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Abstract—An increasing number of distributed generators
(DGs) will penetrate into the distribution power system in future
smart grid, thus a centralized control strategy cannot effec-
tively optimize the power loss problem in real-time. This paper
examines the idea of a fully distributed Optimal Power Flow
(OPF) approach, based on the alternating direction multiplier
method (ADMM), to optimize the power loss. The objectives are
not only to effectively obtain the minimization of power loss,
but also to analyze the effect of communication time-delay on
optimization performance. Both synchronous and asynchronous
iterative algorithms are proposed to study the convergence
results. In addition, four different strategies are proposed to
improve convergence speed when delay occurs. The proposed
weighted autoregressive (AR) strategy can reduce the fluctuation
effectively. In comparison with synchronous algorithm, simula-
tion results show that the asynchronous algorithm has a better
optimization result.

Index Terms—Altering direction method of multiplier
(ADMM), Optimal Power Flow (OPF), reactive power control,
time-delay analysis, synchronous and asynchronous algorithms.

I. INTRODUCTION

THE large penetrations of DGs in distribution grid could
benefit to the power system, for example, increasing

energy diversity, improving reliability and reducing environ-
mental pollution. Meanwhile, these DGs can provide a large
quantity of ancillary services that are of great interest to the
optimization of the grid [1], [2]. Reactive power services play
an important role, i.e., satisfy the requirement of reactive
power load, control bus voltage in a system wide, decrease
the network loss, relieve the transmission block and provide
sufficient reserve to ensure the security of system in emer-
gency. The development of smart grid requires Information and
Communication Technologies (ICT) architecture to maximise
the systems potential. In order to realize the autonomous
control in real-time, a distributed optimization strategy will
combine the ICT to implement the control and optimization.

A great mass of techniques have been investigated for
control and optimization in electrical power system [3]. The
allocation of reactive power had been designed to solve OPF
problems since the 1960s [4] and a number of optimization
techniques had been proposed in recent decades [5]–[8].
However, these centralized approaches, based on offline tech-
niques, required an accurate network structure and operation
conditions in advance. In addition, optimization procedure
required a highly reliable communication process and also
produced a large communication and computation delay. For
these reasons, these approaches are not able to do real-time
monitoring and control.

To overcome this shortcoming, a variety of distributed
strategies which could achieve real-time optimization had been
proposed. The concept of consensus fashion in a distributed
system can be found in [9]. The partial distributed algorithms,
which separated the distribution network into several areas,
were studied in [10]–[13]. In [10] a fast decomposition opti-
mization scheme using the interior point OPF was proposed
that the decomposition scheme was effective. Reference [11]
introduced a distributed semi-definite programming (SDP)
relaxation technique which guaranteed the faster convergence
speed to obtain solution. A primal and a dual algorithm
was propsoed in [12] to coordinate the subproblems de-
composed from the convexified OPF, the computation time
could be improved dramatically. Reference [13] discusses
three ADMM-based distributed optimization algorithms for
solving the dynamic DC-OPF problem with DR. The nu-
merical case studies present solution accuracy, convergence
performance and communication requirement of the three
proposed distributed algorithms. However, these distributed
approaches just divided the network into several areas. The
problems in centralized approaches still existed because of
the distance between two local controllers and requirement
of reliable communication. In contrast, distributed algorithms
were investigated to work out the distributed OPF problem.
An example of full distributed approach in [14] utilized a
distributed scheme to control the reactive power and a genetic
algorithm (GA) was adopted to optimize objectives. However,
the proposed optimization process of GA was time-consuming
with respect to the requirements of real-time control [15].
Reference [16] capitalized the ADMM to allocate the reactive
power to minimize the system power loss which showed a
better convergence speed compared to the dual-ascent ap-
proach. And [17] also provided the ADMM method to solve
the consensus optimization problem, the results demonstrated
an expedited convergence speed. In addition, asynchronous
ADMM algorithm in [18] based on the distributed convex
optimization problem is provided to simulate the convergence
results. The simulations confirm the convergence of proposed
asynchronous algorithm. These proposed distributed strategies
still required a certain limited information exchange. However,
they did not analyze the potential effect of time-delay. When
the communication delay is considered, some algorithms may
not obtain the optimal target and sometimes cannot converge
properly.

The ADMM approach, which is an augmented Lagrangian-
based algorithm, is a popular choice due to the robust and
fast convergence results both in theory and practice [19].
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In addition, ADMM is well suited to distributed optimiza-
tion and in particular to large-scale power system. However,
when time-delay is considered in the ADMM algorithm, the
synchronization will become a critical problem. Although
the synchronization of all nodes enables the algorithm to
be effectively controlled, the communication time in a syn-
chronous algorithm will be limited due to the slowest node’s
communication transmission. A few papers [20]–[22] have
introduced communication time-delay system into the dis-
tributed ADMM algorithm, which was based on a master-
slave strategy. Reference [20] presents an asynchronous dis-
tributed algorithm by using ADMM to study convergence rate
and accuracy of consensus algorithm. The simulation results
considering time-delay show possible numerical instabilities
and sensitivities of the convergence rate on different strategies.
An asynchronous algorithmic framework based on ADMM is
proposed to perform convergence with information exchange
in [21]. The experimental studies demonstrate convergence
performance for both synchronous and asynchronous schemes
with communication delay. And [22] studied the linear con-
vergence conditions of asynchronous ADMM method. The
results reveal the impact of different parameters, network
delay and network size on the convergence performance. The
proposed algorithms in these papers could still be treated as
a centralized control approach, because the master required
to collect information from all other independent workers.
Only when all the information was received by the master,
the master would broadcast other nodes to proceed the next
step.

