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Abstract 23 

Deeply buried (3000-5000 m), deltaic sandstones of the Upper Triassic Xujiahe 24 

Formation are important tight gas reservoirs in the Sichuan Foreland Basin, China. 25 

The diagenesis of these tight sandstones was examined using a variety of petrographic 26 

and geochemical techniques, including thin section description, X-ray diffraction 27 

(XRD), whole-rock chemical analysis, scanning electron microscopy (SEM), 28 

Cathodoluminescence (CL) imaging, electron probe analysis, fluid inclusions and 29 
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isotopic analysis. These integrated petrographic and geochemical techniques were 1 

used to determine the diagenetic history of the sandstones and its impact on the 2 

reservoir quality.  3 

The tight deltaic sandstones of the T3x
2 and T3x

4  (second and fourth members of 4 

Xujiahe Formation) have undergone a significant and complicated series of diagenetic 5 

alterations and changes in geochemical composition.  Strong mechanical and 6 

chemical compaction together with carbonate cementation destroyed almost all the 7 

primary pores and the secondary dissolution pores now dominate the pore space. The 8 

T3x
4
 sandstones experienced a more open diagenetic system at near-surface and 9 

eodiagensis resulted in higher porosity than seen in the T3x
2 sandstones. Both the T3x

2 10 

and T3x
4
 sandstones experienced closed-system diagenesis during middle-late 11 

mesodiagenesis. The early diagenetic dissolution, which mainly occurred in the open 12 

geochemical system, produced secondary pores and provided kaolinite and some K+ 
13 

needed for the subsequent illitization of kaolinite and K-feldspar. The late dissolution 14 

of K-feldspar and illitization of K-feldspar in T3x
4
 sandstones and T3x

2 sandstones 15 

during the mesodiagenesis, produced some effective secondary pores in the closed 16 

geochemical system or in the focused fluid flow zone along fractures. The diagenetic 17 

characteristics, size and evolution of (open vs closed) diagenetic system, which were 18 

constrained by the depositional environment, deep burial depth and tectonic activity, 19 

can be used to predict the reservoir quality ahead of drilling. 20 

Keywords:  21 

Tight deltaic sandstone; Diagenetic system; Mass transfer; Deep burial; Reservoir 22 

quality; Xujiahe Formation; Western Sichuan Foreland basin 23 

1. Introduction 24 

The concept of a diagenetic system was first proposed in the 1970s and 1980s, 25 
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when sandstone diagenesis and the diagenetic alteration of adjacent mudstones were 1 

discussed together as systems (Boles and Franks, 1979; Surdam et al., 1989; Gluyas 2 

and Coleman,1992). Only a few articles discuss diagenesis in terms of open and 3 

closed system in terms of element mobility during the processes of mineral 4 

precipitation and dissolution (Gluyas and Coleman, 1992; Gluyas et al, 2000; 5 

Day-Stirrat et al., 2010; Bjørlykke, 2011; Day-Stirrat et al., 2011; Bjørlykke and 6 

Jahren, 2012; Yuan et al., 2015a; Yuan et al., 2015b; Yuan et al., 2017a; Yuan et al., 7 

2017b).  For a closed diagenetic system, the bulk chemical composition of the 8 

sediment does not change significantly during burial diagenesis, and there is a mass 9 

balance between mineral dissolution and precipitation (Bjørlykke and Jahren, 2012).  10 

On the contrary, the open diagenesis system is characterized by the significant 11 

enrichment or reduction in bulk chemical composition for some elements owing to the 12 

fluid flow and transport of solutes into or out of the system (Bjørlykke and Jahren, 13 

2012; Bjørlykke, 2014; Yuan et al.,2015b). There is evidence of open system 14 

diagenesis (Gluyas and Leonard,1995; Day-Stirrat et al., 2010; Day-Stirrat et al., 2011; 15 

Bjørlykke and Jahren, 2012; Yuan et al., 2015b) and of closed system diagenesis 16 

especially during deep burial because of limited flow rate and concentration gradients 17 

of pore-water flow (Gluyas et al, 2000; Clark, 2014).  18 

In a closed diagenetic (geochemical) system, predictions about rock properties or 19 

reservoir quality can be achieved with respect to rock properties as a function of 20 

burial history and diagenetic reactions and sediment composition (Gluyas, 1997; 21 

Gluyas and Witton, 1997) and written as balanced chemical equations (Bjørlykke, 22 

2010; Bjørlykke and Jahren, 2012). However, the reservoir quality is not easy to 23 

forecast in the open diagenesis system, because the diagenetic characteristics (type, 24 

sequence and origin) and controlling factors are complex and changeable and the 25 
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processes of mass and transport required for an open system are rarely well 1 

understood (Bjørlykke and Jahren, 2012; Bjørlykke .2014). 2 

The deltaic sandstone of the Upper Triassic Xujiahe Formation is an important 3 

tight gas reservoir in the Western Sichuan Foreland Basin of China (Tang et al., 2009). 4 

