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In this work we use the Rankin-Selberg method to obtain results on the analytic proper-
ties of the standard L-function attached to vector valued Siegel modular forms. In par-
ticular we provide a detailed description of its possible poles and obtain a non-vanishing
result of the twisted L-function beyond the usual range of absolute convergence. Our
results include also the case of metaplectic Siegel modular forms. We remark that these
results were known in this generality only in the case of scalar weight Siegel modular
forms. As an interesting by-product of our work we establish the cuspidality of some
theta series.

1. Introduction

The standard L function attached to a scalar weight Siegel eigenform has been exten-
sively studied in the literature. Its analytic properties have been investigated, among
others, by Andrianov and Kalinin [1], Böcherer [3], Shimura [20, 21, 24], Piatetski-
Shapiro and Rallis [8, 19] and Kudla and Rallis [15, 16] (the works of Piatetski-Shapiro
and Rallis and Kudla and Rallis study more general types of Siegel modular forms and
we come back to this later in the introduction). In all these works the properties of
the L-function are read off by properties of Siegel-type Eisenstein series, which them-
selves are well-understood. However there are (at least) two different ways to obtain
an integral expression of the L-function involving Siegel-type Eisenstein series which
does not require the assumption of the existence of a specific model (Whittaker model,
Bessel model etc). The first is what in this paper we will be calling the Rankin-Selberg
method (involving a theta series and a Siegel-type Eisenstein series of the same degree)
and the second is usually called the doubling method (involving the restriction of a
higher degree Siegel-type Eisenstein series).

It is now well-understood (see for example the discussion in [21, Remark 6.3, (III)]
or [24, proof of Theorem 28.8] or even [15, page 17]), that the two methods are not
equivalent, and that both deserve to be explored for their own merit. One particularly
interesting application of the Rankin-Selberg method is to obtain non-vanishing results
of the standard L-function beyond the usual range of absolute convergence. Such a non-
vanishing theorem is known for the scalar weight case. For example in [24] the usual
bound of Re(s) > 2n+1 in [24, Lemma 20.12] is extended to Re(s) > (3n/2)+1 in [24,
Theorem 20.13], where n is the degree of the symplectic group. Note here that we follow
the convention of Shimura and take n+1/2 as the center of the critical script. This result
was firstly obtained in [23] improving a previous result of [6]. A very interesting aspect
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of the method is that one obtains the improvement on the absolute convergence range
without obtaining first an estimate on the growth of the Fourier coefficients of the Siegel
modular forms. Such non-vanishing results have important application to the study of
scalar weight Siegel modular forms, as for example to establish algebraicity results for
special L-values of Siegel modular forms. Indeed the extension of the non-vanishing
range has a direct consequence on the weights of the Siegel modular forms for which one
can obtain such results, see for example [24, Theorem 28.5 and Theorem 28.8]. Another
interesting application, and actually closely related to the algebraicity of L-values, is on
the study of the space of holomorphic Eisenstein series (decomposition to Klingen-type
Eisenstein series), and on the splitting of the Eisenstein part from the cuspidal part for
Siegel modular forms with algebraic Fourier coefficients i.e. Mk(Q) = Sk(Q)⊕Eisk(Q),
with the rather standard notation. Here the non-vanishing result allows one to obtain
results for small weights, [24, Theorems 27.13 and 27.14]. Moreover all the above are
valid not only for integral weight Siegel modular forms but also for half-integral weight
ones, which in this paper we call them metaplectic modular forms.

Of course one can consider the standard L-function attached to non-scalar weight (vec-
tor valued) Siegel modular forms. The known results with respect to the location of
poles in this situation are due to Piatetski-Shapiro and Rallis [8, 19] and Kudla and
Rallis [15, 16] using the automorphic representation language. In these papers some
Euler factors are removed, and the gamma factors are not given explicitly. These re-
sults were further developed by Lapid and Rallis in [17] and more recently by Yamana
[27] where the doubling method is used to define candidates for the missing Euler and
gamma factors. However in all these works the description of the possible set of poles
is “generic”, in the sense that it does not depend on the weight (or even the type of
the corresponding automorphic representation at infinity) of the Siegel modular form
giving potentially a larger set of possible poles than the particular L-function may have,
see also the discussion in [21, page 571] or [23, page 334] and the Remark after Theorem
5.2 for more on this. We should also mention here the works [2, 4, 13, 25] which also
use the doubling method, but are different in their approach to the works mentioned in
this paragraph. They rely, especially the first one, on work of Ibukiyama [10] on vector
valued differential operators which one applies to Siegel type Eisenstein series of scalar
weight. Perhaps we should mention here that in [2] the authors have other aims and do
not establish detailed results on the location of poles, or make explicit computation of
the gamma factors of the (untwisted) standard L-function. Nevertheless their approach
is closer in spirit to the one we follow in this paper, but very different in method. On
the other hand in [13, 25] some detailed results on the analytic properties of the stan-
dard L-function are established and we offer a detailed discussion of how these works
compare with ours right after Remark 5.3.

Indeed, the main aim of this paper is to use the Rankin-Selberg expression (opposite
to the doubling method) in the vector valued case, including the metaplectic case, to
obtain precise results regarding the location and orders of possible poles (our description
will take into account the weight of the Siegel modular form), compute the gamma
factors, and establish a non-vanishing result similar to the one of Shimura in the scalar
weight situation. The main ingredient of our approach is some vector valued theta
series, which in turn relies on the existence of some pluriharmonic polynomials studied
by Kashiwara and Vergne [11]. We should remark right away that this puts some
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limitations on the representations we can consider as weights of the underlying Siegel
modular form. However the advantage using this method is that the Eisenstein series
involved, which is the source of the poles, is of scalar weight and hence we have a very
detailed description of the possible poles thanks to work of Shimura. It is in this sense
our work is closer in spirit that of [2, 4] than to the works [8, 19, 15, 16].

Furthermore, and even more importantly, we will use the Rankin-Selberg expression to
obtain some non-vanishing results of the standard L-function. A crucial ingredient for
this is the cuspidality of certain vector valued theta series for which, since the approach
used in [24] is not applicable, we need a completely new idea. This is an interesting
byproduct of our work.

We believe that it is very important to have a detailed study of the Rankin-Selberg
method in the vector valued situation from the point of view taken in this work. Fur-
thermore it is reasonable to expect that our results have direct consequences for the
algebraicity of the special L-values, the study of the space of holomorphic Eisenstein
series and the (algebraic) splitting of the Eisenstein part from the cuspidal part in the
vector-valued situation much in the same way the results of Shimura [24] had in the
scalar weight one. That is, one may be able to extend algebraicity results such as the
ones obtained by Kozima in [12] to include “smaller” weight Siegel modular forms. We
hope to explore these application in the near future.

2. Vector Valued Siegel Modular Forms

Alongside that of standard scene-setting, the intention of this section is to introduce
adelic vector valued Siegel modular forms and establish their Fourier expansions. We
mainly follow [24].

Throughout the paper 1 ≤ n ∈ Z; T ⊆ C is the unit circle; and we define three
characters on C,Qp,AQ (the adeles of Q) respectively by

e(z) : = e2πiz, z ∈ C,
ep(x) : = e(−{x}), x ∈ Qp,

eA(x) : = e(x∞)
∏
p∈h

ep(xp), x ∈ AQ,

where {x} denotes the fractional part of x ∈ Qp, ∞ denotes the Archimedean place of
Q, and h denotes the non-Archimedean places. When convenient, for x ∈ AQ and a
square matrix M , we shall also write eh(x) = eA(xh); e∞(x) = eA(x∞); |M | := det(M),
‖M‖ := |det(M)|; M > 0 (M ≥ 0) to mean that M is positive definite (respectively

positive semi-definite);
√
M to be the symmetric matrix such that (

√
M)2 = M ; and

diag[M1, . . . ,M`] =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · M`


for square matrices Mi.
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If α ∈ GL2n(Q) then put

α =

(
aα bα
cα dα

)
for aα, bα, cα, dα ∈Mn(Q). With

G : = Spn(Q) = {α ∈ GL2n(Q) | tαηnα = ηn} ηn :=

(
0 −In
In 0

)
P : = {α ∈ G | cα = 0}

Hn : = {z = x+ iy ∈Mn(C) | tz = z, y > 0},

let GA and PA denote the adelizations of G and P respectively; there are the usual
respective actions of Spn(R) and GA on Hn given by

α · z := (aαz + bα)(cαz + dα)−1

x · z := x∞ · z

for α ∈ Spn(R), x ∈ GA, and z ∈ Hn; and we also have factors of automorphy

µ(α, z) = cαz + dα

µ(x, z) = µ(x∞, z).

Let V be a finite-dimensional complex vector space and let

ρ : GLn(C)→ GL(V )(1)

be a representation of GLn(C). For any f : Hn → V and α ∈ GA define a new function
f |ρα : Hn → V by

(f |ρα)(z) := ρ(µ(α, z))−1f(α · z)

and it is clear that f |ρ(αβ) = (f |ρα)|ρβ for any two α, β ∈ GA.

Let k ∈ 1
2Z and define [k] := k if k ∈ Z, [k] := k − 1

2 if k /∈ Z. To talk about
metaplectic vector-valued modular forms, we introduce the metaplectic group Mpn(Q),
its adelization MA, and a particular subgroup M ≤MA (we refer to [22] for definitions).
Let pr : MA → GA be the natural projection and, with pr(σ) = α for σ ∈ MA and
α ∈ GA, put xσ = xα for x ∈ {a, b, c, d}, σ · z = α · z, and µ(σ, z) = µ(α, z). There
is also a lift r : GA → MA through which G can be viewed as a subgroup of MA. If
k ∈ Z then we make the natural assumption that the projection map pr and any of its
associated lifts

r : GA →MA

rP : PA →MA,

are all the identity.

The kinds of modular forms we will be considering transform with respect to repre-
sentations of the form ρk := jk ⊗ ρ, where ρ is a rational (later even polynomial)
representation of GLn(C), jk : GLn(C) → C× is a scalar representation whose defini-
tion depends on whether k is an integer of not. If k is an integer then we simply let
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jk := detk, i.e. the determinant to the power of k. However special care is needed in
the case where k is not an integer. We define,

jkσ(z) :=

{
|µ(σ, z)|k if k ∈ Z, σ ∈ GA

hσ(z)|µ(σ, z)|[k] if k /∈ Z, σ ∈M

where hσ(z) = h(σ, z) is a half-integral factor of automorphy defined, only for σ ∈M,
in [22, p. 25], and we remind the reader our notation |M | := det(M) for a square
matrix M . Then put jk(µ(σ, z)) = jkσ(z) for appropriate σ. In the case where k /∈ Z,

the representation jk will also take into account the factor of automorphy J
1
2 defined

in [22, p. 32], which is an extension of hσ to a larger subgroup Z (see [22, p. 29]) of
MA that allows for the definition of Hecke operators in this setting. Explicitly, we have

ρk(µ(σ, z)) =

{
jkσ(z)ρ(µ(σ, z)), for σ ∈ GA if k ∈ Z, σ ∈M if k /∈ Z
J

1
2 (σ, z)|µ(σ, z)|[k]ρ(µ(σ, z)), for σ ∈ Z and k /∈ Z.