The literatures above do not discuss a fully distributed OPF
problem with stochastic communication delay in a distribu-
tion network. The majority of recent papers also have not
investigated this particular problem with both synchronous and
asynchronous time-delay models. Although The asynchronous
model means that each node could operate its own iterative
step without considering the time synchronization problem.
This paper proposes a feasible fully distributed approach to
optimize the allocation of reactive power. The novelty of this
paper is to analyze the effect of communication time-delay
on the performance of both synchronous and asynchronous
algorithms. The main contributions of this work are as follows:
• A distributed approach with a limited coordination of

neighbouring nodes is studied to solve the optimization
problem. An improved iterative step of ADMM algorithm
is used to analyze the convergence result. Compared with
the widely-used master-slave model, the distributed model
can reduce the requirements of reliability of communication
system. Both synchronous and asynchronous algorithms that
consider communication time-delay model are discussed in
this paper. The simulation results prove that a small probability
of communication delay has a significant influence on the
results of distributed ADMM algorithm. Comparing with the
synchronous algorithm, the proposed asynchronous algorithm
has a better convergence speed and optimization results during
the same wall clock time period.
• As the fluctuation in experimental results with time-

delay, we proposed four strategies, such as, skipping strategy
(SS), previous value strategy (PVS), autoregressive strategy

(ARS) and weighted AR strategy (WARS), to perform the syn-
chronous and asynchronous convergence results. The proposed
WARS can effectively reduce the fluctuation and improve the
convergence results for both synchronous and asynchronous
algorithms with different delay probabilities.

The rest of the paper is structured as follows: in Section
II, the distribution network model with communication is
described, then the centralized power loss problem formula
is presented. Section III provides the synchronous and asyn-
chronous algorithms with end-to-end communication time-
delay model, and four different iterative strategies are proposed
to assess the convergence results. The simulation results are
shown in Section IV. Section V draws conclusions and dis-
cusses future work.

II. NETWORK MODEL AND PROBLEM
FORMULATION

Fig. 1: One-line main feeder with a lateral branching
network.

Fig. 1 shows one-line main feeder including a lateral branch
distribution network with the description of the notations
and also displays communication links for the information
exchange. It is a bi-direction communication between neigh-
bouring nodes. We define ν and β as the set of nodes and
branches, respectively. (i,j) ∈ β means nodes i,j are neighbour
nodes.

For a ladder network, the distribution flow equations can be
written as [23]

s.t. ∀ i ∈ ν

Pi+1 = Pi − ri
P 2
i +Q2

i

V 2
i

− pi+1 (1a)

Qi+1 = Qi − xi
P 2
i +Q2

i

V 2
i

− qi+1 (1b)

V 2
i+1 = V 2

i − 2(riPi + xiQi) +Ri (1c)

| Si−1 |≤ Smaxi−1 . (1d)

where Pi and Qi are the active and reactive power flow from
node i to i+ 1, respectively. Vi is the voltage level at node i.
ri and xi are the branch resistance and reactance from node i
to i+1, respectively. pi+1 and qi+1 are the active and reactive
power at node i+1, respectively. Ri = (r2i +x

2
i )
P 2
i +Q

2
i

V 2
i

. Both
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pi+1 and qi+1 consist of local consumption minus generation,
for example

pi+1 = piL − piG (2a)

qi+1 = qiL − qiG (2b)

To meet the requirements of real-time OPF, it is assumed
that the active power output in this paper is constant during the
optimization procedure. We assume that piL, piG and qiL are
fixed and only DG’s reactive power term qiG can be regulated
within limits. For initial node 1, terminated nodes n and m,
V1 is constant and Pn = Pmr = Qn = Qmr = 0.

Our target is to minimize the global optimization problem
which is system total active power loss in this paper. The
global objective function within multiple nominal operational
constraints can be written

min


power loss︷ ︸︸ ︷∑
i∈ν

(Fi(Qi))

 =
∑
i∈ν

ri
P 2
i +Q2

i

V 2
i

(3a)

s.t. ∀ i ∈ ν

| Qi −Qi−1 − qiL +Qlosi−1 |≤ si (3b)

V mini ≤ Vi ≤ V maxi (3c)

V 2
i = V 2

i−1 − 2(ri−1Pi−1 + xi−1Qi−1) +Ri−1 (3d)

| Si−1 |≤ Smaxi−1 . (3e)

where (3a) is the total power loss function. Qlosi−1 =

xi−1
P 2
i−1+Q

2
i−1

V 2
i−1

. (3b) is the power balance constraints, si is
the maximum apparent power capacity of inverters of DG.
For nodes without DG, si = 0. The maximum value can
be determined by the maximum value of converter voltage
and maximum current rating of converter [24]. (3c) is the
voltage level constraints. V mini , V maxi are the minimum and
maximum voltage magnitude of node i, respectively. We set
V mini = 0.95, V maxi = 1.05 according to the American
National Standard ANSI C84.1-2011. (3d) is the voltage con-
straints between two adjacent nodes. (3e) is the transmission
line capacity constraints, Smaxi−1 denotes the maximum apparent
power of branch transmission line from node i− 1 to i.

