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ABSTRACT 11 

Accurately reconstructing the paleogeography of the Laurentide Ice Sheet (LIS) 12 

during Marine Isotope Stage 3 (MIS 3; ca. 57,000 to ca. 29,000 yr B.P.) is critical for 13 

understanding glacial growth toward the Last Glacial Maximum (LGM), refining sea-14 

level histories and studying the Earth system response to rapid climate change events. 15 

Here, we present a geochronological data set useful for testing hypotheses of global sea 16 

level and refining ice sheet configuration through this interval. Data (n = 735) span the 17 

entire MIS 3 interval and consist of 14C determinations (n = 651), cosmogenic exposure 18 

ages (n = 52), and optically stimulated luminescence dates (n = 32). On that basis, we 19 

hypothesize that the central region of the LIS underwent a dramatic reduction in ice from 20 

~52–40 ka. Key to this hypothesis are geological records at sites in the Hudson Bay 21 



Publisher: GSA 

Journal: GEOL: Geology 

DOI:10.1130/G45335.1 

Page 2 of 14 

Lowlands that suggest a marine incursion and development of terrestrial landscapes. We 22 

show that these landscapes are consistent with recently published glacial isostatic 23 

adjustment predictions that include widespread deglaciation of the eastern (Labrador) 24 

sector of the LIS with ice build-up over the western (Keewatin) sector at 42 ka. Ice 25 

growth from this minimum toward the LGM is likely to have been rapid. The agreement 26 

between this data set and modeling predictions prompts the reassessment of key Late 27 

Pleistocene records, including Heinrich Events, loess deposition in the continental United 28 

States and sedimentological records from the Gulf of Mexico. 29 

INTRODUCTION 30 

The Laurentide Ice Sheet (LIS) was the predominant ice mass over North 31 

America through the Late Pleistocene (from ~125 to ~7 ka before present). Despite the 32 

importance of this ice sheet, its evolution is very poorly constrained prior to the Last 33 

Glacial Maximum (LGM; ~26 ka; Clark et al., 2009), especially during the interstadial of 34 

Marine Isotope Stage 3 (MIS 3; 59–27 ka; Lisiecki and Raymo, 2005). Refining ice sheet 35 

history through this interval will provide much-needed constraint on glacial growth 36 

toward the LGM; will aid in refining highly variable estimates of global mean sea level 37 

(GMSL; estimates range from 80m to 30m; Siddall et al., 2008) and; will offer a 38 

critical long-term perspective on the response of the Earth System to rapid climate events 39 

(e.g. Dansgaard-Oeschger and Heinrich events). 40 

The most recent evaluation of geological data (via a synthesis of ~200 41 

radiocarbon dates; Dyke et al., 2002) inferred that the LIS reached its MIS 3 minimum 42 

extent between 30–27 ka and was moderate in size, covering most of eastern and central 43 

Canada (Fig. 1). This ice configuration is often taken to represent the minimum extent 44 
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during the whole of MIS 3. However, since the work of Dyke et al. (2002), significantly 45 

more sites have been assigned to MIS 3. Notably, recent chronostratigraphic work in the 46 

Hudson Bay Lowlands, Canada (Dalton et al., 2016), lying at the geographic center of the 47 

LIS, suggests a significantly earlier and more pronounced interstadial minimum than 48 

hitherto recognized. Here, we (1) present an updated synthesis and evaluation of 49 

geological data for delineating the ice margin through the MIS 3 interval; (2) discuss the 50 

strength of geochronological data that support dramatic ice recession during MIS 3, and; 51 

(3) test the feasibility of this hypothesis by comparing geochronological data from the 52 

Hudson Bay Lowlands (a coastal plain where marine/terrestrial transitions are directly 53 

controlled by the interplay between ice loading, isostatic adjustment and sea level) with 54 

outputs from a recently published glacial isostatic adjustment (GIA) model for this time 55 

interval (ICE-PC2; Pico et al., 2017). 56 

SYNTHESIS OF MIS 3 GEOLOGICAL DATA 57 

The spatial and temporal extent of MIS 3 geochronological data1 in the glaciated 58 

region (n = 735) has improved substantially since the last collective examination by Dyke 59 

et al. (2002). Available data now span all of MIS 3, with the majority of ages (56%) 60 

falling between 37.5–47.5 ka (Fig. 1). These sites document diverse and widespread 61 

ecosystems during MIS 3 (e.g., boreal forest, peatlands) in regions that were later overrun 62 

by ice during the LGM. Samples consist of radiocarbon determinations (88.6%, n = 651), 63 

cosmogenic exposure ages (7.1%; n = 52) and luminescence dates (4.4%; n = 32). 64 

