =

ζ−
1
2Q11̇
− + ζ

1
2Q21̇

+ = ζ−
1
2Q+ ζ

1
2Q′ and R̃ζ = ζ−

1
2Q12̇
− − ζ

1
2Q22̇

+ , which obey {Rζ , R̃ζ} = −2iDt
for any ζ. The instantons that preserve Rζ take the form of Morse flow with respect to

ĥζ = h+ Re(W/ζ) (2.33)

The instantons that preserve both Q and Q′ individually must be Morse flows for (2.33) for

all ζ, and therefore obey (2.31).

2.5 Ω-background

We would also like introduce an Ω-deformation associated to the vector field

V = x1∂2 − x2∂1 = i
2(z̄∂z̄ − z∂z) (2.34)

that rotates the z-plane, with a complex parameter ε. There are many equivalent ways to

understand this deformation. A standard approach (analogous to the Ω-background in 4d

N = 2 theory [28], see Section 1.2.2) is to work in the twisted-Rozansky-Witten topological

twist, and to deform the supercharge and the Lagrangian in such a way that (Q̃RW )2 ∼
ϕ+mC− iεLV . Alternatively, one may view the Ω-background as a twisted-mass deformation

of the 1d N = 4 quantum mechanics of Section 2.4. This latter approach, which we describe

here, makes several important properties manifest.

The four supercharges of the quantum mechanics (the “vortex” row of Table 1) are all left

invariant by a simultaneous U(1)E rotation in the z-plane and a U(1)H R-symmetry rotation.

Let us call this diagonal subgroup

U(1)ε ⊂ U(1)E × U(1)H . (2.35)

– 18 –



It is an ordinary flavor symmetry of the 1d quantum mechanics, and thus we can introduce

a background vectormultiplet for it, with a nonzero complex-scalar field ε (analogous to ϕ in

(2.29)). Thus ε becomes a twisted-mass deformation in the quantum mechanics.

Formulated this way, it is clear that the Ω-background preserves all four supercharges

of the quantum mechanics.5 Moreover, it is easy to see how it will deform the quarter-BPS

equations of Section 2.3: any appearance of ϕ+mC should be replaced by

ϕ+mC → ϕ+mC − iεLV + ε rH , (2.36)

representing a simultaneous G×GH×U(1)ε transformation with parameters (ϕ,mC, ε). (Here

‘rH ’ is the generator of U(1)H .)

Notably, this means that the nondynamical constraints (2.20) in the quarter-BPS equa-

tions, or (2.23) in the vortex equations, are deformed to(
ϕ+mC + ε

(
zDz + 1

2

))
·X = 0 ,

(
ϕ+mC + ε

(
zDz + 1

2

))
· Y = 0 . (2.37)

We have used here the fact that Dz̄X = Dz̄Y = 0 to replace LV with zDz. Since X and

Y transform in conjugate representations of G and GH , the parameters ϕ and mC (viewed

as actual complex numbers) will typically appear with opposite signs in these two equations.

On the other hand, X and Y both have R-charge +1
2 under U(1)H , leading to the extra + ε

2

term in each equation.

3 Hilbert space

In this section, we analyze in some detail the Hilbert space Hν of a 4d N = 4 theory in the

Ω-background, with a fixed massive vacuum ν at spatial infinity.

From the perspective of N = 4 supersymmetric quantum mechanics (Section 2.4), Hν is

a space of supersymmetric ground states. By standard arguments [61], we expect that Hν
should be realized as the cohomology

Hν = H∗(Mν ,C) (3.1)

of a classical moduli space Mν . The moduli space Mν is the space of time-independent

solutions to the BPS equations of Section 2.3.2. As discussed there, it is a particular gener-

alization of a vortex moduli space. We will describe some general features of Mν in Section

3.1, and related it to a space of holomorphic maps to the Higgs-branch stack in Section 3.2.

5This conclusion was also reached from a different viewpoint in [62, Sec. 5], which constructed the Ω-

background by coupling to supergravity.
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In the presence of complex masses and the Ω-background, H∗(Mν) should be replaced

by an equivariant cohomology group

Hν = H∗Gν (Mν ,C) , (3.2)

where Gν is an appropriate group of symmetries acting onMν . We will only consider theories

where the action of Gν has isolated fixed points. Then, by virtue of the localization theorem

in equivariant cohomology [63], Hν acquires a distinguished basis labelled by the fixed points.

We will describe this abstractly in Section 3.3. Then, in Sections 3.4–3.5, we will analyze

Mν and Hν very explicitly for families of abelian and non-abelian theories, including SQED,

SQCD, and triangular-quiver gauge theories.

Here and throughout the rest of the paper we set tC = 0, to allow nontrivial vortex

configurations. We leave tR generic, so that the Higgs branch is fully resolved. We also

usually set mR = 0 for simplicity, as this parameter does not affect the BPS sector that we

are considering.

3.1 General structure

We begin by studying time-independent solutions to the BPS equations in the absence of

Ω-background (ε = 0) and with mass parameters set to zero (mC = 0). We can then set

ϕ = σ = 0, and reduce the BPS equations to the generalized vortex equations given in (2.22).

Suppose ν is a vacuum that survives mass deformations, and becomes fully massive in the

presence of generic mC. This can be thought of as a point on the resolved Higgs branch where

the gauge symmetry is fully broken, but a maximal torus TH ⊂ GH of the flavor symmetry

and the R-symmetry U(1)H are preserved. Let G · ν denote the G-orbit of ν in the space

R⊕ R̄ of hypermultiplet scalars.

We are interested in the moduli space of solutions to the time-independent BPS equations

that tend to the vacuum ν at spatial infinity,

Mν =


Dz̄X = Dz̄Y = 0

µC = 0

[Dz,Dz̄] = µR + tR

with X,Y
|z|→∞−→ G · ν

 /G , (3.3)

where G is the infinite-dimensional group of gauge transformations on R2 that are constant

at infinity. The last condition ensures that gauge transformations preserve the orbit G · ν at

infinity. We call this the moduli space of ‘generalized vortices’.

If we compactify the z-plane to CP1, a point in this moduli space may be equivalently

described by the following data:
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1. A G-bundle on CP1, trivialized near ∞.

2. Holomorphic sections (X,Y ) of an associated bundle in the representation R⊕R̄ tending

to ν at infinity and satisfying µC = 0 and [Dz,Dz̄] = µR + tR.

The moduli space will split into components labelled by a ‘vortex number’ n ∈ π1(G).

This labels topological type of the G-bundle on CP1,

n =
1

2π

∫
CP1

Tr (F ) (3.4)

This number can also be defined as the winding number of a gauge transformation g : S1 → G

on the equator of CP1 that relates trivializations of the bundle on the northern and southern

hemispheres. This makes it clear that n ∈ π1(G). We will mainly be interested in cases where

π1(G) is a free abelian group, namely, G = U(N) with π1(G) ' Z and products thereof. It is

only in such cases that solutions of (3.3) are ‘vortices’ in the traditional sense. Nevertheless,

we expect our construction to valid more generally and continue to use the term ‘vortex

number’ for n ∈ π1(G).

The moduli space of solutions splits into disconnected components

Mν =
⋃
n

Mn
ν , (3.5)

where labelled by the vortex number n. In Section 3.2, we will see that not all vortex numbers

are realized: whether or not the component Mn
ν is empty depends on the precise choice of

vacuum ν.

The componentsMn
ν of the moduli space are Kähler manifolds with rather large abelian

symmetry groups

Gν = TH × U(1)ε . (3.6)

Here TH is the maximal torus of the Higgs-branch flavor symmetry preserved by the vacuum ν;

and U(1)ε is the combination (2.35) of Higgs-branch R-symmetry and rotation in the z-plane

that acts as a flavor symmetry of N = 4 quantum-mechanics. We will work equivariantly

with respect to TH and U(1)ε when turning on mC and ε, respectively.

The assumption that ν is an isolated fixed point of TH on a smooth Higgs branch ensures

thatMν has isolated fixed points under the combined symmetry TH×U(1)ε. We will describe

them in Section 3.3. Similarly, the fact that G symmetry is fully broken at the vacuum ν

ensures that G is fully broken in a neighborhood of each fixed point on Mν , and therefore

that a neighborhood of each fixed point is smooth. More generally, we expect that the G
action in (3.3) is free and that the whole spaceMν is smooth, but we will not prove this here.
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3.2 Algebraic description

We expect the moduli space of generalized vortices to have a complex-algebraic description as

well. This is obtained by dropping the real moment-map equation and dividing by complex

gauge transformations,

Mν '
{
Dz̄X = Dz̄Y = 0 ,

µC = 0
with X,Y

|z|→∞−→ GC · ν
}
/ GC . (3.7)

Usually, a stability condition must be imposed in the algebraic quotient. However, any

solution that tends to a massive vacuum at infinity is automatically stable, so no further

conditions are necessary in (3.7). This construction makes manifest that the moduli space

Mν is Kähler. The equivalence of descriptions (3.3) and (3.7) is a version of the Hitchin-

Kobayashi correspondence for the generalized vortex equations, which we will not attempt to

prove here. (Algebraically, (3.7) could be taken as a definition of Mν .)

From the algebraic point of view, a point in Mν is specified by

1. A choice of GC-bundle E on CP1, trivialized near ∞.

2. Holomorphic sections X,Y of an associated bundle in the representation R ⊕ R̄, satis-

fying µC = 0 and sitting inside the orbit GC · ν at infinity.

Once we allow for complex gauge transformations, we may pass to a ‘holomorphic frame’

where Dz̄ = 2∂z̄. The holomorphic sections can then be described concretely as polynomial

matrices X(z), Y (z) in the affine coordinate z. We must still quotient by holomorphic gauge

transformations that preserve the choice of gauge. These are polynomial valued group ele-

ments g(z). The resulting description of the moduli space is familiar in the physics literature,

for example in the work of Morrison and Plesser [16] and in the ‘moduli matrix’ construction

of [64, 65].

Mathematically, we have described what are based maps from CP1 into the stack [MH ] :=

[µ−1
C (0)/GC]. Recall from (2.9) that that the actual Higgs branch MH = (µ−1

C (0))stab/GC

involves a stability condition that depends on the real FI parameter tR. The stability condition

prevents certain combinations of the hypermultiplet fields from vanishing. Provided R is a

faithful representation of G, maps from CP1 into the stack [MH ] only differ from ordinary

holomorphic maps into the Higgs branch in that they may violate the stability condition at

various points z ∈ CP1. Since ∞ ∈ CP1 must map to the vacuum ν ∈ MH , which is a point

on the actual Higgs branch, holomorphicity ensures that the points z ∈ CP1 where stability

is violated are isolated and finite.
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Thus we can simply say that

Mν ' {f : CP1 → [MH ] such that f(∞) = ν .} (3.8)

In this picture the decomposition 3.1 comes from looking at the fibers of the map

Mν → BunGC(CP1)→ π0(BunGC(CP1)) ∼= π1(GC) (3.9)

and the vortex number is often called the degree because it constrains the degrees of the

polynomial matrices X(z), Y (z).

3.3 Fixed points and the Hilbert space

As discussed around (3.1), the perspective of supersymmetric quantum mechanics suggests

that the Hilbert space Hν should be identified with the de Rham cohomology of the classical

moduli space Mν of generalized vortices. Care must be taken to properly interpret this

cohomology, because Mν is noncompact.6 Such subtleties disappear, however, once complex

masses mC and the Ω-deformation parameter ε are turned on. Physically, their effect is to

make the quantum mechanics fully massive. Both mC and ε play the role of twisted masses

(scalar fields in background vectormultiplets) associated to the symmetries (3.6) of the space

Mν . Namely, mC ∈ t
(H)
C generates an infinitesimal TH rotation and ε ∈ C generates a

U(1)ε rotation. The resulting massive vacua of the supersymmetric quantum mechanics are

identified as the fixed points of these symmetries on Mν .

Mathematically, in the presence of twisted masses mC and ε the Hilbert space is identified

as the equivariant cohomology of the moduli space of generalized vortices,

Hν = H∗TH×U(1)ε
(Mν) . (3.10)

The equivariant cohomology has a distinguished basis, whose elements |p〉 correspond to

cohomology classes supported on each fixed point p of TH × U(1)ε.
7 Thus

Hν =
⊕

fixed p

C |p〉 . (3.11)

6Supersymmetric quantum mechanics suggests that the Hilbert space actually consists of L2 harmonic

forms on Mν .
7Ordinarily in mathematics (cf. [63]) the equivariant cohomology of a point H∗G(p) is an infinite-dimensional

space, generated by invariant polynomials in the Lie algebra gC. In our case, this would mean polynomials in

mC and ε. However, because mC and ε are fixed parameters rather than dynamical fields, such polynomials

are just complex numbers and do not correspond to new states. For example, mC|p〉 is just a rescaling of the

state |p〉. In contrast, had we gauged the TH symmetry (say), mC would be promoted to a dynamical field and

we would have found the usual infinity of states.
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There is a slight ambiguity in the normalization of fixed-point states. One natural option

is to take |p〉 to denote the Poincaré dual of the fundamental class of the fixed point p ∈Mν ,

i.e. an equivariant delta-function δp supported at p. In terms of the inclusion map i : {p} ↪→
Mν , one would say that |p〉 is the push-forward of the fundamental class of the point,

|p〉 = δp = i∗(11p) . (3.12a)

Alternatively, we could normalize |p〉 by the Euler class of the normal bundle to p in Mν ,

|p〉 =
1

e(Np)
δp =

1

ωp(mC, ε)
δp , (3.12b)

where ωp(mC, ε) denotes the equivariant weight of the normal bundle. This normalization is

dual to (3.12a), in the sense that the pull-back i∗(|p〉) = 11p is the fundamental class of the

point. Notice that the combined operation i∗i∗11p = e(Np)11p is multiplication by the Euler

class.

From a physical perspective, neither normalization is especially preferred, but a choice

must be made. Almost exclusively throughout this paper we will use (3.12b).

The Hilbert space (3.11) has a natural inner product coming from the supersymmetric

quantum mechanics: the overlap of states 〈p′|p〉 is given by computing the path integral of the

supersymmetric quantum mechanics with a state |p〉 at t → −∞ and a state 〈p′| at t → ∞.

In terms of equivariant cohomology, 〈p′|p〉 is given by the equivariant integral
∫
Mν

of the

product of classes representing 〈p′| and |p〉. If we use the convention (3.12b) for both 〈p′| and

|p〉, then the inner product is

〈p′|p〉 =
δp,p′

ωp(mC, ε)
, (3.13)

where as before ωp = e(Np) is the equivariant weight of the normal bundle to p under the

combined TH × U(1)ε action. 8

In the remainder of this section, we give some explicit descriptions of Mν and its fixed

points for abelian and some basic nonabelian theories.

3.4 Example: SQED

Let us consider G = U(1) with N ≥ 1 hypermultiplets (Xi, Yi) of charges (+1,−1) and

introduce a negative real FI parameter tR < 0. The Higgs branch is a hyper-Kähler quotient

given by imposing the moment map constraints

µC :=
∑
i

XiYi = 0, µR :=
∑
i

|Xi|2 − |Yi|2 = −tR (3.14)

8Notice that by describing the space of ground states as the cohomology of a supercharge, we lost track of

unitary. Thus our H is not a Hilbert space in the formal sense, but we will continue using this terminology.
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and dividing by the U(1) gauge symmetry. This gives a description of the Higgs branch as the

cotangent bundle MH = T ∗CPN−1 with the compact base parameterized by the coordinates

Xi at Yi = 0. Algebraically, we can impose the complex moment map constraint µC = 0

together with the stability condition X 6= 0, and divide by GC = GL(1,C) = C∗.
The Higgs-branch flavor symmetry is PSU(N), and we choose a maximal torus TH =[∏
i U(1)i

]
/U(1) such that (Xi, Yi) have charges (+1,−1) under the U(1)i, and zero under

all other U(1)j . Correspondingly, we introduce complex masses (m1, ...,mN ) ∈ t
(H)
C . The

vacuum equations require the hypermultiplets to be invariant under a simultaneous gauge

and flavor transformation,

(ϕ+mi)Xi = 0 − (ϕ+mi)Yi = 0 . (3.15)

When tR < 0 and the masses are generic, there are N massive vacua

νj : Xi =
√
−tRδij Yi = 0 ϕ = −mj , (3.16)

which are the isolated fixed points of TH . In the algebraic description of the Higgs branch,

they correspond to the coordinate hyperplanes in the base.

Let us consider vortices that tend to a vacuum, say ν1, at spatial infinity. Following

the algebraic description of Section 3.2, we first choose a GL(1,C) bundle on CP1, which is

classified by a vortex number n ∈ π1(U(1)) ' Z. The fields Xi, Yi become sections of an

associated bundle in the representation R⊕ R̄, namely O(n)N ⊕O(−n)N , and therefore Xi(z)

and Yi(z) are polynomials of degrees at most n and −n, respectively. The moduli space Mn
ν1

is the space of such polynomials satisfying the complex moment map constraint
∑

iXiYi = 0

and hitting the vacuum ν1 as z →∞. There are several options:

• If n > 0 then only the Xi(z) can be nonzero. Hitting the vacuum ν1 requires the

leading coefficients of Xi(z) with i 6= 1 to vanish while the leading coefficient of X1(z)

is nonvanishing. A constant complex gauge transformation sets

X1(z) = zn +
n−1∑
l=0

x1,lz
l , Xi(z) =

n−1∑
l=0

xi,lz
l (i 6= 1) . (3.17)

The coefficients xi,l are unconstrained and parameterize Mn
ν1
' CNn.

• If n = 0, both Xi and Yi are sections of O(0), and hence may be nonzero constants.

However, the requirement that they hit the vacuum ν1 at infinity sets them equal to

their vacuum values Xi ∼ δi1, Yi = 0. Thus M0
ν1

is a point.
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• If n < 0 then only the Yi(z) can be nonzero. This is incompatible with the vacuum ν1,

so Mn
ν1

is empty.

If instead tR > 0, the vacuum ν1 would have Yi ∼ δi1 and Xi = 0, and the component Mn
ν1

would be empty for positive n. In general,

Mn
νj nonempty ⇔ tR · n ≤ 0 . (3.18)

In order to determine the Hilbert space H in the presence of complex masses and the

Ω-background, we must find the fixed points of the TH × U(1)ε action on Mn
ν1

. We analyze

this action by considering combined G × TH × U(1)ε transformations of the fields Xi(z),

and compensating for TH × U(1)ε rotations with gauge transformations. An infinitesimal

transformation with parameters ϕ,m, ε (respectively) sends

Xi(z) 7→ (ϕ+mi + ε
2 + εz∂z)Xi(z) . (3.19)

For n ≥ 0, there is a unique fixed point X1(z) = zn and Xi(z) = 0 for i 6= 1, with compensating

gauge transformation ϕ = −m1 − (n + 1
2)ε. The fixed point is therefore just the origin of the

space Mn
ν1

= CNn. Denoting the corresponding state in the quantum mechanics as |n〉, we

therefore find that

H =
⊕
n≥0

C |n〉 . (3.20)

The tangent space to the origin in Mn
ν1

is parameterized by the remaining coefficients

xi,l in (3.17), which transform as

xi,l 7→ (ϕ+mi + (l + 1
2)ε)xi,l

= (mi −m1 + (l − n)ε)xi,l
(3.21)

under an infinitesimal TH×U(1)ε rotation. Therefore, the inner product on the Hilbert space

is given by

〈n′|n〉 = δn′,n

N∏
i=1

n−1∏
l=0

1

mi −m1 + (l − n)ε
. (3.22)

It is convenient to introduce a characteristic polynomial for the flavor symmetry, P (x) =∏N
i=1(x+mi), and write this as

〈n′|n〉 = δn′,n

n−1∏
l=0

1

P (ϕ+ (l + 1
2)ε)

, (3.23)

with ϕ = −m1 − (n + 1
2)ε given by its value at the fixed point.
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3.5 Nonabelian theories

The analysis of non-abelian gauge theories is more intricate as there is a rich space of poly-

nomial gauge transformations preserving holomorphic gauge.

A straightforward approach is to simply fix this additional freedom completely, as in the

‘moduli matrix’ approach of [64, 65]. Here, the idea is to work on the complex plane C rather

than CP1, so that the GC-bundle can be fully trivialized. The polynomial matrices X(z),

Y (z) are parameterized in such a way that no residual gauge symmetries remain; and as

z → ∞ these matrices are required to approach a fixed, chosen lift of the vacuum ν. In the

case of G = U(K), this leads to a cell decomposition of the vortex moduli space

Mn
ν =

⋃
k

Mn,k
ν , (3.24)

where each cellMn,k
ν is labelled by a cocharacter k = (k1, ..., kN ) ∈ ZK such that n =

∑N
i=1 ki.

We call k the abelianized vortex number. Each cell has a unique fixed point of the TH×U(1)ε

symmetry. We consider U(K) with N hypermultiplets in more detail below. This approach

can also be extended to quiver gauge theories with unitary gauge groups.

An alternative approach proceeds by decomposing Mν as a union of fibers of the map

U :Mν → BunGC(CP1) (3.25)

from (3.9). As we will see the points of BunGC(CP1) and hence the fibers of U are not

necessarily closed so we will get a stratification of Mν .

To be more explicit, we first need to understand a few basic facts about GC-bundles on

CP1. Let TC be a maximal torus of GC, let Λcochar be the lattice of cocharacters of TC, and

let W be the Weyl group of GC. A result of Grothendieck [66] states that any GC-bundle E

on CP1 admits a reduction of structure group to TC and hence the set of isomorphism classes

of GC-bundles on CP1 is in bijection with Λcochar/W . More concretely, a reduction of E to

TC consists of trivializations of E on the two hemispheres such that the gauge transformation

relating them is valued in TC and hence defines an abelianized vortex number k ∈ Λcochar. By

composing k with the embedding TC ⊂ GC one can compute the topological vortex number

n(k) ∈ π1(G).9 For example, if G = U(K), the abelianized vortex number takes values

k = (k1, ..., kK) ∈ ZK and n(k) =
∑N

i=1 ki.

Thus we have a decomposition

Mn
ν =

⋃
[k] ∈ Λcochar/W such that n(k) = n

Mn,[k]
ν , (3.26)

9Alternatively, one may recall that π1(G) is isomorphic to a quotient of the cocharacter and coroot lattices

of G, π1(G) ' Λcochar/Λcoroot. The quotient induces the map k 7→ n(k).
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whereMn,[k]
ν := U−1([k]). As mentioned earlier a point [k] ∈ BunGC(CP1) and hence the fiber

Mn,[k]
ν is only locally closed in general. In particular, each Weyl orbit has a unique dominant

representative and a GC-bundle with abelianized vortex number [k] can deform to a bundle

with abelianized vortex number [k′] if and only if k′ is greater than k in the standard order

on dominant cocharacters.