Since consensus ADMM is assured to converge only in
convex scenarios, and OPF is a non-convex problem, the
distributed solution is in general not guaranteed to converge.
It is necessary to derive the linear approximant of the power
flow equations (3). Under normal circumstances, the amount
of voltage variation from node to node is relatively small com-
pared to the rated voltage level. Hence, we assume Vi−1 ≈ V1
that is a constant value, and also approximate (3a) and (3d) to
a linear constraint (4a) and (4d), respectively. The optimization
function can be approximated as a linear quadratic function in
this paper [25], [26].

min
∑
i∈ν

ri
P 2
i +Q2

i

V 2
1

(4a)

s.t. ∀ i ∈ ν

| Qi −Qi−1 − qiL |≤ si (4b)

V mini ≤ Vi ≤ V maxi (4c)

Vi = Vi−1 − 2
(ri−1Pi−1 + xi−1Qi−1)

V1
(4d)

| Si−1 |≤ Smaxi−1 . (4e)

In [25] and [26], the simulation results show that the linear
power flow equations are well justified for a wide range of
distribution networks. This observation is powerful because
the linear power flow equations in (4) are convex. Convexity
means that the optimization solution can be achieved effi-
ciently and each node can communicate with a central au-
thority. In this paper, we focus on the distributed optimization
algorithm to solve the problem, which only communicate
information between neighbouring nodes in the network.

III. DISTRIBUTED OPTIMIZATION PROBLEM
WITH COMMUNICATION MODEL

To solve (4) in a distributed way, a distributed ADMM
algorithm will be adopted to minimize the power loss function
[27]. In addition, the communication delay problem will be
considered in the algorithm.

A. Distributed ADMM Model

In the ADMM algorithm, the global objective function will
be rewritten to a distributed consensus problem. Each node
has its own local objective function and local constraints
associated with neighbouring nodes’ parameters. As (4) is the
global expression, the local variables for each local function
are taken into account. Let Xi = {Qi, Q

+

i V i, V
+

i } be the
local variables of function Fi, H(Xi) ≤ 0 and E(Xi) = 0
are inequality constraints and equality constraints which are
equal to constraints (4b)-(4e). Partial local variables can be
recalculated to obtain the global variables after each iteration.
The augmented Lagrangian expression can be defined as
follows

Lρ =
∑
i∈ν
Li(Xi). (5)

where the detail of the individual augmented Lagrangian
formula Li(Xi) for node i ∈ ν can be given as

Li(Xi) =

power loss term︷ ︸︸ ︷
Fi(Qi) +

reactive power term︷ ︸︸ ︷
yi(Qi −Qi−1) + y+i (Q

+

i −Qi)

+

ADMM penalty term︷ ︸︸ ︷
ρ

2
(‖ Qi −Qi−1 ‖22 + ‖ Q+

i −Qi ‖22) .
(6)

where Qi and Q
+

i are the local variables of reactive power
flow from node i − 1 to node i and node i to node i + 1,
respectively. Qi−1 and Qi are the global variables of reactive
power flow from node i − 1 to node i and node i to node
i + 1, respectively. yi, y+i are the Lagrangian multipliers for
node i. And ρ is the penalty factor. Then the improved ADMM
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recursive algorithm of node i derived from (6) for kth iterative
step can be written as follows:

Qi+1(k + 1) := argmin
Xi

{Li(Xi) : H(Xi) ≤ 0, E(Xi) = 0}

(7a)
Qi(k + 1) =

1

2
(Q

+

i (k + 1) +Qi+1(k + 1)) +
1

ζi
y+i (k) (7b)

yi(k + 1) = yi(k) + ρ(Qi(k + 1)−Qi−1(k)) (7c)

y+i (k + 1) = y+i (k) + ρ(Q
+

i (k + 1)−Qi(k)). (7d)

where 1
ζi

is the iterative factor for node i. For initial node
1, terminal nodes n and mr in Fig. 1, we consider the
Q0(k) = Q1(k) = 0, Qn(k) = Q

+

n (k) = Qn+1(k) = 0

and Qmr(k) = Q
+

mr(k) = Qmr+1(k) = 0. Equations (7)
are completely independent and each node can update by
local variables with limited information exchange between
neighbouring nodes. The minimization step (7a) is a convex
objective function with linear constraints and can be solved by
evaluating the corresponding KKT conditions [28].However,
the addition of a communication system will inevitably impact
the algorithm, for example message delay or loss. To analyze
the influence of the communication time-delay model on
the performance of the iterative results, we will develop a
stochastic end-to-end time-delay model primarily.

B. ADMM Algorithm With Time Delay Model

Communication Delay Model: From a measurement point
of view, the end-to-end delay over a fixed path consists of
three main components: 1) determined delay, 2) internet traffic
caused stochastic delay, 3) route processing caused stochastic
delay [29]. The independent sum of the deterministic delay and
the stochastic delay has probability density function (PDF) as
[20]

ϕ(t) = pϕ1(t) + qϕ1(t) ∗ ϕ2(t)

=
p

σ
√
2π
e−

(t−µ)2

2σ2 +
qλ

σ
√
2π
e−λt

∫ t

0

eλu−
(u−µ)2

2σ2 du.

(8)

where p + q = 1 and ϕ1(t) ∗ ϕ2(t) =
∫ t
0
ϕ1(u)ϕ2(t − u)du.

ϕ1(t) is the deterministic delay density that can be approx-

imated by a Gaussian density ϕ1(t) = 1
σ
√
2π
e−

(t−µ)2

2σ2 with
mean σ and standard deviation µ. µ is larger than the minimum
deterministic delay. ϕ2(t) = λe−λt is the stochastic delay
density that assumes to follow the exponential distribution
by one alternating renewal process with mean length of the
closure periods λ−1.

In order to calculate the time-delay probability of each
communication for all nodes, the PDF (8) will be recalculated
to derive the Cumulative Distribution Function (CDF) of time
delay model as [20]

P (t) =

∫ t

0

ϕ(u)du

=
1

2
{erf( µ√

2σ
) + erf(

t− µ√
2σ

)}

+
p− 1

2
eη{erf(λσ

2 + µ√
2σ

) + erf(
t− λσ2 − µ√

2σ
)}.