We can now give the definition of a vector-valued Siegel modular form. In the case
below where k is not an integer we will use the term metaplectic Siegel modular forms,
or simply metaplectic modular forms.

Definition 2.1. Given k ∈ 1
2Z, a congruence subgroup Γ ≤ G (contained in M if k /∈

Z), and ρk as above, thenMρk(Γ) denotes the complex vector space of all holomorphic
f : Hn → V such that

(1) f |ρkγ = f for all γ ∈ Γ;
(2) f is holomorphic at all cusps.

The last condition is needed only in the case of n = 1. In order to explain it, and also
introduce the notion of a cusp form, we define the sets of symmetric matrices

S : = {τ ∈Mn(Q) | tτ = τ}
S+ : = {τ ∈ S | τ ≥ 0}
S+ : = {τ ∈ S | τ > 0}
S(x) : = S ∩Mn(x)

Sh(x) : =
∏
p

S(xp),

for some fractional ideal x of Q. For any f ∈ Mρ(Γ) and any γ ∈ G we have a Fourier
expansion of the form

(f |ρkγ)(z) =
∑
τ∈S+

c(τ)e∞(τz),(2)

where c(τ) ∈ V and c(τ) = 0 for all τ 6∈ L for some Z-lattice L ⊂ S+. This is automatic
in the case of n > 1 and is the condition we impose in the case of n = 1. We let Sρk(Γ)
denote the subspace of cusp forms, that is those f ∈Mρk(Γ) with the property that in
the expansion (2) above the sum is running over τ ∈ S+.

The level of the studied forms will be congruence subgroups of the following form

Γ = Γ[b−1, bc] := G ∩D[b−1, bc]
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D[b−1, bc] : = Spn(R)
∏
p∈h

Dp[b
−1, bc]

Dp[b
−1, bc] : = {x ∈ Spn(Qp) | ax, dx ∈Mn(Zp), bx ∈Mn(b−1

p ), cx ∈Mn((bc)p)}
for a fractional ideal b and an integral ideal c under the additional assumption that
2 | b−1 and 2 | bc if k 6∈ Z.

Let ψ = ψ∞ ⊗p∈h ψp : A×Q/Q
× → T be a finite order Hecke character (or often we

simply say a character) such that ψp(a) = 1 for any a ∈ Z×p with a ∈ 1 + cpZp. Then
we define the following complex vector spaces

Mρk(Γ, ψ) : = {f ∈Mρk | f |ρkγ = ψc(|aγ |)f for every γ ∈ Γ}
Sρk(Γ, ψ) : =Mρk(Γ, ψ) ∩ Sρk

where ψc(x) =
∏
p|c ψp(xp).

Suppose, for some character ψ, that f, g : Hn → V satisfy f |ρkγ = ψc(|aγ |)f and
g|ρkγ = ψc(|aγ |)g for all γ ∈ Γ, and endow V with a Hermitian inner product ≺ ·, · �
with respect to which ρ satisfies

≺ ρ(M)·, · �=≺ ·, ρ(tM̄)· �
for any M ∈ GLn(C) (see [24, page 96]). Then the Petersson inner product of f and g
is given by

〈f, g〉 := Vol(Γ\Hn)−1

∫
Γ\Hn

≺ ρk(
√
y)f(z), ρk(

√
y)g � d×z

whenever this integral is convergent, where

Vol(Γ\Hn) :=

∫
Γ\Hn

dz, dz :=
∧
p≤q

(dxpq ∧ dypq), d×z := |y|−n−1dz

for z = (xpq + iypq)
n
p,q=1.

With (b, c) and Γ = Γ[b−1, bc] as above we take f ∈Mρk(Γ, ψ). Then its adelization is
a map fA : pr−1(GA)→ V defined by

fA(αw) := ψc(|dw|)(f |ρkw)(i)

for α ∈ G and w ∈ pr−1(D[b−1, bc]). Note that if x ∈ GA and α,w as above then

fA(αxw) = ψc(|dw|)ρk(µ(w, z)−1)fA(x).

Let t ∈ pr−1(Gh), Γt := G ∩ tD[b−1, bc]t−1, and set

Mρk(Γt, ψ) := {f ∈Mρk | f |ρkγ = ψc(|at−1γt|)f for every γ ∈ Γt}.

Lemma 2.2. For any such t as above and y = αw ∈ Gpr−1(D[b−1, bc]) we have
fA(ty) = (ft|ρky)(i) for some ft ∈Mρk(Γt, ψ).

Proof. Heuristically, the function ft is the translation of f to some cusp. With t fixed
as above let ty = αtwt where αt ∈ G and wt ∈ pr−1(D[b−1, bc]), then by definition

fA(ty) = ψc(|dwt |)(f |ρkwt)(i)
and so define ft by letting y ∈ pr−1(GA) vary in

ft(y · i) = ψc(|dwt |)ρk(µ(y, i))(f |ρkwt)(i).
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�

The following is an extension of Proposition 20.2 in [24] from the scalar weight to the
vector valued case. We include here its proof for completeness.

Proposition 2.3. If f ∈ Mρk(Γ, ψ) then there exists cf (τ, q) ∈ V for τ ∈ S+ and
q ∈ GLn(Q)A such that

fA

(
rP

(
q stq

−1

0 tq
−1

))
= ρ[k](

tq∞)
∣∣det(q)k−[k]

∞
∣∣ ∑
τ∈S+

cf (τ, q)e∞(tr (itqτq))eA(tr (τs))

for any s ∈ SA. The coefficients satisfy the following properties:

(1) cf (τ, q) 6= 0 only if eh(tr (tqτqs)) = 1 for any s ∈ Sh(b−1);
(2) cf (τ, q) = cf (τ, qh);

(3) cf (tbτb, q) = ρ[k](
tb)|det(b)k−[k]|cf (τ, bq) for any b ∈ GLn(Q);

(4) ψh(|e|)cf (τ, qe) = cf (τ, q) for any e ∈
∏
pGLn(Zp).

If t ∈ pr−1(Gh), r ∈ GLn(Q)h, and β ∈ G ∩ diag[r, r̃]D[b−1, bc]t−1, then we have

ρk(µ(β, β−1z))ft(β
−1z) = ψc(|a−1

βt r|)
∑
τ∈S+

cf (τ, r)e∞(tr (τz)).

Proof. Let x =

(
q stq

−1

0 tq
−1

)
as in the theorem, and put t = xh. The functions

ft ∈ Mρk(Γt, ψ) given in Lemma 2.2 have Fourier expansions

ft(z) =
∑
τ∈S+

c′f (τ)e∞(tr (τz))

where the coefficients c′f (τ) = c′f (τ, q, s) depend on q and s. We have x∞i = tq∞q∞i+s∞
and by Lemma 2.2 that

fA(x) = (ft|ρkx)(i) = ρ[k](
tq∞)

∣∣ det(q)k−[k]
∞

∣∣ ∑
τ∈S+

c′f (τ, q, s)e∞(tr (itqτq))e∞(tr (τs)).

Subsequently defining c(τ, q, s) := eh(−tr (τs))c′f (τ, q, s) gives us

fA(x) = ρ[k](
tq∞)

∣∣ det(q)k−[k]
∞

∣∣ ∑
τ∈S+

c(τ, q, s)e∞(tr (itqτq))eA(tr (τs)).

Since fA(αxw) = fA(x) for any

α =

(
1 ?
0 1

)
∈ G and w =

(
1 ?
0 1

)
∈ Gh ∩ pr−1(D[b−1, bc])

we get independence of the cf (τ, q, s) on s as seen in [[24], p. 168]. This yields our
Fourier expansion, and with this the proof of the properties for the coefficients follows
through exactly as it does in [[24], p.168]. �
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3. Theta Series

In this section we obtain some vector valued theta series, which we will employ later
to obtain an integral expression of the standard L function attached to an eigenform.
These theta series will be Siegel modular forms in Mρ(Γ, ψ) for some particular congru-
ence subgroup Γ and a nebentype ψ, which will become explicit later. However we will
not be able to obtain theta series for any weight ρ but rather for some specific ones. The
existence of such theta series is closely related to the existence of some pluriharmonic
polynomials. We first summarize some results from the work of Kashiwara and Vergne
in [11]. Actually here we restrict to the case that will be of interest to us and do not
work in full generality as in their work.

3.1. Pluriharmonic Polynomials. Following [11], as well as [7, section 6 and its
appendix] we denote by C[Mn] the ring of complex polynomials on the n× n matrices.
A polynomial P ∈ C[Mn] is called pluriharmonic if

(∆i,jP )(x) = 0, 1 ≤ i ≤ j ≤ n,

where ∆i,j :=
∑n

k=1
∂2

∂xik∂xjk
. We denote the space of pluriharmonic polynomials by

H. The group On(C) × GLn(C) acts on C[Mn] by (g, h) : P (x) 7→ P (g−1xh) and this
action preserves the subspace H. We now consider an irreducible representation (σ, Vσ)
of On(C), and denote by H(σ) the space of all Vσ-valued pluriharmonic polynomials
P (x) such that P (gx) = σ(g)−1P (x). Here pluriharmonicity is understood component-
wise.

Following Kashiwara and Vergne we write Σ for the set of irreducible σ ∈ On(C)∧

such that H(σ) 6= 0, and denote by τ(σ) the representation of GLn(C) obtained by
τ(σ)(tg)(P ) = P (xg), for P ∈ H(σ). Then it is shown in [11] that τ(σ) is an irreducible
representation of GLn(C). Kashiwara and Vergne have determined the representations
σ ∈ Σ and for each such σ they have also described the representation τ(σ). In order
to give their results we have to distinguish between the case of n being even or odd.

3.1.1. The case n = 2l + 1. Following the notation of [11] we parametrize the irre-
ducible representations of On(C) by the l + 1 tuple (m1,m2, . . . ,ml; ε) where mj ∈ Z
and m1 ≥ m2 ≥ . . . ≥ ml ≥ 0 and ε = ±1. Here we are using the fact that
On(C) ∼= SOn(C) × Z/2Z, and that (m1, . . . ,ml) is the highest weight of a rep-
resentation of SOn(C). Similarly we parametrize the finite dimensional irreducible
representations of GLn(C) by the highest weights with respect to upper triangular ma-
trices, that is by n-tuples (m1,m2, . . . ,mn) with m1 ≥ m2 ≥ . . . ≥ mn with mj ∈ Z.
We summarize the results of Kashiwara and Vergne in the following theorem.