The deeply buried, tight deltaic sandstone of the Upper Triassic Xujiahe Formation 5 

have generally undergone complicated diagenetic alterations which have reduced the 6 

reservoir quality (Meng et al.,2013; Liu et al.,2014a, b; Luo et al.,2015). The Xujiahe 7 

Formation may have experienced an open diagenetic system during burial process 8 

because it experienced several hydrogeological and tectonic (fracture formation) 9 

events within its geological history (Zheng et al., 2003; Shen et al., 2010). 10 

    The aim of this study was to understand the diagenetic evolution of tight gas 11 

sandstones belonging to the Triassic, Xujiahe Formation, Sichuan Foreland Basin, SW 12 

China (Fig.1) in order that in unexplored regions of the basin the reservoir quality can 13 

be forecast ahead of drilling. Both porosity and permeability are generally low in the 14 

Xujiahe Formation but there are intervals with higher permeability (>0.1mD) that 15 

dominate gas flow and as such it is necessary to understand how the diagenetic system 16 

evolved in order to forecast the occurrence of such zones. 17 

2. Geological setting 18 

2.1 Basin evolution 19 

The Sichuan Basin, in southwestern China, is a diamond-shaped foreland basin 20 

surrounded by thrust belts on all sides (Xu et al., 2015) (Fig. 1). This superimposed 21 

basin has undergone two tectonic and corresponding depositional cycles: the 22 

Sinian-Middle Triassic tectonic evolution of a passive continental margin and the Late 23 

Triassic-Eocene evolution of a foreland basin (Ni et al., 2014, Lai et al., 2015). From 24 

the Early to Middle Triassic, the cratonic margins of the Sichuan Basin were raised as 25 
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a result of the compression of the Tethys and Pacific Plates (Lai et al., 2015). In the 1 

Late Triassic, the Sichuan Basin evolved into a foreland basin with the uplift of the 2 

Longmen Mountain at its western margin (Tao et al., 2014); therefore, the Western 3 

Sichuan foreland basin, located in the Western Sichuan Basin, developed after the 4 

Late Triassic (Fig. 1, Wang, 2012).  5 

The Xinchang structural belt, located in the central region of the Western 6 

Sichuan Foreland Basin (depression, Fig. 1), is a large multistage uplift that began in 7 

the late Indo-Chinese epoch（Late Triassic）, developed during the Yanshanian Period 8 

(Triassic - Cretaceous), and eventually finished forming during the Himalayan (Ye et 9 

al., 2009).  10 

2.2. Stratigraphy and depositional facies 11 

The stratigraphic column of the Western Sichuan depression shows that the 12 

Upper Triassic Xujiahe Formation (roughly equivalent to the Upper Triassic Norian 13 

stage) generally comprises its second member (T3x
2), third member (T3x

3), fourth 14 

member (T3x
4) and fifth member (T3x

5) (Fig. 2) (Zheng et al.,2003). The first member 15 

of the Xujiahe Formation (T3x
1), which represents the critical source rock, is generally 16 

divided into the Xiaotangzi and Maantang intervals, because it was deposited in 17 

shallow sea or marine prodelta environment that was significantly different from the 18 

continental or transitional environments of other members of the Xujiahe Formation, 19 

(Lin, 2005). The second (T3x
2) (burial depth >4600m;thickness 560-660m)and fourth 20 

(T3x
4) (burial depth 3000-4000m;thickness 536-610m)members of the Xujiahe 21 

Formation mainly consist of deltaic sandstones, which are the major sandstone 22 

reservoirs of the study area (Fig. 2). The second member of the Xujiahe Formation 23 

(T3x
2) was mainly deposited in a marine delta front belonging to a 24 

marine-to-continent transitional environment, which mainly consists of 25 
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distributary channel and mouth bar sandstones (Lin, 2005; Shi,2010). However, 1 

the fourth member (T3x
4) was deposited in the lacustrine braided-river delta front 2 

of continent sedimentary environment, in which, underwater distributary channel 3 

and mouth bar are the dominant microfacies (Lin, 2005; Shi,2010). The third (T3x
3) 4 

and fifth(T3x
5) members of the Xujiahe Formation were deposited in a lacustrine 5 

braid-river delta plain that is dominated by swamp microfacies and branch 6 

channel, so both the T3x
3 and T3x

5 are important source rocks and coal-bearing 7 

strata (Lin, 2005; Shi, 2010). 8 

2.3 Diagenetic geochemical system  9 

Fractures are important fluid-flow conduits and a significant part of the reservoir 10 

pore volume in the Xujiahe Formation (Zhang, 2005; Zeng, 2010; Luo, 2015). The 11 

fractures were controlled by the tectonic activity and are critical to large-scale 12 

convection of fluid in the reservoir because of their high permeability (Zhang, 2005; 13 