(9)

where η = 1
2λ

2σ2 + µλ − λt and erf(x) = 2√
π

∫ x
0
e−t

2

is
the error function. The relative parameters can be set as µ =
5.3ms, σ = 0.078, p = 0.580 and λ = 1.39 [30]. According
to equation (9), the probabilities of different time-delay for
each communication procedure can be added into the ADMM
algorithm to analyze the performance.

Fig. 2: Illustration of timing diagram. (a) Synchronous algo-
rithm; (b) Asynchronous algorithm.

Message transmission mechanism: The aim of this paper
is to investigate the ADMM algorithm with stochastic time-
delay. The detailed iterative process of ADMM algorithm
with communication delay for kth iteration is summarized
as follow: (Step 1) each individual augmented Lagrangian
function Li(Xi) with linear constraints would be solved by
KKT conditions to achieve the new local variables Qi(k+ 1)

and Q
+

i (k + 1) independently; (Step 2) node i transmits the
new variable Qi(k + 1) to node i − 1. Meanwhile, node i
would receive the new Qi+1(k+1) from node i+1; (Step 3)
the new global variable Qi(k + 1) and Lagrange multipliers
yi(k + 1), y+i (k + 1) can be obtained by (7b)-(7d); (Step 4)
node i sends updated global variable Qi(k+1) and Vi(k+1)
to node i+1. Node i will simultaneously receive the updated
variables from node i − 1. Then the iterative process will
be repeated until the result satisfies a certain error condition.
The above communication mechanism shows that each node
will exchange the information with backward and forward
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neighbouring nodes independently in every iteration. It is easy
to find that the mechanism has a synchronization issue. In
this paper, both synchronous and asynchronous algorithms are
proposed to analyze the performance of ADMM algorithm.
The detail of both algorithms will be discussed below.

The synchronous distributed ADMM algorithm is outlined
in Algorithm 1. We assume that the computation time tdm
(t1 to t2) and tdu (t3 to t4) are the constant time in Fig. 2.
The red and pink lines are backward and forward links, which
means each node only sends message to backward or forward
neighbouring nodes. Fig. 2(a) is the synchronous algorithm
timing diagram, where the maximum communication time is
locked by the threshold time tds (assume t2 to t3 equals t4
to t5). According to equation (9), we set 6.3363 ms (10%
probability of time-delay) as the tds. Each node will be
equipped with an external GPS to keep each step have the same
clock. Specifically, after the step of calculation, only when
communication time of backward or forward link reaches tds,
each node will start the next step. It is a complete iteration
period for the synchronous algorithm.

Algorithm 1: Synchronous ADMM Algorithm
1: process for local node i, i ∈ 1, ..., ν
2: initialize local variables Xi(0), k=0.
3: repeat
4: update to obtain Xi(k + 1)
5: wait tdm
6: transmit Qi(k + 1) to backward nodes
7: receive Qi+1(k + 1) from forward nodes
8: wait tds
9: update to obtain Qi(k + 1)
10: update to obtain yi(k + 1), y+i (k + 1)
11: wait tdu
12: transmit Qi(k + 1) to forward nodes
13: receive Qi−1(k + 1) from backward nodes
14: wait tds
15: k=k+1
16: untill satisfied the defined minimum error
17: end process

An asynchronous algorithm is presented in Fig. 2(b). Each
communication also has a bounded maximum transmission
time tda, which is set to 9.6146 ms (0.1% delay probability). In
case of a delay, the message may lead the algorithm to remain
in the status of receiving the message. This algorithm does not
need to wait until all nodes have received the updated variables
before beginning the next step. Every node can execute the
update steps to obtain the new local variables independently
and immediately when it receives the message. Hence, each
node will not have idle status and more iterations can be
obtained. However, the communication message comes from
neighbouring nodes, it is possible that node i has not received
any message from neighbouring nodes (perhaps the message
is still in transit due to late transmission) when time reaches
the tda. Then the previous data will be used to update the
variables in order to keep the algorithm running without extra
waiting time. The outline of asynchronous algorithm is listed
in Algorithm 2.

During the same time interval in Fig. 2, all nodes in

synchronous ADMM algorithm just finish one iterative period,
but some nodes in asynchronous ADMM algorithm almost
completes one and a half iterative period. It is obviously that
asynchronous algorithm can shorten the iteration period and
increase the number of iterations. Consequently, the asyn-
chronous algorithm can speed up the convergence rate faster
than the synchronous algorithm to obtain a high theoretical
accuracy. We assume that all node can always receive the
message within threshold time for no-delay case. If some
nodes do not receive the message within threshold time, the
message will be considered as lost. Then other measures will
be taken to continue the next step.

Algorithm 2: Asynchronous ADMM Algorithm
1: process for local node i, i ∈ 1, ..., ν
2: initialize local variables Xi(0), k=0.
3: repeat
4: update to obtain Xi(k + 1)
5: transmit Qi(k + 1) to backward nodes
6: receive Qi+1(k + 1) from forward nodes
7: wait ≤ tda
8: update to obtain Qi(k + 1)
9: update to obtain yi(k + 1), y+i (k + 1)
10: transmit Qi(k + 1) to forward nodes
11: receive Qi−1(k + 1) from backward nodes
12: wait ≤ tda
13: k=k+1
14: untill satisfied the defined minimum error
15: end process

C. Convergence Analysis for Asynchronous ADMM Algorithm

The convergence analysis of synchronous ADMM algorithm
has been investigated in [17], [19], [27]. In this section, the
convergence behavior of asynchronous ADMM algorithm will
be studied. Some assumptions regarding the problem are made.
Let ∇Fi be the gradient or subgradient of Fi in (3a). And we
also define kτi as a new sequence of node i, which implies
that the gradient calculation may use old parameters due to
the delayed message or lost message. xi and xi are the global
and local variables for each node i, respectively. Then, the
following assumptions are listed.