To understand the fibers Mn,[k]
ν , notice that once we reduce the structure group of a GC

bundle E to TC, the associated bundle in the representation R ⊕ R̄ splits as a direct sum of

line bundles, ⊕
λi

O(〈k, λi〉)⊕O(−〈k, λi〉) , (3.27)

where {λi} are the weights of R with respect to TC, and 〈k, λi〉 ∈ Z is the natural pairing

between k ∈ Hom(C∗, TC) and λi ∈ Hom(TC,C∗). Similar to the abelian case, we now consider

the space of polynomials Xi(z), Yi(z) of degrees ≤ 〈k, λi〉 and ≤ −〈k, λi〉, respectively, such

that

a) the complex moment map vanishes, µC = 0

b) at z =∞, the sections Xi(z), Yi(z) lie in the orbit GC · ν of a vacuum ν.

Quite unlike the abelian case, there typically remains a large group of unbroken gauge

transformations that must still be accounted for. These come from automorphisms of E. If

zk ∈ TC[z, z−1] is the TC-valued gauge transformation on the equator of CP1 coming from the

reduction of structure the gauge transformations are elements of

Pk = GC[z] ∩ zkGC[z−1]z−k , (3.28)

where GC[z] denotes group elements with polynomial entries. These transformations preserve

the degrees of the Xi, Yi polynomials. The fiber Mn,[k]
ν is precisely the space of polynomials

satisfying the conditions above, modulo Pk. Each fiber contains a number of fixed points for

the TH × U(1)ε symmetry, which we will describe more explicitly in examples below.

Either the cell decomposition (3.24) or the decomposition into strata (3.26) can be used

to analyze fixed points and to construct the Hilbert space (3.11). However, we warn readers

that the two are not globally compatible — the cells of (3.24) usually cut across multiple

strata of (3.26).

3.5.1 SQCD via moduli matrix

As an example, we consider G = U(K) with N ≥ K fundamental hypermultiplets (Xa
i, Y

i
a),

where 1 ≤ i ≤ N , 1 ≤ a ≤ K. Introducing a negative FI parameter tR < 0, the Higgs branch
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is a hyper-Kähler quotient describing the cotangent bundle T ∗Gr(K,N). The real moment-

map constraint requires X to have maximal rank; this provides the stability condition in the

algebraic description of the Higgs branch, and we have

MH ' {Y X = 0 , rank(X) = K}/GL(K,C) . (3.29)

The flavor symmetry isGH = PSU(N) and we may introduce complex masses (m1, ...,mN )

valued in a Cartan subalgebra. The classical vacuum equations require that ϕ = diag(ϕ1, ..., ϕK)

is diagonal and that the hypermultiplets are invariant under a combined gauge and flavor

transformation:

(ϕa +mi)X
a
i = 0 (ϕa +mi)Y

i
a = 0 . (3.30)

In order to satisfy both the stability condition and equation (3.30) in the presence of generic

mass parameters, exactly K entries of the matrix X in distinct rows and columns must be

nonzero. The possible choices of nonvanishing entries are labelled by subsets I = {i1, . . . , iK} ⊂
{1, . . . , N} of size K. Therefore, there are

(
N
K

)
distinct massive vacua, of the form

νI : ϕa = −mia Xa
i = δi,ia , Y i

a = 0 . (3.31)

These vacua are the fixed points of a maximal torus TH = U(1)N/U(1) of the flavor symmetry

acting on the Higgs branch.

The connected componentsMn
νI

of the vortex moduli space associated to vacuum νI are

labelled by an integer n ∈ π1(U(K)) = Z. When tR < 0, the only nonempty moduli spaces are

Mn
ν for n ≥ 0. In each component, the vortices are parameterized by the polynomial-valued

matrix X(z), with Y (z) set to zero, modulo gauge transformations. Let us denote the K×K
minor formed from the columns J = {j1, . . . , jk} by XJ(z) = det||Xa

j ||a∈{1,...,K}j∈J . Then we

have the vacuum condition

deg (XJ(z)) =

n if J = I

≤ n− 1 if J 6= I
. (3.32)

Due to Plücker identities, it is only necessary to impose the second condition for minors

involving just one column outside of I.

For simplicity, let us consider the vacuum νI with I = {1, . . . ,K}. Then polynomial

gauge transformations can be used to bring any such matrix into a canonical ‘triangular’

gauge-fixed form with square part

Xa
i(z) =


0 i < a

zka +
∑ka−1

l=0 xai,lz
l i = a∑ki−1

l=0 xai,lz
l a < i ≤ K

(3.33)
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for some non-negative integers (k1, ..., kK) satisfying
∑

a ka = n. The remaining columns with

i = K + 1, . . . , N are fixed by the second condition in (3.32). For example, if K = 2 and

N = 3, the canonical form looks like

X =

(
zk1 + ... azk2−1 + ... ∗

0 zk2 + ... ∗

)
, (3.34)

where ‘...’ indicates lower-order terms. The unconstrained coefficients in the matrix Xa
i(z)

parameterize a cell Mn,k
ν in the vortex moduli space.

Every cell Mn,k
ν has a unique fixed point. To see this, we note that the combined action

of TH × U(1)ε and the maximal torus T ⊂ G of the gauge group sends

Xa
i(z) 7→ (ϕa +mi + (z∂z + 1

2)ε)Xa
i(z) . (3.35)

The origin Xi
a(z) = δi,iaz

ka is the unique fixed point of (3.35), with a compensating gauge

transformation

ϕa = −ma − (ka + 1
2)ε a = 1, . . . ,K . (3.36)

The weights of the tangent space at the fixed point can be computed by observing that small

deformations away from the fixed point are parameterized as

Xa
i(z) =


zka +

∑ka−1
l=0 δxai,lz

l i = a ,∑ki−1
l=0 δxai,lz

l i ∈ {1, . . . ,K} − {a} ,∑ka−1
l=0 δxai,lz

l i ∈ {K + 1, . . . , N} .

(3.37)

This matrix only obeys the vacuum condition to linear order in the small deformations, which

is adequate to describe the tangent space at the fixed point. Now multiplying the weights of

the coordinates in (3.37) we find, after a small calculation, that the equivariant weight of the

tangent space is

ωn,k =
∏
a<b

(−1)ka−kb
ϕa − ϕb + (ka − kb)ε

ϕa − ϕb

K∏
a=1

ka−1∏
l=0

P (ϕa + (l + 1
2)ε)

= (−1)nK
∏
a<b

mb −ma

ϕa − ϕb

K∏
a=1

ka−1∏
l=0

P (ϕa + (l + 1
2)ε) (3.38)

with P (x) =
∏N
i=1(x+mi) and ϕa evaluated as in (3.36).

Now each fixed point contributes a state |n, k〉 to the Hilbert space of the supersymmetric

quantum mechanics, labelled by an integer n ≥ 0 and non-negative integers ka such that
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∑
a ka = n. The component of the Hilbert space with fixed n thus has dimension

(
n+K−1
K−1

)
.

The inner product of states is given by the inverse of the equivariant weight,

〈n, k|n′, k′〉 = δn,n′δk,k′
1

ωn,k
. (3.39)

3.5.2 SQCD via strata

We can reproduce the same result as an example of the more sophisticated approach that we

expect applies more broadly. As explained above, the spaceMn
ν admits a decomposition into

fibers labelled by a reduction of the structure group of the gauge bundle. For G = U(K), this

corresponds to a set of integers (k1, ..., kK) ∈ ZK modulo permutations that satisfy
∑

a ka = n.

We can denote the equivalence class under permutations by [k] and write

Mn
ν =

⋃
[k]

Mn,[k]
ν . (3.40)

In the stratum corresponding to a given [k], the hypermultiplets X,Y are matrices of

polynomials whose entries Xa
i(z) and Y i

a(z) have degrees ≤ ka and ≤ −ka, respectively. In

order for X,Y to lie in the GC-orbit of the vacuum ν at infinity, we must have ka ≥ 0 for all

a. This implies that

Mn
ν nonempty ⇔ n ≥ 0 , (3.41)

and that for each n ≥ 0 there are finitely many nonempty strata Mn,[k]
ν . These strata are

labelled by partitions of n, i.e. by Young diagrams k of size n. (For a general FI parameter

we would have Mn
ν nonempty if and only if tR · n < 0.)

Since deg Y i
a ≤ −ka and ka are nonnegative, we also find that the the Y ’s must be

constant, possibly zero. The condition that Y lies in the GC orbit of ν as z → ∞ then

implies that Y vanishes identically. The complex moment-map constraint Y X = 0 is satisfied

automatically.

As before, we concentrate on the vacuum νI with I = {1, . . . ,K}. The complex orbit

GC · νI consists of matrices X with nonvanishing leading minor XI(z) 6= 0 and Xa
i = 0 for

i > K. Therefore, we find that the stratumMn,[k]
ν is the space of polynomial matrices Xa

i(z)

with degXa
i ≤ ka i ≤ a

degXa
i < ka i > a

and deg (XI(z)) = n , (3.42)

modulo residual gauge transformations. The residual gauge transformations as in (3.28) are

polynomial matrices gab(z) such that deg gab ≤ ka − kb. These are the transformations that

preserve the degrees in (3.42).
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For example, if K = 2, N = 3, and k = (0, 2), we can parametrize the stratum by

matrices of the form

X(z) =

(
a a′ 0

cz2 + dz + e c′z2 + d′z + e′ d′′z + e′′

)
(3.43)

such that ac′ − a′c 6= 0, modulo gauge transformations of the form

g(z) =

(
α 0

βz2 + γz + η δ

)
. (3.44)

The stratum can be covered by two coordinate charts, corresponding to a 6= 0 or a′ 6= 0 in

(3.43). If a 6= 0 then gauge transformations can be fixed by bringing X to a canonical form

X(z) =

(
1 a′ 0

0 z2 + d′z + e′ d′′z + e′′

)
. (3.45a)

On the other hand, if a′ 6= 0 then X can be brought to the form

X(z) =

(
ã 1 0

z2 + d̃z + ẽ 0 d̃′′z + ẽ′′

)
. (3.45b)

Globally, the stratum is the total space of the line bundle O(0)⊕2 ⊕ O(1)⊕2 → CP1, where

[a : a′] are homogeneous coordinates on the base, d′, e′ are sections of O(0), and d′′, e′′ are

sections of O(1).

Let us now reconsider the fixed points and the equivariant weights of their tangent spaces.

This does not require a understanding the global structure of the strata. The combined action

of TH × U(1)ε and T ⊂ G is given in (3.35). First, a fixed point of U(1)ε requires the entries

of X(z) to be monomials. Moreover, in order for X(z) to be a fixed point of TH (modulo the

T ⊂ G action), at most K entries of the leading K ×K block of X can be nonzero, one in

each row and each column. In order to be compatible with the vacuum ν, exactly K such

entries must be nonzero, and must be monomials of maximal degree. Thus, the fixed points

are

Xa
i = δi,iaz

ka , (3.46)

where ia is any permutation of 1, ...,K.

This would suggest that there are K! fixed points per stratum. However, if some of the

abelian vortex numbers are equal (e.g. ka = kb) then residual gauge transformations contain

elements of the Weyl group that identify corresponding fixed points (e.g. swapping ia ↔ ib).

Altogether, the distinct fixed points in Mn,[k]
ν end up in 1-1 correspondence with points in
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the Weyl orbit of k. Taking a union over all strata, we find that the fixed points in Mn
ν

are labelled by all sets of non-negative integers (k1, . . . , kK) such that
∑

a ka = n. Given a

cocharacter k, complex gauge transformations can be used to bring the corresponding fixed

point to a canonical form

|n, k〉 ↔

Xa
i = δaiz

ka i ≤ k ,

Xa
i = 0 i > k ,

Y = 0 . (3.47)

as found previously.

Returning to our previous example with K = 2 and N = 3, the moduli space of vortices

with n = 2 has three fixed points, corresponding to k = (2, 0), (1, 1) and (0, 2). The fixed

points (2, 0) and (0, 2) lie in the stratum M2,[0,2]
ν and are given by the points

(2, 0) : X(z) =

(
0 1 0

z2 0 0

)
, (0, 2) : X(z) =

(
1 0 0

0 z2 0

)
, (3.48)

in the coordinate charts (3.45b) and (3.45a), respectively. The remaining fixed point

(1, 1) : X(z) =

(
z 0 0

0 z 0

)
(3.49)

lies in the stratum M2,[1,1]
ν .

Computation of the corresponding equivariant weights is performed in three steps:

1. Lift the fixed point to the space of polynomials in (3.42), and compute the weights of

its tangent space there.

2. Remove weights of the residual polynomial gauge transformations to compute the weight

of the tangent space in the stratum Mn,[k]
ν .

3. Add weights corresponding to deformations of the GC-bundle that parameterize the

normal bundle of the stratum Mn,[k]
ν inside Mn

ν .

This gives the weight of the tangent space at the fixed point in Mn
ν .

To be explicit, consider the fixed point |n, k〉, presented in the canonical form (3.47). As

always, we concentrate on the vacuum with I = {1, . . . ,K}. A neighborhood of the fixed

point in the space of polynomials (3.42) is parameterized byXa
i =

∑ka
l=0 x

a
i,lz

l i ≤ K ,

Xa
i =

∑ka−1
l=0 xai,lz

l i > K .
(3.50)
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from which we obtain the equivariant weight

K∏
i=1

K∏
a=1

ka∏
l=0

(ϕa +mi + (l + 1
2)ε)

N∏
i=K+1

K∏
a=1

ka−1∏
l=0

(ϕa +mi + (l + 1
2)ε)

=
K∏
a=1

K∏
i=1

(ϕa +mi + (ka + 1
2)ε)

K∏
a=1

ka−1∏
l=0

P (ϕa + (l + 1
2)ε) ,

(3.51)

where P (x) :=
∏N
i=1(x+mi) is again the characteristic polynomial for the flavor symmetry.

The residual gauge transformations contain polynomials of degree ≤ ka − kb, and trans-

form in the adjoint representation of the gauge group. Thus, they remove the following

weights
K∏

a,b=1

ka−kb∏
l=0

1

ϕa − ϕb + lε
. (3.52)

Combining these two contributions gives the equivariant weight of the tangent space to the

fixed point lying inside the stratum Mn,[k]
ν .

Finally, GC-bundle deformations are adjoint-valued 1-forms that can be added to the

holomorphic connection Az. The matrix elements of a deformation are holomorphic one-

forms valued in the bundles O(ka − kb) on CP1. From Serre duality, this is equivalent to

global sections of O(kb − ka − 2) and therefore they contribute additional weights

K∏
a,b=1

kb−ka−2∏
l=0

(ϕa − ϕb − (l + 1)ε) (3.53)

Putting together the three contributions (3.51), (3.52), and (3.53), there are many cancella-

tions and we finally arrive at the equivariant weight (3.38) obtained via the moduli matrix

description.

3.5.3 Triangular Quivers

The computation above can be extended to a ‘triangular’ linear quiver with gauge group

⊗L−1
α=1U(Kα), hypermultiplets in the bifundamental representation of U(Kα) × U(Kα+1) for

α = 1 . . . , L−2, and KL = N hypermultiplets in the fundamental representation of U(KL−1).

We assume that K1 < . . . < KN . This quiver is illustrated in figure 4. Here we are much

more schematic: we only summarize the results.

The data of a triangular quiver can be repackaged as a partition ρ = [ρ1, . . . , ρL] of N

with ρα = Kα−Kα−1 and this theory is sometimes known as Tρ(SU(N)). The Higgs branch

flavor symmetry is GH = PSU(N). The Coulomb branch flavor symmetry is enhanced in the

infrared to GC = S(⊗jU(`j)) where `j is the number of times j appears in the partition ρ.
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KL�1

N

K1 K2

Figure 4. A triangular, linear quiver.

We turn on real FI parameters {t1, . . . , tL−1} such that tj > tj+1 and complex masses

{m1, . . . ,mN}. The massive vacua are labelled by nested subsets

I1 ⊂ I2 ⊂ · · · ⊂ IL−1 ⊂ IL = {1, . . . , N} (3.54)

with | Iα | = Kα. We can label the elements of these subsets by Iα = {iα,1, . . . , iα,Kα}. The

number of such vacua is given in terms of the partition ρ by N !/ρ1! . . . , ρL!.

Solutions of the vortex equations are labelled by a vortex number for each node ~n =

{n1, . . . , nL−1} and the fixed points by decompositions ~k = {kα,a} with
∑

a kα,a = nα. The

corresponding equivariant weights are

ω
~n,~k

=
L−1∏
α=1

 Kα∏
a<b

(−1)kα,a−kα,b
ϕα,a − ϕα,b + (kα,a − kα,b)ε

ϕα,a − ϕα,b

Kα∏
a=1

kα,a−1∏
l=0

Pα+1(ϕα,a + (l + 1
2)ε)

Qα−1(ϕα,a + (l + 1)ε)


(3.55)

where

ϕα,a = −miα,a − (kα,a + 1
2)ε , (3.56)

and in particular ϕN,i = −mi − ε
2 for the flavor node. As before, we introduce generating

functions for gauge invariant operators at each node Qα(z) :=
∏Kα
a=1(z−ϕα,a), with Q0(z) = 1

by definition. In addition, we introduce polynomials Pα(z) :=
∏Kα
a=1(x+miα,a) with PL(z) =

P (z) =
∏N
a=1(z +ma). As above this defines the inner product on the Hilbert space.

4 The action of monopole operators

We are now ready to explain the action of Coulomb branch operators on the Hilbert space of

a 3d N = 4 gauge theory in Ω-background. From the perspective of supersymmetric quantum

mechanics, these are half-BPS operators that preserve the Hilbert space of supersymmetric

ground states. Classically, they correspond to singular solutions of the BPS equations from

Section 2.3.
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In Section 3, we showed that the Hilbert space is the equivariant cohomology of the

moduli space of solutions to the time-independent BPS equations. We studied this moduli

space of generalized vortices by complexifying the gauge group, removing real moment-map

constraints, and fixing a holomorphic gauge Az̄ = 0. Then a vortex configuration could be

described as an algebraic GC-bundle E on the z-plane Cz, together with holomorphic sections

X,Y of an associated R⊕R̄ bundle, such that µC(X,Y ) = 0 and a vacuum boundary condition

at |z| → ∞. We refer to the bundle and sections

E = (E,X, Y ) (4.1)

collectively as the “holomorphic data.”

In this section, we examine how the holomorphic data evolve in “time” t = x3 when we

impose the complete time-dependent BPS equations from Section 2.3. The equation that

controls their evolution is

[Dt,Dz̄] = 0 . (4.2)

This ensures that the holomorphic data are generically constant in time. More precisely, if

we denote the holomorphic data at time t by Et = (Et, Xt, Yt), we generically find that at

two nearby times t and t′, Et and Et′ are related by a globally invertible, holomorphic gauge

transformation g(z; t, t′) ∈ GC[z].

VA

t

t0

t00

(p, t1)

'

E

E 0

E 00

g ⇠ (z � p)A

Figure 5. Modification of the holomorphic data at z = p and t = t1.

At a collection of times {ti}, however, the GC-bundle may develop a singularity and the

holomorphic data can jump, as illustrated in Figure 5. This means that at nearby times

t < ti and t′ > ti, the data Et and Et′ are related by a gauge transformation g(z; t, t′) that

is only invertible in the complement of some point z = p. For example, if the group is
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GC = GL(N,C), we might find that det g(z; t, t′) ∼ (z − p)A has a zero or pole at z = p.

One usually calls this a singular gauge transformation. In mathematics, it is known as a

Hecke modification. Such modifications were analyzed by Kapustin and Witten [67] in a

four-dimensional lift of our current setup, with sections X,Y in the adjoint representation.

In terms of the ambient 3d N = 4 theory, a singular gauge transformation corresponds

to the insertion of a monopole operator VA at the point (p, ti). The monopole operator is

labelled by some dominant cocharacter A of G (its magnetic charge), and the G-bundle on a

small S2 surrounding the monopole operator has nonzero Chern class (magnetic flux)

n(A) =
1

2π

∫
S2
p,ti

Tr (F ) ∈ π1(G) . (4.3)

In the Ω-background the monopole operator must be inserted at the origin p = 0 of Cz in

order to preserve U(1)ε. We then expect the monopole operator acts on vortex states in the

Hilbert space as

VA|n, k〉 ∼
∑

w∈ rep(A)

cA,w;n,k|n + n(A), k + w〉 , (4.4)

where w are weights of the finite-dimensional representation rep(A) of the Langlands-dual

group G∨ with highest weight A.

Our task in the remainder of this section is to make equation (4.4) precise, determining

the coefficients cA,n,k. We will begin in Section 4.1 with a simple abelian example. We will

then give a very general (if somewhat formal) description of the action (4.4) in Section 4.2,

drawing on methods from topological quantum field theory. In particular, we will find that the

action of monopole operators on vortices is induced from classical correspondences between

vortex moduli spaces.

The correspondences themselves have the structure of a convolution algebra, discussed

in Section 4.4. This leads to a new mathematical definition of the Coulomb-branch algebra

Cε[MC ], complementary to that of Braverman-Finkelberg-Nakajima [3].

Finally, in Section 4.5 we explain that action of monopoles on vortices identifies each

Hilbert space Hν as a module for the Coulomb-branch algebra of a very special type, namely

a highest-weight Verma module.

4.1 Example: SQED

A simple way to illustrate the action of monopoles on vortices and its many properties is by

looking at the elementary example of G = U(1) gauge theory with N fundamental hypermul-

tiplets. As in Section 3.4, we choose a vacuum ν in which X1 6= 0 and all other hypermultiplet
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fields vanishing. We found there that the vortex moduli space was Mn
ν = CnN for n ≥ 0,

parameterized by the coefficients of

Xi(z) = δi,1z
n +

n−1∑
l=0

xi,lz
l . (4.5)

The states in the Hilbert space Hν = ⊕nHn
ν = ⊕nC |n〉 were equivariant cohomology classes

|n〉 corresponding to the fixed points at the origin of each Mn
ν .

Now consider the insertion of a monopole operator vA of charge A ∈ Z at the origin of

the z-plane and at some time t∗. On a small sphere surrounding this operator we have

1

2π

∫
S2

F = A , (4.6)

so by topological considerations alone, the operator vA must act on the basis |n〉 by

vA| n 〉 =

cA,n| n +A 〉 if n +A ≥ 0

0 if n +A < 0
. (4.7)

We would like to determine the non-zero coefficients cA,n.

As explained in general terms above, the presence of the monopole operator induces a

Hecke modification of the holomorphic data. We can represent this modification as a gauge

transformation

vA : g(z) = zA (4.8)

that is invertible away from the origin in the z-plane. The transformation must preserve the

fact that X and Y are holomorphic sections. Since Y = 0, we can just focus on X. The effect

of transformation is then summarized as follows:

• If A ≥ 0, the gauge transformation sends Xi(z) 7→ zAXi(z). This creates A vortices at

the origin of the z-plane.

• If A < 0, the transformation sends Xi(z) 7→ z−|A|Xi(z). Regularity of this modification

requires that Xi(z) have a zero of order A at z = 0. In other words, there must exist A

vortices at the origin of the z-plane to be destroyed by the monopole operator.