Preservation of MIS 3 sediments is largely in geological contexts that offered protection 65 

from LGM glacial advance, such as river valleys, coastal cliffs and deep lacustrine 66 

environments. For this reason, pre-LGM stratigraphic records are rarely preserved on the 67 
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Canadian Shield, a granitic geological unit covering a large swath of Canada (Fig. 1; gray 68 

shading). Geochronological data from much of the glaciated region are now of sufficient 69 

quality to track landscape evolution through MIS 3 at millennial-scales (e.g. Hughes et 70 

al., 2016), critical for testing the validity of glaciological models that have been 71 

developed for this interval (e.g., Stokes et al., 2012). 72 

EVIDENCE SUPPORTING DRAMATIC REDUCTION OF THE LAURENTIDE 73 

ICE SHEET 74 

Geochronological data from the Hudson Bay area (n=35) suggest that the LIS 75 

underwent large-scale deglaciation during MIS 3. Data from this region (14C and 76 

optically stimulated luminescence dating of marine and fluvial strata) support a marine 77 

incursion between 52 and 42 ka, along with the subsequent development of terrestrial 78 

landscapes during the interval of 48–40 ka (Dalton et al., 2016). Deglaciation in this 79 

central region was first hypothesized in the 1980s (Andrews et al., 1983; Dredge and 80 

Thorleifson, 1987). However, at that time, this hypothesis was largely dismissed based on 81 

suspected inaccuracy of chronological techniques, especially the reliance on 14C dating of 82 

shells and amino acid dating. Now, multiple radiocarbon age attempts per site (on wood, 83 

where possible), along with confirmatory OSL dating suggests that the MIS 3 age 84 

assignment may indeed be correct. 85 

The hypothesis of a significantly reduced ice sheet can be tested by comparing 86 

geochronological data from key areas to predictions from a GIA model. In this regard, we 87 

note that available geochronological data from the Hudson Bay Lowlands offer a good fit 88 

with a glacial-isostatic adjustment simulation forced by ICE-PC2, an ice loading history 89 

with widespread deglaciation of the eastern sector of the LIS during MIS 3 (to 90 
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accommodate high sea level markers of this age along the east coast of the United States) 91 

with ice build-up preferentially over Keewatin at 42 ka (Fig. 2; Pico et al., 2017). 92 

Notably, the marine-estuarine deposits on the Severn River dated to 42–52 ka (Dalton et 93 

al., 2016; Forman et al., 1987), align well with the simulated paleo-shoreline in that 94 

region. Further, terrestrial sites dated to this interval (11-PJB-186, 11-PJB-020, 12-PJB-95 

007; Dalton et al., 2016) are all located at sub-aerial elevations in the simulation (Fig. 96 

2A). The discrepancy between the simulated location of the shoreline and the marine sites 97 

suggests that adjustments to the ice load may be necessary to accommodate all data, 98 

within error. The ICE-PC2 simulation is consistent with mid-MIS 3 dates on non-glacial 99 

deposits in the Hudson Bay Lowlands and adopts a mid-MIS 3 relative sea-level 100 

highstand at 44 ka with a GMSL value of 38 m (Fig. 2B; Pico et al., 2016; additional 101 

details in Data Repository1).  102 

DISCUSSION 103 

In support of our hypothesis, insolation in the Northern Hemisphere during MIS 3 104 

was at its most stable point for the entire Late Pleistocene, and slightly higher than 105 

present-day (Fig. 3A; Berger and Loutre, 1991) which may suggest that climate forcing 106 

was sufficient to drive a prolonged, dynamic reduction of continental ice. This insolation 107 

promoted a pronounced recession in the Fennoscandian Ice Sheet (Helmens and Engels, 108 

2010). Fluctuations in global atmospheric methane during MIS 3 (Fig. 3B; Loulergue et 109 

al., 2008) could be partly explained by the development of northern peatlands in the 110 

Hudson Bay Lowlands during that time (Dalton et al., 2017). Also noteworthy are 111 

perturbations in the 13C and 18O record from Crevice Cave (Dorale et al., 1998) and 112 

Devils Hole (Landwehr et al., 2011) during MIS 3 (Figs. 3C–E) that suggest pronounced 113 



Publisher: GSA 

Journal: GEOL: Geology 

DOI:10.1130/G45335.1 

Page 6 of 14 

changes in North American precipitation regimes and vegetation during that interval, 114 

possibly as a result of reduced and/or highly variable continental ice. Our hypothesis is 115 

also supported by geomorphological records (striations and glacial lineations; Kleman et 116 

al., 2010) suggesting the eastern and western sectors of the LIS were independent for an 117 

extended period prior to the LGM, which some numerical modeling has failed to 118 

reproduce (Stokes et al., 2012) largely due to a lack of geochronological constraints. 119 