Assumption 1: For each node i, the individual function gra-
dient ∇Fi is Lipchitz continuous, and there exists a constant
Ki > 0, such that

‖ ∇Fi(xi(k + 1))−∇Fi(xi(k + 1)) ‖
≤ Ki ‖ xi(k + 1)− xi(k + 1) ‖

(10)

In addition, X is a closed, convex and compact set. The power
loss function Fi(xi) is bounded from below over X .

Assumption 2: The total delays are bounded. For each node i,
there exists finite constant Ti such that k− kτi ≤ Ti for all k.

Assumption 3: For each node i, the stepsize ρi is chosen large
enough such that:
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αi = ρi −
2ρ+ 7Ki

ρ2i
Ki(Ti + 1)2 −KiT

2
i > 0 (11a)

βi = ρi − 7Ki > 0 (11b)

Assumption 1 is the standard in the context of non-convex
optimization [31] and is satisfied for most problems of interest.
According to assumption 2, when xi is updated in asyn-
chronous algorithm, the parameter used to update the variables
should be the latest received parameter. The convergence of
the asynchronous algorithm can be verified by the following
lemma.
Lemma 1: Suppose that assumptions 1, 2 and 3 hold true.
Then we have the following true for asynchronous algorithm.
(a)

‖ yi(k + 1)− yi(k) ‖22

≤ K2
i (Ti + 1)

Ti∑
κ=0

‖ x(k + 1− κ)− x(k − κ) ‖22
(12)

(b) The augmented Lagrangian is lower bounded and satisfies

L({xi(k)}; {xi(k)}, {yi(k)})

≥ Plos −
ν∑
i=1

Ki

2
diam2(X ) > −∞

(13)

The proof of Lemma 1 can be found in Appendix A. Lemma
1(a) presents that there exists certain finite k < ∞ such that
the augmented Lagrangian values are non-increasing after k
iterations. Lemmas 1(b) presents that the Lagrangian is lower
bounded. Then, we achieve that the augmented Lagrangian
function is convergent.

The subsequent theorem proves the final convergence result
and other properties.
Theorem 1: (a) The iterates generated by the asynchronous
algorithm converges if the following is true

lim
k→∞

‖ xi(k + 1)− xi(k) ‖= 0, i ∈ ν (14a)

lim
k→∞

‖ xi(k + 1)− xi(k) ‖= 0, i ∈ ν (14b)

lim
k→∞

‖ yi(k + 1)− yi(k) ‖= 0, i ∈ ν (14c)

(b) For each node i at k iterations, certain sequences
{{x∗i }, {x∗i }, {y∗i }} converges to the set of stationary solution
of (4.5) and satisfies

∇Fi(x∗i ) + y∗i = 0, i ∈ ν (15a)

x∗i = x∗i , i ∈ ν (15b)

The proof of Theorem 1 can be found in Appendix B. Note that
it suffices to show that asynchronous algorithm converges to a
stationary solution of (4) which is equivalent to (3). In other
words, {x∗i } can be the solution of (3). It is emphasized that
the asynchronous algorithm may not converge to a globally

optimal solution.

D. Delay-robust Strategies

The convergence performance for both algorithms will cer-
tainly be affected when time-delay is considered, for example,
unstable results, low quality results and slow convergence.
Different measures will assess the effect of time-delay in both
synchronous and asynchronous algorithms.

1) Strategy I-Skipping Strategy (SS): In this strategy, if the
communication message is not delivered within the threshold
time, the unreceived node will not carry out current step and
skip it. Then this node will wait until the next successful com-
munication. Other nodes will continue to update the variables
by (7). The SS not only interrupts the normal update of the
algorithm, but also affects the neighbouring nodes’ normal
update of the algorithm due to the time-delay.

2) Strategy II-Previous Value Strategy (PVS): The PVS
replaces the delayed message by using the saved data from
the last successful communication. Each node can install a
storage device to save the data generated from the previous
normal iteration. When the delay occurs, the stored informa-
tion can be invoked instead of the message that have not be
received within the threshold time. The update of other nodes
still follows equations (7). This strategy may decrease the
convergence rate because the partial iterative processes using
previous data can reduce the update of both self-node and
neighbouring nodes. It is more suitable for certain scenarios
that are prone to transmission delay while the requirement of
optimization accuracy is not very stringent.

3) Strategy III-AR Strategy (ARS): The predicted value in
advance is utilized instead of the previous saved message in
the PVS. Forecast begins when the communication message is
received in the last successful communication, which means
no extra time is required. Suppose the relationship between
past successfully received messages and current unreceived
message can be estimated using previous saved data. The AR
model of order ω is defined as [32]

at = c+

ω∑
i=1

φiat−i + εt

= c+ φ1at−1 + φ2at−2 + ...+ φωat−ω + εt.

(16)

where ω is the order of the AR model and φ1, ..., φω are the
AR coefficients which are constant, c is also the fixed value
and εt is the stochastic parameter that we define as white noise,
εt ∼ T (0, σ2). In addition, a1, a2, ..., aT are the previous
values of time series data used to predict the current value.
According to the AR coefficient, the likelihood function of
the AR model can be written as

pl(φ, σ
2) =

T∏
t=1

1√
2πσ2

exp{− 1

2σ2
(at −

ω∑
i=1

φiat−i)
2}.

(17)

where the parameters can be obtained by using the Yule-
Walker method [33]. The performance of AR model is de-
pended on the order. Decreasing the order against the time se-
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ries data reduces the estimation performance of the AR model
and increasing the order leads to more complex behavior which
can even fail to obtain appropriate estimations. The Akaike-
Information-Criterion(AIC) is adopted as the evaluation func-
tion to balance the order and likelihood [34].

