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MINIMIZING LENGTH OF BILLIARD TRAJECTORIES IN

HYPERBOLIC POLYGONS

JOHN R. PARKER, NORBERT PEYERIMHOFF, AND KARL FRIEDRICH SIBURG

Abstract. Closed billiard trajectories in a polygon in the hyperbolic plane
can be coded by the order in which they hit the sides of the polygon. In
this paper, we consider the average length of cyclically related closed billiard
trajectories in ideal hyperbolic polygons and prove the conjecture that this
average length is minimized for regular hyperbolic polygons. The proof uses a
strict convexity property of the geodesic length function in Teichmüller space
with respect to the Weil-Petersson metric, a fundamental result established by
Wolpert.

1. Introduction

To play billiards in a Euclidean polygon, the rules are as follows: An infinitesimal
ball travels along a straight line (geodesic) at constant speed, and when it hits a
side of the polygon then it changes its direction so the angle of incidence agrees
with the angle of reflection. The path followed by such a ball is called a billiard
trajectory.

It also makes sense to play billiards in a hyperbolic polygon, as here we also have
well-defined meanings of geodesics and angles of incidence and reflection. To our
knowledge, the first instance where such a dynamical system was considered is in
an article by E. Artin [1] written in German (see [4] for an English translation).
Using continued fractions, he constructs dense bi-infinite billiard trajectories in half
of the fundamental polygon of the modular surface. In fact, there are many striking
connections between geodesics on the modular surface, their symbolic coding via
cutting sequences and number theory such as binary quadratic forms and continued
fractions (see [8] for a well known classical reference and also, e.g., [2] for very recent
developments).

A billiard trajectory is said to be closed if after a finite time it returns to the
same point with the same direction. A natural setting is to consider closed billiard
trajectories in ideal hyperbolic polygons where all vertices lie on the boundary
at infinity. A key piece of information of a billiard trajectory in such an ideal
hyperbolic polygon is its billiard sequence obtained by recording the order of the
sides where the ball hits the boundary. Unlike the Euclidean case, where there may
be uncountably many closed billiard trajectories, although they are homotopic, with
the same billiard sequence, in the hyperbolic case there is at most one (which is a
consequence of the fact that the curvature is strictly negative). In a polygon with
k-sides, there are k different anti-clockwise enumerations of the polygon’s sides with
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Figure 1. Illustration of all closed billiard trajectories in an ideal
quadrilateral in the Poincaré disk D2 which are cyclically related to
(1, 2, 4, 1, 3). Their billiard sequences are (2, 3, 1, 2, 4), (3, 4, 2, 3, 1)
and (4, 1, 3, 4, 2).

labels 1, 2, . . . , k. For each such labelling of the polygon, a closed billiard trajectory
γ gives rise to a finite sequence of these numbers, which we call the billiard sequence
of γ with respect to this labelling. Two billiard trajectories in a given ideal polygon
are said to be cyclically related if, under different anti-clockwise enumerations of
the polygon’s sides, they yield the same billiard sequences. Figure 1 illustrates this
concept: Our hyperbolic polygon there is an ideal quadrilateral in the Poincaré unit
disc D

2 and the original closed billiard trajectory has the finite billiard sequence
(1, 2, 4, 1, 3).

A closed billiard trajectory has a well-defined hyperbolic length. Given two dif-
ferent ideal hyperbolic k-gons with anti-clockwise labellings of their sides, we can
compare billiard trajectories in both polygons with the same billiard sequences.
For closed billiard trajectories with a given billiard sequence, it is interesting to
ask for which polygons this length is minimised. A first conjecture may be that
the minimising polygon is the regular polygon, i.e., the polygon whose symmetry
group is the full dihedral group. However, it is easy to see that this is actually not
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the case. Indeed, there are many billiard sequences for which we can find poly-
gons whose corresponding trajectories have arbitrary small lengths. Therefore, we
consider families of all cyclically related closed billiard trajectories in a polygon
and their averaged lengths. A conjecture in [3] states for ideal hyperbolic polygons
that the average length function of any family of cyclically related closed billiard
trajectories is uniquely minimised by the regular polygon. Note that in a regular
polygon, cyclically related billiard trajectories are just rotations of each other about
the centre of the polygon and that all of them have the same length. The aim of
this paper is to confirm this conjecture, that is, to prove the following result:

Theorem 1.1. In anti-clockwise labelled ideal hyperbolic polygons with k ≥ 3 sides,
the average length function of any family of cyclically related closed billiard trajecto-
ries corresponding to a given billiard sequence is uniquely minimised by the regular
polygon.

Let us roughly outline the strategy of proof: Firstly, we associate to every poly-
gon a hyperbolic surface by gluing two oppositely oriented copies of the polygon
pointwise along corresponding sides. Note that the surface is noncompact and has
k cusps. We refer to this surface as a billiard surface. Then every even-sided closed
billiard trajectory in the polygon lifts to a pair of closed geodesics of the same
length in the corresponding surface and every odd-sided closed billiard trajectory
lifts to one closed geodesic in the surface of twice the length of the original billiard
trajectory. In short, billiard trajectories in the polygon correspond to geodesics in
the billiard surface.

This allows us to rephrase the conjecture as a result on the length of closed
geodesics in billiard surfaces. In order to apply powerful results of Teichmüller
theory and the Weil-Petersson metric, we consider the billiard surfaces as points
in Teichmüller space and we call the subspace of all billiard surfaces the billiard
space. Specifically, we use the results of Wolpert that geodesic length functions are
strictly convex with respect to the Weil-Petersson Metric of Teichmüller space, and
of Kerckhoff that summed length functions of filling curves are proper.