Zeng, 2010). The fractures in the T3x
2 member started to form at the end of the 14 

Triassic (the Late Indosinian), and continued forming during the Yanshanian and 15 

Himalayan (Zhang, 2005). The initial stage of fracturing within the T3x
4 member was 16 

at the end of the Middle Yanshanian, and subsequent stages were late Yanshanian and 17 

Himalayan (Zhang, 2005). Consequently, the abundant fractures in the Xujiahe 18 

Formation provide crucial migration pathways for fluid flow and transport of solutes . 19 

Cross-formational migration of fluids in the Upper Triassic drove 20 

homogenisation of formation water geochemistry in the T3x
2 and T3x

4 members 21 

(Zheng et al., 2003; Shen et al 2010). The original formation water within the T3x
2 22 

and T3x
4 were almost completely replaced by the formation water from the 23 

coal-bearing strata (e.g. T3x
3 and T3x

5) and the underlying marine mudstone of the 24 

T3x
1 member (Shen et al., 2010). These previous studies indicate the possible 25 
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existence of an open geochemical system in the Xujiahe Formation (T3x
2 and T3x

4) 1 

during burial process from near-surface to deep burial (Liu, 2010; Shen et al., 2010). 2 

3. Materials and methods 3 

Rock composition data for 7068 thin sections samples (4254 fromT3x
2 and 2814 4 

from T3x
4 of related 32 wells) and 6550 porosity and permeability data pairs (2760 5 

from T3x
2 core sandstone samples and 3790 from T3x

4 sandstone) were provided by 6 

the Research Institute of Petroleum Exploration & Development of the Southwest 7 

Oil-Gas Branch Company, Sinopec.  8 

Based on the objectives of this study, 250 sandstone samples (sampling interval 9 

~ 0.5 m) were collected from the T3x
2 and T3x

4 members in drill cores of 32 wells (Fig. 10 

1C), in which 220 thin sections (18 key wells with hydrocarbon shows) were 11 

impregnated with blue epoxy resin and prepared for mineralogical and diagenetic 12 

studies (Fig. 1C). Thin sections were partly stained with Alizarin Red S and 13 

K-ferricyanide for carbonate mineral identification. Point counting (300 points per 14 

thin section) analysis ,  in which the composition of 300 points per thin-section will 15 

be identified and counted,  was performed on 40 thin sections collected from 40 drill 16 

cores of T3x
2 and T3x

4 members in 10 key wells to quantify rock composition and 17 

confirm the previously collected rock composition data and diagenetic relationships 18 

(Van der Plas and Tobi, 1965;Yuan et al.,2015a,b; Hansen et al.,2017). Cements in the 19 

40 thin sections were identified and photographed under the microscope with digital 20 

camera and sketched on a computer using the CorelDRAW software, and the 21 

corresponding area of each cement in the photomicrographs was calculated using 22 

Image-Pro Plus software. Finally, the bulk percentage of each cement was calculated 23 

by determining the average value of area rates in 10 photomicrographs from the same 24 

thin section. 25 
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150 core representative samples (from the main reservoir sandstone of key wells 1 

with hydrocarbon shows) were coated with gold and examined under a Quanta250 2 

FEG scanning electron microscope (SEM) equipped with an Oxford INCAx-max20 3 

energy dispersive spectroscope (EDS). Cathodoluminescence (CL) analyses of 20 4 

typical core samples, in which carbonate cement was relatively well developed 5 

(> 2%), were completed using an Olympus microscope equipped with a 6 

CL8200-MKS CL instrument.  7 

Eighty-five carbonate grains, including carbonate cements and rock fragments, 8 

were analysed for their C and O isotopic compositions in situ using the laser 9 

microsampling technique with a MAT252 Gas Isotope Ratio Mass Spectrometer at the 10 

Research Institute of Exploration and Development of the Southwest Oil-Gas field 11 