We emphasize that not all Hecke modifications of the holomorphic bundle E are allowed

Hecke modifications of the full data (E,X, Y ).

To determine the coefficients cA,n we examine the action of the singular gauge transfor-

mation in the neighborhood of the fixed points of Mn
ν and Mn+A

ν . Note that if A > 0 then

the gauge transformation is simply a composition of singular gauge transformations of unit
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charge, g(z) = z. In terms of monopole operators, vA = (v+)A, where v+ has unit charge.

Similarly, if A < 0 then the singular gauge transformation is a composition of fundamental

transformations g(z) = z−1, hence vA = (v−)|A|. Thus it suffices to determine the action of

v+ and v−.

Thus, let us act with g(z) = z on the state |n − 1〉. A vortex configuration in the

neighborhood of the origin of Mn−1
ν looks like

Xi(z) = zn−1δi,1 +
n−2∑
l=0

xi,l+1z
l , (4.9)

and is mapped to

X ′i(z) = znδi,1 +
n−1∑
l=1

xi,lz
l . (4.10)

Thus the image of g(z) is the subspace ofMn
ν where xi,0 = 0 for all i. In terms of equivariant

cohomology, this means that the fixed-point class |n − 1〉 is mapped to the fixed-point class

|n〉, times an ‘equivariant delta function’ that imposes the constraints xi,0 = 0, and accounts

for the additional directions in the tangent tangent space to the origin in Mn
ν . We find

v+|n− 1〉 = P (ϕ+ 1
2ε)|n〉 , (4.11)

where ϕ = −m1 − (n + 1
2)ε is the value of ϕ at the fixed point |n〉.

On the other hand, acting with g(z)−1 = z−1, we find that a subspace of Mn
ν where

xi,0 = 0 maps isomorphically onto Mn−1
ν . Therefore, we expect that v−|n〉 = |n − 1〉 for

n > 0, and v−|0〉 = 0.

More formally, we may observe that acting with g(z) = z embeds each moduli spaceMn
ν

as a subspace of the moduli space Mn+1
ν :

M0
ν

g
↪→ M1

ν

g
↪→ M2

ν

g
↪→ M3

ν

g
↪→ · · ·

= = = =

{pt} CN C2N C3N · · ·
(4.12)

These embeddings induce natural push-forward and pull-back maps on equivariant cohomol-

ogy. Setting

v+ = g∗ , v− = g∗ , (4.13)

we obtain H∗(Mn
ν)

v+



v−
H∗(Mn+1

ν ), or

H0
ν

v+



v−
H1
ν

v+



v−
H2
ν

v+



v−
H3
ν

v+



v−
· · · . (4.14)
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We can summarize the action on vortices as

ϕ|n〉 = (−mi − (n + 1
2)ε)|n〉

v+|n〉 = P
(
ϕ+ 1

2ε)
∣∣n + 1〉

v−|n〉 = |n− 1〉 .

(4.15)

A short computation shows that the monopole operators obey the algebra

v+v− = P (ϕ+ 1
2ε) , v−v+ = P (ϕ− 1

2ε) ,

[ϕ, v±] = ∓εv± .
(4.16)

For example, the relation v−v+ = P (ϕ+ 1
2ε) captures the fact that in equivariant cohomology

g∗g∗ equals the Euler class of the normal bundle to Mn
ν in Mn+1

ν . Relations (4.16) precisely

describe the quantum Coulomb-branch algebra Cε[MC ] for SQED derived in [1]. 10 In

the limit ε → 0, we recover a commutative ring with the relation v+v− = P (ϕ). This is

the expected Coulomb-branch chiral ring: it is the coordinate ring of C2/ZN , deformed by

complex masses.

We may recall from [1, 4] that the Coulomb-branch algebra is graded by the topological

GC ' U(1) symmetry under which monopole operators are charged. In particular ϕ has

weight zero, and the weight of any monopole operator vA is the product tRA of the magnetic

charge and the real FI parameter. The Hilbert space is a highest-weight module for the

Coulomb-branch algebra with respect to this grading. This means that:

• the ‘Cartan’ generator ϕ is diagonalized on weight spaces |n〉,

• if we act repeatedly on any weight space |n〉 with an operator vA of positive grading

tRA > 0, we will eventually get zero.

More so, as long as the mi are generic (so that the prefactors P (ϕ+ 1
2ε) never vanish), every

state |n〉 can be obtained by acting freely on |0〉 with operators vA of negative grading. This

identifies the Hilbert space as a Verma module.

For general N , the algebra (4.16) is known as a spherical rational Cherednik algebra. For

N = 2, it is simply isomorphic the universal enveloping algebra of sl2, with the quadratic

Casimir fixed in terms of the complex masses mi. Namely, defining h = 2ϕ, e = −v−, f = v+,

we find

[h, e] = 2εe , [h, f ] = −2εf , [e, f ] = εh , (4.17)

10To compare directly with formulas of [1] and [4], one should reverse the sign of ε.
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and

C2 =
1

2
h2 + ef + fe =

1

2
((m1 −m2)2 − ε2) . (4.18)

This algebra admits two different Verma modules, corresponding to the two possible vacua

ν1, ν2 that we could have chosen in defining the Hilbert space Hν .

4.2 Algebraic formulation

The structure we found in the preceding example can be readily formalized and generalized,

by adapting the quantum-mechanics approach that we used to construct Hilbert spaces in

Section 3.

Physically, the action of monopole operators in the Hilbert space should be computed by

performing the path integral on Cz × Rt with particular boundary conditions:

• a fixed vacuum ν at |z| → ∞,

• fixed vortex states |n, k〉 at t→ −∞ and |n′, k′〉 at t→∞, and

• a monopole operator VA inserted at the origin (z, t) = (0, 0).

The insertion of the monopole operator VA amounts to removing a three-ball neighborhood

of the origin, and specifying a particular state in the radially-quantized Hilbert space H(S2)

there. From topological considerations, we know that the amplitude is nonzero if and only if

n′ − n = n(A) and k′ − k ∈ rep(A).

···
···

|n, ki

hn0, k0|

VA ⌫

Figure 6. Configuration of boundary conditions that computes the matrix element of a monopole

operator.

Since all the boundary conditions preserve two common supercharges, the path integral

will localize on solutions of the quarter-BPS equations from Section 2.3. Moreover, after
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complexifying the gauge group and passing to a holomorphic gauge, the equation

[Dt,Dz̄] = 0 . (4.19)

ensures time-evolution of the holomorphic data is trivial away from the insertion of the

monopole operator. We may therefore collapse
(
Cz × Rt − (0, 0))

)
to a ‘UFO’ or ‘raviolo’

curve11

= C ∪C∗C , (4.20)

consisting of two copies of the spatial plane Cz, identified everywhere except for the origin

(the position of the monopole operator). The path integral now reduces to an integral over

the space of solutions to the BPS equations on , with appropriate boundary conditions.

To be more concrete, recall the notation E = (E,X, Y ) from (4.1) for an algebraic GC-

bundle E on Cz together with sections X,Y of associated R⊕R̄ bundles satisfying the complex

moment-map constraint µC(X,Y ) = 0 and landing on the orbit GC · ν at z → ∞. Since the

massive vacuum ν trivializes the bundles at z =∞, we can always compactify the z-plane to

CP1.

In an algebraic formulation, the space of solutions to BPS equations on the raviolo is

given by a pair E , E ′, together with an identification by a gauge transformation g away from

the origin,

M ν =
{

(E , E ′; g) : E
g
∼→ E ′ on Cz − {0}

}
/G × G′ . (4.21)

We quotient by isomorphisms of the data E and E ′ i.e. by holomorphic gauge transformations

G × G′. This moduli space has natural maps to two copies of the vortex moduli space Mν ,

simply obtained by forgetting either E ′ and g, or E and g,

M ⌫

⇡ ⇡0

M⌫ M0
⌫

(E) (E 0)

. (4.22)

This is called a correspondence.

We saw that quantum vortex states correspond to equivariant cohomology classes |n, k〉 ∈
H∗(Mν). (We will suppress the equivariant TH ×U(1)ε action in order to simplify notation.)

In a similar way, the insertion of any monopole operator VA defines an equivariant cohomology

class

VA ∈ H∗(M ν) . (4.23)

11We thank D. Ben-Zvi and J. Kamnitzer for introducing us to these respective descriptors.
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We will describe these classes explicitly in a moment. The action of a monopole operator on a

vortex state translates to a ‘push-pull’ action on cohomology, induced by the correspondence

(4.22). Namely, we use π to pull-back the class |n, k〉 to H∗(M ν), take the cup-product

with the class VA, and use π′ to push-forward to H∗(M′ν),

VA |n, k〉 = π′∗
(
VA · π∗(|n, k〉)

)
. (4.24)

The push-forward π′∗ is an equivariant integration along the fibers of the map π′, and en-

capsulates the integration over the moduli space of solutions to the BPS equations in the

localized path integral.

4.2.1 Components and monopole operators

Just as the vortex moduli space splits into components labelled by vortex number

Mν =
⊔

n∈π1(G)

Mn
ν , (4.25)

the raviolo moduli space also has connected components labelled by pairs of vortex numbers,

describing the topological type of the bundles E,E′ on the two copies of CP1

M ν =
⊔

n,n′∈π1(G)

Mn,n′
ν . (4.26)

Thus, the correspondence (4.22) splits into components

M ⌫

⇡ ⇡0

M⌫
n n0

n, n0

M⌫

(4.27)

In addition, each raviolo space Mn,n′
ν has a further decomposition (in fact, a stratifica-

tion) by the magnetic charge of monopole operators. Since the gauge transformation g in

(4.21) is regular away from the origin, it must lie in the G × G′ orbit of

g(z) = zA , A ∈ Hom(U(1), G) (4.28)

for some cocharacter A. Here we think of zA as an element in the maximal torus of the gauge

group, with Laurent-polynomial entries. (See (4.37) below.) Two cocharacters related by an

element of the Weyl group lead to the same G × G′ orbit, so we may assume that A is a

dominant cocharacter. Then

Mn,n′
ν =

⋃
A∈Λdom

cochar

Mn,n′;A
ν . (4.29)
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Of course, a particular singular gauge transformation changes the vortex number by a fixed

amount n(A). Thus, Mn,n′;A
ν is actually empty unless n(A) = n′ − n.

It is natural to identify each basic monopole operator VA with the equivariant fundamental

class of the closure Mn,n′;A
ν of Mn,n′;A

ν ,

VA ↔ 11
Mn,n′;A

ν

∈ H∗(Mn,n′
ν) . (4.30)

This is the concrete way in which monopole operators enter the push-pull action (4.30).

More generally, the Coulomb-branch chiral ring may contain “dressed” monopole operators,

defined by superposing polynomials in the ϕ fields on top of a monopole singularity. Dressed

monopole operators are represented as characteristic classes of various bundles on Mn,n′;A
ν .

Note that the ‘strata’ Mn,n′;A
ν are not closed unless the cocharacter A is miniscule. The

closure of a particular stratum contains other strata, and has interesting topology related to

the physics of monopole bubbling, discussed e.g. in [67, Sec. 10].

4.2.2 SQED revisited

We now reproduce the action of monopole operators on vortices in SQED, in terms of the

canonical correspondences (4.22).

Let us consider the simplest possible correspondence M0,1
ν . It consists of a pair E , E ′,

and a gauge transformation g identifying them away from the origin. Since n = 0, the bundle

in E is trivial and we can use the complexified gauge group G to set X = (1, 0, ..., 0) and

Y = 0. The gauge transformation g can be any element of the form g = az for nonzero a; it

acts on E to produce a bundle in E ′ of degree one and

X ′ = (az, 0, ..., 0) , Y ′ = 0 . (4.31)

The gauge group G′ can now be used to fix a = 1. Therefore, M0,1
,ν is simply a point. By

forgetting E ′, it maps isomorphically to M0
ν , which is also a point. On the other hand, by

forgetting E , it maps to the origin of M1
ν = CN .

More generally, whenever n < n′ we can use up the gauge freedom G × G′ to write every

point of Mn,n′
ν uniquely as

Xi = δi,1z
n +

n−1∑
l=1

xi,lz
l , g = zn

′−n , X ′i = δi,1z
n′ +

n′−1∑
l=n′−n

xi,lz
l , (4.32)

with Y = Y ′ = 0. These points are fully determined by the form of X, which is unconstrained;

therefore, by forgetting g and X ′ we get an isomorphism with Mn
ν . On the other hand, by
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forgetting X and g we get a map into Mn′
ν . This is an injection, because X ′ is constrained

so that coefficients of zd vanish when d < n′ − n. Thus

Mn
ν
∼←
π
Mn,n′

ν ↪→
π′
Mn′

ν . (4.33)

Similarly, for n > n′, the isomorphism and injection are reversed.

Let us now compute the action vA|n〉 for A > 0 using the correspondenceMn,n+A
ν . Recall

that |n〉 corresponds to the fundamental class inMn
ν . We use the isomorphism π in (4.33) to

pull it back to the fundamental class π∗(|n〉) = 11 in H∗(Mn,n+A
ν ). The monopole operator

vA also corresponds to the fundamental class in H∗(Mn,n+A
ν ), so vA ∧ π∗(|n〉) = π∗(|n〉).

Finally, we use the injection π′ to push forward π∗(|n〉) to H∗(Mn+A
ν ), obtaining the vortex

class |n + 1〉 times an equivariant delta function corresponding to the normal directions of

N∗(π′(Mn,n+a
ν )) ⊂ T ∗Mn+A

ν . The delta function is easily computed to give

vA|n〉 =
A−1∏
l=0

P (ϕ+ (l + 1
2)ε) |n +A〉 A > 0 (4.34)

in agreement with Section 4.1.

Similarly, if A < 0 is a negative integer, then we compute vA|n〉 by using the injection

π :Mn,n+A
ν ↪→Mn

ν to pull back the fundamental class |n〉 to the fundamental class inMn,n+A
ν ,

then intersecting with the fundamental class inMn,n+A
ν that represents vA, and finally pushing

forward to Mn+A
ν via the isomorphism π′. In this case there is no equivariant delta function

and we simply find

vA|n〉 = |n +A〉 A < 0 . (4.35)

This of course is the same action that we found more directly in Section 4.1. Since the

correspondences (4.33) are so simple, the whole construction reduces to the sequence of maps

described in (4.12); the map ‘g’ in (4.12) is π′ ◦ π−1.

4.3 Non-abelian theories

The structure of correspondences and monopole operators in nonabelian theories is well illus-

trated by the example of SQCD.

4.3.1 SQCD

Let us consider U(K) gauge theory with N fundamental hypermultiplets, as in Section 3.5.1.

Recall that for tR < 0, the nontrivial vortex moduli spaces Mn
ν have n ≥ 0 with fixed points

labelled by non-negative integers k = (k1, ..., kK) with
∑

a ka = n. After a flavor rotation, we
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may assume that the vacuum ν has Xa
i = δai with all other hypermultiplet fields vanishing.

Then the fixed-point states correspond to

|n, k〉 ↔ Xa
i = δai z

ka , Y = 0 , (4.36)

and the equivariant weight of the normal bundle to a fixed point is ωn,k as in (3.38).

The basic monopole operators VA of SQCD are labelled by cocharactersA ∈ Hom(U(1), U(K)) '
ZK , and correspond to singular gauge transformations of the form

g(z) = zA = diag(zA1 , ..., zAK ) . (4.37)

Naively, this maps a fixed point |n, k〉 to |n+
∑

aAa, k+A〉. However, this conclusion is clearly

not gauge-invariant. We must account for the fact that the singular transformation (4.37)

may be composed with arbitrary regular gauge transformations g → g′0gg0 when mapping one

fixed point to another. The correspondences of Section 4.2 provide a precise way to do this.

We focus on the basic monopole operators V± of charge A = (±1, 0, ..., 0). It is actually

sufficient to understand the action of these operators: as discussed in [1], the entire Coulomb-

branch algebra of SQCD is generated by V± and their dressed versions.

The operator V+ (say) increases vortex number by one, so we should look at the correspon-

dence space Mn,n+1
ν . Specifically, we are interested in the stratum Mn,n+1;(1,0,...,0)

ν ⊂Mn,n+1
ν

consisting of triples (X, g,X ′) such that X ′ = gX, modulo two copies of the gauge group

G × G′, with the extra condition that g is in the G × G′ orbit of z(1,0,...,0) = diag(z, 0, ..., 0).

Let us just call this stratum M+1. It has maps

Mn
ν

π← M+1 π′→ Mn+1
ν , (4.38)

and V+ corresponds to the equivariant fundamental class 11M+1 .

The map π in (4.38) is actually a surjection with regular compact fibers isomorphic to

CPK−1. (This implies that M+1 is compact, which was expected because the cocharacter

(1, 0, ..., 0) is minuscule.) To justify this claim, let us choose a point X ∈ Mn
ν . Specifying X

fully breaks the gauge symmetry G. Then the fibers of π at X consists of gauge transforma-

tions of the form

g′0(z)z(1,0,...,0)g0(z) , (4.39)

where g′0, g0 are regular, modulo the action of regular G′ transformations on the left. The

action of G′ can be used to absorb g′0 as well as most of g0. The gauge transformations g0

that can be commuted to the left past z(1,0,...,0) (as regular gauge transformations) are of the
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form

g0(z) =


∗ ∗ ∗ · · ·
z(∗) ∗ ∗ · · ·

. . .

z(∗) ∗ ∗ · · ·

 (4.40)

where each ‘∗’ denotes a polynomial in z. The remaining g0 that cannot be commuted to the

left precisely parameterize a coset CPK−1.12

The map π′ in (4.38) is more complicated. Generically it is an injection, in the sense

that its fibers above generic X ′ ∈ Mn+1
ν are either empty or single points. However, above

values of X ′ that are fixed points of the TH × U(1)ε action on Mn+1
ν , the fibers of π′ can be

nontrivial. We will not need to know about this to find the action of V+.

Now consider the various symmetries acting on the triples (X, g,X ′). The flavor sym-

metry TH simultaneously acts on the columns of X and X ′ (viewed as K × N matrices).

The symmetry U(1)ε rotates z as usual (and X,X ′ with weight 1
2). In addition, constant

gauge transformations (g0, g
′
0) ∈ G × G′ act as (X, g,X ′) 7→ (g0X, g

′
0gg
−1
0 , g′0X

′). Just as in

the analysis of vortex moduli spaces, the gauge action is free. The TH × U(1)ε action has

isolated fixed points, provided that this action is compensating for by an appropriate gauge

transformation.

Concretely, the fixed points of TH × U(1)ε on the correspondence space M+1 are of the

form

Xa
i = zkaδai , g = diag(1, ..., z

b
, ..., 1) , X ′ai = zka+δabδai (4.41)

for all nonnegative vectors k (such that n(k) = n) and all integers 1 ≤ b ≤ K. We should

understand k as labeling a fixed point onMn
ν and b labeling a fixed point on the CPK−1 fiber

of π. The relation between flavor parameters mC, ε and compensating gauge parameters ϕ,ϕ′

is
ϕa +ma + (ka + 1

2)ε = 0 , ϕ′a +ma + (ka + δab + 1
2)ε = 0 ,

ϕa = ϕ′a + δabε .
(4.42)

Thus Trϕ− Trϕ′ = ε, reflecting the fact that vortex number is increased by one.

We need one more ingredient to describe the action of V+ on equivariant cohomology.

Recall that V+ is realized as the equivariant fundamental class ofM+1. It is extremely useful

to use the localization theorem to decompose this as a sum of fixed-point classes in the CPK−1

12This sort of analysis is very familiar in the study of the affine Grassmannian and its stratification by orbits

of cocharacters zA. For miniscule cocharacters, the orbits are ordinary Grassmannians.
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fibers

V+ = 11M+1 =

K∑
b=1

v+
b , v+

b :=
1∏

a6=b(ϕa − ϕb)
11b , (4.43)

where 11b denotes the fundamental class ofMn
ν (thought of as the base ofM+1) times a point

in the fiber. The v+
b were introduced in [1] as “abelianized” monopole operators.

Now, the state |n, k〉 = 1
ωn,k

11n,k is a normalized fixed-point class in H∗(Mn
ν). It pulls

back via π−1 to 1
ωn,k

times the fundamental class of the CPK−1 fiber of M+1, sitting above

the fixed point ofMn
ν . The product with v+

b then produces the normalized fundamental class

of a fixed point in M+1,

v+
b · π∗|n, k〉 =

1

ωn,k

1∏
a6=b(ϕa − ϕb)

11n,k;b . (4.44)

Since the fundamental class of a fixed point 11n,k;b in M+1 pushes forward via π′ to the

fundamental class of the fixed point 11n+1,k+δb in Mn+1
ν (where δb = (0, ..., 0, 1

b
, 0, ..., 0)), we

finally find that

v+
b |n, k〉 := π′∗

(
v+
b · π∗|n, k〉

)
=

ωn+1,k+δb

ωn,k

1∏
a6=b(ϕa − ϕb)

|n + 1, k + δb〉 , (4.45)

and V+|n, k〉 =
∑K

b=1 v
+
b |n, k〉. Using the formula (3.38) for the equivariant weights, this can

easily be brought to the form

v+
b |n, k〉 =

P (ϕ′b + ε
2)∏

a6=b(ϕ
′
a − ϕ′b)

|n + 1, k + δb〉 . (4.46)

We can similarly find the action of the negatively charged operators V− by running back-

wards through the same correspondenceM+1. Using the same decomposition into abelianized

monopole operators

V− =
K∑
b=1

v−b , (4.47)

we find that

v−b |n, k〉 =


1∏

a6=b(ϕa − ϕb)
|n− 1, k − δb〉 if n− 1, k − δb nonnegative

0 otherwise .

(4.48)

The combined action of v+
a and v−b on any vortex state is

v+
b v
−
b =

P (ϕb + 1
2ε)∏

a6=b(ϕb − ϕa)(ϕa − ϕb − ε)
, v−b v

+
b =

P (ϕb − 1
2ε)∏

a6=b(ϕb − ϕa)(ϕa − ϕb + ε)
. (4.49)
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This is the fundamental relation in the Coulomb-branch algebra that was derived more ab-

stractly in [1, Sec 5.3] (with ε → −ε). There the weights on the RHS were interpreted as

one-loop corrections to the chiral ring, arising from hypermultiplets (numerator) and W-

bosons (denominator).

The dressed monopole operators of SQCD can be very easily described in terms of the

abelianized v±b . Namely, they all take the general form

V±,p =
∑
w∈W

p(w · ϕ)v±w·b (4.50)

for some polynomial p in the fields ϕ = (ϕ1, ..., ϕK), where the sum implements an averaging

over the Weyl group. The dressed monopole operators can be understood as characteristic

classes of various bundles on M+1, and their action on vortex states derived accordingly.