Introducing a Weil-Petersson isometry of Teichmüller space (the so called flip
map) which fixes the billiard space pointwise, we show that the billiard space is a
geodesically convex subset of Teichmüller space with respect to the Weil-Petersson
metric. The average length function of a family of cyclically related closed billiard
trajectories corresponds to a geodesic length function of a filling family of closed
curves in Teichmüller space. By the above mentioned results, the geodesic length
function becomes minimal in a unique point in Teichmüller space and it only re-
mains to show that this minimising point in Teichmüller space corresponds to the
billiard surface associated to the regular polygon.

The following five sections of this paper follow essentially the arguments of proof
described above. In Appendix A, we briefly discuss an analogous problem in the
Euclidean setting: Here the polygons are rectangles of area one and the unique
minimizing billiard table turns out to be the unit square.

Acknowledgement: The authors gratefully acknowledge the inspiring and
helpful discussions with Andreas Knauf and Joan Porti concerning the strategy
of proof. They also thank Andy Hayden for numerous general detailled discussions
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2. Cyclically related billiard trajectories are filling

In this section, we prove a particular property of the connected components of
the complement of a union of all rotations of a closed billiard trajectory in a regular
hyperbolic polygon. Let us first introduce this property for families of curves, which
is called filling, in full detail. This definition for polygons is guided by the desire that
the lift of a family of filling curves in the corresponding billiard surface (which will
be introduced later) is also filling. Note that, for finite volume Riemann surfaces,
a family of curves is called filling if each connected component of their complement
is an open topological disc or a disc with one puncture corresponding to one of
the cusps of the surface. Since the main result of this section (Proposition 2.4
below) holds both for compact and ideal regular polygons, we formulate it in this
generality. Let us first introduce some basic notation.

Definition 2.1. Let P be a (closed) hyperbolic k-gon. Let x1, . . . , xk (which lie in
D2 or its boundary ∂D2) denote the vertices of P cyclically ordered anti-clockwise.
Let [xi, xi+1] denote the (geodesic) side of P with endpoints xi and xi+1, where
indices are taken modulo k. We use the convention that each side contains both its
endpoints.

Henceforth, we only consider hyperbolic polygons P ⊂ D2 with interior angles
equal to the fixed value π/l (compact case) or 0 (ideal case). Such a polygon gives
rise to a tessellation of D2 via repeated reflections and to a natural projection map
from D2 to P. Then the projection of every oriented bi-infinite geodesic in D2 can be
viewed as a billiard trajectory in P, as long as the geodesic in D2 is not completely
contained in the union of the boundaries of the tiles in this tessellation. Conversely,
given a billiard trajectory in P with a start point, it can be unfolded to a bi-infinite
geodesic in D

2 by reflecting the billiard table along its sides instead of the trajectory,
whenever it hits the boundary. Note that this viewpoint allows us to define billiard
trajectories of P even in the case when they hit the vertices xi of P. We also like to
mention for the sake of simplicity that, if there is no danger of misinterpretation,
we often do not distinguish between billiard trajectories and geodesics given as
arc-length parametrized curves and their geometric representation as subsets of
polygons or surfaces.

Definition 2.2. An arc α of a closed billiard trajectory in P is a closed geodesic
arc whose interior lies in P and whose endpoints lie on ∂P. Note that an endpoint
of α may be a vertex of P, but such a vertex must lie in D2.

Now we can introduce the concept of being filling. The different types of con-
nected components in Definition 2.3 are illustrated in Figure 2.

Definition 2.3. Let P be a (closed) hyperbolic polygon and γ be a union of closed
billiard trajectories in P. We say that γ fills P if γ is connected and each connected
component of P \ γ is a topological disc whose boundary is one of:

(a) a topological circle in γ made up of segments of geodesic arcs of γ;
(b) a topological arc in γ (made up of segments of geodesic arcs in γ) and an

arc of one side of P, possibly including one or both vertices in this side; or
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Figure 2. Examples of connected components of type (a), (b) and
(c) in Definition 2.3 of P \ γ. γ is the union of the blue arcs.

(c) a topological arc in γ, exactly one vertex of P and an arc in each of the two
sides ending in this vertex, but not including either of the other vertices in
these sides.

Now we state the main result of this section.

Proposition 2.4. Let P0 be a regular hyperbolic k-gon and let ρ denote the anti-
clockwise rotation through angle 2π/k about the centre of P0. Let γ0 be a closed

billiard trajectory in P0 and let γi = ρi(γ0) for i = 1, . . . , k− 1. Then γ =
⋃k−1

i=0 γi
fills P0.

Note that the curves γi are the closed billiard trajectories cyclically related to
γ0. An important lemma for the proof is the following.

Lemma 2.5. If γ0 is a closed billiard trajectory in a hyperbolic polygon P then there
are two non-adjacent sides of P that intersect γ0 (not necessarily as endpoints of a
single geodesic arc of the trajectory).

Proof. We suppose the result is false. That is, suppose that γ0 is a closed billiard
trajectory in P and there are two sides [xi−1, xi] and [xi, xi+1] of P so that that
every arc of γ0 has one endpoint in [xi−1, xi] and the other endpoint in [xi, xi+1].
Note that γ0 cannot pass through xi since a geodesic arc from xi to a point in
either of these two sides must be contained in this side. Moreover, if γ0 passes
through xi−1 (or xi+1) then we could find an arc in γ0 connecting the non-adjacent
sides [xi−2, xi−1] and [xi, xi+1] (or the non-adjacent sides [xi−1, xi] and [xi+1, xi+2]
respectively). Let < denote the natural anticlockwise order on [xi−1, xi]∪ [xi, xi+1].