AIC = −2
T∑
t=1

ln{p(at | φ, σ2)}+ 2ω. (18)

where ω is the selected order of the AR model and the value of
ω can be chosen from the order index 1,2,3...,ω. The evaluation
function of AIC will be applied to estimate the unreceived
message. If the time-delay happens, the algorithm will adopt
the predictive values to replace the unreceived variables. Other
nodes will follow (6) to update the variables. For brevity, we
have not included the detail of the AR derivation process.

4) Strategy VI-Weighted AR Strategy (WARS): The esti-
mated value from AR strategy exists certain errors during the
prediction process. Therefore, we propose to add a weighted
term into the ADMM algorithm to reduce the error caused by
the prediction to improve the convergence results. The ADMM
recursive expression in (7) for kth iteration can be rewritten
as

Xiw(k+1) := argmin
Xiw

{Liw(Xiw) : H(Xiw) ≤ 0, E(Xiw) = 0}

(19a)
Qiw(k+1) =

1

2
(Q

+

iw(k+1)+ (1+ γi)aiw+1(k))+
1

ζi
y+iw(k)

(19b)
yiw(k + 1) = yiw(k) + ρ(Qiw(k + 1)− (1 + γi)aiw−1(k)).

(19c)
where the iw is the set of nodes whose message do not arrive
on time. γi and γi are the weighted factors. The weighted
terms γiaiw−1(k) and γiaiw+1(k) are added to execute the
iterative steps if delay happens. Other nodes will continue to
use the (6) to update the variables. The weighted factors can
reduce the predictive error and optimize the predicted value
to obtain a better convergence result.

E. Connection between WARS and Conventional ADMM

It is necessary to observe the difference to find the connec-
tion between WARS and conventional ADMM. Reference [27]
presents the traditional ADMM iterative form for consensus
minimization problem.

Xi(k + 1) := argmin
Xi

{Li(Xi) : H(Xi) ≤ 0, E(Xi) = 0}

(20a)

Q(k + 1) =
1

N

N∑
i=1

(Qi(k + 1) +
1

ρ
yi(k)) (20b)

yi(k + 1) = yi(k) + ρ(Qi(k + 1)−Q(k + 1)). (20c)

Comparing (19) and (20), it is obviously that the traditional
ADMM algorithm is a particular case of the WARS by
setting Qi(k + 1) =

Q
+
iw(k+1)+(1+γi)aiw+1(k)

2 , Qi(k + 1) =
(1 + γi)aiw−1(k) and 1

ρ = 1
ζi

. All steps are set to use the

same coefficient 1
ρ in the conventional ADMM. Contrarily,

the WARS assigns the different coefficient 1
ζi

instead of the
constant coefficient 1

ρ . In addition, the WARS adds different
weighted terms γiaiw+1(k) and γiaiw−1(k) to each node
because of the forecast error.

These changes can make the WARS to achieve a better
efficiency than the traditional ADMM. To begin with, the
traditional ADMM requires information exchange with all
nodes to update the global variable Q(k + 1). In contrast,
the WARS is able to decrease the communication cost by
communicating with limited neighbouring nodes. Furthermore,
when delay happens, the unreceived message not only affects
the variable update of self-node, but also affects the vari-
able update of neighbouring nodes. Using modified predicted
value in proposed WARS can decrease the error as much
as possible against the traditional ADMM. In addition, the
adopted weighted terms may produce a certain deviation
from the original value which can improve the results from
a local optimization to a global optimization. Finally, the
conventional ADMM can only optimize its convergence speed
by adjusting the penalty factor ρ, since other parameters are
fixed. Whereas, the WARS has the flexibility by adjusting both
weighted terms γiaiw+1(k), γiaiw−1(k) and coefficient term
1
ζi

. Consequently, the WARS not only has the potential to
reduce the volatility, but also accelerate the convergence speed
to obtain a better optimization result.

IV. SIMULATION RESULTS

In order to verify the ADMM algorithm with communi-
cation delay, a 33-bus medium-voltage DN has been used
as a case study [35]. It contains 33 buses and 32 branches.
In addition, four wind DGs (2,12,15,18) and four solar DGs
(23,25,27,33) are installed in the network [36].

Fig. 3: Illustration of convergence speed of distribution
ADMM algorithm with different values of penalty factor ρ.

A. Observation of General Convergence Speed

To maximize the convergence speed, the applied ADMM
formula has two important parameters, the penalty factor ρ and
the convergence tolerance ε. Fig. 3 illustrates the convergence
speed of synchronous ADMM with different ρ, which is
decreased from 1 to 0.00001. The high values of ρ typically
have a slow convergence speed and poor iterative results. The
best choice of ρ which provide the fastest convergence speed is
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0.001 in the early stage of the iteration process. Subsequently,
the convergence speed for ρ = 0.001 is slower than the speed
for ρ = 0.0001 after 200 iterations. In other different cases,
a little higher or smaller value of ρ may result in a slightly
better convergence speed.

Fig. 3 also shows the different tolerance values for different
iterations. The ADMM only needs 9 iterations to reach the
tolerance goal of less than 10% compared to centralized result.
However, the error is only less than 5% after 200 iterations
and 2.5% after 400 iterations. It is typically that the ADMM
algorithm has a faster convergence rate at the beginning of
the iteration process. In some special cases, it also should be
noted that setting a high tolerance value (e.g., ε = 0.1 ) may
results in a large fluctuation. In this paper, we set the tolerance
value as ε < 0.05 which could also help to choose the penalty
factor ρ = 0.001 with faster convergence rate.

Fig. 4: Comparison of convergence speed and statistic results
of three different cases for synchronous SS (1000 runs each).

Fig. 5: (a) Comparison of different synchronous strategies, (b)
Comparison of synchronous ARS and WARS (100 runs each).