We note that in [1], the Coulomb-branch algebra was also re-derived by relating the

Coulomb branch of SQCD to a moduli space of singular monopoles [7] – namely a moduli

space of K PSU(2) monopoles with N Dirac monopole singularities. To see this connection

it is convenient to introduce polynomial generating functions Q(z) =
∏k
a=1(z − ϕa) and

U+(z) =
K∑
a=1

u+
a

∏
b 6=a

(z − ϕb) U−(z) =
K∑
a=1

u−a
∏
b 6=a

(z − ϕb) . (4.51)

where u+
a = v+

a and u−a = (−1)Kv−a . The polynomials U±(z) are generating functions for

dressed monopole operators. The relations (4.49) can now be written in ‘quantum determi-

nant’ form

Q(z − ε
2)Q̃(z + ε

2)− U+(z − ε
2)U−(z + ε

2) = P (z) (4.52)

where Q̃(z) is a generating function for dressed monopole operators with magnetic weight in

the adjoint representation. In the limit ε → 0, we recover the coordinate ring of the moduli

space of k PSU(2) monopoles with N fundamental Dirac monopole singularities, written in

terms of scattering data.

4.3.2 Triangular quivers

Let us now state the results of the corresponding computation in the case of a triangular

quiver, with notation from Section 3.5.3. Let us denote the monopole operators of fundamen-

tal and anti-fundamental magnetic charge at the α-th node by V ±α . Then we find

ϕα,a = −miα,a − (kα,a + 1
2)ε , (4.53)
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together with

V +
α |~n,~k〉 =

Kα∑
a=1

Qα+1(ϕα,a)∏
b6=a(ϕα,a − ϕα,b)

|~n + δa,~k + δα,a〉

V −α |~n,~k〉 =

Kα∑
a=1

Qα−1(ϕα,a)∏
b6=a(ϕα,b − ϕα,a)

|~n− δa,~k − δα,a〉 .
(4.54)

These generators obey the following ‘quantum determinant’ relation for each node α =

1, . . . , L− 1, independent of which state is acted upon,

Qα(z − ε
2)Q̃α(z + ε

2)− U+
α (z − ε

2)U−α (z + ε
2) = Qα−1(z)Qα+1(z) . (4.55)

In the limit ε→ 0 we recover the coordinate ring of the moduli space of PSU(L+1) monopoles

with N singular monopoles in the fundamental representation. Indeed, the relations (4.55)

are Plücker relations for the monopole scattering matrix [1]. This is the expected Coulomb

branch chiral ring of the quiver.

4.4 Recovering the Coulomb-branch algebra

So far we have described an action on the equivariant cohomology H = ⊕nH
∗(Mn

ν) of vortex

moduli spaces generated by the correspondences Mn,n′
ν . Our main claim is that this is an

action of the quantized Coulomb-branch algebra Cε[MC ], which is a fundamental observable

of the underlying 3d N = 4 theory, independent of the particular boundary conditions that

lead to vortices. We verified this above for SQED and SQCD.

We can make the claim a little more precise, by giving an intrinsic description of the

algebra of correspondences. Mathematically, this leads to a new “definition” of Mε[MC ],

complementary to the one proposed by Braverman-Finkelberg-Nakajima.

The basic idea is to construct an algebra intrinsically from the correspondence spaces

Mn,n′
ν (forgetting for the moment that they act on vortices), and to embed the Coulomb-

branch algebra in it. To this end, let us define a sum of equivariant cohomology groups

Aν :=
⊕

n,n′ ∈π1(G)

H∗(Mn,n′
ν) , (4.56)

with the usual TH × U(1)ε equivariance made implicit. This vector space has a standard

“convolution product” that realizes the physical OPE of monopole operators. To see it, we

introduce the double-correspondence space

Mn,n′,n′′

ν =

 (E , E ′, E ′′; g, g′) s.t. E , E ′, E ′′ → ν at z =∞

and E
g
∼→ E ′, E ′

g′
∼→ E ′; on C∗

/G × G′′ , (4.57)
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involving holomorphic data E = (E,X, Y ) on three copies of the z-plane Cz, identified by

potentially singular gauge transformations g and g′. The space (4.57) has three maps to

ordinary correspondence spaces, obtained by forgetting the data one one of the three copies

of C,

M
⇡12

⇡23
⇡13

⌫
n, n0, n00

Mn, n0
⌫ Mn0, n00

⌫
Mn, n00

⌫

(E , E 0, g) (E 0, E 00, g0) (E , E 00, g0g)

(4.58)

The convolution product is then defined by pushing and pulling, just as in (4.24),

? :
H∗(Mn,n′

ν)×H∗(Mn′,n′′
ν ) → H∗(Mn,n′′

ν)

( η , λ ) 7→ λ ? η = (π13)∗(π
∗
12(η) · π∗23(λ))

(4.59)

The product can be extended to all of Aν by defining it to be zero when vortex numbers are

incompatible, i.e. λ ? η = 0 if η ∈ H∗(Mn,n′
ν) and λ ∈ H∗(Mn′′,n′′′

ν ) with n′ 6= n′′.

The convolution product makes Aν into an algebra. Moreover, by construction, the

product is automatically compatible with the action of Aν on vortices. In other words,

λ · (η · |n, k〉) = (λ ? η) · |n, k〉 for any vortex state |n, k〉.
Our main claim can be rephrased as the statement that the Coulomb-branch algebra is

embedded in Aν ,

Cε[MC ]
ι
↪→ Aν . (4.60)

Physically, we are saying that all Coulomb-branch operators can be represented via their

action on vortices, and that this representation is faithful. This is manifestly true in SQED,

SQCD, and the various quiver theories that we discuss. A similar assertion appears in [10,

Section 6] in the case of triangular quivers (see Section 6 below).

4.4.1 Orthogonal idempotents

The algebra Aν above is actually much bigger than the Coulomb-branch algebra Cε[MC ].

Indeed, a given monopole operator VA has an image in H∗(Mn,n′
ν) whenever n′ − n = n(A),

and thus has infinitely many images in Aν . Under the map in (4.60), we must take the sum

of all images; but in Aν it is also possible to consider them individually.

In order to speak about the individual images of a monopole operator, we introduce an

infinite set of orthogonal projection operators or “idempotents”

{ en | n ∈ π1(G) and Mn
ν nonempty} , (4.61)
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satisfying the orthogonality and completion relations

enen′ = δn,n′en ,
∑

n∈π1(G)

en = 1 . (4.62)

In fact, these operators are already part of the algebra Aν . Namely, in every correspondence

space Mn,n
ν that leaves vortex-number unchanged there is a stratum Mn,n;0

ν corresponding

to the orbit of the trivial gauge transformation g = 1 (so that X = X ′ and Y = Y ′). Then

en is its fundamental class

en := 11
Mn,n;0

ν

∈ Mn,n
ν . (4.63)

Physically, the en are operators in the effective N = 4 quantum mechanics obtained by

placing a 3d N = 4 theory in the Ω-background with a vacuum ν at z →∞. Each en acts a

projection to a subsector of the quantum mechanics whose states have fixed vortex number

n. Unlike ordinary Coulomb-branch operators, the en do not admit a UV realization in the

underlying 3d N = 4 theory. They are additional operators that exist in the infrared.

Now, given some monopole operator VA that is represented as a sum of classes, say

VA =
⊕

n,n′ ∈π1(G)

11
Mn,n′;A

ν

, (4.64)

we can simply sandwich with the projection operators to obtain an individual image en′ ∗VA ∗
en = 11

Mn,n′;A
ν

∈ H∗(Mn,n′
ν).

It is natural to conjecture that the convolution algebra Aν is simply equivalent to the

Coulomb-branch algebra together with the idempotents en. In other words,

Aν ' Ċε[MC ] , (4.65)

where

Ċε[MC ] =
(
Cε[MC ]⊗ C〈en〉n∈π1(G)

)/
(relations) , (4.66)

is obtained by adjoining the idempotents, subject to all the relations that exist when Coulomb-

branch operators act on states of fixed vortex number.13 For example, in SQED with vacuum

ν = ν1, the additional relations set

ϕen = (−m1 − (n + 1
2)ε) en

en′v+en = env−en′ = 0 if n′ − n 6= 1

en = 0 if n < 0 .

(4.67)

13Such an enhancement of an algebra with idempotents is especially familiar in the study of quantum groups

and their categorification. It was introduced there by Lusztig [68].
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4.5 Verma modules

We have proposed that the Hilbert space Hν of a 3d N = 4 gauge theory in an Ω-background

admits an action of the quantized Coulomb-branch algebra Cε[MC ]. We would now like to

argue that Hν is a very special representation of Cε[MC ], namely a Verma module.

Let us first recall what it means to be a Verma module for the Coulomb-branch algebra.14

The notion depends on a choice of real FI parameter tR, which we think of as generating an

infinitesimal u(1)t isometry of the Coulomb branch as in (2.7). This isometry makes Cε[MC ]

into a graded algebra, such that the degree of any operator O equals its weight (or charge)

under u(1)t. Concretely, all polynomials in the ϕ fields have weight zero and each monopole

operator VA (dressed or undressed) has weight 〈tR, A〉. Our assumption that tR is generic

means that the weight 〈tR, A〉 is nonzero whenever A is nonzero.

We may decompose

Cε[MC ] = Cε[MC ]< ⊕ Cε[MC ]0 ⊕ Cε[MC ]> (4.68)

into subspaces of operators with negative, zero, and positive weights, respectively. The space

Cε[MC ]0 simply contains gauge-invariant polynomials in ϕ; whereas Cε[MC ]< and Cε[MC ]>

contain monopole operators. A Verma module M is characterized by the following properties:

1. M is a weight module: it decomposes as a sum M = ⊕λMλ of finite-dimensional spaces

Mλ of fixed weight λ, such that for any O ∈ Cε[MC ] we have O : Mλ → Mλ+deg(O) .

Physically, this means that M preserves the Coulomb-branch flavor symmetry u(1)t.

2. There is a maximal λmax appearing in the sum ⊕λMλ, and there exists a “highest-weight

vector” |0〉 ∈Mλmax that is annihilated by operators in Cε[MC ]> and is an eigenvector

for Cε[MC ]0.

3. The entirety of M is freely generated from |0〉 by acting with Cε[MC ]<.

The first property is already manifest for a Hilbert space of the formHν = ⊕n∈π1(G)H
∗(Mn

ν),

since the decomposition by vortex number is equivalent to a decomposition into weight spaces.

Explicitly, we may assign weight 〈tR, n〉 to every state |n〉 ∈ H∗(Mn
ν). Compatibility with the

grading of the Coulomb-branch algebra is automatic, since a (potentially dressed) monopole

operator VA sends H∗(Mn
ν)→ H∗(Mn+n(A)

ν ) and 〈tR, n + n(A)〉 = 〈tR, n〉+ 〈tR, A〉.
For the second property we identify |0〉 as the unique zero-vortex state in Hν , i.e. the

fundamental class of the zero-vortex moduli space M0
ν . Recall that M0

ν is simply a point,

14This discussion is slightly heuristic. For more details see Secs. 5 and 7.2.3 of [4] or mathematical references,

e.g. [58, 69].
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and describes a configuration in which all fields are fixed to their values in the vacuum ν.

Thus |0〉 is an eigenvector for all gauge-invariant polynomials p(ϕ), which are simply set to

their vacuum values.

Moreover, all vortex moduli spaces Mn
ν with 〈tR, n〉 > 0 are empty, identifying |0〉 as a

unique highest-weight vector. To see this, we observe that in the vacuum ν some combination

of the X and Y hypermultiplet fields are necessarily nonzero, and moreover real moment-map

equation µR + tR = 0 (or, equivalently, the stability condition) requires that tR can be written

as a non-positive linear combination of weights of the nonvanishing X and Y ,

tR =
∑

µ∈weights of X,Y nonvanishing at ν

αµ µ , αµ ≤ 0 . (4.69)

Therefore, if 〈tR, n〉 > 0 we must have 〈µ, n〉 < 0 for at least one X or Y that is nonvanishing

in the vacuum. In a configuration of vortex number n, this X or Y must be a) nonvanishing

(in order to tend to ν as z →∞); b) regular at z = 0; and c) a polynomial of negative degree.

Since this is impossible, the moduli space Mn
ν is empty.

SQED and SQCD provide simple examples of the highest-weight property. In both the-

ories, we chose a negative FI parameter tR < 0 and found in every vacuum various ‘X’ fields

had to be nonzero. Correspondingly, the nonempty vortex moduli spaces Mn
ν all had n ≥ 0,

which is to say 〈tR, n〉 ≤ 0. The zero-vortex state |0〉 ∈ H∗(M0
ν) is the unique vector of

maximal weight.

The intuition behind the third property is that any nontrivial vortex configuration can

be created from |0〉 by acting with appropriate monopole operators. We can see this rather

explicitly. Consider some nonzero vortex state |n, ∗〉, represented as the (normalized) class

of a fixed point p ∈ Mn
ν . Note that we necessarily have 〈tR, n〉 < 0, due to the highest

weight property. The correspondence space M0,n
ν
π′
↪→Mn

ν is a subset of the n-vortex moduli

space itself that includes all of the fixed points in Mn
ν . In particular, π′−1(p) is a fixed point

of M0,n
ν , and its fundamental class 11π′−1(p) corresponds to some monopole operator that

precisely maps |0〉 to |n, ∗〉. This monopole operator has negative weight 〈tR, n− 0〉 = 〈tR, n〉.
We remark that this (somewhat heuristic) argument only holds when complex masses

mC are generic. The complex masses enter the normalizations of vortex states as equivariant

parameters; for special values of the masses, the relative normalizations of states may tend

to zero, and the requisite monopole operators relating them may not exist. For example, in

SQED with the action (4.15), we have

vn|0〉 =
( n∏
l=1

P (−m1 − lε)
)
|n〉 =

( N∏
i=1

n∏
l=1

(mi −m1 − lε)
)
|n〉 . (4.70)
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Generically, the prefactor
∏n
l−1 P (−m1 − lε) is nonzero and |n〉 is created from |0〉 by acting

with vn = (v+)n (times the inverse of this prefactor).15 However, if the masses are tuned so

that some difference mi −m1 equals lε for some 1 ≤ l ≤ n, then the prefactor vanishes and

there is no way to generate |n〉 from |0〉. The case of specialized (or “quantized”) masses is

extremely interesting, and formed the context for much of [4], but it is not directly relevant

here.

5 Boundary conditions and overlaps

We now enrich the setup of the previous sections by adding boundary conditions B that fill

the z-plane at various times t, as shown in Figures 2, 3 in the introduction. We are interested

in boundary conditions that preserve a 2d N = (2, 2) supersymmetry algebra (as in Table 1

on page 12) and a U(1)V vector R-symmetry. Such boundary conditions also preserve the

two supercharges Q and Q′ that we have been using to localize, and are compatible with the

Ω-background. Large families of boundary conditions of this type were studied in [4].

Roughly speaking, one expects a boundary condition B at (say) t = 0 to define a state

|B〉 in the Hilbert space of our 3d N = 4 theory on the cylinder, or equivalently the SUSY

Hilbert space of the effective N = 4 quantum mechanics. The main goal of this section is to

analyze this state when B is a “Neumann-type” boundary conditions, which preserve gauge

symmetry on the boundary. Using results of [4] (reviewed in Section 5.2) we will find that

|B〉 must satisfy certain relations of the form

VA |B〉 ∼ pA(ϕ) |B〉 , (5.1)

which identify it as a generalized Whittaker vector in the Verma module Hν . Physically, we

would say that |B〉 is a coherent state, a generalized eigenstate of the monopole operators. In

addition, using the description Hν = ⊕nH
∗(Mn

ν) as a sum of equivariant cohomology groups

of vortex moduli spaces, we will explicitly identify |B〉 with an equivariant cohomology class.

In simple cases, it will just be a weighted sum of fundamental classes of each Mn
ν . The fact

that this class satisfies the equations (5.1) is rather nontrivial.

A 3d N = 4 theory compactified on an interval with boundary conditions B and B′ at

either end leads to a 2d N = (2, 2) gauge theory. This setup is illustrated in Figure 3 of

the introduction. In section 5.4, we show that the partition function of this two-dimensional

15By generalizing this observation, one can actually show that when the complex masses are generic, every

module satisfying (1) and (2) automatically decomposes as a direct sum of Verma modules.
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theory in Ω-background, or vortex partition function, is an inner product of vectors in the

Hilbert space of the three-dimensional theory,

Zvortex = 〈B′|B〉 . (5.2)

The Whittaker-like equations (5.1) imply that Zvortex must satisfy certain differential equa-

tions, often of hypergeometric type. In addition, we can use our construction to derive

identities for expectation values of twisted chiral operators of the two-dimensional theory in

Ω-background. Taken together, these results constitute a ‘finite’ version of the AGT corre-

spondence.

5.1 Boundaries and modules

We begin by describing more carefully the structure of boundary conditions.

The insertion of a (2, 2) boundary condition B at t = 0 in our setup has two main effects.

First, via the bulk-boundary OPE, the space MB of BPS local operators on the boundary

(preserved by Q and Q′) becomes a module for the algebra Cε[MC ] of local operators in

the bulk (Figure 7). This is an entirely local phenomenon, independent of the vacuum ν at

|z| → ∞ or any other features at large z. One of the main goals of [4] was to describe the

module MB associated to a particular UV boundary condition.

MB

Obdy

2

Obulk

O0
bulk

✏

Figure 7. The action of a bulk operator algebra on the vector space of boundary operators.

Second, as we move away from t = 0, any local operator Obdy ∈ MB on the boundary

defines a state in the Hilbert space Hν of the 3d theory; thus there is a map

MB
`→ Hν . (5.3)

As explained in previous sections, the Hilbert space Hν is also a module for the Coulomb-

branch algebra, and the map (5.3) respects this action. In other words, it is a homomorphism

of modules.
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The precise map (5.3) depends on the details of the intersection between the boundary

condition B at t = 0 and the vacuum boundary condition ν at spatial infinity. In particular,

one could modify the map (5.3) by adding a line operator along the circle at t = 0 and z →∞.

We will not do so here.

Given a map (5.3), the boundary condition B defines distinguished state in the Hilbert

space

|B〉 := `(1) ∈ Hν , (5.4)

which is the image of the identity operator ‘1’ on the boundary. This is the state we seek to

describe.

5.2 Local operators on a Neumann b.c.

We want to consider boundary conditions B involving Neumann boundary conditions for the

vectormultiplets that preserve the gauge symmetry G at the boundary. As discussed in [4, Sec.

2], the simplest boundary conditions of this type require an additional choice of G-invariant

Lagrangian splitting of the hypermultiplet representation,

R⊕ R̄ ' L⊕ L̄ (5.5)

This splitting need not have anything to do with the reference splitting R⊕ R̄. Let us write

the hypermultiplet chiral fields as (XL, YL) ∈ L⊕ L̄. Then the boundary condition sets

YL
∣∣
∂

= 0 , (5.6)

with Neumann boundary conditions for XL, where |∂ denotes restriction to the boundary. For

example, if G = U(1), we have a binary choice of X|∂ = 0 or Y |∂ = 0 for each hypermultiplet.

The boundary condition also depends on a choice of boundary FI parameter and theta

angle, which can be grouped into the twisted chiral combination

ξ = et2d+iθ2d . (5.7)

Formally, ξ ∈ Hom(GC,C∗) is a character of GC. Given any cocharacter A, for example

labeling a monopole operator, we denote by

ξA = e〈t2d+iθ2d,A〉 ∈ C∗ (5.8)

under the natural pairing. We denote the Neumann boundary condition with Lagrangian

splitting L⊕ L̄ and boundary parameters ξ as NL,ξ.
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The only twisted chiral operators that exist on a Neumann boundary condition are formed

from the boundary values of gauge-invariant polynomials in the fields ϕ. These are completely

unconstrained. Indeed, N = (2, 2) supersymmetry requires that if gauge symmetry is pre-

served at the boundary then ϕ has a Neumann boundary condition ∂⊥ϕ
∣∣
∂

= 0. Thus the

space of local operators on any NL,ξ is

ML,ξ = {gauge-invariant polys in ϕ} ' C[tC/W ] . (5.9)

On the other hand, monopole operators are killed by a Neumann boundary condition.

Classically, one expects their boundary values to be fixed by the boundary FI parameter

and theta angle, VA
∣∣
∂
∼ ξA. Quantum corrections modify this relation. To review how, we

introduce abelianized monopole operators vA following [1], out of which nonabelian monopole

operators are constructed. (The abelianized monopole operators were identified with fixed-

point classes in correspondence spaces in (4.43). They also appear as fixed-point classes

in the work of Braverman-Finkelberg-Nakajima [3, 70].) When brought to a boundary, an

abelianized monopole operator satisfies

vA
∣∣
∂

= ξA

∏
λ∈L, 〈λ,A〉>0

(〈λ, ϕ+mC〉)〈λ,A〉∏
α∈ roots, 〈α,A〉>0

(〈α,ϕ〉)〈α,A〉
, (5.10)

where the product in the numerator is over weights of L (counted with multiplicity), and the

product in the denominator is over roots of G. In the presence of Ω-background, the relation

is deformed to16

vA
∣∣
∂

= ξA

∏
λ∈L, 〈λ,A〉>0

〈λ,A〉−1∏
l=0

(〈λ, ϕ+mC〉+ (l + 1
2)ε)

∏
α∈ roots, 〈α,A〉>0

〈α,A〉−1∏
l=0

(〈α,ϕ〉+ lε)

=: ξA
P hyper
A (ϕ,mC)

PW
A (ϕ)

. (5.11)

The various factors in (5.10), (5.11) were understood in [4] as quantum corrections arising

from the hypermultiplets in L and the W-bosons with positive charge under the U(1)A ⊂ G

subgroup defined by A. These factors clearly resemble equivariant weights, and we will

interpret them as such in Section 5.3.

In terms of the module ML,ξ containing local operators on the boundary, the relation

(5.11) specifies the action of bulk monopoles on the identity operator. Acting on more general

16This is related to Eqn (2.58) of [4] by reversing the sign ε→ −ε of the Ω-deformation.
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polynomials f(ϕ) ∈ML,ξ, the bulk commutation relations [vA, ϕ] = εA imply that

vA · f(ϕ) = ξA
P hyper
A (ϕ,mC)

PW
A (ϕ)

f(ϕ+Aε) . (5.12)

In nonabelian theories, the denominators PW
A are nontrivial, and abelianized monopole op-

erators vA do not preserve the space of polynomials f(ϕ). However, the actual nonabelian

operators VA, constructed as Weyl-invariant sums of the vA, are expected to preserve the

space of polynomials.

For example, in SQED with N hypermultiplets, the G-invariant Lagrangian splittings are

labelled by a sign vector ε = (ε1, . . . , εN ), such that

Xi ∈ L if εi = + , Yi ∈ L if εi = − . (5.13)

Thus the basic Neumann boundary conditions can be labelled Nε,ξ. The corresponding space

of boundary operators simply consists of polynomials,

Mε,ξ = C[ϕ] , (5.14)

and the two basic monopole operators v± act on f(ϕ) ∈Mε,ξ as

v+ · f(ϕ) = ξ
∏

i s.t. εi = +

(ϕ+mi + ε
2) f(ϕ+ ε) ,

v− · f(ϕ) = ξ−1
∏

i s.t. εi = −
(−ϕ−mi + ε

2) f(ϕ− ε) .
(5.15)

It is easy to check that the algebra relations (4.15) are obeyed, up to a sign that can be

absorbed in the definition of v−.