There are finitely many intersection points of γ0 with ∂P. Write them as yj
where −n ≤ j ≤ m and j 6= 0 where

xi−1 < y−n < y−n+1 < · · · < y−1 < xi < y1 < · · · < ym−1 < ym < xi+1.

Every geodesic arc in γ0 connects a point y−r with negative index and a point ys
with positive index.

Consider y−n. Suppose a is the largest index so that there is an arc of γ0 from y−n

to ya (see Figure 3 for illustration). Then there is a point yb with b ≤ a so that the
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Figure 3. Note that θ−n ≤ π/2 and, therefore, the red internal
angle of the triangle T at y−n must be at least π/2.

arc [y−n, yb] is adjacent to [y−n, ya] in the billiard trajectory γ0. (Note that there
could be other arcs of γ0 with endpoint y−n.) Since the angle of incidence equals
the angle of reflection, the angle θ−n between the arcs [yb, y−n] and [y−n, xi] equals
the angle between the arcs [ya, y−n] and [y−n, xi−1]. Since b ≤ a then θ−n ≤ π/2.

Similarly for ym. Let −c be the smallest index so that there is an arc from ym to
y−c. Then the angle θm between the arcs [y−c, ym] and [ym, xi+1] is at most π/2.

Now consider the solid closed geodesic triangle T with vertices xi, ym and y−n.
The entire billiard trajectory must be contained in T . The internal angle of T at
y−n is at least π − θ−n and the internal angle at ym is at least π − θm. But both
these angles are at least π/2, which contradicts the fact that the sum of internal
angles of a hyperbolic triangle are less than π. �

Definition 2.6. Let α and β be two closed geodesic arcs in a hyperbolic polygon P

with distinct endpoints. We say that the endpoints of α and β in ∂P interlace if
each interval of ∂P between the endpoints of α contains an endpoint of β and vice
versa.

We leave the easy proof of the following fact to the reader.

Lemma 2.7. Let α and β be two closed geodesic arcs in a hyperbolic polygon P

with distinct endpoints. If the endpoints of α and β interlace then α and β intersect
in an interior point of P.

Finally, we give a detailled proof of our main result of this section.

Proof of Proposition 2.4. We begin by proving γ is arcwise connected. We divide
the proof into two cases.

First, suppose that there is an arc α0 of γ0 so that there are two non-adjacent
sides of P0 containing the endpoints of α0. Let [xi−1, xi] and [xj−1, xj ] denote
these two sides. Since these edges are not adjacent xi−1, xi, xj−1 and xj are all
distinct. Now consider α1 = ρ(α0). It intersects the boundary of P0 in the sides
[xi, xi+1] and [xj , xj+1]. The intervals [xi−1, xi], [xi, xi+1], [xj−1, xj ] and [xj , xj+1]
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Figure 4. Configurations of interlacing in the proof of Proposition
2.4. The boundary ∂P is straigthened to simplify the illustration.

are distinct by construction and occur in this cyclic order. Therefore, as we move
around the boundary of P0 the endpoints of α0 and α1 interlace (see top of Figure
4). This means that α0 and α1 intersect in P0 by Lemma 2.7. Hence γ0 and γ1
intersect. Applying powers of ρ we see that γi and γi+1 intersect, thus proving that
γ is arcwise connected.

Secondly, suppose that every arc of γ0 connects adjacent sides of P0. Every such
arc has to connect interior points of the adjacent sides of P0 for, otherwise, we
would be in the first case. Using Lemma 2.5, we can find consecutive arcs α0 and
β0 of γ0 meeting ∂P0 in three successive sides. To be precise, suppose one end α−

0

of α0 is a point in [xi−2, xi−1], the common endpoint α+
0 = β−

0 of α0 and β0 lies in
[xi−1, xi] and the other endpoint β+

0 of β0 lies in [xi, xi+1]. Note that because α0

and β0 are geodesic arcs, their only intersection point is their common endpoint.
They therefore form an m-shaped curve. Now consider α1 ∪ β1 = ρ(α0 ∪ β0), with
endpoints α−

1 ∈ [xi−1, xi], α
+
1 = β−

1 ∈ [xi, xi+1] and β+
1 ∈ [xi+1, xi+2]. If the sets

{α−
0 , α

+
0 , β

+
0 } and {α−

1 , α
+
1 , β

+
1 } have a point in common, then γ0 and γ1 intersect,

and so γ is connected as above. Thus, we may assume these two sets are disjoint. It
suffices to show that certain endpoints of these arcs interlace and so, using Lemma
2.7, the corresponding arcs intersect. If < denotes the natural anti-clockwise order
on [xi−1, xi] ∪ [xi, xi+1], then it is easy to show:
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(a) if α−
1 < α+

0 then α−
0 , α

−
1 , α

+
0 , α

+
1 interlace, and so α0 and α1 intersect;

(b) if β−
1 < β+

0 then β−
0 , β−

1 , β+
0 , β

+
1 interlace, and so β0 and β1 intersect;

(c) if β−
0 < α−

1 and β+
0 < α+

1 then β−
0 , α−

1 , β
+
0 , α+

1 interlace, and so β0 and α1

intersect.

The cases (a)-(c) are illustrated in Figure 4. We observe that, since α+
0 = β−

0 and
α+
1 = β−

1 then condition (c) is precisely the condition that both (a) and (b) fail.
Therefore these three cases exhaust all possibilities. The argument then follows as
in the first case.