Theorem 3.1 (Kashiwara and Vergne). Assume n = 2l+1. Every σ ∈ On(C)∧ belongs

to Σ. Let σ = (m1, . . . ,ml; ε). If ε = (−1)
∑
j mj then

τ(σ) = (m1, . . . ,ml, 0, 0, . . . , 0)

If ε = (−1)1+
∑
j mj and we write σ = (m1, . . . ,mr, 0, . . . , 0; ε) with mr 6= 0, then

τ(σ) = (m1, . . . ,mr−1,mr, 1, . . . , 1, 0, 0, . . . , 0),

where the sequence ends with r-many zeros. If σ = (0, 0, . . . , 0;−1) then it is understood
that τ(σ) = (1, 1, . . . , 1).
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3.1.2. The case n = 2l. In order to describe the results of Kashiwara and Vergne in this
case, we need to introduce some more notation. For an l-tuple (m1,m2, . . . ,ml) of de-
creasing non-negative integers we denote by σ = (m1,m2, . . . ,ml)+ the irreducible rep-

resentation of On(C) generated by ∆1(x)m1−m2 . . .∆
ml−1−ml
l−1 (x)∆ml

l (x) under left trans-
lations, where for the definition of ∆j we refer the reader to [11]. Moreover, for an inte-
ger 1 ≤ j ≤ l, such that mj 6= 0 and mj+1 = 0, we denote by σ = (m1, . . . ,ml)− the irre-

ducible representation generated by ∆1(x)m1−m2 . . .∆j−1(x)mj−1−mj∆j(x)mj−1∆̃j(x, y)

under left translation, where again we refer to [11] for the definition of ∆̃j(x, y). We

only note here that ∆̃l(x, y) = ∆l(x) and hence in particular if ml 6= 0 we have that
(m1, . . . ,ml)+ = (m1, . . . ,ml)−. We can now state

Theorem 3.2 (Kashiwara and Vergne). Assume n = 2l. Then Σ = Σ+ ∪ Σ− where

Σ± := {(m1, . . . ,ml)±}

Let σ = (m1, . . . ,ml)+ ∈ Σ+, then

τ(σ) = (m1, . . . ,ml, 0, 0, . . . , 0)

If σ = (m1, . . . ,mr, 0, . . . , 0)− ∈ Σ− with mr 6= 0, then

τ(σ) = (m1, . . . ,mr, 1, 1, . . . , 1, 0, 0, . . . , 0),

where the sequence ends with r-many zeros.

3.2. Theta series with pluriharmonic coefficients. Let now ρ ∈ τ(Σ), that is
ρ = τ(σ) for some σ ∈ Σ. We will construct a theta series with weight ρn/2 where of
course in the case where n is odd, our theta series will be a metaplectic one.

We start by recalling a Jacobi theta series defined by Shimura in [24]. Let τ ∈Mn(Q)
be symmetric and positive definite. We also write W := Mn(Q) and consider an
λ ∈ S(Wh), the Schwarz space of the finite adeles of W . Following Shimura [24,
Appendix A.3] we define, for z ∈ Hn and u ∈Mn(C), the series

g(u, z, λ) : =
∑
ξ∈W

λ(ξh)Φ(ξ;u, z),

Φ(ξ;u, z) : = e(tũ(1n ⊗ 4iy)−1ũ+ tr (ztξτξ) + tr (u
√

2τξ))

ũ : = t(u11, . . . , un1, . . . , u1n, . . . , unn).

The properties of this theta series are stated in [24, Theorem A3.3]. In particular it is
shown there that

J(α, z)−1g(α(u, z); αλ) = g(u, z;λ), α ∈ Spn(Q) ∩Mn(3)

in which

J(α, z) : =

{
j(α, z)n/2 if n is even,

h(α, z)n if n is odd,

α(u, z) : = (tµ(α, z)
−1
u, α(z)),

and where we recall µ(α, z) := cαz + dα ∈ GLn(C). Here Mn = Spn(A) if n is even,
and is equal to a certain subgroup of the adelic metaplectic group if n is odd (see line
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(A2.17) of [24]), and in [24] an action of this group is defined on the space S(Wh),
which is denoted by λ 7→ αλ.

Consider a representation (ρ, V ) of GLn(C) with ρ ∈ τ(Σ), and let m := dimC(V ). In
particular there exists a V -valued pluriharmonic polynomial P (x) = t(P1(x), . . . , Pm(x))
with x ∈Mn(C) such that P (xtg) = ρ(g)P (x) for g ∈ GLn(C). Moreover we can select
P (x) (see [11, remark (6.5)]) such that P (1) ∈ V to be a highest weight vector with
respect to the representation ρ.

We now define the following V -valued theta series,

θ(z, λ;P ) :=
∑
ξ∈W

λ(ξh)P (
√

2τξ)e(2−1tr (tξτξz)).

The following theorem generalizes the one in [24] from the scalar weight situation to
the vector valued one. We also refer the reader to [7] for vector valued theta series.

Theorem 3.3. For any α ∈ Spn(Q) ∩Mn we have,

θ(α z, αλ;P ) = Jρ(α, z)θ(z, λ;P ).

where

Jρ(α, z) :=

{
j(α, z)n/2ρ(µ(α, z)) if n is even,

h(α, z)nρ(µ(α, z)) if n is odd.

Proof. We consider the differential operator P (∂) = (P1(∂), . . . , Pm(∂)) on the space
Mn(C), where we have set xij = ∂

∂uij
. Here for a function f(u) on Mn(C) we understand

that P (∂)f := (P1(∂)f, . . . , Pm(∂)f) is a V -valued function on Mn(C). We now observe
that

2πiθ(z, λ;P ) = (P (∂)g(u, z;λ))|u=0

Indeed this follows from the fact that P (∂)e2πitr(ua) = 2πiP (a)eπitr(ua) for any matrix
a ∈Mn(C) and that

P (∂)e(tũ(1n ⊗ 4iy)−1ũ+tr (ztξτξ) + tr (u
√

2τξ))|u=0

= P (∂)(e(tr (ztξτξ) + tr (u
√

2τξ))|u=0

by [24, Lemma A3.6]. We now apply to (3) above the operator P (∂)(·)|u=0 to both

sides and, observing that P (
√

2τξtµ(α, z)
−1

) = ρ(µ(α, z))−1P (
√

2τξ), we conclude the
proof. �

The function θ(z, λ, P ) enjoys the same properties with respect to level as the function
θ(z, λ) defined in [24], since they are both obtained by the Jacobi theta series by
applying differential opeartors. Actually it is exactly the same function if we take
ρ = detµ where µ = {0, 1}, since det is in τ(Σ). In particular Propositions A. 3.17
and A. 3.19 in [24] hold also for the theta function defined here when one replaces
det(ξ)µ there with P (

√
2τξ). Indeed the level of the theta series depends, thanks to

the theorem above, only on the choice of the Schwartz function λ. We now describe
a particular choice of λ and give the congruence subgroup of the corresponding theta
series.
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We start with a Hecke character χ of conductor f. For a fixed Q ∈ GLn(Qh), we define
the theta seres θρ,χ(z) := θ(z, λ;P ) where the Schwartz function λ is given at each
place by λp(x) = χ−1

p (|Q|)λ′p(Q−1x),

λ′p(x) :=


1 if x ∈Mn(Zp) and p - f
χ−1
p (|x|) if x ∈ GLn(Zp) and p | f

0 otherwise,

and, overall, by λ(x) :=
∏
p λp(xp) ∈ S(Mn(Qh)). Then as in the scalar weight case

(see Proposition A3.19 in [24]) we have that θρ,χ(z) ∈ Mρn/2(Γ, χετ ) where ετ is the

quadratic character, of conductor h, corresponding to the extension F (i[n/4]
√
|2τ |)/F ;

Γ = G ∩D[b−1, bc] for a fractional ideal b and integral ideal c given by

(b, c) =

{
(2−1r, h ∩ f ∩ r−1f2t) if n ∈ 2Z
(2−1a−1, h ∩ f ∩ 4a ∩ af2t) otherwise,

in which the ideals r, t, and a are defined, for all g ∈ QZn and for all h ∈ tQ
−1Zn, by

tg2τg ∈ r,

th(2τ)−1h ∈ 4t−1,

a : = r−1 ∩ Z.

3.3. Cuspidal theta series. Our next aim in this section is to obtain a result to-
wards the cuspidality of this theta series, which will be useful later in establishing
non-vanishing results for the L-function of a cusp form. We first note that Theorem

A3.3 (5) and (6) of [24] tell us that if σ ∈Mn is such that pr(σ) =

(
1 bσ
0 1

)
, x ∈Mn(Q),

and τ ∈ S+ is fixed, then

(σλ)(x) = eh
(
tr (txτxtbσ)

)
λ(x)(4)

(ηλ)(x) = id
∫
Mn(Qh)

λ(y)eh(−tr (tx2τy))dhy,(5)

where d = n2/2 if n is even, d = 0 if n is odd, recall η :=

(
0 −1n
1n 0

)
, and dhy =

∏
p dpy

is the Haar measure such that
∫
Mn(Zp) dpy = |det(2τ)|

n
2
p .

If χ is a character modulo f = FZ, X ∈Mn(Z), and R ∈ S is a symmetric matrix, then
define the generalised quadratic Gauss sum by

G′n(χ,X,R, F ) :=
∑

T∈Mn(Z/FZ)

χ(|T |)e2πi
tr (tXT−τ [Q]TRtT )

F ,

where τ [Q] := tQτQ. The integral (σηλ)(x) is calculated as follows.

Lemma 3.4. Let χ be a character modulo f = FZ and put Fp := ordp(f). Assume that
σ and τ are as above, that b = bσ ∈ S(Zp), and let Q ∈ GLn(Qh). Then the value of
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(ησλ)(x) is non-zero if and only if

pFpτ [Q]− 2txτQ ∈

{
p−FpMn(Zp/pFpZp) if p | f
Mn(Zp) if p - f

at which it is given by

(ησλ)(x) = idχ(|Q|)|2QFτ |−
n
2G′n(χ, 2F tQτx, Fb, F ).

Proof. Write i−d(ησλ) =
∏
p(
ησλ)p. First consider the local integrals for p | f, at which

we have that (ησλ)p(x) is equal to

χ−1
p (|Q|)

∫
QGLn(Zp)

χ−1
p (|Q−1y|)ep

(
tr (τybty − tx2τy)

)
dpy

= χ−1
p (|Q|)|det(Q)|

n
2
p

∫
GLn(Zp)

χ−1
p (|y|)ep

(
tr (τ [Q]ybty − tx2τQy)

)
dpy.

Since the local conductor of χp is pFp this becomes

χ−1
p (|Q|)|det(Q)|

n
2
p

∑
a∈Mn(Z/pFpZ)

χ−1
p (|a|)e

(
tr (tx2τQa− τ [Q]abta)

)
×
∫
Mn(Zp)

ep
(
tr (p2Fpτ [Q]ybty − pFp tx2τQy)

)
dpy.

The integral on the second line is non-zero if and only if the integrand is a constant
function in y – i.e. if and only if pFpτ [Q]− 2txτQ ∈ p−FpMn(Zp) – at which point it is

equal to p−Fp(n2/2). Multiplying all such local sums together for p | f gives the form in
the lemma. Note that if pFpτ [Q]−2txτQ ∈Mn(Zp) then the above expression becomes
a sum of a character over all its values, which is zero.