Company, Petrochina. The selected carbonate minerals produced CO2 gas by heating 12 

the specified micro-zone of thin-section inside the vacuum sample box with 13 

high-energy laser beam. Then the CO2 gas was purified by vacuum and sent into mass 14 

spectrometer for measurement of carbon and oxygen isotope. The precision was ±0.08‰ 15 

for oxygen and ±0.06‰ for carbon.  16 

Twenty core samples with quartz cement (more than 2%) were prepared as thick 17 

doubly polished sections of 100 µm thickness for microthermometric measuement of 18 

fluid inclusions using a petrographic microscope equipped with a Linkam. The 19 

THMSG 600 heating and cooling stage enables the temperatures of phase transitions 20 

ranging from -180 to 600°C. Inclusions within quartz cement were photographed with 21 

digital camera for the purpose of fast mapping of inclusion locations. The 22 

homogenization temperature (Th) were determined for inclusions inside quartz 23 

cement using a heating rate of 10°C/min (18°F/min) when the temperature was lower 24 

than 70°C (158°F) and a rate of 5°C/min (9°F/min) when the temperature exceeded 25 
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70°C (158°F). The measured temperature precision for Th is ±1°C (±1.8°F).  1 

X-ray diffraction (XRD) analysis of whole-rock samples and quantitative clay 2 

minerals were performed on 65 core samples (32 samples from T3x
2and 33 samples 3 

from T3x
4) to identify species and contents of major minerals, relative contents of 4 

different clay minerals and I/S mixed-layer ratios. The whole-rock chemical analysis 5 

was performed on 65 sandstone samples for the content of major elements using 6 

direct-reading spectroscopy method of full spectrum (ICP-AES) under condition of 20℃ 7 

temperature and 65% humidity.  The rock samples were ground to fine powder and 8 

homogenized. Approximately 0.25 g of the powder was dissolved in a mixture of hot 9 

hydrofluoric and hydrochloric acids. The resultant solutions were diluted with 10 

distilled water before analysis. The solutions were analysed, using inductively coupled 11 

plasma atomic emission spectrometry (ICP), for aluminium, titanium, iron, 12 

manganese, calcium, magnesium, potassium and sodium (Gluyas and Coleman, 1992). 13 

Silicon was obtained by gravimetric methods. Precision on whole-rock analysis is 14 

estimated to be within +1% (Gluyas and Coleman, 1992).  15 

 16 

4. Results 17 

4.1 Sandstone petrography 18 

The T3x
2 sandstones mainly comprise litharenite and minor feldspathic 19 

litharenite, and the T3x
4 sandstones consist of major litharenite and minor lithic quartz 20 

arenite（Fig. 3A-B,Table 1）.The sandstone classification was based on the standard of 21 

Folk et al., 1970 (Fig. 3A-B).The feldspars within the T3x
2 and the T3x

4 consist of 22 

plagioclase (major albite and minor calcic plagioclase) and K-feldspar (Table 1, Table 23 

2). The rock fragments of the T3x
2 and T3x

4 sandstone mainly comprise fragments of 24 

major sedimentary rocks (e.g. limestone, dolomite and mudstone) , fragments of 25 
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metamorphic rock (e.g. phyllite, slate and shist) and small amounts of volcanic rocks 1 

(e.g. basalt and andesite).The T3x
4 sandstones have more sedimentary and volcanic 2 

rock fragments and less detrital quartz than the T3x
2 sandstones (Table 1).  Carbonate 3 

rock including micrite limestone and dolomite is dominant in the sedimentary rock 4 

fragments of T3x
2 and T3x

4 sandstones. The T3x
2 sandstones and T3x

4 sandstones 5 

mainly comprise major medium-grained, minor fine-grained and 6.3% coarse-grained 6 

sandstones. 7 

4.2 Diagenetic minerals and alterations 8 

4.2.1 Compaction 9 

Framework grains in the Xujiahe Formation sandstones (T3x
2 and T3x

4) are 10 

generally heavily compacted (both mechanically and chemically), as is indicated by 11 

the dominance of long and concave-convex grain contacts (Fig. 4A-F). Direct 12 

evidence of mechanical compaction, which has mostly occurred in the T3x
4, are the 13 

deformation of mica and plastic rock fragments (Fig. 4A, B, E, F). Chemical 14 

compaction, pressure dissolution, observed in T3x
2, is manifested by the concave–15 

convex and sutured contacts between quartz grains (Fig. 8A-B, Fig. 4C, D). However, 16 

compaction is obviously less extensive in sandstones with chlorite rims than in other 17 

rocks within the T3x
2 (Fig. 11G-I). 18 

4.2.2 Carbonate cements 19 

Carbonate cements are the dominant cement in the sandstones.  They occur as 20 

scattered euhedral rhomb and pore-filling blocky and mosaic aggregates in the T3x
2 21 

and T3x
4 tight sandstones (Fig. 5, Fig. 6). In the T3x

2 tight sandstones, carbonate 22 

cements with an average of 6.68% mainly consist of calcite (av.vol 3.72%) and 23 

dolomite (av. vol 2.96%) (Table 1). The calcite generally occurs as isolated blocky 24 