This shows that γ is arcwise connected. Since P0 is topologically a disc every
connected component U of P0 \ γ is a topological disc. If every point of ∂U lies in
γ, then we have case (a) of Definition 2.3. So suppose that ∂U contains a point of
∂P0 that is not contained in γ. Then ∂U contains a non-empty topological arc of
∂P0 both of whose endpoints lie in γ (note this arc is not necessarily contained in
just one side of P0). We claim that ∂U can contain at most one such topological
arc in ∂P0. Suppose this is false. Then we can find four points b1, b2, c1, c2 in
∂U so that (a) the points c1, c2 lie in γ, (b) the points b1, b2 lie in the interior of
arcs of ∂P0 not intersecting γ and (c) these four points b1, c1, b2, c2 are interlaced.
Therefore we can find a Jordan arc δ from b1 to b2 (that is from ∂P0 to itself) in
U (except for its end points) so that the two connected components of P0 \ δ each
contains a point of γ, namely c1 and c2. This contradicts the connectedness of γ.
Hence U can contain at most one topological arc of ∂P0 in its boundary. Recall,
we are assuming such an arc exists, or else we are in case (a) of Definition 2.3. Call
this arc ε. If the interior of ε is contained in only one side of P0, then we are in case
(b) of Definition 2.3. If the interior of ε contains points in precisely two different
sides of P0, then these two sides must be adjacent, say [xi−1, xi] and [xi, xi+1], and
their common vertex xi must also be contained in the interior of ε. In particular,
γ does not pass through the vertex xi. Since γ is preserved by the symmetry map
ρ, we see that γ does not pass through any vertex of P0. Since γ intersects the
sides [xi−1, xi] and [xi, xi+1] and does not contain their endpoints, it must contain
points of both their interiors. In particular, ε does not contain xi−1 or xi+1. Hence
we are in case (c) of Definition 2.3. Finally, suppose that the interior of ε contains
points from at least three sides of P0. As ε is connected, this means it contains
a whole side of P0, which contradicts the fact that, by symmetry, each side of P0

intersects γ. Thus, the only possibilities for ∂U are (a), (b) and (c) from Definition
2.3 as required. �

3. Teichmüller space and Fenchel-Nielsen coordinates

From now on we fix k ≥ 3 and we only consider ideal k-gons. In contrast to the
convention in the previous section, our ideal k-gons P do not contain the vertices
at infinity, but they contain the sides and are therefore closed subsets of D2. A key
observation in the proof of Theorem 1.1 is that every ideal k-gon P gives rise to a
Riemann surface SP (its billiard surface) via a gluing process of two copies of P,
denoted by P+ and P−, along corresponding sides, and that every closed billiard
trajectory in P gives rise to one or two closed geodesics in SP. This allows us to
apply powerful results from Teichmüller theory.

Let us first set up the Teichmüller space framework and introduce the relevant
objects. A Riemann surface (of finite type) S is a 2-dimensional oriented differen-
tiable manifold with finitely many ends, carrying a Riemannian metric of constant
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curvature minus one. We suppose that S has finite area with respect to this metric.
In particular, the ends are realised as cusps. The universal covering of S agrees
with D2 and the canonical complex structure of D2 induces a complex structure on
S. Thus it makes sense to consider holomorphic and anti-holomorphic isometries
of S.

Let P ⊂ D2 be an ideal k-gon (with anti-clockwise enumerated vertices x1, . . . , xk

as in Definition 2.1) and SP be the corresponding billiard surface. Note that SP is,
topologically, homeomorphic to a k-punctured sphere. The ends of SP correspond
to the vertices xj . Note that SP is a labelled billiard surface since its ends carry
labels in {1, 2, . . . , k}. Similarly, P is a labelled polygon where the bi-infinite geodesic
side (xi, xi+1) of P without its end points is endowed with the label i (mod k). SP

has a natural anti-holomorphic isometry JP : SP → SP interchanging P+ and P−,
and with fixed point set ∪k

i=1(xi, xi+1). Let P0 ⊂ D
2 be an ideal regular k-gon with

anti-clockwise labelling, R0 = SP0
be the corresponding labelled billiard surface,

and J0 = JP0
: R0 → R0 be the corresponding anti-holomorphic isometry.

Definition 3.1. The Teichmüller space T (R0) is the set of all equivalence classes
of pairs (S, f) where S is an oriented Riemann surface and f : R0 → S is a
quasiconformal mapping. Two such pairs (S, f) and (S′, f ′) are equivalent if the
map f ′ ◦ f−1 : S → S′ is homotopic to an orientation preserving isometry. We
denote the equivalence class associated to the pair (S, f) by [S, f ]. A point [S, f ] in
Teichmüller space T (R0) is also called a marked Riemann surface.

The Teichmüller space T (R0) carries a natural complex manifold structure and
the anti-holomorphic isometry J0 : R0 → R0 gives rise to an anti-holomorphic
automorphism F on Teichmüller space (see [6, pp. 229]), which we call the flip
map.

Definition 3.2. Let ϕ : R0 → R0 be an orientation preserving quasiconformal
mapping. Then we define the induced map ϕ∗ : T (R0) → T (R0) as

ϕ∗([S, f : R0 → S]) = [S, f ◦ ϕ : R0 → S].

The flip map F : T (R0) → T (R0) is defined as

(3.1) F([S, f : R0 → S]) = [S∗, jS ◦ f ◦ J0 : R0 → S∗].

Here, S∗ is the same surface as S but with the opposite orientation and jS : S → S∗

is, as a map, the pointwise identity.

Let ρ : P0 → P0 be the anti-clockwise rotation through angle 2π/k about
the centre of P0. By abuse of notation, we denote the associated rotation in the
corresponding billiard surface, again, by ρ : R0 → R0. The induced map ρ∗ :
T (R0) → T (R0) has order k. Note that the special point x0 = [R0, id : R0 → R0] ∈
T (R0) is a common fixed point of both ρ∗ and the flip map F .