5.2.1 Whittaker modules

The module ML,ξ defined above is a generalization of what is known as a Whittaker module

in the representation theory of complex semi-simple Lie algebras [41].

If g is a complex semi-simple Lie algebra, let g = n− ⊕ t⊕ n+ be its decomposition into

positive and negative nilpotent subalgebras and a Cartan. Then a Whittaker module M is

characterized by two properties:

• M contains an eigenvector w of n+ with nonzero eigenvalues ξ.17

• M is freely generated from w by acting with n− ⊕ t.

17Note that the commutator subalgebra [n+, n+] ⊂ n+ necessarily annihilates w. The requirement that “ξ

is nonzero” actually means that n+/[n+, n+] acts with generic, nonzero eigenvalues.

– 59 –



This is very different from a highest-weight Verma module, which would be generated from

a vector v such that n+ · v = 0.

The space ML,ξ of local operators on a Neumann boundary condition described above

is somewhat similar to a Whittaker module. Recall from Section 4.5 and (4.68) that in the

presence of real FI parameters, the Coulomb-branch algebra decomposes into positive, zero,

and negatively graded subalgebras C[MC ]< ⊕ C[MC ]0 ⊕ C[MC ]>. If the FI parameters are

generic, then all monopole operators VA belong to C[MC ]< or C[MC ]> while polynomials in

ϕ belong to C[MC ]0. As a module for the Coulomb-branch algebra, ML,ξ

• contains a unique identity operator 1 that satisfies VA · 1 ∈ C[MC ]0 · 1 for any VA ∈
C[MC ]>; and

• is freely generated from the identity 1 by acting with C[MC ]< ⊕ C[MC ]0.

In this sense ML,ξ is a generalization of a standard Whittaker module.

The generalized Whittaker modules we encounter here also have a nice geometric char-

acterization [4, Sec 2.5.1]. Namely, if we send ε → 0, the equations (5.10) obeyed at the

boundary define a holomorphic Lagrangian section of the Coulomb-branch integrable system

MC → tC/W . This section is called the support Supp(ML,ξ) of the module.

5.3 Whittaker states

Next we combine the Neumann boundary conditionNL,ξ with the vacuum boundary condition

ν at |z| → ∞ for all t. No extra data is needed in this case to specify what happens on the

circle at infinity where the two boundaries intersect — we simply require fields there to obey

both the NL,ξ conditions and to sit in the vacuum ν. Thus, we expect to find a canonical

map of modules ` : ML,ξ → Hν as in (5.3).

We are interested in finding the image of the identity operator (5.4) under this map, i.e.

the state |NL,ξ〉 ∈ Hν created by the boundary condition. Specifying this state actually fixes

the entire map, because ML,ξ is generated from the identity (by acting with polynomials in

ϕ’s) and the map ` commutes with the action of Cε[MC ].

Since the identity operator 1 ∈ML,ξ satisfies the Whittaker-like relations (5.11), the state

|NL,ξ〉 ∈ Hν must satisfy the same relations — now with vA and ϕ interpreted as elements

of the convolution algebra (singular gauge transformations) as in (4.60) acting on vortices.

Explicitly,

vA |NL,ξ〉 = ξA
P hyper
A (ϕ,mC)

PW
A (ϕ)

|NL,ξ〉 . (5.16)
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This indirectly characterizes |NL,ξ〉. However, there is also a direct definition of |NL,ξ〉 coming

(classically) from looking at solutions to the BPS equations in the presence of a Neumann

boundary condition, and (quantum mechanically) from evaluating the path integral in the

presence of a Neumann boundary condition.

Let’s begin with the BPS equations. Since DtX = DtY = 0 we see that if the hypermul-

tiplets YL ∈ L̄ are set to zero on the Neumann boundary at t = 0, they will continue to be

zero for all t. Therefore, evolving in time from the Neumann boundary, we will only be able

to reach vortex configurations “supported on L.” Algebraically, for any given vortex number

n, we find a restricted moduli space

Mn
ν,L = {(E,XL)CP1 s.t. XL

z→∞−→ GC · ν}/GC (5.17)

⊆ Mn
ν ,

where E is an algebraic GC-bundle on CP1, trivialized at infinity, and XL is a section of an

associated L-bundle. (The moment-map condition µC = 0 is automatically obeyed because

YL = 0 and L⊕L̄ is a Lagrangian splitting.) Put differently, (5.17) describes based maps from

CP1 to the Higgs-branch stack [µ−1
C (0)/GC] supported on the Lagrangian [L/GC]. Notice that

the spaceMn
ν,L will be empty unless the orbit GC · ν of the chosen vacuum is contained in L.

Quantum mechanically, the localized path integral should produce a corresponding state

|NL,ξ〉 := ξϕ/ε
∑

n∈π1(G)

11Mn
ν,L
, (5.18)

where 11Mn
ν,L
∈ H∗(Mn

ν) denotes the Poincaré dual of the fundamental class of the subvariety

Mn
ν,L ⊂ Mn

ν . (As usual, we work in TF × U(1)ε equivariant cohomology, but suppress these

groups.)

The prefactor ξϕ/ε does require a little explanation. This is a contribution to the path

integral coming from the twisted superpotential on the boundary, which in the Ω-background

takes the form
1

ε
W =

1

ε
〈t2d + iθ2d, ϕ〉 . (5.19)

This exponentiates to ξϕ/ε. Note that the contraction 〈t2d + iθ2d, ϕ〉 is naturally gauge-

invariant. For example, if G = U(K), (5.19) is 1
ε (t2d + iθ2d)Trϕ. Acting within a sector of

fixed vortex number n, we simply have ϕ ∼ −nε+ const., where the constant depends on the

weights of the flavor symmetry acting on the tangent space to the vacuum ν. Therefore, we

could also write

|NL,ξ〉 = ξconst(mC,ε)
∑

n∈π1(G)

ξ−n 11Mn
ν,L
. (5.20)
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Now the weight ξ−n is a familiar contribution coming from a topological term−(t2d+iθ2d)
∫
C F

in the localized action on the boundary, cf. [5, 6].

Mathematically, (5.18) may be taken as a definition of the state created by the Neumann

boundary condition. It is then a nontrivial conjecture that this state satisfies the Whittaker-

like conditions (5.16).

In addition to the Whittaker-like conditions, the state |NL,ξ〉 also satisfies some very

simple differential equations coming from varying the boundary parameter ξ. To be explicit,

let us choose a basis for the character lattice such that ξ = (ξ1, ..., ξr), and expand ξϕ/ε =∏
α(ξα)ϕα/ε. Then it is obvious from (5.18) that

ε ξα
∂

∂ξα
|NL,ξ〉 = ϕα |NL,ξ〉 . (5.21)

For example, in the case of a U(K) gauge theory the equation would read ε ξ ddξ |NL,ξ〉 =

(Trϕ)|NL,ξ〉. This differential equation is completely independent of the vacuum ν or even

the Lagrangian splitting L. It reflects a fundamental property of the module ML,ξ of local

operators on the Neumann boundary condition, discussed in further detail in [4, Sec. 2.5.4].

5.3.1 Example: SQED

The Lagrangian splittings involved in a Neumann boundary condition are labelled by a sign

vector ε as in (5.13), and a given Lagrangian L contains the vacuum ν1 if and only if ε1 = +,

that is if X1 ∈ L. Thus

Mn
ν,L nonempty ⇔ X1 ∈ L. (5.22)

In the extreme case ε = (+, ...,+), the space Mn
ν,L is the entire vortex moduli space

Mn
ν = CnN and therefore

|N(+,...,+),ξ〉 = ξϕ/ε
∑
n≥0

11Mn
ν

=
(
ξ−

m1
ε
− 1

2
)∑
n≥0

ξ−n |n〉 . (5.23)

Given the action of monopole operators v± in (4.15), this state clearly satisfies the Whittaker

conditions

v−|N(+,...,+),ξ〉 = ξ−1|N(+,...,+),ξ〉 , v−|N(+,...,+),ξ〉 = ξ P (ϕ+ ε
2)|N(+,...,+),ξ〉 . (5.24)

It also satisfies the differential equation

ε ξ
d

dξ
|N(+,...,+),ξ〉 = ϕ |N(+,...,+),ξ〉 . (5.25)

– 62 –



More generally, if ε is some sign vector with ε1 = +, thenMn
ν,L is a linear subspace of the

vortex moduli space, CnN+ where N+ is the number of ‘+’ in ε. The corresponding vector,

|Nε,ξ〉 =
(
ξ−

m1
ε
− 1

2
)∑
n≥0

ξ−n
( ∏
εi=−

n−1∏
l=0

(ϕ+mi + (l + 1
2)ε)

)
|n〉 , (5.26)

contains extra equivariant weights for the Euler class of the normal bundle to Mn
ν,L. This

state satisfies the generalized Whittaker conditions (5.15), namely

v±|Nε,ξ〉 = ξ±
∏
εi=±

(±(ϕ+mi) + ε
2)|Nε,ξ〉 . (5.27)

Every single |Nε,ξ〉 obeys (5.25) as well.

Finally, if ε1 = −, we simply have |Nε,ξ〉 = 0. In this case there is no nontrivial solution

to the Whittaker-like conditions in Hν . For example, if ε = (−, ...,−) we would be looking

for a state of the form |N(−,...,−),ξ〉 =
∑

n≥0 αn|n〉 that obeys v+|N(−,...,−),ξ〉 = ξ|N(−,...,−),ξ〉.
The image of v+ does not contain |0〉, so α0 = 0. By induction, this forces all the remaining

αn = 0.

5.4 Overlaps and vortex partition functions

Finally, we construct “sandwiches” of Neumann boundary conditions. Suppose we place our

theory on an interval [0, t′], with one Neumann boundary condition NL,ξ at t = 0 and a second

NL′,ξ′ at t = t′ (Figure 3 of the introduction). Combined with an Ω-background and a fixed

vacuum ν at |z| → ∞, the system effectively becomes zero-dimensional and should have a

well-defined partition function Z. There are two ways to describe it:

1) Reducing first to quantum mechanics (say, in the limit of large t′), we find that each

boundary condition defines states |NL,ξ〉 and 〈NL′,ξ′ | in the Hilbert space Hν and its

dual. The partition function is the inner product of these states

Z = 〈NL′,ξ′ |NL,ξ〉Hν . (5.28)

2) Alternatively, we may first collapse the interval [0, t′] to zero size, obtaining a 2d

N = (2, 2) theory TL,L′ . It has a well-studied standard partition function in the Ω-

background, sometimes called its vortex partition function

Z = Zvortex[TL,L′ , ν] . (5.29)
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The equivalence of these two perspectives follows from the fact that in the BPS sector of the

3d theory that contributes to the partition function (i.e. in the cohomology of Q and Q′)

t-dependence is trivialized, so the actual length of the interval [0, t′] is irrelevant.

Let us spell out some of the details of these constructions. First consider the vortex

partition function. The 2d theory TL,L′ is a gauged linear sigma model, with gauge group G

and chiral matter in the representation L ∩ L′. It has a complexified FI parameter equal to

the difference of the boundary FI parameters 2πiτ = (t2d + iθ2d) − (t′2d + iθ′2d) on the two

boundaries at t = 0 and t = t′. In the limit t′ → 0, the dependence on the 3d FI parameter

tR disappears. At low energies, the theory flows to a sigma-model to the Higgs branch

YL,L′ ' (L ∩ L′)stab/GC , (5.30)

where the stability condition depends on the FI parameter τ . Assuming that the difference

t2d− t′2d is aligned with the 3d FI parameter tR, and that L and L′ are both compatible with

the 3d vacuum ν, then YL,L′ can be identified with a complex submanifold of the 3d Higgs

branch that contains ν,

ν ∈ YL,L′ ⊂ MH . (5.31)

The 2d vortex partition function in this case is also known as the equivariant J-function

of YL,L′ , appearing in Gromov-Witten theory, cf. [20, 22, 23]. It takes the form

Zvortex[TL,L′ , ν] = (const) ·
∑

n∈π1(G)

q−n
∫
Mn

ν;L,L′

11Mn
ν;L,L′

, (5.32)

where 11Mn
ν;L,L′

denotes the fundamental class of the vortex moduli space

Mn
ν;L,L′ = {n-vortex moduli space of TL,L′ with vacuum ν at infinity} (5.33)

' {maps to the stack [(L ∩ L′)/GC] of degree n, tending to ν at infinity} .

Here q = e2πiτ = ξ/ξ′ is the exponentiated 2d FI parameter, and there may be an additional

constant prefactor analogous to that in (5.20) above.

Let us compare this to the inner product of Whittaker states (5.28). The state |NL,ξ〉
was expressed as a weighted sum (5.18) of fundamental classes of moduli spacesMn

ν,L ⊂Mn
ν ,

containing vortices supported on the image of L in the 3d Higgs branch. Similarly, we the

dual state is

〈NL′,ξ′ | =
∑

n′∈π1(G)

11Mn′
ν,L′

(ξ′)ϕ/ε = (const)
∑

n′∈π1(G)

(ξ′)n
′
11Mn′

ν,L′
. (5.34)
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It belongs to a dual Hilbert space that still takes the form H∗ν ' ⊕nH
∗(Mn

ν), but on which

monopole operators act “from the bottom,” in an opposite representation. For example, a

correspondence such as (4.22) of Section 4.2 acts by pulling back via π′ and pushing for-

ward via π. In analogy with (5.16), the dual state 〈NL′,ξ′ | should satisfy the Whittaker-like

conditions

〈NL′,ξ′ | vA = 〈NL′,ξ′ | (ξ′)A
P hyper
−A (ϕ,mC)

PW
−A(ϕ)

. (5.35)

The inner product of two equivariant cohomology classes (as in Section 3.3) is given by

taking the cup product and integrating over the entire 3d vortex moduli spaceMν . However,

since

Mn
ν,L ∩Mn′

ν,L′ =

Mn
ν;L,L′ n = n′

� otherwise
, (5.36)

the inner products are just

〈11Mn′
ν,L′
|11Mn

ν,L
〉 = δn,n′

∫
Mn

ν

11Mn
ν;L,L′

= δn,n′

∫
Mn

ν;L,L′

11Mn
ν;L,L′

, (5.37)

and we rather explicitly obtain an equivalence 〈NL′,ξ′ |NL,ξ〉 = Zvortex[TL,L′ ; ν], with the ex-

pected identification q = ξ/ξ′.

For example, following the discussion of Section 5.3.1 for SQED, we could choose both

Lagrangian splittings so that L = L′ and ε = ε′ = (+, ...,+). Then the 2d theory TL,L′ is

a U(1) gauge theory with chiral multiplets (X1, ..., XN ) of charge +1, and YL,L′ = CPN−1

is just the base of the 3d Higgs branch MH = T ∗CPN−1. In this case the inner product of

Whittaker states (5.23) is( ξ
ξ′

)−m1
ε
− 1

2
∑

n,n′≥0

(ξ′)n
′
ξ−n〈n′|n〉 = q−

m1
ε
− 1

2

∑
n≥0

q−n∏n−1
l=0 P (−m1 + (l − n)ε)

= q−
m1
ε
− 1

2

∑
n≥0

q−n

(−ε)nNn!
(
m1−m2

ε + 1
)
n
· · ·
(
m1−mN

ε + 1
)
n

, (5.38)

where

(x)n := x(x+ 1) · · · (x+ n− 1) (5.39)

is the Pochhammer symbol. This is the equivariant J-function of CPN−1.

More generally, consider L = L′ but ε = ε′ = (+, ∗, ..., ∗) with both N+ plus signs and N−

plus minus signs. Then the 2d theory TL,L′ is a U(1) gauge theory with N+ chiral multiplets

{Xi}εi=+ of charge +1 and N− chiral multiplets {Yi}εi=− of charge −1. Its 2d Higgs branch

YL,L′ ' O(−1)⊕N− → CPN+−1 is the conormal bundle of a Schubert cell CPN+−1 in the base
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of the 3d Higgs branch. The Whittaker-like state |Nε,ξ〉 is given by (5.26), while the dual

state is

〈Nε,ξ′ | = (ξ′)
m1
ε

+ 1
2

∑
n≥0

〈n| (ξ′)n
( ∏
εi=−

n−1∏
l=0

(ϕ+mi + (l + 1
2)ε)

)
. (5.40)

The inner product then gives

〈Nε,ξ′ |Nε,ξ〉 = q−
m1
ε
− 1

2

∑
n≥0

∏
εi=−

(
m1−mi

ε + 1
)
n∏

i>1, εi=+

(
m1−mi

ε + 1
)
n

q−n

(−ε)n(N+−N−)n!
. (5.41)

This happens to be a generalized hypergeometric function. If we arrange the signs so that

εi = + for i ≤ N+ and εi = − for i > N+, we can write it as

〈Nε,ξ′ |Nε,ξ〉 = q−
m1
ε
− 1

2 N+FN−

[ m1−mN++1

ε + 1, ... , m1−mN
ε + 1

m1−m2
ε + 1, ... ,

m1−mN+

ε + 1
;

q

(−ε)N+−N−

]
. (5.42)

The expression (5.41) is also known to be the vortex partition function of the 2d theory

TL,L′ [6, 26].

One could also consider boundary conditions with L 6= L′. We only give the sim-

plest, most dramatic example. If ε = (+, ...,+) but ε′ = (+,−, ...,−), the 2d theory

TL,L′ is a U(1) theory with a single chiral X1 of charge one and has a trivial 2d Higgs

branch. Our two Whittaker-like states are |Nε,ξ〉 = ξ−
m1
ε
− 1

2
∑

n≥0 ξ
−n|n〉 and 〈Nε′,ξ′ | =

(ξ′)
m1
ε

+ 1
2
∑

n≥0〈n| (ξ′)n
∏
i>1

∏n−1
l=0 (ϕ + mi + (l + 1

2)ε), and due to many cancellations the

inner product just gives

〈Nε′,ξ′ |Nε,ξ〉 = q−
m1
ε
− 1

2

∞∑
n=0

q−n

(−ε)n n!
= q−

m1
ε
− 1

2 e−1/(ε q) , (5.43)

which is the vortex partition function of the simple 2d theory.

5.4.1 Differential equations

In the preceding SQED example, we found that overlaps of vortex states take the form of

generalized hypergeometric functions. These functions famously satisfy a differential equation

in the parameter q. In fact, as discussed in the introduction, more general 2d vortex partition

functions (or equivariant J-functions) are all expected to satisfy differential equations in q.

The differential equations can be explicitly derived from the central relation Zvortex(q; ...) =

〈NL′,ξ′ |NL,ξ〉 and the defining properties of Whittaker states.

Schematically, the idea is to first observe that q = ξ/ξ′, so that q∂/∂q = ξ∂/∂ξ, and to

use the relations (5.21) to write

f
(
ε q

∂

∂q

)
Zvortex = 〈NL′,ξ′ |f

(
ε ξ

∂

∂ξ

)
|NL,ξ〉 = 〈NL′,ξ′ |f(ϕ)|NL,ξ〉 (5.44)
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for any polynomial f in the logarithmic derivatives q∂/∂q. Then we recall that monopole

operators in the Coulomb-branch algebra satisfy relations of the form V−AVA = fA(ϕ). (Here

we really are being schematic, as for general nonabelian theories such a relation might in-

volve a sum over monopole operators with various dressing factors on the LHS. Also, we are

suppressing the dependence on complex masses mC and ε.) On the other hand, due to the

Whittaker-like conditions (5.16), (5.35), the monopole operators act on Whittaker states to

give

VA |NL,ξ〉 = ξApA(ϕ) |NL,ξ〉 , 〈NL′,ξ′ |V−A = 〈NL′,ξ′ |(ξ′)−Ap′A(ϕ) . (5.45)

for some pA and p′A. Putting all this together, we find that

fA

(
ε q

∂

∂q

)
Zvortex = 〈NL′,ξ′ |V−AVA|NL,ξ〉

= 〈NL′,ξ′ |qAp′A(ϕ)pA(ϕ)|NL,ξ〉

= qA p′A

(
ε q

∂

∂q

)
pA

(
ε q

∂

∂q

)
Zvortex ,

(5.46)

or [
fA

(
ε q

∂

∂q

)
− qA p′A

(
ε q

∂

∂q

)
pA

(
ε q

∂

∂q

)]
Zvortex[TL,L′ , ν; q] = 0 . (5.47)

These are the equations we seek. In principle, there is such an equation for every cocharacter

A, but only finitely many equations are independent.

To illustrate the procedure explicitly, consider SQED with boundary conditions ε = ε′ =

(+, ...,+). Recall that v+v− = P (ϕ+ ε
2). Thus

P
(
ε q

∂

∂q
+
ε

2

)
Zvortex(q) = 〈Nε,ξ′ |P (ϕ+ ε

2)|Nε,ξ〉

= 〈Nε,ξ′ |v+v−|Nε,ξ〉
= 〈Nε,ξ′ |ξ′ξ−1|Nε,ξ〉
= q−1Zvortex(q) ,

(5.48)

whence
[∏N

i=1

(
ε q ∂/∂q +mi + ε

2

)
− q−1

]
Zvortex(q) = 0, which is indeed the hypergeometric

equation satisfied by (5.38). Notice that the derivation of this equation did not actually

depend on the choice of vacuum ν; the N different choices of vacuum produce the N linearly

independent solutions to the hypergeometric equation.

More generally, if ε = ε′ = (+, ∗, ..., ∗), analogous manipulations lead to

N∏
i=1

(
ε q

∂

∂q
+mi +

ε

2

)
Zvortex = q−1

∏
εi=−

(
ε q

∂

∂q
+mi −

ε

2

)2
Zvortex (5.49)

=
∏
εi=−

(
ε q

∂

∂q
+mi +

ε

2

)
q−1

∏
εi=−

(
ε q

∂

∂q
+mi −

ε

2

)
Zvortex .
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For i 6= 1, the operators ε q ∂/∂q + mi + ε
2 are invertible as long as mass parameters are

generic, so this equation reduces to[ ∏
εi=+

(
ε q

∂

∂q
+mi +

ε

2

)
− q−1

∏
εi=−

(
ε q

∂

∂q
+mi −

ε

2

)]
Zvortex(q) = 0 , (5.50)

which is the hypergeometric differential equation governing (5.41).