When p - f then the local integral (ησλ)p(x) is equal to∫
QMn(Zp)

ep
(
tr (τybty − tx2τy)

)
dpy

and this is non-zero if and only if we have the condition given in the lemma at which

point, by the definition of the Haar measure, it is | det(2τQ)|
n
2
p . �

Proposition 3.5. If det(X) = 0; p is an odd prime; τ = diag[τ1, . . . , τn] is diagonal,
Q ∈ GLn(Qf ) is upper triangular with coefficients qn1, . . . , qn,n−1 = 0; and χ is odd of
conductor p, then

G′n(χ,X,R, p) = 0.

Proof. In the base n = 1 case, 0 = X ∈ Z and we can write

G′1(χ,X,R, p) =
∑
n∈F×p

χ(n)e
−2πiτQ2 Sn2

p =

p−1
2∑

n=1

[χ(n) + χ(−n)]e
−2πiτQ2 Rn2

p

for Q ∈ Q; τ,R ∈ Z; and this is zero if χ is odd.
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For the general n case, first let Mjn be the (n− 1)× (n− 1) matrix obtained from any
n × n matrix M by removing the jth row and the nth column. By a change of basis
followed by a change of variables in T we can assume that

X =

(
Xnn 0
x 0

)
,

where
(
x 0

)
∈ Zn is the nth row of X. Let ti be the ith column of T , and let tQi be

the ith column of T tQ. Then

tr (tXT ) = tr (tXnnTnn) +

n−1∑
i=1

xnitni

tr (τ [Q]tTRT ) = tr (τ t(T tQ)RT tQ) =

n∑
i=1

τi
tt
Q
i RtQi

and so within the sum defining G′n(χ,X,R, p) appears the following subsum∑
tn∈Fnp

χ (|T |) e
(
− τnq2n

ttnRtn
p

)
.(6)

We have been able to separate the variables as such by the specific form of Q and

by using that tQn = qntn since Q is upper triangular. The proof is completed by
showing that the above sum (6) is zero if χ is odd. By Lemma A1.5 of [24], there

exists α ∈ GLn(Z) such that tα
−1
Rα−1 = R′ := diag[r1, . . . , rn] is diagonal. Using the

expansion

|T | =
n∑
j=1

(−1)n+jtjn|Tjn|

the sum of (6) can be written as

χ(|α|−1)
∑

tn∈Fnp

χ (|αT |) e
(
− τnq2n

t(αtn)R′(αtn)
p

)
and this right-hand sum, after a change of variables, becomes

∑
(t1n,...,tnn)∈Fnp

χ

 n∑
j=1

(−1)n+jtjn|(αT )jn|

 e

−p−1τnq
2
n

n∑
j=1

rjt
2
jn

 .(7)

In the base n = 1 case (7) becomes G′1(χ,X,R, p) which we have shown to be zero at
the beginning of this proof. So now assume that the n − 1 degree sum corresponding
to (7) is zero. If one of the tjn = 0 in (7), then it becomes the n − 1 degree sum and
is therefore zero. So we can assume by induction that (t1n, . . . , tnn) ∈ (F×p )n, which set
can be partitioned as

(F×p )n =
1⊔

i1,...,in=0

(−1)ij (F−p )n

for F−p := {1, . . . , p−1
2 }. This can easily be seen by writing any (a1, . . . , an) ∈ (F×p )n

as ((−1)i1a′1, . . . , (−1)ina′n), where a′j = |a′′j | and a′′j is the representative of aj taken in
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{±1, . . . ,±p−1
2 }. The aim is to re-write the sum of (7) over (F−p )n. To this end notice

that as (t1n, . . . , tnn) 7→ ((−1)i1t′1n, . . . , (−1)int′nn) we have

(7) 7→
∑

(t′1n,...,t
′
nn)∈(F−p )n

∑
i∈Fn2

χ(|T |i)e

−p−1τnq
2
n

n∑
j=1

rj(t
′
jn)2


|T |i : =

n∑
j=1

(−1)n+j+ij t′jn|(αT )jn|

where i = (i1, . . . , in). The argument of the exponential is unchanged by the transfor-
mation ((−1)i1t′1n, . . . , (−1)int′nn) 7→ −((−1)i1t′1n, . . . , (−1)int′nn), yet in the coefficients
we see |T |i 7→ −|T |i. Hence we can pair up the coefficients of the exponential as follows.
Let ∼ be an equivalence relation on Fn2 defined by i1 ∼ i2 if and only if i1 = i2 + 1.
Then (7) becomes

∑
(t′n1,...,t

′
nn)∈(F−p )n

∑
i∈Fn2 /∼

[χ(|T |i) + χ(−|T |i)] e

−p−1τnq
2
n

n∑
j=1

rj(t
′
jn)2


which is zero, since χ is odd. �

Theorem 3.6. Let χ be an odd non-trivial Dirichlet character of square free conduc-
tor prime to 2. Then there are choices of τ ∈ S+ and Q ∈ GLn(Qh) such that the
corresponding θρ,χ(z) is a cusp form.

Proof. We write θ(z, λ;P ) for θρ,χ(z), where λ is the corresponding to χ Schwartz
function and P the pluriharmonic polynomial. We first note that for any α ∈ Spn(Q)

we have that θ(z, λ;P )|ρn
2
α = θ(z, α

−1
λ;P ). If we write Γ for the congruence subgroup

of this theta series, then in order to prove that it is a cusp form, it is enough to show
that (see for example [24, Lemma 27.3])

Φ
(
θ|ρn

2
α
)

= 0

where α runs over a set of representatives of Γ \ Spn(Z)/Pn−1(Z) and Pn−1 denotes
the Klingen parabolic corresponding to boundary components of degree n − 1. For
a definition we refer, for example, to [21, page 595] where it is denoted as Pn,n−1.
Furthermore Φ denotes Siegel’s Φ-operator, a definition of which can be found in [24,
page 219].

Our aim is to find, explicitly, some representatives for the above double coset. We do
this for a congruence subgroup Γ of a particular type, namely Γ[m,m] where m is a
square free integer, i.e. m =

∏
i pi where pj 6= pk for k 6= j and pi primes. Here we

denote,

Γ[m,m] =

{
γ =

(
a b
c d

)
∈ Spn(Z)

∣∣∣∣b ≡ 0 (mod m), c ≡ 0 (mod m)

}
Our approach is inspired by a similar one done in [5, page 76], where the case of groups
Γ0(m) for square freem was considered. We first consider the case wherem = p for some
prime p. By taking the projection Spn(Z) → Spn(Fp) modulo p, which is surjective,
and since the kernel belongs to Γ(p, p) we see that is enough to find representatives for
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the set C := Q(Fp)\Spn(Fp)/Pn−1(Fp), where Q(Fp) is the set of matrices diag[a, ta
−1

]
with a ∈ GLn(Fp). If we write P0(Fp) for the points of the Siegel parabolic over the
finite field Fp then we have the Bruhat decomposition

Spn(Fp) = P0(Fp)Pn−1(Fp) ∪ P0(Fp)ηPn−1(Fp).

But then if we use the fact that P0 = QR where R(Fp) =

{
m(s) :=

(
1 s
0 1

) ∣∣∣∣ts = s

}
we can conclude that a set of representatives for the set C can be given by a subset of
the matrices {m(s),m(s)η : s ∈ S(Fp)}. By lifting back this set to Spn(Z) we obtain a
set of representatives for the n− 1-degree cusps, in the case of m being a prime.

For the general case, where m is a product of distinct primes we can use the Chinese
reminder theorem to show that Spn(Z/mZ) = Spn(Fp1) × . . . × Spn(Fpm) to reduce
everything to the case of a single prime.

We now explain how we can construct theta series whose congruence subgroup is of the
form Γ[2p, 2p] for an odd prime p. We let χ be a character of conductor p. Following
the notation above we choose our τ and Q such that (b, c) = ((2p)−1, 4p2). This can
be done for example by selecting τ = 2pIn, and Q = (2p)−1In.

With these choices, we now show that the corresponding theta series is cuspidal. Since

for any α ∈ Spn(Q) we have that θ(z, λ;P )|ρn
2
α = θ(z, α

−1
λ;P ), it is enough to show

that the support of the Schwartz function α−1
λ is on full rank matrices for all the

representatives α of the double coset, which we have listed. This can be achieved by
using the reciprocity laws, see (4) and (5) above, of the action of the representatives of
the cusps above to the Schwarz function of the theta series. We distinguish the cusps
according how are represented locally at places (2, p) as follows

(m(s1),m(s2)),(8)

(m(s1),m(s2)η),(9)

(m(s1)η,m(s2)),(10)

(m(s1)η,m(s2)η).(11)

As is done in [5] it’s enough to check the Schwarz functions locally. For the first kind

(8), we have by Theorem A3.3 (5) of [24] that the support of the Schwarz function α−1
λ

at the corresponding cusp is at the non-singular matrices. For the cusp of (10), this is

also clear since the support of χ is away from 2, and so ηm(−s1)λ2 is just Theorem A3.3
(5). For the kinds (9) and (11), the Schwartz function ηm(−s2)λp is zero on singular
matrices by the lemma and proposition preceding this theorem. �

4. Rankin-Selberg Integral Expression

The main aim of this section is to extend some well-known results of the Rankin-Selberg
integral expression from the scalar weight case (as for example in [24, Section 22]) to
the vector valued case. For the rest of the paper we will assume that the representation
ρ is in τ(Σ).
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4.1. The function D(s, f, g). For 0 < n ∈ Z and k, ` ∈ 1
2Z we let f ∈ Sρk(Γ1, ψ1)

and g ∈ Mρ`(Γ2, ψ2) where Γ1 = Γ[b−1
1 , b1c1],Γ2 = Γ[b−1

2 , b2c2] are two congruence
subgroups (Γ1 or Γ2 contained in M if k /∈ Z or ` /∈ Z respectively), and ψ1, ψ2 are two
nebentypes such that

(ψ1ψ̄2)∞(−1) = (−1)[k]−[`].

We consider the Eisenstein series of weight k − ` defined, for z ∈ Hn and s ∈ C, by

Ek−`(s) = Enk−`(z, s;χ,Γ) :=
∑

γ∈P∩Γ\Γ

χ(aγ)jk−`γ (z)−1δ(γ · z)s−
k−`
2

where δ(z) := det(Im(z)), Γ := Γ[z−1, zy], z := b1 + b2, y = z−1(b1c1 ∩ b2c2), and
χ := ψ̄1ψ2. Then we have that Vol(Γ\Hn)

〈
f, gEk−`(s+ n+1

2 )
〉

is equal to∫
Γ\Hn

∑
γ∈P∩Γ\Γ

≺ ρk(y)f(z), g(z)(ψ̄1ψ2)(|aγ |)jk−`γ (z)−1 � δ(γ · z)s+
n+1−k+`

2 d×z

where we used that ≺ ρk(
√
y)v1, v2 � = ≺ v1, ρk(

√
y)v2 � for v1, v2 ∈ V . Note that for

any γ =

(
a b
c d

)
∈ Γ we have

y = (tcz̄ + td)Im(γ · z)(cz + d)

f(z) = ψ̄1(|a|)ρk((cz + d)−1)f(γ · z)
g(z) = ψ̄2(|a|)ρ`((cz + d)−1)g(γ · z)

jk−`γ (z)−1ρk(cz + d)ρ`((cz + d)−1) = ρ(cz + d)ρ((cz + d)−1) = 1

and making these substitutions now gives that Vol(Γ\Hn)
〈
f, gEk−`(s+ n+1

2 )
〉

is equal
to∫

Γ\Hn

 ∑
γ∈P∩Γ\Γ

≺ ρk(tcz̄ + td)ρk(Im(γ · z))f(γ · z), ρ`((cz + d)−1)g(γ · z)jk−`γ (z)−1 �

× δ(γ · z)s+
n+1−k+`

2

]
d×z

=

∫
Γ\Hn

∑
γ∈P∩Γ\Γ

≺ ρk(Im(γ · z))f(γ · z), g(γ · z) � δ(γ · z)s+
n+1−k+`

2 d×z

using that ≺ ρk(tcz̄ + td)v1, v2 � = ≺ v1, ρk(cz + d)v2 � for any v1, v2 ∈ V .