Our next aim is to introduce suitable Fenchel-Nielsen coordinates (l, τ), which
yield a diffeomorphism between T (R0) and (R+)k−3 × Rk−3. We first decompose
P0 into right angled compact hexagons, right angled pentagons with one ideal
vertex and right angled quadrilaterals with two ideal vertices. Such a decompo-
sition induces a decomposition of R0 into k − 2 pairs of pants Y1, . . . , Yk−2 with
three/two/one geodesic boundary cycles, respectively. Each of these pairs of pants
Yj is invariant (as a set) under the reflection J0, and they have their own reflec-
tions JYj

which agree with the restrictions of J0 to Yj . For illustration, we now use
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the following colour convention: The k − 3 boundary cycles C1, . . . , Ck−3 ⊂ R0 of

the pants decomposition R0 =
⋃k−2

j=1 Yj are green lines. The bi-infinite geodesics

(xi, xi+1) ⊂ R0 are red lines. Cutting R0 along all red lines splits the surface into
the two polygons P0

+ and P0
−.

f(c4)f(c4)

f(c2)

f(c2)

Y ′
1

Y ′
2

τ1

A
A

B

B

C′
1

Figure 5. The green boundary cycles of Y ′
1 and Y ′

2 are identified
such that the A’s and B’s fit together. The red curve f(c4) is
freely homotopic (fixing the end points) to the union of the two
thick blue arcs and the thick green arc of length τ1 in between.

The Fenchel-Nielsen coordinates of a point [S, f ] ∈ T (R0) are now given as
follows: Let C′

j ⊂ S be the unique closed geodesic corresponding to f(Cj) modulo

free homotopy in S. Again, we think of the curves C′
j as green lines. They give rise

to a pants decomposition S =
⋃k−2

j=1 Y
′
j agreeing, combinatorially, with the pants

decomposition of R0. The length parameters of [S, f ] are then given by the lengths
lj ∈ R+ of the boundary cycles C′

j ⊂ S.

For every geodesic ci = (xi, xi+1) ⊂ R0 of R0, let its image f(ci) ⊂ S again carry
the colour red. Note that the bi-infinite curves f(ci) ⊂ S are generally no longer
geodesics. Each pair of pants Y ′

j in the decomposition of S comes equipped with
a triplet of blue geodesic arcs, namely the fixed point set of the intrinsic reflection
JY ′

j
of this pair of pants. Now, for every bi-infinite red curve f(ci) ⊂ S there exists

a unique regular freely homotopic curve connecting the same ends, which is made
up of alternating blue and green arcs (regular means here that we do not allow
to go back and forth in certain parts of the curve). This means that the curve
f(ci) defines an arc in each green boundary cycle C′

j along its path, and the length
of this arc provides a unique twist parameter τj ∈ R. Note that the sign of the
twist parameter is uniquely determined by the orientations of the pairs of pants
and their boundary cycles. Note also, that every boundary cycle C′

j defines an X-

piece (two pairs of pants glued along C′
j) and there are two curves f(ci1) and f(ci2)

intersecting it. The twist parameter τj ∈ R is independent of the choice of f(ci1)
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or f(ci2) (see Figure 5 for illustration of the twist parameter τ1 in S = Y ′
1 ∪ Y ′

2).
For further details we refer to, e.g., [5, Section 7.6].

Definition 3.3. We denote by B(R0) the subset of T (R0) with vanishing twist
parameters. The points [S, f ] ∈ B(R0) are called marked billiard surfaces. We
refer to B(R0) as the billiard space associated to P0.

4. Properties of the billiard space

Now we explain that each point of B(R0) can be realised by a labelled billiard
surface S together with an (almost canonical) quasiconformal mapping f : R0 → S,
respecting the labelling (i.e., mapping the i-th end of R0 to the i-th end of S, for
i = 1, . . . , k). Given the length coordinates (l1, . . . , lk−3), we can construct an ideal
hyperbolic k-gon P with these parameters in its decomposition into hexagons, pen-
tagons and quadrilaterals consistent with the decomposition of P0. Next, we choose
quasiconformal maps from each building block (hexagon/pentagon/quadrilateral)
of P0 to the corresponding building block of P mapping corresponding boundary
components onto each other such that they can be combined to a global quasicon-
formal map fP : R0 → SP, equivariant under the global reflections J0 and JSP

:

(4.1) fP ◦ J0 = JSP
◦ fP.

By construction, the union
⋃k

i=1 ci of the bi-infinite red lines of R0 are mapped
under fP onto the union of the blue geodesic arcs of the pairs of pants Y ′

j of SP,
and the green boundary cycles of the pants decomposition of R0 are mapped under
fP onto the corresponding green boundary cycles of the pants decomposition of SP.
This fact guarantees that all twist parameters of [SP, fP] are zero. In this context,
we can think of B(R0) as the “subset of labellel billiard surfaces” in T (R0).

Remark 4.1. As seen above, a general point x ∈ B(R0) is an equivalence class
x = [SP, fP : R0 → SP] with an almost canonical quasiconformal mapping fP.
Note that x = [SP, fP] agrees with x0 = [R0, id : R0 → R0] ∈ B(R0) if and only if
the polygon P is regular.

The Teichmüller space T (R0) carries a complex manifold structure with a natural
symplectic form ωWP , the Weil-Petersson symplectic form. By Wolpert’s Theorem
(see [10]), ωWP can be written in terms of the Fenchel-Nielsen coordinates (l, τ) of
T (R0) as follows:

ωWP = −

k−3∑

j=1

dτj ∧ dlj .