sparite cements filling intergranular pores (pore diameter,50µm～120µm, (Fig. 5A) 25 
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and as partial replacements of detrital grains (e.g. feldspars and volcanic rock 1 

fragments, Fig. 5D, E). Dolomite also occurs as pore-filling poikilotopic sparite 2 

patches that fill intergranular pores (pore diameter, 50μm～200μm, Fig. 5B) or as 3 

euhedral rhomb (single crystal: 40µm～120µm) and partial replacements of detrital 4 

grains (e.g. feldspar) filling intragranular pores (Fig. 5D- F).  5 

The carbonate cement has an average content of 5.92% in the T3x
4 sandstones, of 6 

which 4.97% is calcite and 0.95% is dolomite (Table 1). Calcite cements mostly occur 7 

as microcrystallineto sparite (single crystal:10µm～50µm), poikilotopic masses that 8 

fills in primary (intergranular) pores (Fig. 6A-C), and as partial replacements of 9 

detrital grains (e.g. feldspars and rock fragments) that fill secondary pores 10 

(intergranular and intragranular dissolved pores) and accompany partial dissolution 11 

and kaolinization of feldspar (Fig. 6D-F). The minor (0.95%) sparite dolomite (single 12 

crystal:30µm～80µm) generally occur as partial replacements of detrital grains (e.g. 13 

carbonate rock fragments), and accompany the dissolution of carbonate rock 14 

fragments (Fig. 6D). 15 

The primary and secondary intergranular pores, filled with calcite/dolomite 16 

cements, can be distinguished by thin-section analysis that were impregnated with 17 

blue epoxy resin or the scanning electron microscope analysis (SEM). The primary 18 

pores that are filled with calcite cement generally have regular edges which abut 19 

against the original detrital grains (Fig. 5A, Fig. 6A-B). However, the secondary 20 

intergranular pore is characterized by irregular edges that are formed by partial 21 

dissolution and replacement of calcite around the detrital grains (feldspar)(Fig. 6A-B). 22 

Feldspars that are partly replaced by calcite are generally accompanied by dissolution 23 

in the T3x
2 and T3x

4 sandstones (Fig. 5D-F-, Fig. 6D-F). CL micrographs show that 24 

the carbonate cements of the Xujiahe Formation sandstones can be divided into two 25 
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generations of early and late carbonate cement (Fig. 6B).  The saffron yellow 1 

micro-crystal calcite that fills primary pores, which represent the first 2 

generation,precipitated before strong mechanical compaction as evidenced by the 3 

floating detrital grains and point contacts between grains (Fig. 6B). The orange red 4 

calcite that mostly fills the residual primary pore and secondary pores and partially 5 

replaced some detrital grains, represents the second generation (Fig. 6 B). The calcite 6 

cements of T3x
4 sandstone consist of major early calcite and minor late calcite, but the 7 

T3x
2 sandstone was dominated by late calcite. 8 

Electron microprobe (EMP) analyses reveal the molar compositional fraction of 9 

carbonate cements in the T3x
2 sandstone and the T3x

4 sandstone (Table 4).  The 10 

calcite cements have nearly similar molar compositional fraction between the T3x
2 

11 

sandstone and the T3x
4 sandstone (Table 4). Besides, almost all of dolomite cements 12 

occur in the T3x
2 sandstones and rarely in the T3x

4 sandstones (Table 4). The dolomite 13 

should be classified as the ankerite for abundant FeCO3 (av. 20.86%, Table 4).  14 

The δ18OV-PDB and δ
13CV-PDB values of calcite cements in the primary pores are 15 

similar to that of the calcite rock fragments and that of carbonate rock fragments in 16 

the T3x
4 sandstones (Fig. 7A, Table 5). The dolomite (ankerite) crystals filling in the 17 

secondary pores have lower δ18OV-PDB values and similar δ13CV-PDB values in 18 

comparison to that of the calcite in primary pores in the T3x
4 sandstones (Fig. 7A, 19 

Table 5). The δ18OV-PDB and δ13CV-PDB values of calcite cements in the secondary pores 20 

are obviously more negative than that of other carbonate in the T3x
4 sandstones (Fig. 21 

7A, Table 5).   22 

In the T3x
2 sandstones, the δ18OV-PDB values and δ13CV-PDB values of calcite 23 

cements are similar to that of dolomite (ankerite) cements ((Table 6, Fig. 7B).  The 24 

dolomite fragments have similar δ18OV-PDB values and slightly higher δ13CV-PDB values 25 
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(Table 6, Fig. 7B). 1 