If we put ϕ(z) := (ρk(y)f(z), g(z))|y|s+
n+1−k+`

2 then this is P ∩ Γ-invariant. Indeed,
this follows from that fact that for a γ ∈ P we have

ρk(Im(γz)) = ρk(
td
−1
γ )ρk(y)ρk(d

−1
γ ), δ(γz) = det(dγ)−2δ(z)

We can now apply to it the standard unfolding procedure∫
Γ\Hn

∑
γ∈P∩Γ\Γ

ϕ(γ · z)|y|−n−1dxdy =

∫
P∩Γ\Hn

ϕ(z)|y|−n−1dxdy
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to obtain

Vol(Γ\Hn)〈f, gEk−`(s+ n+1
2 )〉 =

∫
P∩Γ\Hn

≺ ρk(y)f(z), g(z) � |y|s+
n+1−k+`

2 d×z.

We can take the domain P ∩ Γ[1, 1] \Hn = X ∪ Y ′, where

X : = {x ∈Mn(R) | x = tx (mod 1)}
Y : = {y ∈Mn(R) | ty = y > 0},
Y ′ : = Y/SLn(Z),

the latter being defined with respect to the equivalence relation y ∼ taya for a ∈ SLn(Z).

The domain P ∩ Γ \Hn is N(z−1)
n(n+1)

2 copies of these. Defining the differentials

dx :=
∧
p≤q

dxpq, dy :=
∧
p≤q

dypq, d×y = |y|−
n+1
2 dy

and using the Fourier expansions of f and g the integral Vol(Γ\Hn)〈f, gEk−`〉 becomes

N(z)−
n(n+1)

2

∑
R,S∈S+

[∫
X
e(tr ((R− S)x))dx

×
∫
Y
≺ ρk(y)cf (R, 1), cg(S, 1) � |y|s+

`−k
2 e−4πtr ((R+S)y)d×y

]
.

The integral over X is only non-zero for R = S, at which point it is equal to 1. With
a factor of 2 to account for the action of −In we obtain the expression

2N(z)−
n(n+1)

2

∑
R∈S+

∫
Y
≺ ρ(y)cf (R, 1), cg(R, 1) � |y|s+

k+`
2 e−4πtr (Ry)d×y(12)

for Vol(Γ\Hn)〈f, gEk−`(s+ n+1
2 )〉. Now we set h := k+`

2 and define

Hn
ρ,h,R(s) = Hρ,R(s) :=

∫
Y
ρ(y)e−4πtr (Ry)|y|s+hd×y

By Theorem 3 in Godement’s Expose 6, [9] we have that this operator is Hermitian,
and

Hρ,R(s) = ρ(R−1/2)Hρ(s)ρ(R−1/2) det(R)−(s+h)

where Hρ(s) = Hρ,In(s).

Plugging this back into (12) we get

Vol(Γ\Hn)〈f, gEk−`(s+ n+1
2 )〉 = 2N(z)−

n(n+1)
2

∑
R∈S+

≺ Hρ,R(s)cf (R, 1), cg(R, 1) �

and so define the Rankin product of f and g by

D(s, f, g) :=
∑
R∈S

νR ≺ Hρ,R(s)cg(R, 1), cg(R, 1) �

where S := S+/GLn(Z) and ν−1
R := ]{u ∈ GLn(Z) : tuRu = R}. That this is well-

defined is shown in the following calculation. Let u ∈ GLn(Z), then by definition

Hρ,tuRu(s) = ρ(u−1)Hρ,R(s)ρ(tu
−1

).(13)
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With this and Theorem 2.3 (3) – (4) we have that

≺Hρ,tuRu(s)cf (tuRu, 1), cg(
tuRu, 1) �

=≺ ρ(u−1)Hn
ρ,R(s)ρ(tu

−1
)ρ[k](

tu)ψ1(|u|)cf (R, 1), ρ[`](
tu)ψ2(|u|)cg(R, 1) �

= ≺ Hn
ρ,h,R(s)cf (R, 1), cg(R, 1) � (ψ1ψ̄2)(|u|)|u|[`]−[k]|u|2[k]

= ≺ Hn
ρ,h,R(s)cf (R, 1), cg(R, 1) � .

That is, we can now conclude

(14) D(s, f, g) = 2−1N(z)
n(n+1)

2 〈f, gEk−`(s+ n+1
2 )〉Vol(Γ\Hn).

The following result is a generalization of Proposition 22.2 in [24] from the scalar weight
case to the vector valued case.

Proposition 4.1. With k, ` ∈ 1
2Z, f ∈ Sρk(Γ1, ψ1), and g ∈ Mρ`(Γ2, ψ2) such that

(ψ1ψ̄2)∞(−1) = (−1)[k]−[`], then

(1) The series D(s, f, g) can be meromorphically continued to the whole s-plane and
it is holomorphic for Re(s) ≥ 0 if k 6= ` or Re(s) > 0 if k = `;

(2) The sum defining D(s, f, g) is absolutely convergent for Re(s) > 0 if g is a cusp
form.

Proof. (1) This follows from (14) and Lemma 17.2 (4) of [24] concerning the meromor-
phic continuation of the Eisenstein series Ek−`(z, s).

(2) By [9, Theorem 3, Expose 6] the operator Hρ,R is Hermitian and positive definite

and hence satisfies
√
Hρ,R

√
Hρ,R = Hρ,R for some hermitian operator

√
Hρ,R. We

have

D(s, f, g) :=
∑
R∈S

νR ≺
√
Hρ,Rcf (R, 1),

√
Hρ,Rcg(R, 1) �

and then by the Cauchy-Schwarz inequality∣∣∣≺√Hρ,Rcf (R, 1),
√
Hρ,Rcg(R, 1) �

∣∣∣ ≤ [{{√Hρ,Rcf (R, 1)
}}{{√

Hρ,Rcg(R, 1)
}}] 1

2

where {{·}} denotes the norm induced by ≺ ·, · �. From this we get∑
R∈S

νR

∣∣∣≺√Hρ,Rcf (R, 1),
√
Hρ,Rcg(R, 1) �

∣∣∣ ≤ [D(s, f, f)D(s, g, g)]
1
2 .

Therefore (ii) is given by showing convergence of D(s, h, h) for Re(s) > 0 where h is
a cusp form. By (i) the series D(s, h, h) is holomorphic for Re(s) > 0, is a Dirichlet
series whose coefficients are non-negative, and so is convergent. �

4.2. The function D(s, f, θ). For a fixed τ ∈ S+ such that ≺ cf (τ, 1), P (
√
τ
−1

) � 6= 0
we consider the theta series θ := θρ,χ(z) ∈Mρ`(Γ

′, ψ2) obtained in section 3. We recall

that ψ2 = χετ and ` = n
2 , and assume that (ψχ)∞(−1) = (−1)[k].

We now consider D(s, f, θ) =
∑

R∈S νR ≺ Hn
ρ,R(s)cf (R, 1), cθ(R, 1) � in which

cθ(R, 1) =
∑
ξ∈XR

(χ∞χ
∗)(det(ξ))P (

√
τξ),
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and XR := {ξ ∈ GLn(Q) ∩Mn(Z) | R = tξτξ}. To give a more explicit description of
the series D(s, f, θ) the value of the integral Hρ(s)P (1) is now calculated.

Proposition 4.2. We have the following equality,

(4π)n(s+h+λP )ρ(ξ−1√τ−1
)Hρ(s)P (1) = Γρ(s)P (

√
τ
−1tξ

−1
)

where λP := λ1 + · · ·+ λn with (λ1, . . . , λn) the weight of the vector P (1) and

Γρ(s) := πn(n−1)/4

(
n∏
i=1

Γ(s+ h+ λi −
i

2
+

1

2

)
.

Proof. By definition

ρ(ξ−1√τ−1
)Hρ(s)P (1) =

∫
Y
ρ(ξ−1√τ−1

)P (y)e−4πtr (y)|y|s+hd×y

which latter integral we show to be (4π)−n(s+h+λP )Γρ(s)P (
√
τ
−1tξ−1).

First we show that there is an α ∈ C× such that∫
Y
P (y)e−4πtr (y)|y|s+hd×y = αP (1).

We write V := Vρ for the representation space of ρ and W := Vτ for the representation
space of τ , the irreducible representation of O(n) associated with ρ. Then we have the
identifications V ⊗W = V ⊗W ∗ = Hom(V,W ) = Md,r(C) where d = dim(V ) and
r = dim(W ). In particular we have that the group GLn × O(n) acts on the set of
pluriharmonic polynomials on Mn with values on Md,r by P(g1xg2) = ρ(tg2)P(x)τ(tg1).
Notice that each such polynomial P consists of polynomials (columns) Pj , j = 1, . . . , r,
that are pluriharmonic and Pj(xg) = ρ(tg)Pj(x). In particular we may choose our
polynomial P above to be one of the columns of a polynomial P. So it is enough to
show that there is a constant α such that∫

Y
P(y)e−4πtr (y)|y|s+hd×y = αP(1).

We claim that we may pick the polynomial P such that P(1) = v⊗w with v a highest
weight vector for ρ and w a highest weight for τ , where here we use the identification
above. Indeed given such a P we may find a matrix A ∈ GLn(C) such that P(A) 6= 0
– this is since GLn is dense in Mn and the representation ρ⊗ τ is non trivial. That is,
there exists a P such that P(1) 6= 0. We now consider the set S of all P as above with
the property P(1) 6= 0, and note that the space R = {P(1) ∈ V ⊗W : P ∈ S} ⊆ V ⊗W
is invariant under the action of GLn ⊗On. Indeed

(g1, g2)P(1) = P(g1g2) = ρ(tg1)P(1)τ(tg2) 6= 0.