The symplectic form ωWP and the almost complex structure on T (R0) induce a
Kähler metric gWP on T (R0), the Weil-Petersson metric. While the Riemannian
metric gWP is generally not complete (see [9]), it is still true that any pair of points
x1, x2 ∈ T (R0) can be joined by a unique Weil-Petersson geodesic (see [11]). The
billiard space B(R0) has the following useful properties.

Proposition 4.2. The billiard space B(R0) is a Lagrangian submanifold of the
symplectic manifold (T (R0), ωWP ). Moreover, B(R0) is a geodesically convex subset
of (T (R0), gWP ), i.e., for given x1, x2 ∈ B(R0) the unique Weil-Petersson geodesic
connecting x1 and x2 lies entirely in B(R0).
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Proof. The flip map F , defined in (3.1), is an isometry with respect to gWP (see
[6, p. 230]). Written in our Fenchel-Nielsen coordinates we have

(4.2) F(l, τ) = (l,−τ).

This follows from [6, p. 230, bottom formula] and the fact that x0 = [R0, id] is a
fixed point of F . Therefore, the fixed point set of F is the space B(R0) of marked
billiard surfaces. By the above considerations, B(R0) is a Lagrangian submanifold
and, as the fixed point set of an isometry, B(R0) is geodesically convex. �

Finally, we give an important characterisation of the point x0 ∈ B(R0).

Proposition 4.3. The only simultaneous fixed point of ρ∗ and F in T (R0) is
x0 = [R0, id] ∈ B(R0).

Proof. Let x ∈ T (R0) be a simultaneous fixed point of F and ρ∗.
The fixed point property F(x) = x and (4.2) imply that x ∈ B(R0). Therefore,

x has a representation x = [SP, fP : R0 → SP] with P ⊂ D2 a labelled ideal
hyperbolic k-gon and fP ◦ J0 = JSP

◦ fP. By Remark 4.1, we only have to show
that P is regular.

The fixed point property ρ∗(x) = x means that g0 := fP ◦ ρ ◦ f−1
P

: SP → SP is
homotopic to an isometry g1 : SP → SP. Since a homotopy between two maps on
SP preserves the ends, g1 maps the end j of SP to the end j+1 (modulo k). Let cj
be the unique geodesic in SP connecting the ends j and j + 1 modulo k. Then the

set C =
⋃k

j=1 cj splits SP into the ideal polygons P+ and P−, both isometric to

P, and we have g1(cj) = cj+1 for all j, modulo k. This means that g1(C) = C and
the isometry g1 either interchanges P+ and P− or preserves them as sets. Since g1
is orientation preserving, we cannot have g1(P

+) = P−. This shows that we have
g1 : P+ → P+.

Now we embed P+ into D2 and compactify P+ by adding the ideal vertices
x1, . . . , xk ∈ ∂D2 corresponding to the ends 1, . . . , k, respectively. Then the isome-
try g1 extends to a continuous map, denoted again by g1, of the compacificationP+.
By Brouwer’s Fixed Point Theorem, there exists z0 ∈ P+ such that g1(z0) = z0.

This point must be an interior point of P+ since the boundary of P+, consisting
of the points x1, . . . , xk and the geodesics cj , cannot have a fixed point (recall that
g1 maps xj to xj+1 modulo k). Let rj be the geodesic ray connecting z0 with the
ideal point xj . Then g1 maps the triangle with vertices z0, xj , xj+1 to the trian-
gle with vertices z0, xj+1, xj+2 modulo k. Therefore, all the triangles with vertices
z0, xj , xj+1 for j = 1, . . . , k are isometric to one another. Since isometries preserve
angles, the angle between the rays rj and rj+1 at z0 must therefore be 2π/k. This
shows that P+ ⊂ D2 is a regular k-gon, finishing the proof. �

5. Geodesic lengths functions and cyclically related billiard

trajectories

Recall that P0 ⊂ D
2 denotes a labelled regular ideal k-gon and that R0 is its

associated billiard surface with rotational symmetry ρ : R0 → R0. Let us now
introduce geodesic length functions on Teichmüller space.

Definition 5.1. A closed curve in R0 is called essential if it is neither null-
homotopic nor spirals around one of the ends of R0. Let γ̃ = {γ̃1, . . . , γ̃N} be a
finite family of essential closed curves γ̃i : S

1 → R0. For x = [S, f ] ∈ T (R0), let γ̃
′
i
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be the unique closed geodesic which is freely homotopic to f(γ̃i). Then the geodesic
length function associated to γ̃ is a map

L = Lγ̃ : T (R0) → [0,∞),

defined by

L(x) =

N∑

i=1

length(γ̃′
i).

Note that we can continuously deform a curve spiralling around one of the ends
of a hyperbolic surface into an arbitrarily short curve by moving it up into the end.
This is the reason that such curves are not considered to be essential. The following
fundamental convexity result of Wolpert will be key for the proof of Theorem 1.1.

Theorem 5.2 ([11, Cor. 4.7]). Let γ̃ ⊂ R0 be a finite family of essential closed
curves and L = Lγ̃ : T (R0) → (0,∞) be the associated geodesic length function.
Then the function L is continuous and strictly convex along every Weil-Petersson
geodesic.

Let us now link this concept with cyclically related closed billiard trajectories in
different ideal hyperbolic k-gons. This requires further notation.

Let P ⊂ D2 be a labelled ideal k-gon. It was shown in [3, Thm 2.1] that a finite
sequence a = (a0, a1, . . . , an−1) is a billiard sequence (i.e., a coding of a closed
billiard trajectory) if and only if (a) consecutive values aj and aj+1 with indices
taken modulo n do not coincide and (b) if a contains only two different labels, then
they must not be neighbours (i.e., must not differ by ±1 modulo k). Let γa,P be
the family consisting of the unique closed billiard trajectory associated to a and all
its cyclically related billiard trajectories in P. Then γa,P consists of k piecewise
geodesic closed curves γi. Let Lav(P, a) be the average length of these curves, i.e.,

Lav(P, a) =
1

k

∑

γi∈γa,P

length(γi).