5.4.2 Quantization of 2d twisted-chiral rings

In addition to taking overlaps of basic Neumann boundary conditions to produce 2d vortex

partition functions, we may consider insertions of any bulk Coulomb branch operator O ∈
Cε[MC ]

〈NL′,ξ′ |O|NL,ξ〉 = 〈O2d〉 . (5.51)

This computes the expectation value of a particular twisted chiral operator O2d in the Ω-

deformed 2d gauge theory TL,L′ . In fact all operators in the 2d twisted-chiral ring can be

created this way, by ‘sandwiching’ a 3d Coulomb-branch operator between Neumann bound-

ary conditions. Moreover, the differential equations (5.47) that we derived above can be

reinterpreted as relations in a quantized version of the 2d twisted-chiral ring.

We outline a bit of this structure here. We emphasize, however, that very few of the actual

results are new. The differential equations of Section 5.4.1 and many of their interpretations

were discussed in the introduction. Expectation values of twisted-chiral-ring operators in the

Ω-background have recently been computed explicitly by [71] using localization methods (see

also the related [72]). We are simply offering a new perspective on these relations, coming

from the overlaps of boundary conditions.

Let us first recall that the 2d theory TL,L′ has a Higgs branch YL,L′ that (for suitable

values of the FI parameter) may be viewed as a complex submanifold of the 3d Higgs branch

MH . In the absence of the Ω-deformation, the 2d theory has a twisted-chiral ring R2d

generated by gauge-invariant polynomials in the complex scalar fields ϕ, viewed as fields in

the 2d gauge multiplet. (They descend from the 3d complex scalar ϕ.) Schematically,

R2d = C[ϕ]G
/

(relations) . (5.52)

The relations depend on complex masses mC (twisted masses in the 2d theory) and on the

exponentiated, complex FI parameters q. This ring can be identified as the equivariant

quantum cohomology ring of the 2d Higgs branch,

R2d ' QH∗TH (YL,L′) . (5.53)
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When an Ω-background is turned on, one can still consider expectation values of operators

O2d ∈ R2d, but the ring structure is destroyed. Intuitively, this is because operators are forced

to live at the origin and there is no longer a notion of OPE. Nevertheless, there is still a way

to make sense of the relations in (5.52). Recall from (5.44) that inserting an operator ϕ in

the Ω-deformed partition function has the same effect as acting on the bare partition function

with a differential operator

ϕ̂ := ε q
∂

∂q
←→ insertion of ϕ . (5.54)

We can also “act” on the partition function with q itself, simply as multiplication. Together,

ϕ̂ and q generate a quantum algebra C[ϕ̂, q]G, with relations

[ϕ̂, q] = ε q . (5.55)

(We retain the superscript G to emphasize that we are only considering gauge-invariant poly-

nomials in ϕ̂.) In the limit ε → 0, we can simply interpret q as a number and ϕ̂ → ϕ as the

usual twisted-chiral ring generator. Thus C[ϕ̂, q]G → C[ϕ]G becomes the usual algebra of 2d

twisted-chiral operators, before relations are imposed.

In the presence of Ω-background, the analogues of twisted-chiral ring relations are pre-

cisely the differential equations that we found in Section 5.4.1. These equations, schematically

of the form p(ϕ̂, q) · Zvortex(q) = 0, generate a left ideal I2d in the algebra C[ϕ̂, q]G — this

ideal is just the set of all differential operators that annihilate the vortex partition function.

Thus the analogue of the twisted-chiral ring in the Ω-background is the left C[ϕ̂, q]G-module

generated by Zvortex, namely

R̂2d = Q̂H∗TH (TL,L′) := C[ϕ̂, q]G
/
I2d . (5.56)

In the limit ε → 0, the ideal I2d just becomes the usual (commutative) ideal of relations in

the twisted-chiral ring, and R̂2d → R2d.

Our interpretation of vortex partition functions as overlaps of boundary states provides

an interesting construction of the differential equations in I2d, coming from relations in the 3d

Coulomb-branch algebra together with the Whittaker-like conditions obeyed by the boundary

states.

For example, in SQED with N hypermultiplets and boundary conditions ε = ε′ =

(+, ...,+), we saw above that the 2d theory TL,L′ is a U(1) theory with N chiral multiplets

of charge one, whose Higgs branch is YL,L′ = CPN−1. The equivariant quantum cohomology

ring of CPN−1 is (N − 1) dimensional,

R2d = C[ϕ]
/(

(ϕ+m1)(ϕ+m2)...(ϕ+mN )− q−1
)
. (5.57)
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The differential equation derived in (5.48) “quantizes” this ring, promoting it to a right

module for the the algebra C[ϕ̂, q],

R̂2d = C[ϕ̂, q]
/(

(ϕ̂+m1 + ε
2)(ϕ̂+m2 + ε

2)...(ϕ̂+mN + ε
2)− q−1

)
. (5.58)

In (5.48) we explicitly derived this module starting from the 3d Coulomb-branch relations

v+v− = (ϕ + m1 + ε
2)...(ϕ + mN + ε

2) together with the Whittaker conditions on boundary

states.

5.5 Example: SQCD

Consider SQCD with G = U(K) and N fundamental hypermultiplets (X,Y ), as in Sections

3.5.1 and 4.3.1. We take tR < 0 and choose the usual vacuum Xa
i = δai at infinity. Choosing

the Lagrangian L to contain all the X’s, the boundary state corresponding to NL,ξ obeys the

conditions

v−a |NL,ξ〉 = ξ
1∏

b6=a(ϕb − ϕa)
|NL,ξ〉

v+
a |NL,ξ〉 = ξ−1

∏N
j=1(ϕa +mj + ε

2)∏
b 6=a(ϕa − ϕb)

|NL,ξ〉 ,
(5.59)

and can be written explicitly in terms of fixed-point classes as

|NL,ξ〉 =
∑
n≥0

∑
k

ξTrϕ/ε|n, k〉 = ξ−
∑

1≤i≤K mi/ε−K/2
∑
n≥0

∑
k

ξ−n|n, k〉 . (5.60)

Again, this reflects the fact that Neumann boundary conditions are compatible with all vortex

configurations.

The overlap of Neumann boundary conditions with the same Lagrangian L is

〈NL,ξ′ |NL,ξ〉 = q−
∑

1≤i≤K mi/ε−K/2
∑
n≥0

∑
k

q−n

ωn,k
(5.61)

where ωn,k is the usual equivariant tangent-space weight (3.38). This is the vortex partition

function of 2d U(K) gauge theory with N chiral multiplets in the fundamental representation.

It (roughly) counts holomorphic maps to the two-dimensional Higgs branch YL,L ' Gr(K,N).

It is illuminating to write the constraints on |NL,ξ〉 in terms of the generating functions

for dressed monopole operators. In terms of the polynomial generating functions U±(z) the

condition is
U−(z) = −ξ−1

U+(z) = ξ
[
P (z + ε

2) mod Q(z)
] (5.62)

which is compatible with the quantum determinant relation (4.52). In the limit ε → 0, this

defines a nice holomorphic lagrangian in the moduli space of K PSU(2) monopoles with N

Dirac singularities.
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6 Vortex quantum mechanics

In sections 2 and 3, we argued that a 3d N = 4 gauge theory in an Ω-background in the x1,2-

plane localizes to an infinite-dimensional supersymmetric quantum mechanics on the x3-axis.

The Hilbert space of supersymmetric vacua of this theory decomposed as a direct sum

Hν =
⊕

n∈π1(G)

Hn
ν , (6.1)

where each summand is given by the equivariant cohomology of a moduli space of vorticesMn
ν

labelled by a vortex number n ∈ π1(G). In this section, we first describe each summand in

isolation as an gauged supersymmetric quantum mechanics Q(ν, n) with a finite-dimensional

target, whose Higgs branch is the moduli space of vortices Mn
ν . This quantum mechanics

is known from the brane construction of Mn
ν : for three-dimensional triangular quiver gauge

theories, they are ‘handsaw’ quiver varieties. Monopole operators are then realized as a family

of interfaces between these vortex quantum mechanics, which we construct in detail.

One way to think about Q(ν, n) is as an effective description of the deep-infrared limit of

the original 3d N = 4 theory, in an Ω-background, with boundary condition ν :

3d N = 4
deep-IR
;

⊕
n

Q(ν, n) . (6.2)

The vortex numbers n label superselection sectors of the deep-infrared theory. We then correct

the deep-infrared description by adding back in the monopole operators, which must take the

form of interfaces between different sectors Q(ν, n) and Q(ν, n′). This is similar in spirit to

classic constructions of Cecotti-Vafa [24, 73] and more recently [74], which analyzed massive

2d N = (2, 2) theories by first approximating them as a direct sum of vacua, then correcting

the approximation with solitons (interfaces) among the vacua.

In this section, we proceed straight to examples, first SQCD, and then triangular quiver

gauge theories.

6.1 SQCD

6.1.1 Brane construction

We first consider U(K) gauge theory with N fundamental hypermultiplets. The brane con-

struction of the moduli spaceMn
ν of vortices is known from the work of Hanany and Tong [9].

The brane set-up consists of D3-branes with worldvolume 0126 and two NS5-branes with

worldvolume 012345 separated in the x6 direction. In this construction, the U(K) gauge
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theory arises from a stack of K D3-branes suspended between two NS5-branes and the funda-

mental hypermultiplets are provided by N semi-infinite D3-branes ending on the right-hand

NS5-brane, as drawn in Figure 8. Turning on a real FI parameter tR corresponds to trans-

lating the right-hand NS5-brane (NS5’) along x7, while generic complex masses m1, . . . ,mN

correspond to separating the D3-branes in the x4, x5-directions. There are
(
N
k

)
distinct con-

figurations for the D3 branes, which are in 1-1 correspondence with the isolated massive vacua

νI described in Section 3.5.1.

NS5

NS50

tRn D1

K D3

N�K D3

x3,4,5

x7,8,9

x6

Figure 8. The brane construction of vortices in 3d SQCD. The vortices are the D1-branes (red line).

Now we can consider n D1-branes connecting the K D3-branes and the NS5’-brane. They

become the vortices with magnetic flux n in the 3d gauge theory. The low energy dynam-

ics of the D1-branes can be described by an N = (2, 2) supersymmetric gauged quantum

mechanics18 with gauge group U(n) with K fundamental chiral multiplets (q, ψȧ), N − K
anti-fundamental chiral multiplets (q̃, ψ̃ȧ), and an adjoint chiral multiplet (B,χȧ). The fields

of the vectormultiplet are a gauge field At, gauginos λȧ, λ̄ȧ, three scalars φI and an auxiliary

field D. Turning off the complex mass parameters, the vortex quantum mechanics would

have R-symmetry SU(2)C × U(1)H , and ȧ and I are doublet and triplet indices of SU(2)C ,

respectively. The flavor symmetry is [U(K)× U(N −K)]/U(1)× U(1)ε, acting as

q, ψ q̃, ψ̃ B, χ

U(K) K 1 1

U(N −K) 1 N−K 1

U(1)ε
1
2

1
2 1

(6.3)

The U(1)ε here is the symmetry (2.35) associated to the Ω-background.

18Throughout this section, we use the notation of two-dimensional supersymmetry to describe different types

of one-dimensional gauged quantum mechanics and zero-dimensional gauged matrix models. We simply mean

that the latter theories can be obtained by dimensional reduction of a two-dimensional gauge theory of the

appropriate type.
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The Lagrangian for the vector multiplet and a chiral multiplet is given by

Lvec = Tr
(

1
2Dtφ

IDtφ
I + iλ̄Dtλ− 1

2D
2 + 1

4 [φI , φJ ]2 + λ̄σI [φI , λ]
)
,

Lchi = |Dtq|2 + iψ̄Dtψ − q†φIφIq − iq†Dq − ψ̄σIφIψ +
√

2iψ̄λ̄q −
√

2iq†λψ ,
(6.4)

where σI are SU(2)C Pauli matrices. The supersymmetry transformation of the vector mul-

tiplet is given by

δAt = iελ̄− iε̄λ , δφI = iεσI λ̄+ iε̄σIλ ,

δλȧ = σI
ȧḃ
εḃ
(
−Dtφ

I +
1

2
εIJK [φJ , φK ]

)
+ iεȧD ,

δλ̄ȧ = σI
ȧḃ
ε̄ḃ
(
Dtφ

I +
1

2
εIJK [φJ , φK ]

)
− iε̄ȧD ,

δD = ε̄Dtλ+ εDtλ̄+ i[φI , εσI λ̄] + i[φI , ε̄σIλ] , (6.5)

and each chiral multiplet transforms under SUSY as

δq =
√

2εψ , δq† = −
√

2ε̄ψ̄ ,

δψȧ = −i
√

2ε̄ȧDtq −
√

2σI
ȧḃ
ε̄ḃφIq ,

δψ̄ȧ = i
√

2εȧDtq
† −
√

2σI
ȧḃ
εḃq†φI . (6.6)

We introduce the notation φ ≡ φ1 + iφ2 for the complex scalar of charge +1 under U(1)C ⊂
SU(2)C .

Complex masses and the Ω-background parameter have a common origin in the vortex

quantum mechanics as twisted masses for flavor symmetries. Introducing them modifies the

supersymmetry transformations schematically by φ → φ + mC + ε. For simplicity, we will

choose the vacuum ν labelled by {1, . . . ,K} ⊂ {1, . . . , N}; then parameters {m1, . . . ,mK} (of

the 3d N = 4 theory) are twisted masses for the fundamental chirals, while {mK+1, . . . ,mN}
are twisted masses for the anti-fundamental chirals. As expected already from the 3d theory,

twisted masses break the R-symmetry of the quantum mechanics from SU(2)C to U(1)C .

The vortex quantum mechanics also has a 1d FI parameter ζ, which is identified with the

inverse of the 3d gauge coupling as ζ ∼ 1/g2.

6.1.2 Hilbert space

Keeping the 1d FI parameter finite and setting the twisted masses to zero, the supersymmetric

quantum mechanics has a Higgs branch of vacua parametrized by the scalar fields in the chiral

multiplets subject to the D-term constraint,

[B,B†] + qq† − q̃†q̃ = ζ , (6.7)
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with φI = 0, modulo U(n) gauge transformations. This defines a Kähler manifold of complex

dimension nN , which coincides with the moduli space of vortices Mn
ν .

Turning back on the twisted masses m1, . . . ,mN and ε, the Higgs branch of the super-

symmetric quantum mechanics is lifted to the fixed-point set of TH ×U(1)ε. The fixed points

are found by solving the D-term constraint and

(φ+mi + ε
2)qi = 0 , −q̃j(φ+mj − ε

2) = 0 , [φ,B] + εB = 0 , [φ, φ†] = 0 , (6.8)

for all i = 1, · · · ,K and j = K + 1, · · · , N . The fixed points are labelled by non-negative

integers k = (k1, · · · , kK) such that
∑

a ka = n. The explicit solution to (6.8) corresponding

to each such k is

φ = φ1 ⊕ ...⊕ φK with φa = −diag
(
ma + 1

2ε,ma + 3
2ε, ...,ma + (ka − 1

2)ε
)
,

qi =

(0, ..., 0,

i︷ ︸︸ ︷√
kaζ, 0, ..., 0) i = 1 +

∑b
a=1 ka for some b

0 oth.

, q̃ = 0 ,

B = B1 ⊕ ...⊕BK with Ba =



0 0 · · · 0 0√
(ka − 1)ζ 0 · · · 0 0

0
√

(ka − 2)ζ · · · 0 0
. . .

0 0 · · · √ζ 0


.

(6.9)

The Hilbert space of the vortex quantum mechanics is the equivariant cohomology ofMn
ν

with respect to the action of TH × U(1)ε. Each equivariant fixed point contributes a state

|n, k〉, normalized as usual such that

〈n, k|n′, k′〉 = δn,n′δk,k′/ωn,k , (6.10)

where ωn,k is the equivariant weight of the fixed point (3.38). We will derive this result in

the following section by computing the partition function of the vortex quantum mechanics

on an interval with the insertion of an ‘identity’ interface. Taking a direct sum over the

Hilbert spaces of the supersymmetric vortex quantum mechanics with n ≥ 0, we recover the

full Hilbert space of the effective N = 4 quantum mechanics described in Section 3.5.

6.1.3 Interfaces

We now discuss monopole operators in the vortex quantum mechanics. In our setting, a

monopole operator is represented as an interface interpolating between a pair of vortex quan-

tum mechanics with different gauge groups. We will focus on the monopole operators v± that
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change the vortex number by one unit. The other monopole operators vn with |n| > 1 can

be constructed by concatenation.

In particular, we consider a U(n) vortex quantum mechanics on the half-line t < 0 and a

U(n′) vortex quantum mechanics on t > 0 with Neumann-type boundary conditions at t = 0.

Without loss of generality we assume that n′ ≥ n. We then couple the theories at t = 0

by adding boundary matrix degrees of freedom and appropriate superpotential couplings. In

the case n′ = n this will construct an ‘identity’ interface allowing the computation of the

norms 〈n, k|n, k〉. In the case n′ = n + 1, this will allow us to compute correlation functions

〈n+ 1, k′|v+|n, k〉 and 〈n, k|v−|n+ 1, k′〉 of monopole operators between pairs of vortex states.

Our proposal for the interfaces is guided by the mathematical construction of Hecke cor-

respondences for the handsaw quiver varieties in [10]. The first step is to impose a Neumann-

type boundary condition at t = 0 for the two theories on t < 0 and t > 0. This boundary

condition is given by

At = φ3 = 0 , ∂tφ = ∂tB = ∂tq = ∂tq̃ = 0 . (6.11)

Supersymmetry then requires that

ε̄λ = ε̄σ3λ = 0 , εσIχ = εσIψ = εσI ψ̃ = 0 (I = 1, 2) . (6.12)

One can easily check that the 1d action with this boundary condition is invariant under two

supersymmetries parametrized by ε+ and ε̄+. They correspond to the bulk supersymmetries

Q,Q′ from (2.14) mutually preserved by boundary conditions and vortices. Each chiral mul-

tiplet in the supersymmetric quantum mechanics leaves a N = (0, 2) chiral multiplet at the

boundary.

The second step is to add matrix-model degrees of freedom at t = 0 preserving the

N = (0, 2) supersymmetry with appropriate superpotential couplings. In particular, we will

introduce a bi-fundamental chiral multiplet and three Fermi multiplets at t = 0, whose lowest

components transform in the representations

υ : chiral multiplet in (n̄′, n,1,1) ,

γ : Fermi multiplet in (n̄′, n,1,1) ,

η : Fermi multiplet in (1, n,K,1) ,

η̃ : Fermi multiplet in (n̄′,1,1,N−K) ,

(6.13)

under the U(n′) × U(n) × U(K) × U(N − K) symmetries of the supersymmetric quantum

mechanics at t < 0 and t > 0. The interactions at the interface are specified by N = (0, 2)
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superpotentials for the Fermi multiplets

Eγ = υB′ −Bυ , Eη = υq′ − q , Eη̃ = q̃′ − q̃υ , (6.14)

together with Jγ = Jη = Jη̃ = 0. Here the primed and unprimed fields correspond to the

quantum mechanics on t > 0 and t < 0 respectively. Note that the flavor symmetries on

either side of the interface are naturally identified by the superpotentials.

Keeping the 1d FI parameters ζ finite and setting the twisted masses to zero, the system

has a Higgs branch parametrized by the chiral fields on either side and the bifundamental

field υ at the interface, subject to the relations

[B,B†] + qq† − q̃†q̃ − ζ = 0 ,

[B′, (B′)†] + q′(q′)† − (q̃′)†q̃′ − ζ = 0 ,

υB′ = Bυ , υq′ = q , q̃′ = q̃υ , (6.15)

together with φ = φ′ = 0, and modulo the action of U(n) and U(n′) gauge transformations.

The first two lines are the standard D-term contributions from the vortex quantum mechanics,

whereas the third line sets to zero the ‘E-type’ N = (0, 2) superpotentials at the interface.

This defines a finite dimensional Kähler quotient Zn′,n
ν with natural projections onto both

Mn′
ν and Mn

ν . The complex dimension is

nN + n′N + nn′ − nn′ − nK − n′(N −K) = nN + (n′ − n)K , (6.16)

where the first two summands on the left correspond to the dimension of the moduli space

of n and n′ vortices respectively, while the third summand comes from the bi-fundamental

scalar υ and the last three from the superpotential constraints at the interface. We consider

two cases:

• n′ = n: the complex dimension is nN and Zn,n
ν is the diagonal in Mn

ν ×Mn
ν . This is

the expected result for an identity interface. In particular, the bifundamental field υ is

simply a complex gauge transformation.

• n′ = n + 1: the complex dimension is N(n + 1) +K. This is consistent with

Zn+1,n
ν =Mn+1,n

,ν × C , (6.17)

where Mn+1,n
,ν is the correspondence of Section 4.2 and the factor C parameterizes the

position of the monopole operator in the z-plane. In the correspondence Mn+1,n
,ν the

position was fixed to z = 0. We will therefore need to remove the contributions from

the factor of C in order find precise agreement.
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We now compute the partition function of the quantum mechanical system with a super-

symmetric vacuum |n, k〉 at some t1 < 0, a supersymmetric vacuum |n′, k′〉 at some t2 > 0 and

an interface at t = 0. The saddle point of the path integral corresponds to the equivariant

fixed point of the correspondence Zn+1,n
ν labelled by the pair of partitions k, k′. Note that the

equivariant fixed points of Zn+1,n
ν are labelled by a pair of equivariant fixed points for Mn′

ν

and Mn
ν with the value of the bifundamental chiral υ determined by the final line of (6.15).

The 1-loop contributions from fluctuations around the saddle point contains contributions

from three sources: a) the quantum mechanics on t > 0; b) the quantum mechanics on t < 0;

and c) the matrix model degrees of freedom at t = 0. First, the contributions coming from

a) and b) are given by

Z1−loop
t>0 = Z1−loop

n′,k′ , Z1−loop
t<0 = Z1−loop

n,k (6.18)

where

Z1−loop
n,k =

∏n
I 6=J(φI − φJ)∏n

I,J=1(φI − φJ + ε)

n∏
I=1

1∏K
i=1(φI +mi + ε

2)
∏N
i=K+1(−mi − φI + ε

2)
. (6.19)

The additional contribution from the matrix degrees of freedom at t = 0 is given by

Z1−loop
t=0 =

n∏
I=1

n′∏
J=1

(φI − φ′J + ε)

(φI − φ′J)
·

n∏
I=1

K∏
i=1

(φI +mi +
ε

2
) ·

n′∏
J=1

N∏
j=K+1

(−mj − φ′J +
ε

2
) , (6.20)

Then the localized partition function with the interface can be expressed as the residue of a

product of the 1-loop contributions evaluated at the supersymmetric vacua (6.9) correspond-

ing to k and k′ for φI and φ′I respectively.

Z(n′,k′)×(n,k) = Resφ,φ′ Z
1−loop
t>0 · Z1−loop

t=0 · Z1−loop
t<0 . (6.21)

Note that the contribution from the matrix degrees of freedom cancels all the poles of φI

corresponding to the supersymmetric vacuum labelled by k, and instead introduce new poles

at φI − φ′J = 0. Therefore, the the partition k should be a subset of the partition k′, i.e.

ka ≤ k′a for all a. Otherwise the partition function becomes trivial, which implies that the

full system with the interface has no corresponding supersymmetric vacuum.