But the representation ρ⊗ τ is irreducible, and so R must be equal to V ⊗W . That is,
we can find a P such that P(1) is a highest weight vector. The proof of the proposition
is now completed in the following two lemmas. �

Lemma 4.3. With notation as above there exists an α ∈ C such that∫
Y

P(y)e−4πtr (y)|y|s+hd×y = αP(1).
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Proof. We recall that every symmetric matrix y may be written in the form y = taδa
(polar decomposition) with a ∈ O(n) and δ = diag[δ1, . . . , δn] a diagonal matrix. Let
D := {diag[δ1, . . . , δn] | δi ∈ R}, then

∫
Y

P(y)e−4πtr (y)|y|s+hd×y

= c0

∫
O(n)

∫
D

P(taδa)e−4πtr (δ)|δ|s+h−
n+1
2

∏
j<k

(δk − δj)

 dδda

= c0

∫
O(n)

ρ(ta)

∫
D

P(taδ)e−4πtr (δ)|δ|s+h−
n+1
2

∏
j<k

(δk − δj)

 dδda

for some constant c0. Since P(1) ∈ V ⊗ W is a highest weight vector in the first
component we know that P(taδ) = [ρ(δ)P(1)]τ(a) = δα1

1 · · · δαnn P(ta).

That is, the above integral reads

c0

∫
O(n)

ρ(ta)

∫
D

P(ta)δα1
1 · · · δ

αn
n e−4πtr (δ)|δ|s+h−

n+1
2

∏
j<k

(δk − δj)

 dδda

= P(1)c0

∫
O(n)

∫
D
δα1

1 · · · δ
αn
n e−4πtr (δ)|δ|s+h−

n+1
2

∏
j<k

(δk − δj)

 dδ

 da

where of course we have used the fact that ρ(ta)P(ta) = P(taa) = P(1) since a ∈ O(n).

�

By the above lemma and the remark that our polynomial P can be selected as a column
polynomial of P as above we have established that∫

Y
P (y)e−4πtr (y)|y|s+hd×y = αP (1).

for some constant α ∈ C. We now calculate this constant.

Lemma 4.4. We have that

(4π)n(s+h+λP )α = Γρ(s) = πn(n−1)/4

(
n∏
i=1

Γ(s+ h+ λi −
i

2
+

1

2

)
.

Proof. In principle we could try to calculate the above integral and the constant c0,
however we can do it in a different way. Instead we calculate

≺ αP (1), P (1) � = ≺
∫
Y
P (y)e−4πtr (y)|y|s+hd×y, P (1) �

=

∫
Y
≺ P (y), P (1) � e−4πtr (y)|y|s+hd×y,
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Our method is similar to the one used in [2, page 88]. We first use Gauss decomposition
and write y = tTT where T is lower triangular. Then by P (tTT ) = ρ(tT )P (tT ) and the
fact that ≺ ρ(tT )·, · � = ≺ ·, ρ(T )· � we get

≺ P (tTT ), P (1) � = ≺ P (tT ), ρ(T )P (1) � = ≺ P (tT ), P (tT ) �

and so the integral is equal to∫
Y
≺ P (tTT ), P (1) � e−4πtr (y)|y|s+hd×y

=

∫
Y
≺ P (tT ), P (tT ) � e−4πtr (y)|y|s+hd×y.

But we have P (tT ) = tλ111 . . . t
λn
nnP (1) since tT is upper triangular and P is a highest

weight vector. In particular we compute that

≺ P (1), P (1) �
∫
Y

n∏
i=1

t2λiii e
−4πtr (y)|y|s+hd×y, y = tTT.

The last integral has been computed by Maass in [18, pp. 76–80] and is equal to

(4π)−n(s+h+λP )πn(n−1)/4
n∏
i=1

Γ
(
s+ h+ k + λi − i

2 + 1
2

)
.

Hence so is α.

�

Recalling the definition of D(s, f, θ) and cθ(R, 1) we have

D(s, f, θ) =
∑
R∈S

νR ≺ Hρ,R(s)cf (R, 1),
∑
ξ∈XR

(χ∞χ
∗)(|ξ|)P (

√
τξ) �

=
∑
R∈S

νR ≺ cf (R, 1),
∑
ξ∈XR

(χ∞χ
∗)(|ξ|)Hρ,R(s)P (

√
τξ) �,

where we have used the fact that Hρ,R(s) is hermitian. In the inner sum we may write
R = tξτξ so that, by (13), the summation above is equal to∑

R∈S
νR

∑
ξ∈XR

χ(det(ξ)) ≺ cf (tξτξ, 1), Hρ,tξτξ(s)P (
√
τξ) �

=
∑
ξ∈X

(χ∞χ
∗)(det(ξ)) ≺ cf (tξτξ, 1), ρ(ξ−1√τ−1

Hρ(s)P (1) � det(tξτξ)−(s+h)

where X = (GLn(Q) ∩Mn(Z))/GLn(Z).

By Proposition 4.2 we have

(4π)n(s+h+λP )D(s, f, θ) = Γρ(s)
∑
ξ∈X

χ(|ξ|) ≺ cf (tξτξ, 1), P (
√
τ tξ
−1

) � |tξτξ|−(s+h).



22 THANASIS BOUGANIS AND SALVATORE MERCURI

5. Analytic Properties

In this section we introduce the L-function attached to a cuspidal eigenform f , and
relate it to the Dirichlet series D(s, f, θ) studied in the previous sections. We closely
follow Shimura’s method in the scalar weight case as for example is done in [20, 24].
Using this relation we then obtain the main results of the paper. We remind the reader
that all the theorems below are subject to the assumption that the representation ρ is
in τ(Σ).

We define

B : =
∏
p

Mn(Zp) ∩GLn(Qp)

E : =
∏
p

GLn(Zp).

If e ∈ B and σ = diag[ẽ, e] then with the finite decomposition ΓσΓ =
⊔
γ∈C Γγ we

define the action of Te,ψ on f ∈Mρk(Γ, ψ) by

f |Te,ψ :=
∑
γ∈C

ψc(|aγ |)−1f |ρkγ.

Adelically this is given by the decomposition DσD =
⊔
yDy for D := D[b−1, bc] and

y ∈ Gh and then

(f |Te,ψ)A(x) :=
∑
y

ψc(|ay|)−1fA(xy−1)

with x ∈ GA or MA depending on the parity of 2k. For a positive integer n let

Tψ(n) :=
∑

e∈E\B/E,|e|=n

Te,ψ

and we assume that f is an eigenform so that f |Tψ(n) = λ(n)f for λ(n) ∈ C. Let

ψ′ = ψ/ψc and for any Hecke character χ such that (ψχ)∞(x) = sgn(x)[k] define the
operator

Tψ,χ :=
∑

e∈E\B/E

Te,ψψ
′(|e|)χ∗(|e|)|e|−s =

∞∑
n=1

T (n)ψ′(n)χ∗(n)n−s

where χ∗ is the ideal Hecke character associated to χ. For such an eigenform one defines
the standard L-function as follows. For any prime p we can associate to f the Satake
p-parameters λp,i where i ∈ {1, . . . , n}, as per [20, p. 554]. If p - c then define

Lp(t) :=


(1− pnt)

n∏
i=1

(1− pnλp,it)(1− pnλ−1
p,i t) if k ∈ Z

n∏
i=1

(1− pnλp,it)(1− pnλ−1
p,i t) if k /∈ Z
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and if p | c then Lp(t) =
∏n
i=1(1− pnλp,it) in either case. For a complex variable s the

standard L-function is subsequently given by

Lψ(s, f, χ) =
∏
p

Lp(ψ
′(p)χ∗(p)p−s)−1.

We remark here that for f a cusp form we have that Lψ(s, f, χ) is absolute convergent
for Re(s) > 2n + 1 if k is an integer and for Re(s) > 2n if k is half-integer. This is
shown, for example, in [24, Lemma 20.12] in the scalar weight situation, but the same
argument carries to the vector valued situation.

By [26, Lemma 4 and the discussion after] we can find τ ∈ S+ such that

≺ cf (τ, 1), P (
√

2τ−1) � 6= 0

and then define a Dirichlet series

Dτ (s, f, χ) :=
∑

ξ∈B/E

(ψχ∗)(|ξ|) ≺ cf (τ, ξ), P (
√

2τ−1) � |ξ|−s‖ξ‖−n−1
A .

Much like Theorem 5.1 and Corollary 5.2 of [20] and [21] we are able to obtain a relation
between Dτ (s, f, χ) and Lψ(s, f, χ). Let cT(τ, b) := c(τ, b; f |Tψ,χ) and immediately we
know on the one hand that

cT(τ, b) =

( ∞∑
n=1

λ(n)ψ′(n)χ∗(n)n−s

)
cf (τ, b).(15)

On the other hand we use the definition of the Hecke operators and the coset decom-
positions given in Lemma 2.6 of [20] to obtain an alternate expression for cT(τ, b). This
lemma tells us that we can take as our coset representatives

y =

(
g−1h g−1σh̃

0 tgh̃

)
for suitable σ ∈ S; g, h ∈ B. Using the adelic Hecke action on fA and mimicking p.554
of [20] we obtain

cT(τ, b) =
∑
g,h

(ψχ∗)(|h−1g|)cf (τ, bh−1g)|gh|−s‖g‖−n−1
A αc(Bkh̃

tbτbh−1)

where αc =
∏
p-c αp and αp is defined by [20, (2.5b)] if k ∈ Z and [21, (4.2)] if k /∈ Z.

The rest of the proof of Theorem 5.1 in [20] and [21] now follows and, noting that ψ is
trivial on global ideles, this gives

cT(τ, b) = αc(Bkτ)
∑

ξ∈B/E

(ψχ∗)(|ξ|)cf (τ, bξ)|ξ|−s‖ξ‖−n−1
A

and in particular

≺ cT(τ, 1), P (
√

2τ−1) � = αc(Bkτ)Dτ (s, f, χ).(16)
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Using [20, p. 554 and equation (5.8)] when k ∈ Z and [21, (5.4a–b), (5.5)] when k /∈ Z
we have

Λ2n,k
c ( s2 , χψ)

∞∑
n=1

λ(n)ψ′(n)χ∗(n)n−s = Lψ(s, f, χ)

Λ
n,k−n

2
c ( s2 , χψετ )αc(Bkτ) =

∏
p∈b

gp(χ
′(p)χ∗(p)p−s)

(17)

where B = N(b), Bk = B2k−2[k]−1; b is the set of all primes p that divide either the

numerator or denominator of 2−n (mod 2)|2Bkτ |; gp ∈ Q[t] such that gp(0) = 1; and Λ
is a product of Dirichlet L-functions defined, for 1 ≤ m ∈ Z, κ ∈ 1

2Z, character η, and
integral ideal x, by

Λm,κx (s, η) :=


Lx(2s, η)

[m/2]∏
i=1

Lx(4s− 2i, η2) if κ = [κ]

[(m+1)/2]∏
i=1

Lx(4s− 2i+ 1, η2) if κ 6= [κ].

Combining (15), (16), and (17) yields

≺ cf (τ, 1), P (
√

2τ−1) �Lψ(s, f, χ)

=
∏
p∈b

gp(ψ
′(p)χ∗(p)p−s)Λc

(
2s−n

4

)
Dτ (s, f, χ)(18)

where Λc(s) = Λ
n,k−n

2
c (s, χψετ ).