Let πP : SP → P be the canonical projection and γ̃a,P = π−1
P

(γa,P) be the lift
of these billiard trajectories in the corresponding billiard surface. Note that γ̃a,P
consists of 2k or k closed geodesics in SP, depending on whether n is even or odd:
Let γ̃i be one of the closed geodesics in γ̃a,P. Then there exists a fixed integer
t, such that every label s = aj corresponds to a transversal crossing between γ̃i
and a bi-infinite geodesic (xs+t, xs+t+1) (where indices are taken modulo k), i.e., γ̃i
changes from P± to P∓. After n such changes γ̃i will not close up if n is odd. This
is the reason why, in this case, γ̃a,P consists of k geodesics corresponding to cutting
sequences1 cyclically related to the doubling aa = (a0, a1, . . . , an−1, a0, . . . , an−1).
But it is obvious that we have in both cases∑

γ̃i∈γ̃a,P

length(γ̃i) = 2kLav(P, a).

Moreover, the left hand side can be rewritten as the geodesic length function asso-
ciated to γ̃a = γ̃a,P0

, i.e.,

(5.1) Lγ̃a
([SP, fP]) = 2kLav(P, a),

1As in the case of a labelled polygon P, we can associate a symbolic coding to a closed curve
in a labelled billiard surface SP reflecting its crossings with the bi-infinite geodesics connecting
subsequent ends. We refer to it as the cutting sequence associated to the curve.
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with fP : R0 → SP introduced at the beginning of Section 4. Note here that each
closed curve in fP(γ̃a) is freely homotopic to a corresponding curve in the family
γ̃a,P since both closed curves in SP have the same cutting sequences.

We finish this section with the following useful observation.

Lemma 5.3. Let a = (a0, . . . , an−1) be a billiard sequence. Then we have, for all
x ∈ T (R0),

Lγ̃a
(x) = Lγ̃a

(ρ∗(x)) = Lγ̃a
(F(x)).

Proof. Note that γ̃a = {γ̃1, . . . , γ̃N} with N = k or N = 2k is a family of closed
geodesics in R0 which, as a set, is invariant under ρ and J0 by its very construction.
If x = [S, f : R0 → S] then ρ∗(x) = [S, f ◦ ρ : R0 → S] and we have

Lγ̃a
(ρ∗(x)) =

N∑

i=1

length(γ̃′
i),

where γ̃′
i is freely homotopic to f ◦ ρ(γ̃i). The result for ρ follows now from the the

fact that ρ only permutes the closed curves γ̃i. The result for the flip map F follows
analogously from the fact that also JP only permutes the closed curves γ̃i. �

6. Proof of Theorem 1.1

As before, let P0 ⊂ D2 be a labelled regular ideal k-gon and a be a finite billiard
sequence. Theorem 1.1 in the Introduction states that

(6.1) Lav(P, a) ≥ Lav(P0, a)

for all ideal k-gons P ⊂ D2 with equality if and only if P is regular. Recall that
γ̃a is a family of closed geodesics in R0 associated to the billiard sequence a and
that x0 = [R0, id] ∈ B(R0) ⊂ T (R0). Then (6.1) is a consequence of the following,
by identity (5.1): For any finite billiard sequence a, the geodesic length function
associated to γ̃a satisfies

(6.2) Lγ̃a
(x) ≥ Lγ̃a

(x0),

with equality iff x = x0. So our goal is to prove (6.2).
Let us return to the property of closed curves to be filling, but now in the setting

of the Riemann surface R0.

Definition 6.1. A family of closed curves {γ̃1, . . . , γ̃N} in R0 is called filling if each

connected component of R0\
⋃N

i=1 γ̃i is topologically an open disc or a once-puctured
open disc.

The importance of being filling becomes clear in the following result by Kerckhoff.

Proposition 6.2 ([7, Lemma 3.1]). Let {γ̃1, . . . , γ̃N} be a finite family of closed
curves and L : T (R0) → (0,∞) be the associated geodesic length function, introduced
in Definition 5.1. If this family is filling, then L is a proper function.

Proposition 6.2 and Theorem 5.2 together imply the following corollary. The
proof of this corollary is well known (see, e.g., last paragraph of [11] or also [7,
Thm 3]) but we include it here for the reader’s convenience.

Corollary 6.3. Let{γ̃1, . . . , γ̃N} be a finite family of closed essential curves which
is filling and L : T (R0) → (0,∞) be the associated geodesic length function. Then
there is a unique point xmin ∈ T (R0) where L assumes its global minimum.
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Proof. Let L0 = inf{L(x) | x ∈ T (R0)} ≥ 0 and xm ∈ T (R0) be a sequence
satisfying limm→∞ L(xm) → L0. Since L is proper, by Proposition 6.2, L−1([0, L0+
1]) is compact and there exists a convergent subsequence xmj

→ xmin ∈ T (R0) with

0 < L(xmin) = lim
j→∞

L(xmj
) = L0.