B. Performance of Synchronous algorithm

In this section, the communication delay is applied to
synchronous algorithm to test the performance. We divide
communication into three different cases, the backward link
case, the forward link case and two-way link case. Fig. 4
shows the effect of convergence speed in synchronous SS.
The left side of Fig. 4 presents the fluctuated convergence
results in three cases under a fixed probability of time-delay.
For these three cases, the optimization results always have a
larger fluctuation during the iterations. The result in forward
link has less fluctuation range than that in backward link.
Meanwhile, two-way link case has the largest fluctuation. The
right side of Fig. 4 demonstrates the statistical results for these
three cases (1000 stochastic time-delay runs for each case).
The maximum fluctuation range is 21.33% in backward link
case, 11.17% in forward link and 22.58% in two-way link.
Overall the results indicate that the fluctuation mainly depends
on the communication of step 2 in Fig. 2(a), which means the
global reactive power variable Qi(k + 1) would significantly
influence the minimization results for both self-node and other
neighbour nodes in (5).

Fig. 5(a) shows the optimization results of different syn-
chronous strategies under a fixed time-delay scenario. Only
two-way link case is performed as the space limitation. It is
clear that the results of PVS dramatically reduce the fluctuation
range compared to the results of SS. However, the optimization
result after 200 iterations does not converge to a desirable
value (near 0.13 MW) and the maximum 8.98% error could
be very inefficient. The warm-starting of ADMM algorithm
(forecast in advance) can be utilized to improve both the
fluctuation in SS and the convergence speed in PVS. In Table
I, 1000 stochastic time-delay runs are simulated for each strat-
egy. The smaller variance values indicate the less fluctuation.
Table I shows that the synchronous ARS obtains a better result
against the PVS. Although the proposed ARS speed up the
convergence rate, the result still has a fluctuation because
of the forecasting error. Hence, weighted terms are added
to improve the estimation error to optimize the results. The
peculiarity of WARS shows an increased convergence speed,
decreased fluctuation range and even better optimization result
than that in the synchronous no-delay case. Comparing with
the results 0.1258 MW of synchronous no-delay case, the
mean value of WARS can converge to 0.1243 MW which
dramatically improve the result. The results in synchronous
WARS demonstrate that it is an efficient strategy from a
synchronous distributed optimization perspective.

Fig. 6: (a) Comparison of different asynchronous strategies,
(b) Enlarged version from 400 ms to 1200 ms.
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TABLE I: Statistical Results with 1000 Runs for Each Strategy

Synchronous Asynchronous
SS PVS ARS WARS SS PVS ARS WARS

Mean 0.1287 0.1298 0.1283 0.1243 0.1239 0.1238 0.1237 0.1227
V ariance 1.16E − 5 7.12E − 7 3.16E − 7 6.20E − 8 6.96E − 7 2.16E − 7 1.15E − 7 1.73E − 7

C. Performance of Asynchronous Algorithm

Fig. 6(a) demonstrates the results of the different asyn-
chronous strategies. The result is based on the wall clock time
because the asynchronous algorithm do not require a synchro-
nization device to wait in the process. Although the asyn-
chronous strategy has a larger threshold time tolerance, the
result in asynchronous no-delay case has a better optimization
result which can achieve 0.1238 MW compared to the 0.1258
MW in synchronous no-delay case at the same time interval.
Furthermore, the synchronous strategy requires 1260 ms to
achieve 0.1258 MW, but the asynchronous strategy reaches
the same result only after 300 ms. The increased convergence
speed by the asynchronous algorithm mainly comes from the
reduction of the waiting time and the increasing number of
the iterations.

Meanwhile, the result of asynchronous SS show that the
time-delay still brings a slight influence on the stability of
the convergence result with 0.1% delay probability. The mean
value of asynchronous WARS in Table I presents that the result
can be improved to 0.1227 MW. Furthermore, the fluctuation
performance is also improved with such low probability of
delay. Consequently, the proposed WARS can significantly
improve the optimization results from an asynchronous op-
timization perspective.

Fig. 7: The convergence results for loss communication case.

D. Performance of Loss communication

The above simulation is based on the practical commu-
nication system which is low probability of communication
delay. However, in case some nodes’ communication devices
are out of work, the normal convergence rate will have large
fluctuation even if the probability of communication delay is
low. The simulation results in Fig. 7 show the convergence
results of different strategies both in synchronous and asyn-
chronous algorithms. In this case, we assume that these nodes
(node 15, 18, 23, 25) are out of work. Fig. 7(a) presents that
the proposed WARS can effectively reduce the fluctuation of

TABLE II: Statistical results with 1000 runs for each strategies
of loss communication case

Mean Variance
Syn-Skipping Strategy 0.1289 7.11E-6

Syn-Previous Value Strategy 0.1308 2.30E-5

Syn-AR Strategy 0.1299 1.53E-5

Syn-Weighted AR Strategy 0.1260 8.85E-6

Asyn-Skipping Strategy 0.1237 5.52E-6

Asyn-Previous Value Strategy 0.1250 1.02E-7

Asyn-AR Strategy 0.1231 5.16E-7

Asyn-Weighted AR Strategy 0.1230 6.62E-7

experimental results. In addition, the statistical results in Table
II show that the mean value can be reduce to 0.1260 MW
and the variance value is the smallest among the synchronous
strategies. Comparing with the synchronous algorithm, the
asynchronous algorithms can not only improve the mean value
from 0.1260 MW to 0.1230 MW, but also demonstrate the
lowest fluctuation of experimental results in Fig. 7(b) and
Table II.