For relating our two Dirichlet series Dτ (s, f, χ) and D(s, f, θ) we need to turn our
adelic series Dτ (s, f, χ) into a global one. By the strong approximation theorem we
have GLn(Q)A = GLn(Q)× (GLn(R)× E) and as in (5.16) of [20] we have

Dτ (s, f, χ) =
∑
ξ∈X

(ψhχ
∗)(|ξ|) ≺ cf (τ, ξ), P (

√
2τ−1) � |ξ|n+1−s.

Using Theorem 2.3 (3) we get

Dτ (s, f, χ) =
∑
ξ∈X

(ψhχ
∗)(|ξ|) ≺ ρk(ξ̃)cf (tξτξ, 1), P (

√
2τ−1) � |ξ|n+1−s

=
∑
ξ∈X

(ψhχ
∗)(|ξ|) ≺ cf (tξτξ, 1), P (

√
2τ−1ξ̃) � |ξ|n+1−k−s

=
∑
ξ∈X

(χ∞χ
∗)(|ξ|) ≺ cf (tξτξ, 1), P

√
2τ−1ξ̃) � |ξ|n+1−k−s

where in the last line we used the fact that (ψχ)∞(|ξ|) = sgn(|ξ|)[k] = 1 since ξ is taken
modulo GLn(Z), and the fact that ψ(|ξ|) = 1 as ξ is global.
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By the previous section we have

(4π)nλP |4πτ |s+
2k+n

4 D(s, f, θ) =

Γρ(s)
∑
ξ∈X

(χ∞χ
∗)(|ξ|) ≺ cf (tξτξ, 1), P (

√
2τ−1ξ̃) � |ξ|−2s−k−n

2

and so we get

Γρ(s
′)Dτ (s, f, χ) = (4π)nλP |4πτ |s′+

2k+n
4 D(s′, f, θ)(19)

where s′ = 2s−3n−2
4 .

For an integer h such that h ≥ 0 we follow [20, Theorem 7.3] and define

Γh,n(s) :=



Γn

(
s+

h

2

)
Γ

(
s+

h

2
−
[

2h+ n

4

])
if n/2 < h ∈ Z, n even,

Γn

(
s+

h

2

)
if n/2 < h ∈ Z, n odd,

Γ2h+1

(
s+

h

2

) [n/2]∏
i=h+1

Γ (2s− i) if 0 ≤ h ≤ n
2 , h ∈ Z,

Γn

(
s+

h

2

)
Γ

(
s+

h− 1

2
−
[

2h+ n− 2

4

])
if n/2 < h /∈ Z, n odd,

Γn

(
s+

h

2

)
if n/2 < h /∈ Z, n even,

Γ2h+1

(
s+

h

2

) [(n−1)/2]∏
i=[h]+1

Γ

(
2s− 1

2
− i
)

if 0 ≤ h ≤ n
2 , h /∈ Z,

where Γn(s) := πn(n−1)/4
∏n−1
j=0 Γ(s− j

2) and Γ0(s) = 1.

Combining equations (14), (18), and (19) then gives us the final integral expression for
Lψ(s, f, χ) which we give in a theorem below.

Theorem 5.1. Let k ≥ n/2, ρ ∈ τ(Σ), and let f ∈ Sρk(Γ, ψ) be a non-zero Hecke
eigenform where Γ = Γ[b−1, bc] for a fractional ideal b and integral ideal c of Q (Γ ≤M
if k /∈ Z). Select a τ ∈ S+ so that

≺ cf (τ, 1), P (
√

2τ−1) �6= 0

and fix this τ . Let χ be a character such that (ψχ)∞(−1) = (−1)[k], and let χ∗ denote
the corresponding ideal Hecke character. Then we have

Lψ(s, f, χ)Γρ(s
′)Γk−

n
2
,n
(

2s−n
4

)
= [2 ≺ cf (τ, 1), P (

√
2τ−1) �]−1N(z)

n(n+1)
2 Vol(Γ′\H)

× (4π)nλP |4πτ |s′+
2k+n

4

∏
p∈b

gp(ψ
′(p)χ∗(p)p−s)

×
(

Λc

Λy

)(
2s−n

4

)
〈f, θE(z, 2s−n

4 )〉
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where s′ = 2s−3n−2
4 ; Γρ is defined in the previous section; θ is defined as in Section 3

with weight ρn
2

, level (b′, c′), and character χετ ;

E(z, s) := Γk−
n
2
,n(s)Λy(s)Ek−n

2
(z, s; ψ̄χετ ,Γ

′)

where z := b + b′, y = z−1(bc ∩ b′c′), and Γ′ = Γ[z−1, zy]; b is a finite set of primes;

gp ∈ Q[t] and Λx(s) = Λ
n,k−n

2
x (s, χψετ ) are given above.

Let Zψ(s, f, χ) := Γρ
(

2s−3n−2
4

)
Γk−

n
2
,n
(

2s−n
4

)
Lψ(s, f, χ), then the integral expression

of theorem 5.1 easily allows us to determine the analyticity and location of any poles,

since these can only occur at the possible poles of E(z, 2s−n
4 ) and the factor

(
Λc
Λy

) (
2s−n

4

)
.

Note that the latter is just a finite product of Euler factors.

Theorem 5.2. If f ∈ Sρk(Γ, ψ) is a non-zero Hecke eigenform, k ≥ n/2, ρ ∈ τ(Σ) and

χ is a character such that (ψχ)∞(−1) = (−1)[k], then the function Zψ(s, f, χ) has only
finitely many poles all of which are simple.

• If (ψχ)2 6= 1 then Zψ(s, f, χ) may have simple poles at the values of s where the

factor Λc
Λy

(
2s−n

4

)
has poles.

• If (ψχ)2 = 1 and y 6= Z then in addition to the possible poles by the factor
Λc
Λy

(
2s−n

4

)
, there may be some poles occurring only in the following sets.

(1) If k > n then Zψ(s, f, χ) has a single pole at s = n + 1 only if k ∈ Z and
k − n ∈ 2Z;

(2) If n
2 ≤ k ≤ n then the possible poles of Zψ(s, f, χ) occur only in the sets{
{j | j ∈ Z, n+ 1 ≤ j ≤ 2n+ 1− k} if k − n

2 ∈ Z
{j + 1

2 | j ∈ Z, n+ 1 ≤ j ≤ 2n+ 1
2 − k} if k − n

2 /∈ Z;

If, on the other hand, we have (ψχ)2 = 1, y = Z, and k− n
2 ∈ Z then in addition

to the potential poles specified in the first set of (2) there may also be poles in

{j +
n

2
| j ∈ Z, 0 ≤ j ≤ [n/2]}.

Proof. As we indicated above this now follows from the integral expression in Theorem
5.1 and by determining the poles of the Eisenstein series involved in this expression.
The poles of this Eisenstein series have been determined in Theorem 7.3 of [20]. �

Remark 5.3. We now make the following remarks.

(1) We note here that the factor
(

Λc
Λy

) (
2s−n

4

)
also appears in the scalar weight

situation in [20]. Actually in that paper Shimura gives some conditions [20,
Proposition 8.3] such that this factor is trivial, which can be also used here. We
refer to [20] for this.

(2) We moreover remark that the location of poles, and their order, of Zψ(s, f, χ)
can be studied by using the doubling method, as has been done, for example
by Shimura in [21] for the scalar weight case and by Piatetski-Shapiro and
Rallis [8] and Kudla and Rallis [15, 16] for the general vector valued case.
However as we have remarked already in the introduction the result of the two
methods (Rankin-Selberg vs. Doubling method) already in the scalar weight
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situation do not overlap (see for example the discussion in [21, Remark 6.3] or

[15, page 17]). We further mention that even though the factor
(

Λc
Λy

) (
2s−n

4

)
does not appear in the doubling method, it seems that one has to make other
assumption regarding the behavior of f at the primes dividing the level its level
(see for example the conditions on Theorem 6.1 in [21]). We also remark that
the result in [15, 16, 27] are “generic” in the sense that the location of poles
does not depend on the weight of the Siegel modular form (or even the type of
the corresponding automorphic representation at infinity). That is, their set of
possible poles is in some cases larger than ours, as for example in the case of
k > n above. Indeed their approach relies on the detection of poles of Siegel
Eisenstein series for any “good” section (we refer to [15] for a definition) and
hence the results have to be generic, whether in our approach the Eisenstein
series are very particular scalar-weight ones and hence we have a more precise
description of the possible poles. Furthermore we also note here that thanks to
the precise computation of the gamma factors in the definition of Zψ(s, f, χ),
and the fact that all poles are simple one can make the set of possible poles of
Lψ(s, f, χ) even smaller or even detect some trivial zeros.

(3) We mention that the theorem above is not covered by the result in [19] where
the Rankin-Selberg method is used. Indeed here we include all the Euler factors,
we twist by characters and we make the gamma factors precise.

Comparison with the works of Takayanagi and Kozima. As it was mentioned
in the introduction, Takayanagi in [25] and Kozima in [13] have established detailed
results on the analytic properties of the standard L-function attached to vector valued
Siegel modular forms of specific type. In particular, and in the notation used in this
paper, Takayanagi considers representations ρk = detk×ρ with ρ = Syml(V ) for some
n-dimensional complex vector space V , i.e. symmetric tensor representations, and
Kozima with ρ = Altl(V ) with 0 ≤ l ≤ n i.e. alternating tensor. We note here that
the set of representations ρ considered by Takayanagi and Kozima are included in the
ones considered in this paper. Of course in this paper in addition to these we consider
representations which are neither symmetric nor alternating powers. Below we will
compare the gamma factors attached in [25, 13] with the ones in this work. As we
will see our gamma factors are essentially the same with [13] but differ to the ones of
[25]. However we should emphasize here that the main aim in [25, 13] is to obtain a
functional equation for a completed standard L-function (after adding gamma factors)
something that we do not consider here. Indeed in our work we do not establish a
functional equation but on the other hand our results are more general in the sense
that we consider more general congruence subgroups (i.e level) and nebetype character,
we consider twists of the standard L-function with Dirichlet characters and we even
consider the case of k (in the notation above) to be a half-integer. In this generality the
involved Eisenstein series are not known to satisfy a good functional equation. We note
that both in [25] and [13] the level is taken to be trivial, the L-functions are untwisted
and the weight k is always an integer. In particular in order to compare our results
with the ones in these works we need to consider trivial level, k should be an integer
and of course ρ is a symmetric or an alternating power representation. We note here
that in this setting the choice of gamma factors in our paper and the location of the
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possible poles of the Eisenstein series may not be the strongest possible in this case
(see [20, page 564]).

Comparison with Kozima: As we discussed above we take f to be of trivial level
and nebentype, as well as k ∈ Z. For simplicity we take n even but one can also show
the same for n odd. We also take, in the notation above, ρ = Alt`(V ), that is, we have
λ1 = . . . = λ` = 1 and λ`+1 = . . . = λn = 0. Then the gamma factors in [13] are:

π−s/2Γ
(s

2

)∏̀
j=1

2(2π)−sΓ(s+ k + 1− j)

 n∏
j=`+1

2(2π)−sΓ(s+ k − j)

 .