Assume we have another point x′ ∈ T (R0) with L(x′) = L0. Then there exists a
unique geodesic connecting xmin and x′, along which L is strict convex, by Theorem
5.2. This would lead to a point x′′ ∈ T (R0) between xmin and x′ with L(x′′) <
L(xmin) = L0, which is a contradiction. �

Let us, finally, present the proof of (6.2): We first explain why γ̃a = {γ̃1, . . . , γ̃N}
with N = k or N = 2k is filling in R0. We know from Proposition 2.4 that if γ0
denotes the closed billiard trajectory corresponding to a in P0 and γi = ρi(γ0),

then γ =
⋃k−1

i=0 γi fills P0. Now, R0 consists of two copies P±
0 of P0, glued along

their boundaries. Under the identification P0 = P+
0 , we have

R0\

N⋃

i=1

γ̃i =

(
P0\

k−1⋃

i=0

γi

)
∪ J0

(
P0\

k−1⋃

i=0

γi

)
,

and from the domains with properties (a), (b), (c) in Definition 2.3 it is easy to see

that the connected components of R0\
⋃N

i=1 γ̃i are either topologically an open disc
or a once-puctured open disc. This shows that γ̃a is filling. Moreover, the geodesics
γ̃i are essential and we conclude from Corollary 6.3 that there exists a unique point
xmin ∈ T (R0) with

L(x) > L(xmin) for all x ∈ T (R0), x 6= xmin,

where L denotes the geodesic length function associated to γ̃a. It only remains to
identify this global minimum. We know from Lemma 5.3 that L(x) = L(ρ∗(x)) =
L(F(x)), and the uniqueness of the minimum implies that we have

xmin = ρ∗(xmin) = F(xmin).

It then follows from Proposition 4.3 that we must have x0 = xmin. �

Appendix A. Billiard in Euclidean rectangles

In this appendix, we discuss an Euclidean analogue of the conjecture, namely
we consider lengths of cyclically related closed billiard trajectories in Euclidean
rectangles of area one. For every c > 0, we introduce the rectangular billiard ta-
ble Pc = [0, c] × [0, 1/c] ⊂ R2. Every closed billiard trajectory in Pc is, up to
free homotopy, in one-one correspondence with a vector (nc,m/c) with (n,m) ∈
Z2\{(0, 0)}. The closed billiard trajectories cyclically related to (nc,m/c) are
(−mc, n/c), (−nc,−m/c) and (mc,−n/c). The lengths of these four cyclically
related billiard trajectories add up to

Ln,m(c) = 2

√
n2c2 +

m2

c2
+ 2

√
m2c2 +

n2

c2
.

The Euclidean analogue of the conjecture in this ”baby case” then reads as

(A.1) Ln,m(c) ≥ Ln,m(1),
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with equality if and only if c = 1. (A.1) is equivalent to
√
n2c2 +

m2

c2
+

√
m2c2 +

n2

c2
≥ 2
√
n2 +m2.

Squaring both sides leads to

2

√
n2c2 +

m2

c2

√
m2c2 +

n2

c2
≥ 2(n2 +m2)−

(
c2 −

1

c2

)
(n2 +m2).

This shows that we have (A.1) if
√
n2c2 +

m2

c2

√
m2c2 +

n2

c2
≥ (n2 +m2).

Squaring again yields (
c4 +

1

c4

)
n2m2 ≥ 2n2m2,

which holds obviously for all c > 0. It is easy to see that the equality case leads to
c = 1, completing the elementary proof.

Recall that in the case of hyperbolic polygons we associated to every billiard
table a billiard surface. Let us briefly explain what this means in our case: Reflec-
tions of the billiard table Pc along its sides leads to the rectangle [0, 2c]× [0, 2/c]
which, after identification of its opposite sides, becomes a torus, denoted by Sc,
the billiard surface associated to the billiard table Pc. Then every closed billiard
trajectory, traversed twice, can be viewed as a closed geodesic in Sc. Such a closed
geodesic is then again, up to free homotopy, in one-one correspondence with a
vector (2nc, 2m/c). Our inequality above about cyclically related closed billiard
trajectories then naturally translates to a corresponding statement about closed
geodesics in the associated billiard surfaces. The relevant Teichmüller space is then
the space of all closed flat oriented surfaces (of genus 1), which we can identify
with the hyperbolic upper half plane H2 = {z ∈ C | Im(z) > 0}. More concretely,
we associate to every point τ ∈ H2 the lattice Γτ generated by 1 and τ , and we

multiply this lattice by a suitable mulitplicative factor, then denoted by Γ̃τ , to have

covolume 4. Then the point τ ∈ H2 corresponds to the marked flat surface R2/Γ̃τ .
In particular, the marked billiard surface Sc corresponds to the point i/c2 ∈ H2,
and the Weil-Petersson metric gWP at z = x + iy ∈ H2 agrees, up to a multi-

plicative factor, with the hyperbolic metric dx2+dy2

y2 (see [6, Section 7.3.5]). The

positive vertical imaginary axis in H2 is therefore a Weyl-Petersson geodesic. Since
this axis represents the set of all marked billiard surfaces, we can confirm in this
case that the space of all marked billiard surfaces is a geodesically convex set in the
Teichmüller space H2.

We finish this appendix by the remark that the restriction to Euclidean rectangles
of area one is essential: Let us consider the bigger class of Euclidean quadrilaterals
of area one (dropping the requirement that all angles are equal to π/2). Then
Figure 6 illustrates that the square is no longer necessarily the billiard table which
minimises the total length of cyclically related closed billiard trajectories: the total
length of all billiard trajectories cyclically related to the finite billiard sequence
(1, 3) is obviously smaller in the parallelogram. Note also that reflections of the
parallelogram along its sides does no longer lead to a tessellation of the Euclidean
plane and, therefore, we cannot construct a billiard surface (flat torus) from this
billiard table by the above mentioned method.
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Figure 6. Closed cyclically related billiard trajectories to the bil-
liard sequences (1, 3), (2, 4), (3, 1), and (4, 2). The billiard tables
are the square and a parallelogram of area one.
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