Plugging the saddle point values of φI and φ′I into the 1-loop contributions (and removing

poles and zeros), we find that Z1−loop
t>0 = 1/ωn,k and Z1−loop

t<0 = 1/ωn′,k′ where

ωn,k =

K∏
i=1

ki∏
s=1

 K∏
j=1

(mj −mi + (1 + kj − s)ε)
N∏

j=K+1

(mi −mj + sε)

 . (6.22)
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is an equivalent expression for the the equivariant weight (3.38). An similar computation

leads to the contribution

Z1−loop
t=0 =

K∏
i,j=1

ki∏
s=1

(
mj −mi + (1 + k′j − s)ε

)
·
K∏
i=1

N∏
j=K+1

k′i∏
s=1

(mi −mj + sε) . (6.23)

Multiplying these contributions gives the desired partition function. When n′ = n + 1 we

further multiply by a factor of ε to remove the contribution from C in (6.17) corresponding

to the position of the monopole.

Let us first consider n′ = n. In this case, we are inserting an identity interface at t = 0

and therefore our computation result should reproduce the overlap 〈n, k′|n, k〉. Indeed, the

contribution from the matrix degrees of freedom is given by Z1−loop
t=0 = δk,k′ωn,k and therefore

we reproduce the normalization (6.10).

In the case n′ = n + 1, we expect the partition function to reproduce the correlation

function of monopole operators 〈n + 1, k′|v+
a |n, k〉. This partition function vanishes unless

k′ = k + δa for some 1 ≤ a ≤ K as discussed above. Putting all contributions together, we

find

〈n + 1, k + δa|v+
a |n, k〉 (6.24)

=
K∏
i 6=a

1

(mi−ma+(ki−ka)ε)
K∏
i=1

ki∏
s=1

1∏K
j=1(mj−mi+(1+kj−s)ε)

∏N
j=K+1(mi−mj+sε)

.

This result can also be interpreted as the correlation function with the monopole operator

v−a . So we have the relation

〈n, k|v−a |n + 1, k + δa〉 = 〈n + 1, k + δa|v+
a |n, k〉 . (6.25)

Using these correlation functions, we can extract explicit forms of the actions of monopole

operators on vortex states. The monopole operators act by

v+
a |n, k〉 = C+

a |n + 1, k + δa〉 , v−a |n, k〉 = C−a |n− 1, k − δa〉 , (6.26)

with some coefficients C±a . One can easily compute the coefficients by sandwiching the vortex

states 〈n + 1, k + δa| and 〈n, k| on these relations. Some simple algebra leads to

C+
a =

〈n + 1, k + δa|v+
a |n, k〉

〈n + 1, k + δa|n + 1, k + δa〉
=

∏N
i=1(ma −mi + (ka + 1)ε)∏K

i 6=a(ma −mi + (ka − ki + 1)ε)
. (6.27)

Therefore the monopole operator v+
a acts as

v+
a |n, k〉 =

∏N
i=1(ma −mi + (ka + 1)ε)∏K

i 6=a(ma −mi + (ka − ki + 1)ε)
|n + 1, k + δa〉 , (6.28)
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A similar computation leads to the action of the monopole operator v−a as

v−a |n, k〉 =

K∏
i 6=a

1

(mi −ma + (ki − ka + 1)ε)
|n− 1, k − δa〉 . (6.29)

We assert that v−a |n, k〉 = 0 if ka is zero because our system with the interface has no such

vacuum and thus the correlation function of v−a becomes zero.

If we define an operator such as

ϕa|n, k〉 = (−ma − kaε− ε
2)|n, k〉 , (6.30)

then the monopole operators can be simplified as

v+
a |n, k〉 =

P (ϕa + ε
2)∏K

b 6=a(ϕb − ϕa)
|n+ 1, k+ δa〉 , v−a |n, k〉 =

1∏K
b 6=a(ϕa − ϕb)

|n− 1, k− δa〉 . (6.31)

These actions of the monopole operators perfectly agree with the actions in (4.46) and (4.48)

computed using the correspondence Mn,n+1
,ν .

6.2 Triangular quiver

We now turn to the 3d triangular quiver gauge theory discussed in Section 3.5.3 and the

vortex quantum mechanics in this theory. We have a simple brane construction for the

triangular quiver theory. When the theory is fully Higgssed with the real FI parameters

tα (1 ≤ α < L), it can be engineered by the brane system with L NS5-branes and N D3-

branes with
∑L

α=1 ρα = N in Figure 9.

NS5

...

t1

t2

NS5

NS5
NS5

...

⇢1 D3

⇢2 D3

⇢3 D3

⇢L D3

n1

n2 k̃1,a k̃2,a

k̃2,b k̃L�1,b

k̃L�1,a

k̃L�1,c

Figure 9. The brane construction of vortices in the triangular quiver theory for the partition ρ =

[ρ1, ρ2, · · · , ρL]. The vortices are the k̃α,a D1-branes (red lines) with kα,a =
∑L−1
υ=α k̃α,a.

The 3d field theory has Nρ = N !/(ρ1! · · · ρL!) supersymmetric massive vacua when generic

hypermultiplet masses are turned on. In the brane system, a field theory vacuum labelled

by nested subsets Iα = {iα,1, · · · , iα,Kα} define in (3.54) is mapped to a configuration with a
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choice of ρα D3-branes among the total N D3-branes attached at the α-th NS5-brane. Given

a supersymmetric vacuum, vortex particles are provided by D1-branes suspended between

one of the NS5-branes and a D3-brane.

The dynamics of the vortices can be described by the gauge theory living on the D1-

branes. At low energy with finite FI parameters, the theory on the D1-branes reduces to aN =

(2, 2) supersymmetric quantum mechanics given by so-called ‘handsaw quiver’ gauge theory.

The quiver presentation can be easily read off from the brane configuration. This handsaw

quiver theory has been studied extensively in the mathematical literature, for example in

[10, 75]. The moduli space of vortices in the 3d triangular quiver theory agrees with the

Higgs branch of this quantum mechanics.

The handsaw quiver theory, as illustrated in Figure 10, has gauge groupGQM =
∏L−1
α=1 U(nα)

and flavor group
∏L
α=1 U(ρα). Each gauge node has chiral multiplets with scalar components

qα in a bi-fundamental representation (nα, ρ̄α) and q̃α in (ρα+1, n̄α) under the gauge and

flavor groups; together with Bα in the adjoint representation of the gauge group U(nα). Two

adjacent nodes are connected by bi-fundamental chiral multiplets with scalar components Aα

and Ãα. The theory has additional superpotential couplings

Wα = Tr Ãα (AαBα −Bα+1Aα + qα+1q̃α) , (α = 1, · · · , L−2) . (6.32)

The flavor charges for the bi-fundamental fields Aα and Ãα are fixed by these superpotentials.

q̃1q1 q2 q̃2 qL�1 q̃L�1

B1 B2 BL�1

A1 A2
n1 n2 nL�1

⇢1 ⇢2 ⇢L�1 ⇢L

Ã1 Ã2

Figure 10. Hand-saw quiver theory.

The moduli space of vortices in the 3d gauge theory coincides with a Higgs branch MH

of vacua in the quantum mechanics parametrized by the scalar fields qα, q̃α, Bα, and Aα, with

φα = Ãα = 0. These scalars are subject to the D-term and the F-term constraints:

MH = {µα = ζα , AαBα −Bα+1Aα + qα+1q̃α = 0}/GQM (6.33)

where ζα are the FI parameters for the gauge group GQM . The complex dimension of the
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Higgs branch is

dimCMH =

L−1∑
α=1

nα(ρα + ρα+1) . (6.34)

This agrees with the moduli space of vortices in the 3d gauge theory.

Let us now turn on generic twisted masses m1, · · · ,mN for the flavor symmetry and ε

for U(1)ε. The Higgs branch of vacua will be lifted to a set of isolated fixed points under the

action TH × U(1)ε, which solve the deformed BPS equations

[φα, Bα] + εBα = 0 , φα+1Ai −Aiφα = 0 ,

(φα +miα,a + ε
2)qaα = 0 , −q̃bα(φα +miα+1,b

− ε
2) = 0 ,

[φα, φ
†
α] = 0 ,

(6.35)

for Kα−1 < a ≤ Kα and Kα < b ≤ Kα+1, as well as D-term and F-term constraints.

Generalizing (6.9), one finds that solutions are labelled by multi-vectors ~k = {kα,a} with∑Kα
a=1 kα,a = nα and kα,a ≥ kα+1,a. For each such solution, the complex scalars φα are

diagonalized, with blocks

φα = φ(1)
α ⊕...⊕φ(Kα)

α , φ(a)
α = −diag

(
miα,a+ 1

2ε,miα,a+ 3
2ε, ...,miα,a+(kα,a− 1

2)ε
)
. (6.36)

The equivariant weight of the tangent space to the Higgs branch MH can be easily

computed again using the equivariant index theorem. We find that the inverse of the residue

of

L−1∏
α=1

∏nα
I 6=J(φα,I−φα,J)∏nα

I,J=1(φα,I−φα,J+ε)
×
L−2∏
α=1

nα∏
I=1

nα+1∏
J=1

(φα+1,J − φα,I + ε)

(φα+1,J − φα,I)

×
L−1∏
α=1

nα∏
I=1

1∏Kα
a=Kα−1+1(φα,I+miα,a+ ε

2)
∏Kα+1

a=Kα+1(−miα+1,a−φα,I+ ε
2)

, (6.37)

at (6.36) gives rise to the equivariant weight

ω
~n,~k

=
L−1∏
α=1

Kα∏
a=1

kα,a∏
s=1

∏Kα
b=1(miα,b−miα,a+(kα,b−s+1)ε)

∏Kα+1

b=Kα+1(miα,a−miα+1,b
+sε)∏Kα−1

b=1 (miα−1,b
−miα,a+(kα−1,b −s+1)ε)

=

L−1∏
α=1

Kα∏
a<b

miα,b −miα,a

ϕα,a − ϕα,b

Kα∏
a=1

kα,a−1∏
l=0

Q̃α+1(ϕα,a + (l + 1
2)ε)

Qα−1(ϕα,a + (l + 1)ε)
, (6.38)

where we define ϕα,a = −miα,a − (kα,a + 1
2). Thus the quantum mechanics result precisely

reproduces the previous result in (3.55).
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6.2.1 Interface

We now construct 1d quantum mechanical systems for monopole operators in the triangular

quiver theories. The 1d systems can realized by particular interfaces in the vortex quantum

mechanics. By analogy with the construction of interfaces in the SQCD case, we will first

consider two 1d handsaw quiver theories with vortex numbers ~n and ~n′ living on the half-lines

t < 0 and t > 0 respectively, and glue these two theories by adding extra boundary degrees

of freedom and turning on boundary interactions at t = 0.

For the theory at t < 0, we first give Neumann-type boundary conditions to the vector-

multiplets and the chiral multiplets with scalars Bα, Aα, qα, q̃α. For the chiral multiplets of

Ãα, we will choose the Dirichlet-type boundary condition that sets

Ãα = (χ̃α)+ = 0 at t = 0 , (6.39)

and leaves N = (0, 2) Fermi multiplets for Λα ≡ (χ̃α)− with boundary interactions

JΛα = AαBα −Bα+1Aα + qα+1q̃α , EΛα = 0 (6.40)

at t = 0. We consider similar boundary conditions for the 1d theory on t > 0. Two vortex

theories with these boundary conditions will be connected by new degrees of freedom at t = 0.

We propose that the new boundary degrees of freedom consists of the N = (0, 2) chiral

and Fermi multiplets whose lowest components transform in the representations

υα : chiral multiplet in (n̄′α, nα,1) , υ̃α : chiral multiplet in (n′α, n̄α+1,1) ,

γα : Fermi multiplet in (n̄′α, nα,1) , γ̃α : Fermi multiplet in (n̄′α, nα+1,1) ,

ηα : Fermi multiplet in (1, nα, n̄α) , η̃α : Fermi multiplet in (n̄′α,1,nα+1) , (6.41)

under the U(n′α)×U(nα)×U(Kα) symmetry groups. These multiplets couple to the boundary

conditions of the 1d bulk fields through the zero-dimensional superpotentials for the Fermi

multiplets given by

Eγα = υαB
′
α −Bαυα , Eγ̃α = υα+1A

′
α −Aαυα , Eηα = υαq

′
α − qα , Eη̃α = q̃′α − q̃αυα ,

Jγα = υ̃αAα −A′α−1υ̃α−1 , Jγ̃α = −υ̃αBα+1 +B′αυ̃α , Jηα = q̃′α−1υ̃α−1 , Jη̃α = υ̃αqα+1 . (6.42)

Here, the primed fields are the bulk fields on t > 0. A priori, these superpotentials break all

supersymmetries since they do not obey the SUSY constraint
∑

aEa · Ja = 0. The non-zero

terms in the constraint can be compensated by the superpotentials for the fermi multiplets

Λα,Λ
′
α coming from the Dirichlet b.c. of the 1d bulk chiral multiplets, if we modify them as

JΛα = AαBα −Bα+1Aα + qα+1q̃α , EΛα = υαυ̃α ,

JΛ′α = A′αB
′
α −B′α+1A

′
α + q′α+1q̃

′
α , EΛ′α = −υ̃αυα+1 . (6.43)
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Then the full system with the interface and the boundary conditions at t = 0 preserves

N = (0, 2) supersymmetry.

We would like to remark that the extra degrees of freedom and the J-type superpotentials

in (6.42) are introduced by following the construction of the handsaw quiver varieties and

Hecke correspondence in [10]. However, the construction in [10] does not tell us the E-type

superpotentials in (6.42). Without the E-type superpotentials, there would be extra U(1)

flavor symmetries acting on υ̃α, which appear to be absent in the Hecke correspondence in [10].

In order to remove these extra flavor symmetries, we turn on the E-type superpotentials as

in (6.42), which seems to be a unique choice for this purpose.

The Higgs branch of this system is parametrized by the 1d scalar fields Bα, Aα, qα, q̃α

and Bα, Aα, qα, q̃α and the boundary scalar υα satisfying the D-term constraints and the

superpotential constraints given by

AαBα −Bα+1Aα + qα+1q̃α = A′αB
′
α −B′α+1A

′
α + q′α+1q̃

′
α = 0 ,

υαB
′
α −Bαυα = υα+1A

′
α −Aαυα = 0 , υαq

′
α = qα , q̃′α = q̃αυα , (6.44)

together with υ̃α = 0. We claim that the Higgs branch of the handsaw quiver theory with the

interface coincides with the moduli space of the vortices in the 3d triangular quiver theory

interacting with the monopole operator.

The localized partition function of our system with the interface can be written as

Z
(~n′,~k′)×(~n,~k)

= Z1−loop
t>0 · Z1−loop

t=0 · Z1−loop
t<0 , (6.45)

where Z1−loop
t>0 and Z1−loop

t<0 are the contributions from the 1d bulk fields with the boundary

conditions given by the inverse of equivariant weights at the fixed points |~n′, k′〉 and |~n, k〉,
respectively,

Z1−loop
t>0 = 1/ω

~n′,~k′ , Z1−loop
t<0 = 1/ω

~n,~k
. (6.46)

The matrix degrees of freedom at t = 0 contributes to a factor of

Z1−loop
t=0 =

L−1∏
α=1

nα∏
I

n′α∏
J

(φα,I − φ′α,J + ε)

(φα,I − φ′α,J)
·
L−2∏
α=1

n′α∏
I=1

nα+1∏
J=1

(φα+1,J − φ′α,I)
(φα+1,J − φ′α,I+ε)

×
L−1∏
α=1

 nα∏
I=1

Kα∏
a=Kα−1+1

(φα,I+miα,a+
ε

2
) ·

n′α∏
I=1

Kα+1∏
a=Kα+1

(−miα,a−φ′α,I+
ε

2
)

 ,(6.47)
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where φα,J and φ′α,J takes the values at the fixed points |~n′, k′〉 and |~n, k〉 respectively. We

simplify further and obtain

Z1−loop
t=0 =

L−1∏
α=1

Kα∏
a=1

∏kα,a
s=1

∏Kα
b=1(miα,b−miα,a+(k′α,b−s+1)ε)

∏k′α,a
s=1

∏Kα+1

b=Kα+1(miα+1,b
−miα,a−sε)∏kα,a

s=1

∏Kα−1

b=1 (miα−1,b
−miα,a+(k′α−1,b−s+1)ε)

.

(6.48)

As we discussed in the previous section, the partition function vanishes unless ~k ⊂ ~k′.
In the case ~n′ = ~n, our interface defines an identity interface. So the partition function

should give the norm of the vortex state |~n,~k〉. Indeed,

〈~n,~k′|~n,~k〉 = Z
(~n,~k′)×(~n,~k)

= δ~k′,~k/ω~n,~k , (6.49)

which reproduces the correct normalization for our vortex states.

On the other hand, when ~n′ = ~n + δα and ~k′ = ~k + δα,a, the partition function will

compute the correlation functions of monopole operators v±α,a such as

〈~n + δα,~k + δα,a|v+
α,a|~n,~k〉 = 〈~n,~k|v−α,a|~n + δα,~k + δα,a〉 = Z

(~n+δα,~k+δα,a)×(~n,~k)
. (6.50)

Using the correlation functions, one can easily compute the action of the monopole op-

erators on the vortex states. We find that the monopole operators act by

v+
α,a|~n,~k〉 =

〈~n + ~δα,~k + ~δα,a |v+
α,a|~n,~k〉

〈~n + ~δα,~k + ~δα,a|~n + ~δα,~k + ~δα,a〉
|~n + ~δα,~k + ~δα,a〉

=
Qα+1(ϕα,a)∏

b 6=a(ϕα,a − ϕα,b)
|~n + ~δα,~k + ~δα,a〉 ,

v−α,a|~n,~k〉 =
〈~n,~k|v−α,a|~n− ~δα,~k − ~δα,a〉

〈~n− ~δα,~k − ~δα,a|~n− ~δα,~k − ~δα,a〉
|~n− ~δα,~k − ~δα,a〉

=
Qα−1(ϕα,a)∏

b 6=a(ϕα,a − ϕα,b)
|~n− ~δα,~k − ~δα,a〉 , (6.51)

and v−α,a|~n,~k〉 = 0 if kα,a = 0. Therefore the monopole operators satisfy the following relations

v+
α,av

−
α,a =

Qα+1(ϕα,a)Qα−1(ϕα,a+ε)∏
b 6=a(ϕα,a−ϕα,b)(ϕα,a−ϕα,b−ε)

, v−α,av
+
α,a =

Qα+1(ϕα,a−ε)Qα−1(ϕα,a)∏
b 6=a(ϕα,a−ϕα,b)(ϕα,a−ϕα,b+ε)

.

(6.52)

6.3 Equivalence to vortex moduli space

In [10, Section 3] Nakajima explicitly described the equivalence of the moduli space of handsaw

quivers and the moduli space of vortices in a triangular quiver gauge theory. We briefly sketch

how his argument works for n vortices in U(K) gauge theory with N ≥ K hypermultiplets.
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Recall that for SQCD the Higgs branch is the cotangent bundle to the Grassmannian ofK-

planes in CN . We choose the vacuum ν corresponding to the standard inclusion CK ↪→ CN ,

i.e. the subset {1, ...,K} ⊂ {1, ..., N}. As explained earlier, the supersymmetric quantum

mechanics describing vortices consists of a U(n) vectormultiplet, together with an adjoint

chiral multiplet, K chiral multiplets in the fundamental representation of U(n) and (N −K)

chiral multiplets in the anti-fundamental representation of U(n). This is a handsaw quiver

with a single gauge node.

The bosonic components of the chiral multiplets can be represented as complex matrices

• A n× n matrix B

• A n×K matrix q

• A (N −K)× n matrix q̃ .

and an element g ∈ GL(n) of the complexified gauge group acts by

B → gBg−1 q → gq q̃ → q̃g−1. (6.53)

In this case the F -term equation is vacuous and the real moment map equation coming from

the D-term equations can be replaced with the following stability condition: a tuple (B, q, q̃)

is stable if there is no proper B-stable subspace of Cn containing the image of q. Then the

moduli space is equivalent to

{(B, q, q̃) stable}/GL(n). (6.54)

Recall that in Section 3.2 a point in the vortex moduli space Mn
ν is defined to be a map

from CP1 to the Higgs stack [MH ] of degree n sending ∞ to ν. More concretely, this is just

a rank K vector bundle E with19 c1(E) = −n trivialized at ∞ together with an inclusion of

sheaves X : E ↪→ CN ⊗C OCP1 such that X|∞ is the standard inclusion CK ↪→ CN . Recall

that an inclusion of locally free sheaves may only fail to be injective on a finite number of

fibers. To recover the moduli matrix write X in terms of the inhomogeneous coordinate z on

CP1. The gauge is fixed by the condition on X|∞.

From the matrices (B, q, q̃) we can define a diagram

Cn ⊗C OCP1(1)

α ↑
(CK ⊕ Cn)⊗C OCP1

β−→ (CK ⊕ CN−K)⊗C OCP1

(6.55)

19A direct comparison with Section 3 requires replacing n→ −n. This is simply a matter of convention.
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where α =
[
q z−B

]
and β = 1 ⊕ q̃. By the stability condition we have im α|p = Cn for all

p ∈ CP1. Thus E = kerα is a rank K vector bundle with c1(E) = −n.

The map β induces a map X : E → CN ⊗C OCP1 . To see that X has the right behavior

at infinity notice that β|∞ = 1 ⊕ q̃ and that α|∞ =
[
0 1
]

so E|∞ = CK ⊕ 0. The map X is

an injection of sheaves because

ker X|p ∼= ker

[
z(p)−B

q̃

]
(6.56)

so X|p can only fail to be injective when z(p) is one of the finitely many eigenvalues of B.

Now let us consider two supersymmetric quantum mechanics with n′ = n + 1 and an

interface between them such that

υB′ = Bυ υq′ = q q̃′ = q̃υ. (6.57)

for some υ : Cn′ → Cn. As a consequence of the stability condition corresponding to the

D-terms the map υ is surjective. The first two equations tell us that the diagram

Cn′ ⊗C OCP1(1)
υ−→ Cn ⊗C OCP1(1)

α′ ↑ α ↑
(CK ⊕ Cn′)⊗C OCP1

1⊕υ−→ (CK ⊕ Cn)⊗C OCP1

(6.58)

commutes. Thus we have an induced map i : E′ ↪→ E. The third equations tells us that

X ′ = X ◦ i. The quotient E/E′ is supported at a single point which is the position of the

vortex created by the interface.

7 Case study: abelian quiver

In this section, we consider the simplest example of our constructions that has not already

appeared in the mathematics literature: the abelian quiver gauge theory shown in Figure 7.

This is the 3d mirror of SQED.