V. CONCLUSION

The future smart grid system will become more and more
granular because of the increased penetration of renewable
generators, distributed storage and electric vehicles. The in-
vestigation of a distributed ADMM algorithm considered
communication delay model was discussed in this paper. Both
synchronous and asynchronous algorithms combined with
stochastic delay analyzed the convergence results compared to
the no-delay algorithm. It shows that time-delay would signifi-
cantly affect the performance of results in both algorithms. The
simulations presented that the proposed WARS can effectively
improve the volatility and achieve a better optimization result
compared to other strategies.

It should be noted that this paper is a first step to developing
the communication model into the distributed problem in
power system. Developing a more accurate communication
model, proposing a more effective strategy and investigating
the cyber-attack would be very meaningful for future work.

APPENDIX A
Proof of Lemma 1(a): According to the update of global

variables (20), we can obtain that the following is true

∇Fi(xi(kτi + 1)) + yi(k) + ρi(xi(k + 1)− xi(k + 1)) = 0,
(21)

Further, from (21), we have
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∇Fi(xi(kτi + 1)) = −yi(k + 1), (22)

Similarly, it also have the following equality for iteration k

∇Fi(xi(kτi )) = −yi(k), (23)

Therefore, when the new information is delayed or lost for
each node i, it follows that

∇Fi(xi(kτi + 1)) = ∇Fi(xi(kτi )), (24)

According to (24), we have

‖ yi(k + 1)− yi(k) ‖22= 0, (25)

It means that Lemma 1(a) is true when message delayed
or loss occurred. If the information arrives, we also have the
following results by using triangle inequality.

‖ yi(k + 1)− yi(k) ‖22
=‖ ∇Fi(xi(kτi + 1))−∇Fi(xi(kτi )) ‖22
≤ K2

i ‖ xi(kτi + 1)− xi(kτi ) ‖

≤ K2
i (

Ti∑
κ=0

‖ xi(k + 1− κ)− xi(k − κ) ‖)2

≤ K2
i (Ti + 1)

Ti∑
κ=0

‖ xi(k + 1− κ)− xi(k − κ) ‖22 .

(26)

Subsequently, the desired result in Lemma 1(a) is achieved.

Proof of Lemma 1(b): According to the Lipschitz continuity
of ∇Fi and triangle inequality, which implies that

Fi(xi(k + 1))

≤ Fi(xi(k + 1)) +∇Fi(xi(k + 1)) ‖ xi(k + 1)− xi(k + 1) ‖

+
Ki

2
‖ xi(k + 1)− xi(k + 1) ‖22

= Fi(xi(k + 1))− ‖ ∇Fi(xi(k + 1))−∇Fi(xi(k + 1)) ‖
‖ xi(k + 1)− xi(k + 1) ‖ +∇Fi(xi(k + 1))

‖ xi(k + 1)− xi(k + 1) ‖ +Ki

2
‖ xi(k + 1)− xi(k + 1) ‖22

≤ Fi(xi(k + 1)) +∇Fi(xi(k + 1)) ‖ xi(k + 1)− xi(k + 1) ‖

+
3Ki

2
‖ xi(k + 1)− xi(k + 1) ‖22 .

(27)

Further, from (22), we have

L({xi(k)}; {xi(k)}, {yi(k)})

=

ν∑
i=1

(Fi(xi(k + 1)) + yi(k + 1) ‖ xi(k + 1)

− xi(k + 1) ‖ +ρi
2
‖ xi(k + 1)− xi(k + 1) ‖22)

≥
ν∑
i=1

(Fi(xi(k + 1)) +
ρi − 3Ki

2
‖ xi(k + 1)

− xi(k + 1) ‖22 + ‖ ∇Fi(xi(k + 1))

−∇Fi(xi(kτi + 1)) ‖‖ xi(k + 1)− xi(k + 1) ‖).

(28)

According to the Cauchy-Schwarz inequality on the last
term in (27), it follows that

L({xi(k + 1)}; {xi(k + 1)}, {yi(k + 1)})

≥ Plos +
ρi − 3Ki

2

∑
‖ xi(k + 1)− xi(k + 1) ‖22

− ‖ ∇Fi(xi(k + 1))−∇Fi(xi(kτi + 1)) ‖‖ xi(k + 1)

− xi(k + 1) ‖

≥ Plos +
ρi − 4Ki

2

∑
‖ xi(k + 1)− xi(k + 1) ‖22

− Ki

2
‖ xi(k + 1)− xi(kτi + 1) ‖22

≥ Plos −
ν∑
i=1

Ki

2
diam2(X ) > −∞.

(29)

where the last inequality follows the fact that X is compact
in assumption 1 and ρi − 7Ki > 0 in assumption 3

APPENDIX B

Proof of Theorem 1(a): According to Lemma 1, it is
true that L({xi(k)}; {xi(k)}, {yi(k)}) converges as k → ∞.
Therefore, it holds from Lemma 1(a) that

lim
k→∞

‖ xi(k + 1)− xi(k) ‖→ 0, i ∈ ν (30a)

lim
k→∞

‖ xi(k + 1)− xi(k) ‖→ 0, i ∈ ν (30b)

Then, using (30) into (26), it follows that

lim
k→∞

‖ yi(k + 1)− yi(k) ‖→ 0, i ∈ ν (31a)

lim
k→∞

‖ xi(k)− xi(k) ‖→ 0, i ∈ ν (31b)

Proof of Theorem 1(b): According to (31), it is true that
certain sequences {{x∗i }, {x∗i }, {y∗i }} exist which follows that

∇Fi(x∗i ) + y∗i = 0, i ∈ ν (32a)

x∗i = x∗i , i ∈ ν (32b)

Since xi(k + 1) ∈ X , it holds that x∗i ∈ X . Once we can
present that the primal feasibility gap goes to zero, the proof
for stationary solution is straightforward, which proves (15).
The related reference can be found in [37].
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