In our paper they are equal to Γρ(s
′)× Γk−

n
2
,n
(

2s−n
4

)
where,

Γρ(s
′) = πn(n−1)/4

∏̀
j=1

Γ

(
s

2
− 3n

4
− 1

2
+
k

2
+
n

4
+ 1− j

2
+

1

2

) n∏
j=`+1

Γ

(
s

2
− 3n

4
− 1

2
+
k

2
+
n

4
− j

2
+

1

2

)
=

πn(n−1)/4
∏̀
j=1

Γ

(
s− n+ k − j

2
+ 1

) n∏
j=`+1

Γ

(
s− n+ k − j

2

)
,

and

Γk−
n
2
,n

(
2s− n

4

)
= πn(n−1)/4Γ

(
s− n

2

) n−1∏
j=0

Γ

(
s− n+ k − j

2

)
=

πn(n−1)/4Γ

(
s− n

2

) n∏
j=1

Γ

(
s− n+ k − j + 1

2

)
We now use that

Γ(s+ 1) = sΓ(s) (recurrence formula),

and

Γ(2s) = 22−2s√π Γ(s)Γ(s+
1

2
), (Legendre duplication formula)

to see that for 1 ≤ j ≤ ` we have,

Γ

(
s− n+ k − j

2
+ 1

)
Γ

(
s− n+ k − j + 1

2

)
=(

s− n+ k − j
2

)
Γ

(
s− n+ k − j

2

)
Γ

(
s− n+ k − j

2
+

1

2

)
=

2s−n+k−j−1π−1/2

(
s− n+ k − j

2

)
Γ (s− n+ k − j) =

2s−n+k−j−2π−1/2Γ(s− n+ k − j + 1),

and similarly for `+ 1 ≤ j ≤ n we have

Γ

(
s− n+ k − j

2

)
Γ

(
s− n+ k − j + 1

2

)
= 2s−n+k−j−1π−1/2Γ (s− n+ k − j) .
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We now recall that in our paper the standard L-function is normalised as in [20], and
hence is related to the one considered by Kozima by replacing s−n with s. In particular
we see that our gamma factors differ from those of Kozima by an entire function with
no zeros. That is, our gamma factors and these of Kozima give the same zeros and
poles, and hence they give the same information regarding the poles and zeros of the
function L(s, f).

There is yet another interesting work of Kozima, which should be mentioned here.
In [14], a generalisation of the so-called Garrett’s pullback formula for general vector
valued Siegel modular forms is proved. Kozima obtains the formula [14, Theorem 6.1]
by applying some differential operators of Ibukiyama to a fixed weight k holomorphic
Siegel Eisenstein series, and hence the formula does not involve the standard L function
as a function on the variable s but rather some of its special values, namely when
evaluated at s = k. Furthermore there are some constants involved (cr in the notation
[14, Theorem 6.1]), which are left undetermined. However in the last section of [14]
Kozima does give their explicit values in the case of alternating powers, which is the
case discussed above in connection to his [13] paper. We do not discuss [14] any further
here but we simply mention that even though it does not involve any results on the
analytic properties of the standard L-function, there is little doubt that the techniques
developed there could be very useful to obtain results of this kind using the doubling
method.

Comparison with Tagayanagi: We consider again the case n even and trivial level
and character, as well as k ∈ Z with ρ = Sym`(V ) with ` even since one needs nk ≡ `
(mod 2) for the existence of non-trivial Siegel modular forms. That is, we have λ1 = `
and λ2 = . . . = λn = 0. Then the gamma factors in [25] are:

(20) π−s/2Γ
(s

2

)
2(2π)−sΓ(s+ k − 1 + `)

 n∏
j=2

2(2π)−sΓ(s+ k − j)

 ,

and in this paper they are equal to Γρ(s
′)× Γk−

n
2
,n
(

2s−n
4

)
where now,

Γρ(s
′) = πn(n−1)/4Γ

(
s− n+ k − j

2
+ `

) n∏
j=2

Γ

(
s− n+ k − j

2

)
,

and

Γk−
n
2
,n

(
2s− n

4

)
= πn(n−1)/4Γ

(
s− n

2

) n∏
j=1

Γ

(
s− n+ k − j + 1

2

)
.

Arguing as above we see that the gamma factors Γ
(
s
2

) (∏n
j=2 Γ(s+ k − j)

)
in Equation

(20) match the factors

n∏
j=2

Γ

(
s− n+ k − j

2

)
Γ

(
s− n

2

) n∏
j=2

Γ

(
s− n+ k − j + 1

2

)
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up to a function with no zeros or poles. Hence we need to “measure” the discrepancy
between the factor Γ(s+ k − 1 + `) in Equation (20) and the factor

Γ

(
s− n+ k − 1

2
+ `

)
× Γ

(
s− n+ k − 1

2
+

1

2

)
.

We set s0 := s−n+k− 1 and after using the recurrence relation repeatedly we obtain,

Γ
(s0

2
+ `
)
× Γ

(
s0

2
+

1

2

)
=
s0

2

(s0

2
+ 1
)
· · ·
(s0

2
+ `− 1

)
Γ
(s0

2

)
Γ

(
s0

2
+

1

2

)
=

2−`s0 (s0 + 2) · · · (s0 + 2(`− 1)) 2s0−1π−1/2Γ (s0) =(
2−`2s0−1π−1/2

) ∏ `
2
−1

j=1 (s0 + (`+ 2j))∏`−1
j=1(s0 + j)

Γ(s0 + `).

Here we see that our gamma factors and the gamma factors in [25] differ essentially by

the function
∏ `

2−1

j=1 (s0+(`+2j))∏`−1
j=1(s0+j)

which have both zeros and poles. One way to interpret

this difference is that in our work the gamma factors allow us to detect some trivial

zeros of L(s, f) that are not detected in [25], namely the zeros of
∏`−1
j=1(s0 +j), where in

[25] the trivial zeros produced by
∏ `

2
−1

j=1 (s0 + (`+ 2j)) are left undetected in our work.

We now establish some non-vanishing results for Lψ(s, f, χ) beyond the range of ab-
solute convergence. Fix an odd non-trivial character χ0 with conductor p 6= 2. Fur-
thermore fix subsequent choices of diagonal τ ∈ S+ and Q ∈ GLn(Qh) for which, by
Theorem 3.6, θρ,χ0(z) is a cusp form. Then we say that f is χ0-ordinary if

(1) ≺ cf (τ, 1), P (
√

2τ−1) � 6= 0.

(2) (ψχ0)∞(−1) = (−1)[k].

Note by Theorem 2.3 (3) and (4) the condition that τ be diagonal is non-exacting.

Theorem 5.4. Let χ be any character with (ψχ)∞(−1) = (−1)[k]. Then the function
Lψ(s, f, χ) can be meromorphically continued to the whole s-plane. Furthermore if for
an odd character χ0 of conductor p 6= 2, we have that f is χ0-ordinary then the L-
function obtained by removing the Euler factor at p,

L
(p)
ψ (s, f, χ) := Lψ(s, f, χ)Lp(ψ

′(p)χ∗(p)p−s),

is convergent, and hence non-zero, for Re(s) > 3n
2 + 1.

Proof. Meromorphic continuation is given by the integral expression of Theorem 5.1
and continuation of the Eisenstein series there.

Consider equation (18) with χ = χ0 which relates the Euler product of Lψ(s, f, χ0) with
the Dirichlet series Dτ (s, f, χ0). Note that the product

∏
q∈b gq(ψ

′(q)χ∗0(q)q−s) is just

finite and since, by assumption, Re(2s−n
4 ) ≥ 1 so is Λy(

2s−n
4 ). Therefore by Lemma 22.7

of [24] the convergence and the non-vanishing of Lψ(s, f, χ0) rests on the convergence

of Dτ (s, f, χ0) which, in turn, rests on the convergence of D(2s−3n−2
4 , f, θρ,χ0) by the

relation of (19). Since θρ,χ0 is a cusp form by Theorem 3.6, then by Proposition 4.1 (2)
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the series D(2s−3n−2
4 , f, θρ,χ0) is convergent for Re(s) > 3n

2 + 1. Hence the convergence
and non-vanishing of Lψ(s, f, χ0) has been established.

Now let χ be any character, and remove the Euler factor of p from Lψ(s, f, χ) to get

L
(p)
ψ (s, f, χ). The Euler products of both L

(p)
ψ (s, f, χ) and Lψ(s, f, χ0) are over all primes

q 6= p, and so the Euler product of L
(p)
ψ (s, f, χ) is just that of Lψ(s, f, χ0) twisted by the

T-valued character χχ−1
0 . Lemma 22.7 of [24] then tells us that such an Euler product

is convergent and non-vanishing for Re(s) > 3n
2 + 1. �

6. Miscellaneous Loose Ends

This final section spells out some of the limitations of the results of this paper, what
could be done to circumvent these limitations, and possible avenues for further research
following on from these results.

The need for the theta series to be vector-valued placed some limitations on which
representations we could consider. Indeed ρ ⊗ det ∈ τ(Σ) only when ρ is trivial, and

so the theta series is always of weight ρ ⊗ det
n
2 . In contrast, the scalar case (i.e. ρ

trivial) allows a choice of µ ∈ {0, 1} and theta series of scalar weight n
2 + µ. Crucially

this (the scalar case) meant the character χ could have arbitrary parity, since one just

chooses µ so that (ψχ)∞(−1) = (−1)[k]+µ. In the present case, the assumption that χ

is a character satisfying (ψχ)∞(−1) = (−1)[k] is needed, as seen in Theorems 5.1 and
5.2, thus limiting the parity of the character χ.

Theorem 5.4 is an attempt to extend the result that L(s, f, χ) 6= 0 for all Re(s) > 3n
2 +1

in the scalar case, see [24], to the present case. A critical step of the proof requires
θ to be a cusp form, which is easily achieved in the scalar case by taking µ = 1. So
a further ramification of the restriction on representations caused problems with this
method, resulting in a weaker version (Theorem 5.4) of the desired result. The desired
result could be proven if we can simultaneously take χ to have arbitrary conductor
and is such that θρ,χ is a cusp form for any choice of τ ∈ S+. Whilst we are able
to take χ0 of Theorem 5.4 to have arbitrary conductor p 6= 2, the choice of τ ∈ S+

needed for Theorem 3.6 and the subsequent assumption that f be χ0-ordinary for any
such arbitrary choice of χ0 means this route is not viable. A stronger result on the
cuspidality of the theta series is therefore needed for this method to be successful here.

We believe that our non-vanishing result can be used to obtain establish the algebraicity,
after dividing by a suitable period, of some special values of the standard L-function
studied here. Results of this nature have been already obtained for vector valued
modular forms [12] but relay on the doubling method. Indeed, in the scalar weight
case, the non-vanishing of the L-function is crucially used to obtain algebraicity results
for small weight Siegel modular forms (see for example [24]), and seems plausible that
the non-vanishing established in this paper can also be used to obtain similar results
in the vector valued case. We hope to return to this in a future work.
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