4.2.3 Quartz cements 2 

Point counting of thin section, cathodoluminescence, and SEM analyses indicate 3 

that authigenic quartz is the second most abundant cement after carbonate. Quartz 4 

cements generally occur as syntaxial overgrowths (thickness 20µm to 120µm) that 5 

partially coat of detrital quartz grains (Fig. 8A-C, Fig. 8F) or as isolated pore-filling 6 

quartz crystal (Fig. 8D, E, Fig. 8G).  Quartz overgrowths are usually accompanied 7 

by sutured (microstylolitic) quartz grains contacts (Fig. 8A, F, I). The isolated 8 

pore-filling authigenic quartz crystal are generally accompanied by the dissolution of 9 

feldspar and some illite (Fig. 8E, H), indicating that the isolated pore-filling quartz 10 

crystals are like to be related to the dissolution of feldspar (Hawkins, 1978; Worden 11 

and Morad,2000).  12 

The quartz cement of the T3x
2 sandstones has an average content of 2.16%, 13 

which represents 24.4% of the total cement content (Table 1). Moreover, the quartz 14 

cement content increases with increasing amounts of detrital quartz in the T3x
2 

15 

sandstones (Fig. 9). In the T3x
4 sandstones, quartz cement generally occurs as isolated 16 

pore-filling quartz crystals or syntaxial overgrowths (Fig. 8B, Fig. 8E-G); this quartz 17 

cement has an obviously low average content of 0.94%, which represents 13.2% of 18 

the total cement content (Table 1). 19 

The homogenization temperatures of fluid inclusions in quartz cements reveal 20 

that crystallization temperature of quartz cements in the T3x
2 sandstones ranges from 21 

50 to 90℃, 100 to 140℃ and 150 to 190℃ and that those of the T3x
4 sandstones 22 

mostly range from 90 to 150℃ (Fig. 10). In addition, the homogenization 23 

temperatures of aqueous inclusions in authigenic quartz within fractures range from 24 

50 to 60℃ and 170 to 330℃. 25 
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4.2.4 Clay minerals 1 

Illite, chlorite, kaolinite and minor mixed-layer illite/smectite (less than 1% of 2 

the clay minerals), were revealed by XRD and SEM analyses (Table 2, Table 3). 3 

Illite, which represents 46.8% (average) of clay mineral in T3x
2 and 43%(average) in 4 

T3x
4 sandstones, occurs mainly as grain-coatings, nested aggregates filling in 5 

secondary intragranular dissolved pores and non-netted aggregates filling in 6 

intergranular spaces (Fig. 11A-F, Meng et al., 2011). The nested illites are generally 7 

accompanied by the dissolution of feldspar and rock fragments (Fig. 11A,B, E,F); 8 

non-netsted aggregates may be related to the illitization of the matrix consisting of 9 

smectite (Fig. 11C, O). The T3x
2 sandstones have a higher chlorite content (av. 2.4, 10 

whole rock %; av. 51.9 clay %) than the T3x
4 sandstones (av. 1.6, whole rock %; av. 11 

26.1 clay %) (Table 2, Table 3, Fig. 12, Fig. 13). Chlorite rims are partly 12 

well-developed in the T3x
2 which can be observed under cross-polarizing light and 13 

SEM analysis (Fig. 11G-I). However, in the fourth member (T3x
4), chlorite cement is 14 

dominated by authigenic pore-filling chlorite (Fig. 11K), and some chlorite appears 15 

as chloritized of rock fragments (Fig. 11J). 16 

Kaolinite, which represents 0% to 72 % (av.28.5%) of all clay minerals, mostly 17 

occurs at the top of the T3x
4 sandstones and is nearly absent in the T3x

2 sandstones 18 

(Table 2, Table 3, Fig. 12, Fig. 13, Fig. 14B). Kaolinite generally occurs as vermicular 19 

or booklet-like aggregates of pseudohexagonal crystals (Fig. 11L~M).  They are 20 

usually observed in secondary pores associated with feldspar dissolution (Fig. 11M). 21 

In addition, some booklet-like pseudohexagonal kaolinite has transformed into 22 

filamentous illite (Fig. 11N). Small amounts of flaky smectite are present in the 23 

mixed-layer illite/smectite (Table 4, Fig. 11O).  24 

4.2.5 Dissolution  25 
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Secondary pores, which are the most important pore type in the studied 1 

sandstones, were generally formed by the dissolution of major feldspars and minor 2 

volcanic rock fragments (point counting) (Fig. 15A-F). Secondary pores mostly occur 3 

at the top of T3x
4; others occur at the bottom of T3x

4 and in the middle-upper part of 4 

T3x
2 (Fig. 16). Overall, the dissolution is more prevalent in T3x

4 than T3x
2 sandstone 5 

(Fig. 4, Fig. 16). Detrital K-feldspar grains have experienced partial to complete 6 

dissolution (Fig. 15A-C). Feldspar dissolution is generally accompanied by the 7 

formation of some authigenic kaolinite and quartz (Fig. 11-M, Fig. 15B). 8 

4.3 Pore types, porosity and permeability  9 

The pore space of T3x
2 sandstone consists of primary pore (av.0.84%), secondary 10 

dissolved pore (av.0.79%) and fracture (0.23%) (Fig. 17). The pore space of T3x
4 