Refering to Figure 7, we see that the gauge group is U(1)N−1. We denote the “bifunda-

mental” hypermultiplet fields by (Xj , Yj) with j = 1, . . . , N . The moment map constraints

for the gauge symmetry are

zj − zj+1 = 0 zj := XjYj

Zj − Zj+1 = −tj Zj := |Xj |2 − |Yj |2
(7.1)

with j = 1, . . . , N − 1 and tj = tR,j is real FI parameter at the j-th node of the quiver. We

will assume that tj < 0 for all nodes of the quiver. The Higgs branch is a resolution of the

singularity C2/ZN .
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11 1 1 1

X1

Y1

X2

Y2 YN

XN

t1 t2 tN�1

Figure 11. Quiver for the mirror of SQED with N hypermultiplets.

The moment maps for the flavor symmetry GH = U(1) are given by µH,C = z1 + zN

and µH,R = Z1 + ZN . Solving for zj and Zj in terms of the flavor moment maps and FI

parameters, we find

zj =
1

2
µH,C Zj =

1

2

µH,R +

j−1∑
n=1

tn −
N−1∑
n=j

tn

 . (7.2)

The Higgs branch can be described as a circle fibration over R3 with the base parametrized

by the moment maps µH,C and µH,R and fibers rotated by GH = U(1). The circle fibers

degenerate when zi = 0 and Zi = 0; these are fixed points of the flavor symmetry, i.e.

locations of the N massive vacua {νi} in the presence of a generic mass deformation. The

slice µC,H is illustrated in Figure 12. With our convention tj < 0, the positions of these vacua

on the slice µH,C = 0 are ordered such that µH,R(νi) < µH,R(νi+1). In each vacuum,

νi :

Yj = 0 j = 0, . . . , i

Xj = 0 j = i, . . . , N
. (7.3)

Furthermore, it is straightforward to check that, on the slice µH,C = 0,

• Xj = 0 for µH,R ≤ µH,R(νj)

• Yj = 0 for µH,R ≥ µH,R(νj) .

µH,R

⌫1 ⌫2 ⌫N

X1Y1 Y2 XNX2 YN

Figure 12. The Higgs branch of abelian quiver on the slice µH,C = 0.

Generalized vortex solutions are characterized by a degree vector n = (n1, . . . , nN−1).

With a supersymmetric vacuum νi at infinity, there are in general two nontrivial types of
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solutions, or “chambers” in the moduli space. We must always have n1 < . . . < ni−1 and

ni > . . . > nN−1. The two chambers are distinguished by the relative size of ni−1 and ni. In

the case ni−1 < ni the nonvanishing holomorphic fields are

Xj(z) monic of degree nj − nj−1 for j = 1, . . . , i− 1

Xi(z) of degree ni − ni−1

Yj(z) monic of degree nj−1 − nj for j = i+ 1, . . . , N

(7.4)

where we define for convenience n0 = nN = 0. The case with ni−1 > ni is similar except that

Yi(z) (rather than Xi(z)) is now turned on and of degree ni−1 − ni. Here we concentrate on

the first chamber. In what follows we introduce the notation ni,j := ni − nj .

For each fixed vortex number n, there is a unique equivariant fixed point in the moduli

space Mn
ν , leading to a unique state |n〉 ∈ Hn

ν = H∗(Mn
ν). (This is a general property of

abelian theories.) For n = (n1, . . . , nN−1), the fixed point is given by

Xj(z) = znj,j+1 j = 1, . . . , i− 1

Xi(z) = 0

Yj(z) = znj−1,j j = i+ 1, . . . , N − 1

(7.5)

with

ϕj =

m− njε− jε
2 if j = 0, . . . , i− 1

−m− njε− (N−j)ε
2 if j = i, . . . , N

(7.6)

where m is the mass parameter corresponding to the GH = U(1) flavor symmetry. Note

that it is convenient to introduce the notation ϕ0 = m and ϕN = −m. The corresponding

equivariant weight is

wn =

i−1∏
j=1

nj,j−1−1∏
`=0

(`− nj,j−1)ε

×
ni,i−1−1∏
`=0

[
−2m+ (`− ni,i−1)ε− 1

2
(N − 2i+ 1)ε

]

×
N∏

j=i+1

nj−1,j−1∏
`=0

(`+ nj,j−1)ε .

(7.7)

As in Section 4.1, we can model monopole operators as singular gauge transformations.

For example, the monopole operator u+
j at the j-th node acts by

Xj(z)→ zXj(z) Xj+1(z)→ z−1Xj+1(z) (7.8)

Yj(z)→ z−1Yj(z) Yj+1(z)→ zYj+1(z) (7.9)

– 88 –



leaving the other polynomials unchanged.

For the monopole operator u+
j we find an action on equivariant cohomology

u+
j | n 〉 = | n + δj 〉


(−nj,j−1 − 1)ε j = 1, . . . , i− 1

(−ni,i+1 − 1)ε(−2m− (ni,i−1 + 1)ε− 1
2(N − 2i+ 1)ε) j = i

(−nj,j+1 − 1)ε j = i+ 1, . . . , N

(7.10)

and for the monopole operator u−j

u−j | n 〉 = | n− δj 〉



(−nj+1,j − 1)ε j = 1, . . . , i− 2

−2m+ (−ni,i−1 − 1)ε− 1
2(N − 2i+ 1)ε j = i− 1

1 j = i

(−nj−1,j − 1)ε j = i+ 1, . . . , N − 1 .

(7.11)

We can now check the commutator algebra generated by these operators. The commu-

tators of u±j with ϕk are straightforward: they depend only on the weights of ϕj acting on a

state | n 〉 being linear in −njε. From this we find

[u±j , ϕk ] = ±ε δjk u±j (7.12)

In order to write the remaining commutation relations, it is convenient to introduce the

notation

hj = 2ϕj − ϕj−1 − ϕj+1 + cjε (7.13)

where cj are some constants. We will need to choose non-vanishing constants ci−1 = −ci = 1
2 .

With this notation we find that the algebra has relations

[u±j , hk ] = ±εAjk u±k [u+
j , u

+
k ] =

−εδjkhj j = 1, . . . , i− 1

+εδjkhj j = i, . . . , N − 1
(7.14)

where Ajk is the Cartan matrix of slN . The entire Coulomb-branch algebra is a central

quotient of U(slN ), with (in particular) the Casimir elements fixed to be certain polynomials

in the mass m. The very same algebra was computed by more abstract methods in [1, Section

6.6.2]; it is a quantization of the Coulomb branch MC , which is a minimal nilpotent orbit

in slN .
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7.1 Vortex quantum mechanics

We now reproduce the same result using interfaces for vortex quiver quantum mechanics, as

in Section 6. We first note that the theory admits a simple brane construction with N + 1

NS5-branes and an infinite D3-brane which goes across the NS5-branes. The system with

finite real FI parameters ti can be illustrated by the brane configuration in Figure 13.

t2

t3

t4

t1

D3

ñ1

ñ2

ñ3
ñ4

Figure 13. The brane construction of vortices in the AN linear quiver theory at i-th vacuum. The

vortices are the ñj D1-branes (red lines). This figure illustrates the vortices in the A4 quiver theory

at the 3-rd vacuum.

The theory has N massive vacua {νi}. The i-th vacuum corresponds to the configuration

where the D3-brane touches the i-th NS5-brane. Vortex particles in the gauge theory are

the D1-branes suspended between the D3-brane and one of the NS5-branes. The number of

D1-branes ñj is related to the vortex number nj of the j-th gauge node as nj =
∑j

k=1 ñk for

j < i and nj =
∑N

k=j ñk for j ≥ i.

q̃1q1 q2q̃2

B1

Ã1

A1

1 1

Ai�3

Ãi�3 Ãi�2 Ãi�1 Ãi+1Ãi

Ai Ai+1Ai�1Ai�2

Bi�2 Bi�1 Bi+1Bi BN

AN�1

ÃN�1

n1 ni�1ni�2 ni+1 nNni

Figure 14. The 1d vortex quantum mechanics in the AN linear quiver theory at i-th vacuum. The

solid arrows and the red arrows represent the chiral multiplets whose the scalar fields parametrize

the Higgs branch at the first chamber when ni−1 < ni, whereas the solid arrows and the blue arrows

represent those at the second chamber when ni−1 > ni.

The vortex quantum mechanics describing the moduli space of the vortices can be read

off from the brane configuration. The low energy theory living on the D1-branes is the 1d
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N = (2, 2) linear quiver gauge theory with gauge group ⊗Ni=1U(ni), with n1 < · · · < ni−1 and

ni > · · · > nN , given in Figure 14. Each quiver node has an adjoint chiral multiplet Bj and

two adjacent nodes, say the j-th and j + 1-th nodes, are connected by two bi-fundamental

chiral multiplets Aj and Ãj . In addition, at the i-th vacuum, the i− 1-th node couples

to a fundamental chiral multiplet q1 and an anti-fundamental chiral multiplet q̃1, and i-th

node has a fundamental q2 and an anti-fundamental q̃2 chiral multiplets. This theory has

superpotentials of the form

Wj = Tr Ãj (AjBj −Bj+1Aj) for j 6= i− 1 ,

Wi−1 = Tr Ãi−1 (Ai−1Bi−1 −BkAi−1 + q2q̃1) +Ai−1q1q̃2 . (7.15)

We propose that the Higgs branch of this 1d quantum mechanics agrees with the moduli

space of vortices in the 3d AN abelian quiver theory.

The 1d gauge theory has U(1)1 × U(1)2 × U(1)ε flavor symmetry. q1 and q̃1 have U(1)1

charge±1, respectively and q2 and q̃2 have U(1)2 charge±1, respectively. For U(1)ε symmetry,

Bi, q1, q2 have +1,+1
2 ,+

1
2 charges of the U(1)ε symmetry and q̃1, q̃2 are singlets. We can

identify the off-diagonal rotation of U(1)1 × U(1)2 with GH = U(1) flavor symmetry of the

3d abelian quiver theory.

Recall that the vortex moduli space has in general two chambers characterized by the

relative size of ni−1 and ni at the i-th vacuum, i.e. ni−1 < ni or ni−1 > ni. Accordingly, we

have two distinguished moduli spaces of the Higgs branch in the vortex quantum mechanics

depending on the relative size of the ranks of two gauge groups at the i−1-th and i-th nodes.

For now we assume the FI parameters, which are proportional to the 3d gauge couplings,

to be positive for all gauge nodes. It restricts us to the Higgs branch vacua. The Higgs branch

is defined as follows. We can first solve the F-term conditions ÃjAj = AjÃj = 0 by setting

either Aj or Ãj to zero. With the positive FI parameters, it turns out that the scalar fields

Aj for j ≥ i and Ãj for j < i − 1 should be non-vanishing. In particular, we need to be

more careful with the fields Ai−1 and Ãi−1. When Ai−1 = 0, the F-term condition q2q̃1 = 0

requires q̃1 = 0 since q2 must be non-zero. The Higgs branch in this case is therefore the

space of solutions to

BiÃj − ÃjBj+1 = 0 for j = 1, · · · , i−2 ,

AjBj −Bj+1Aj = 0 for j = i, · · · , N−1 ,

Bi−1Ãi−1 − Ãi−1Bi + q1q̃2 = 0 , Ãi−1q2 = 0 (7.16)

modulo the gauge transformations. We claim that this class of the Higgs branch vacua with

ni−1 < ni describes the moduli space of vortices in the first chamber in the 3d theory. This
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Higgs branch has complex dimension

dimCMH = 2ni , (7.17)

which agrees with the dimension of the vortex moduli space in the first chamber at ni−1 < ni.

On the other hand if Ãi−1 = 0, the F-term condition q1q̃2 = 0 requires that q̃2 = 0. The

Higgs branch is then the solution space of

BjÃj − ÃjBj+1 = 0 for j = 1, · · · , i−2 ,

AjBj −Bj+1Ai = 0 for j = i, · · · , N−1 ,

Ai−1Bi−1 −BkAi−1 + q2q̃1 = 0 , Ai−1q1 = 0 (7.18)

divided by the gauge transformations. We again claim that this class of the Higgs branch

vacua with ni−1 > ni coincides with the vortex moduli space in the second chamber. The

dimension of this space is

dimCMH = 2ni−1 , (7.19)

which also agrees with the dimension of the vortex moduli space in the second chamber at

ni−1 > ni.

Let us now focus on the first chamber with ni−1 < ni. Turning on twisted masses m1,m2, ε

for the flavor symmetry U(1)1×U(1)2×U(1)ε, the quantum mechanics has an isolated fixed

point of the flavor symmetry where the diagonal elements of the complex scalars in the

vectormultiplets take the values

φj,I =

{
−m1 − Iε+ i−j

2 ε if j = 1, · · · , i− 1

−m2 − Iε− i−j−1
2 ε if j = i · · · , N

. (7.20)

Each supersymmetric vacuum defines a vortex state |~n〉 in the Hilbert space of the 3d abelian

quiver theory in an Ω-background.

The equivariant weight of the tangent space to the fixed point can be obtained using

equivariant index theorem. Its inverse can be expressed as the residue of∏nj
I 6=J(φj,I−φj,J)∏nj
I,J(φj,I−φj,J+ε)

·
i−1∏
j=1

nj∏
I=1

nj+1∏
J=1

(φj+1,J−φj,I− ε
2)

(φj,I−φj+1,J− ε
2)

(7.21)

×
N−1∏
j=i

nj∏
I=1

nj+1∏
J=1

(φj,I−φj+1,J− ε
2)

(φj+1,J−φj,I− ε
2)
·
ni−1∏
I=1

(−φi−1,I−m2)

(φi−1,I+m1+ ε
2)
·

ni∏
I=1

1

(φi,I+m2+ ε
2)(−φi,I−m1)

,

at supersymmetric vacuum of (7.20). Plugging (7.20) into this formula, we find the equivariant

weight

ω~n =
i−1∏
j=1

nj−nj−1∏
`=1

`ε ·
ni−ni−1∏
`=1

(m12 − (`− 1
2)ε) ·

N∏
j=i+1

nj−1−nj∏
`=1

`ε . (7.22)
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If we identify the flavor mass parameter as m12 = −2m− N−2i+2
2 ε, we see that the quantum

mechanics result perfectly agrees with the equivariant weight of the fixed point in the first

chamber computed using the moduli matrix approach above in (7.7).

7.1.1 Interface

We can engineer the monopole operators in the 1d vortex quantum mechanics, as in Section

6, by coupling the 1d boundary conditions introduced above to extra degrees of freedom

localized at an interface at t = 0. The interface interpolates between a pair of vortex quantum

mechanics with ⊗Ni=1U(ni) and ⊗Ni=1U(n′i) gauge groups living on half-lines t < 0 and t > 0,

respectively. In the following we will consider vortices on the i-th vacuum with ni−1 < ni.

Let us first discuss boundary conditions at t = 0. Boundary conditions should be chosen

to be consistent with the Higgs vacuum. So we choose Neumann-type boundary conditions for

the chiral fields that belong to the Higgs branch, whereas we choose Dirichlet-type boundary

conditions for all other chiral multiplets vanishing in the Higgs branch. The vector multiplets

will have Neumann-type boundary conditions.

For our case, the chiral multiplets with scalar fields Bj , q1, q2, q̃1 and Aj for j ≥ i and Ãj

for j < i will have Neumann b.c. and they induce N = (0, 2) chiral multiplets at t = 0. The

remaining chiral multiplets obeying Dirichlet b.c. give rise to the boundary N = (0, 2) Fermi

multiplets with the superpotentials,

JΛj = BjÃj − ÃjBj+1 , JΛ̃j
= AjBj −Bj+1Aj ,

JΛi−1 = Bi−1Ãi−1 − Ãi−1Bi + q1q̃2 , JΨ1 = Ãi−1q2 , (7.23)

and EΛj = EΛ̃j
= EΨ1 = 0. Λj , Λ̃j ,Ψ1 are the Fermi multiplets induced from Dirichlet b.c.

of the 1d chiral multiplets whose lowest components are Aj with j < i and Ãj with j ≥ i and

q̃1 respectively.

We propose that the monopole operator acting on vortex states is realized by an interface

with the above boundary conditions coupled to the N = (0, 2) matrix degrees of freedom as

follows. The interface contains the extra chiral and Fermi multiplets in the representations

of the gauge groups as

υj : chiral multiplet in (n̄′j , nj) , γj : Fermi multiplet in (n̄′j , nj) , (7.24)

for all j, and {
υ̃j : chiral in (n′j+1, n̄j) , γ̃j : Fermi in (n̄′j+1, nj) j < i

υ̃j : chiral in (n′j , n̄j+1) , γ̃j : Fermi in (n̄′j , nj+1) j ≥ i
, (7.25)
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and lastly

ρ : chiral multiplet in (n̄i−1,1) , η1 : Fermi multiplet in (1, ni−1) ,

η2 : Fermi multiplet in (1, ni) , η̃ : Fermi multiplet in (n̄′k,1) . (7.26)

The 0d matrix fields couple to the boundary conditions through the superpotentials of

the extra boundary Fermi multiplets given by

Eγj = υjB
′
j −Bjυj j = 1, · · · , N , Jγj =


υ̃j−1Ãj−1 − Ã′j υ̃j j < i

υ̃jAj + υ̃j−1Ãj−1 j = i

υ̃jAj −A′j−1υ̃j−1 j > i

, (7.27)

Eγ̃j =

{
υjÃ

′
j − Ãjυj+1 j < i

υj+1A
′
j −Ajυj j ≥ i

, Jγ̃j =


−υ̃jBj +B′j+1υ̃j j < i

−υ̃jBj +B′j+1υ̃j + q′2ρ j = i−1

−υ̃jBj+1 +B′j υ̃j j ≥ i

and

Eη1 = υi−1q
′
1 − q1 , Eη2 = υiq

′
2 − q2 , Eη̃ = q̃′2 − q̃2υk ,

Jη1 = −q̃′2υ̃i−1 , Jη2 = ρÃi−1 , Jη̃ = −υ̃i−1q1 .
(7.28)

In addition, the superpotentials of the Fermi multiplets from the Dirichlet b.c. need to

be modified as follows:

JΛj = BiÃj − ÃjBj+1 , EΛj = −υj+1υ̃j ,

JΛ′j
= B′jÃ

′
j − Ã′jB′j+1 , EΛ′j

= υ̃jυj , (7.29)

for j < i−1, and

JΛi−1 = Bi−1Ãi−1 − Ãi−1Bi + q1q̃2 , EΛi−1 = −υiυ̃i−1 ,

JΛ′i−1
= B′i−1Ã

′
i−1 − Ã′i−1B

′
i + q′1q̃

′
2 , EΛ′i−1

= υ̃i−1υi−1 , (7.30)

and

JΛ̃j
= AjBj −Bj+1Aj , EΛ̃j

= υj υ̃j ,

JΛ̃′j
= A′jB

′
j −B′j+1A

′
j , EΛ̃′j

= −υ̃jυj+1 , (7.31)

for j ≥ i, and lastly

JΨ1 = Ãi−1q2 , EΨ1 = ρ , JΨ′1
= Ã′i−1q

′
2 , EΨ1 = −ρυi−1 . (7.32)
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The above superpotentials are chosen in order that all charges of the extra supermultiplets

are uniquely fixed and also the supersymmetric condition
∑

aEa · Ja = 0 is satisfied 20.

We remark here that the vortex quantum mechanics in the first vacuum at i = 1 can be

considered as the handsaw quiver theory in Figure 10 with ρ1 = ρ2 = 1 and ρj = 0 for j > 2,

and qj = q̃j = 0 for j ≥ 2. So we expect that the interface in this section and the interface for

the handsaw quiver given in section 6.2.1 after truncating the some fields appropriately will

be the same. Indeed one can check that our interface for the abelian quiver theory at i = 1

coincides with the interface of the handsaw quiver theory by setting qj = q̃j = ηj = η̃j = 0

for j > 2. So two interface constructions are compatible.

The localized partition function with the interface is given by

Z~n′×~n = Z1−loop
t>0 Z1−loop

t=0 Z1−loop
t>0 , (7.33)

where Z1−loop
t>0 = 1/ω~n′ and Z1−loop

t<0 = 1/ω~n are the 1-loop contributions from the 1d bulk

fields. The contribution from the extra fields at t = 0 is given by

Z1−loop
t=0 =

N∏
j=1

nj∏
I=1

n′j∏
J=1

(φj,I−φ′j,J+ε)

(φj,I − φ′j,J)
·
i−1∏
j=1

nj∏
I=1

n′j+1∏
J=1

(φj,I−φ′j+1,J− ε
2)

(φ′j+1,J−φj,I− ε
2)
·
N−1∏
j=i

n′j∏
I=1

nj+1∏
J=1

(φj+1,J−φ′j,I− ε
2)

(φ′j,I−φj+1,J− ε
2)

×
ni−1∏
I=1

(φi−1,I +m1 + ε
2)

(−φi−1,I −m2)
·

ni∏
I=1

(φi,I +m2 +
ε

2
)

n′i∏
I=1

(−φ′i,I −m1) , (7.34)

where the complex scalars φi,I and φ′i,I take values at the supersymmetric vacua (7.20). By

plugging the fixed point values of φj,I and φ′j,I into this contribution, we find

Z1−loop
t=0 =

i−1∏
j=1

nj∏
`=nj−1+1

(n′j−`+1)ε ·
N∏
j=i

nj∏
`=nj+1+1

(n′j−`+1)ε ·
n′i∏

`=ni−1+1

(m12−(n′i−`+ 1
2)ε) . (7.35)

The partition function of the identity interface at ~n′ = ~n correctly yields the overlap of

the vortex state as

〈~n|~n〉 = Z~n×~n = 1/ω~n . (7.36)

On the other hand, the partition function with ~n′ = ~n+δi computes the correlation functions

of the monopole operators as

〈~n + δi|v+
i |~n〉 = 〈~n|v−i |~n + δi〉 = Z~n′×~n . (7.37)

20We note that there is another choice of superpotentials including the extra chiral field ρ which gives the

same, but opposite for ρ, charge assignments and the same partition function. The choice is that we turn

on only one superpotential term for ρ such as JΨ1 = Ãi−1q2 − ρ. However, if we restrict to the case where

the chiral field ρ does not develop extra branch of moduli space, for being consistent with the physics at the

interface, the current choice is preferred.
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Using the correlation function, we find the actions of the monopole operators:

v+
j |~n〉 = |~n + δj〉


(nj − nj−1 + 1)ε j < i

(ni − ni+1 + 1)ε(m12 − (ni − ni−1 + 1
2)ε) j = i

(nj − nj+1 + 1)ε j > i

,

v−j |~n〉 = |~n− δj〉


(nj+1 − nj + 1)ε j < i− 1

(m12 − (ni − ni−1 − 1
2)ε) j = i− 1

1 j = i

(nj−1 − nj + 1)ε j > i

. (7.38)

The results show perfect agreement with the monopole actions in (7.10) and (7.11). This

strongly supports that the interface in the vortex quantum mechanics constructed in this

section realizes the action of monopole operators on vortex states in the abelian quiver theory.
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