An important corollary of our hypothesis is that it prompts the reassessment of 120 

key Late Pleistocene records. Reduced continental ice likely caused meltwater to flow 121 

northward toward the Arctic Ocean during some of MIS 3. Thus, any meltwater-based 122 

control over Dansgaard-Oeschger Events through this interval (Fig. 3F) must have been 123 

dominated by northward drainage perturbations (as opposed to alternating with the Gulf 124 

of Mexico; Clark et al., 2001). Geological records from the Mississippi River that have 125 

been widely assigned to ice advance into the mid-continent may also require 126 

reinterpretation; these include the widespread Roxana Silt loess deposit (~60–30 ka 127 

interval; see Forman and Pierson, 2002, and references therein), pronounced fluvial 128 

aggradation along the Mississippi River (Rittenour et al., 2007) and sedimentological 129 

shifts in the Gulf of Mexico (Sionneau et al., 2013). Possible non-glacial explanations for 130 

the increased sediment flux and aggradation include changes in catchment vegetation, 131 

seasonality of rainfall and variable hydrology rather than a direct meltwater signature 132 

(Leigh et al., 2004). Our hypothesis also suggests that full glaciation of Hudson Bay is 133 

not necessarily a prerequisite for Heinrich Events given that both Heinrich Event 5 (H5; 134 

50–47 ka) and 4 (H4; 40.2–38.3 ka) (Sanchez Goñi and Harrison, 2010) took place 135 

around the time interval of interest. It is possible that Baffin Island, Southampton Island 136 
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or Labrador could have been active contributors to ice rafting events in the north-eastern 137 

LIS (Hefter et al., 2017; Roy et al., 2009). In this case, adjustments to the modeled 138 

Labrador sector may be needed (Fig. 2). 139 

Growth of the LIS from this receded position was likely very rapid. Using a 140 

combination of geological constraints and numerical modelling, recent studies have 141 

demonstrated that the Labrador sector may have expanded >1000 km southward by ~39–142 

37 ka (Carlson et al., 2018; Pico et al., 2018a,b). We acknowledge that continued work is 143 

needed to understand the evolution of the MIS 3 landscape, study the impact of reduced 144 

continental ice on global systems, and delineate precise ice growth toward the LGM. 145 

Nevertheless, the agreement between available geological data, GMSL and geophysical 146 

modelling supports a significant reduction of the LIS during MIS 3. 147 
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FIGURE CAPTIONS 273 

Figure 1. Map showing the glacial outline of the Laurentide Ice Sheet at 30–27 ka (after 274 

Dyke et al., 2002), overlaid with currently available geological data from Marine Isotope 275 

Stage 3 (MIS 3; n = 735). Note the large number of dates that lie inside the MIS 3 extent 276 

(e.g., Hudson Bay Lowlands), which likely indicate an earlier and significantly more 277 

pronounced ice reduction prior to the 30–27 ka interval. Shaded region is the Canadian 278 

Shield. Last Glacial Maximum (LGM) ice extent after Dyke (2004). Some sites have 279 

multiple ages that overlap on this plot; all geological data are available in Table DR1. 280 

Inset figure shows the age distribution of chronology data spanning MIS 3 with data 281 

binned into 2500-year increments. NB: data plotted here are not necessarily in conflict 282 

with the work of Dyke et al., (2002) since the ice perimeter in the 2002 study was 283 

intended to represent only the 30 –27 ka interval. 284 

 285 

Figure 2. Predicted North American topography at 42 ka using ice history ICE-PC2, 286 

overlaid with available geological data from the Hudson Bay Lowlands (colored as in 287 

Fig. 1). Note the agreement between available geochronological data and the numerical 288 

simulation, which supports the hypothesis of reduced ice cover during this interval. 289 

Present-day coastline shown by black contours. Shoreline at 42 ka (0 m contour) shown 290 

by gray outline. A: Zoom into local topography of the Hudson Bay Lowlands.  B: Global 291 

mean sea level change adopted in ice history ICE-PC2 (Pico et al., 2017). 292 

 293 
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Figure 3. Paleoclimate and orbital parameters spanning the Late Pleistocene (100 ka to 294 

present-day). A: July insolation at 60°N after Berger and Loutre (1991). B: Atmospheric 295 

methane estimates from the EPICA Dome C ice core (Loulergue et al., 2008). C–D: 296 

Carbon and oxygen isotope data from Crevice Cave (Dorale et al., 1998). E–F: Oxygen 297 

isotope data from Devils Hole speleothem (Landwehr et al., 2011) and a northern 298 

Greenland ice core (North Greenland Ice Core Project members, 2004). Arrows indicate 299 

Heinrich Events (Sanchez Goñi and Harrison, 2010). 300 

 301 

1GSA Data Repository item 2018xxx, table of geochronological data (n=735) and 302 

description of the geophysical model, is available online at 303 

http://www.geosociety.org/datarepository/2018/, or on request from 304 

editing@geosociety.org. 305 
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