11 

sandstone comprises major secondary dissolved pore (av.3.49%), minor primary pore 12 

(av.0.58%) and fracture (0.09%) (Fig. 17). 13 

The core porosity of T3x
2 sandstone mainly ranges from 1% to 5% (av.3.44%), 14 

and the core permeability ranges from 0.02 to 0.16mD (av.0.089mD). In the T3x
4 15 

sandstones, core porosity generally characterized by two main ranges of 1%－3% 16 

and 3%－9% (av.5.14%), the core permeability ranges from 0.02 to 0.32mD 17 

(av.1.08mD). 18 

In porosity-depth and permeability-depth profiles, both porosity and permeability 19 

of T3x
2 and T3x

4 sandstones show wide variation at shallow to deep depths (Fig. 18). 20 

Porosity and permeability generally decrease with increasing burial depth. However, 21 

porosity and permeability values of P10 (10% of reservoirs have porosity higher than 22 

this value) and P50 (median) curves show that some higher porosity and permeability 23 

intervals exist in the T3x
2 and T3x

4 sandstones (Fig. 18). 24 

 25 
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4.4 Sandstone geochemistry 1 

The major elements (whole rock) of T3x
2 sandstones and T3x

4 sandstones 2 

comprise Na2O, K2O, MgO, Fe2O3, TiO2, Al2O3, SiO2 (Table S1, Table S2). The MgO, 3 

K2O, Al2O3 contents of T3x
4
 sandstone have obvious vertical changes, but that of T3x

2 4 

sandstone present relatively fixed values in vertical profile (Fig. 12A, Fig. 13A). 5 

5. Discussion 6 

5.1 Mechanism and time of dissolution 7 

The types of pore space and the porosity-depth and permeability-depth profiles 8 

indicate that the dissolution of minerals was the most important source of pore space 9 

creation in the T3x
2 and T3x

4 sandstones (Fig. 17, Fig. 18). For dissolution to occur the 10 

pore fluids need to be under saturated with respect to the detrital minerals.  Under 11 

saturation can come about simply from increased temperature during burial or from a 12 

change in composition of the pore fluid caused ingress of new pore fluids.  A 13 

candidate fluid that would promote dissolution is an acidic one and we know that 14 

organic acids would have been formed from the thermal maturation of coal in the 15 

adjacent T3x
3 and T3x

5 members. 16 

Coal-bearing stratum produce many kinds of organic acids during early diagenetic 17 

stage (Kauss et al., 1997; Dias et al., 2002) and peak at temperature range of 80℃ to 18 

140℃ (Surdam et al.,1989; Zeng et al., 2007). The amount of organic acids generated 19 

by coal-bearing strata (T3x
3 and T3x

5) is generally 2-5 times higher than other kinds of 20 

source rock (T3x
1) (Zheng and Ying, 1997; Yuan et al.,2013). Feldspar dissolution, 21 

secondary pores and enlarged dissolution of micro-fractures are prevalent in the 22 

studied sandstones (Fig. 14, Fig. 15A-C,Fig. 15F,Fig .16,Fig. 17).Fig. 17, Besides, the 23 

distribution of secondary pore is related to source rocks (Fig. 16A-D).These indicate 24 

that acidic fluids from source rocks migrated and flowed into the T3x
2 and T3x

4 25 
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sandstones through these fractures, meanwhile provoked pervasive dissolution in 1 

studied sandstones (Fig. 15F). Hence, the feldspar dissolution of the T3x
4 and T3x

2 
2 

sandstones may occur from eodiagenesis to mesodiagenesis stage (60℃-140℃). 3 

Secondary pores are mostly distributed on the top of T3x
4, where they 4 

approximately correspond to the zone containing decreasing amounts of feldspars, the 5 

development of kaolinite and the skewness/rapid change of the Ro value, and more 6 

prevalent than the middle part of T3x
4 (Fig. 14, Fig. 16)..Therefore, feldspar 7 

dissolution recorded at the top of the T3x
4 might be caused by acidic fluids from the 8 

coal-bearing formation of the T3x
5) . Besides, there is an extensive II-type 9 

unconformity on the top of the T3x
4 (Zhang, 2011). As such some early dissolution 10 

might come from leaching by low-pH meteoric waters containing CO2 gas phase .  11 

However, there are not more secondary pores (Fig. 16A-D) and higher core 12 

porosity (Fig. 18A) at the bottom of T3x
2 than there are in the middle-upper part, even 13 

if they are adjacent to the Xiaotangzi Formation (T3x
1), which mainly consist of the 14 

source-rock (Fig. 2). This may be explained by the fact that obviously thinner 15 

sandstone, less feldspar, more alkaline diagenetic environment in the bottom of the 16 

T3x
2 consisting of similar marine mudstone interbedded with sandstone than there is 17 

in the middle-upper part , which resulted in less feldspar dissolution in sandstones 18 

(Fig. 2). In addition, some few rock fragments (e.g. carbonate and volcanic rock 19 

fragments) were dissolved together with feldspars by these acidic fluids (Fig. 15D, 20 

E).  21 

5.2 Genesis of diagenetic minerals 22 

5.2.1 Source, temperature and time of carbonate diagenesis  23 

Carbonate cements have many potential carbon sources including internal and 24 

external sources (Gier et al., 2008; El-Ghali et al., 2013; Luo et al.,2018). The 25 
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δ
18Owater values of parent diagenetic pore water of the calcites filling primary pores 1 

comprising the meteoric and marine water within the T3x
4 are approximate -3‰ 2 

SMOW, and that of current pores water in the T3x
4 range from-4.3‰ to +0.5‰ 3 

(SMOW) with an average value of -1.4‰ (SMOW) (Shen et al, 2010; Liu et al, 4 

2014a,b).  The δ18Owater values of parent diagenetic pore water of carbonate cements 5 

in the T3x
2 , which was deposited in marine water, were nearly 0‰ SMOW, and the 6 

δ
18Owater values of current pore water range from -4.5‰ to -1.3‰(SMOW) (Shen et al, 7 

2010;Liu et al, 2014a,b). Using oxygen isotope fractionation factor for calcite-water 8 

from Friedman and O'Neil (1977), the precipitation temperatures for different types of 9 

carbonate cements can be calculated (Table 5, Table 6, Fig. 18, Fig. 19). 10 

The early calcite cements filling the primary pores of the T3x
4 sandstone (-10.06‰ 11 

to -4.75‰, av. +7.38‰) were calculated to be precipitated at approximately 30-65℃ 12 

(Table 4, Fig. 19A). Moreover, nearly poikilotopic calcite cements filling in primary 13 

(intergranular) pores mostly occur as microcrystalline to sparite (Fig. 6A,C), which 14 

also indicate that calcite precipitated at the early diagenetic stage. The calcites filling 15 

the primary pores of the T3x
4 sandstone have similar carbon and oxygen values 16 

(δ18OV-PDB -10.06 to -4.75‰, av. -7.38‰; δ13CV-PDB: -0.13 to +2.46‰, av. 1.53‰) 17 

with those of carbonate rock fragments (δ
18OV-PDB -9.23 to -4.81‰; δ13CV-PDB 1.33 to 18 

+2.22‰) (Table 5, Fig. 7A). These data provide evidence for that the carbon source of 19 

the early calcite cement filling the primary pores in the T3x
4 sandstones is closely 20 

related to the internal carbonate rock fragments consisting of inorganic carbon whose 21 

δ
13CV-PDB values can increase up to 3‰, and rarely related to the organic carbon/acid 22 

(Friedman and O, Neil, 1977). However, there was not enough acid for the dissolution 23 

of internal carbonate rock fragments at the early diagenetic stage (30-65℃). Therefore, 24 

the early calcite filling in the primary pores precipitated from pore fluids containing 25 
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Ca2+ and CO3
2- come from the original formation water in sandstone and adjacent 1 

mudstone at eodiagenesis stage, which were mainly related to weathering or 2 

dissolution of carbonate rock fragments in the provenance or transport process. 3 

The calcite cements filling in the secondary of the T3x
4 sandstone  4 

(δ18OV-PDB:-19.71‰ to -10.77‰, av.-14.69‰) pores were calculated to be precipitated 5 

at 70℃-160℃ (Table 5, Fig. 19A).. The measured δ13CV-PDB values (−5.43‰ ~ 6 

0.75‰) show that this calcite may be related to the oxidation of organic carbon or 7 

formed under methanogenic conditions (Friedman and O’ Neil, 1977; Irwin et al., 8 

1977; Wei et al., 2015). Late-diagenetic calcite cements in the secondary pores are 9 

generally accompanied by the dissolution of feldspars and some rock fragments (e.g. 10 

carbonate rock and volcanic rock fragments)(Fig. 6D~F). Therefore, material sources 11 

of the calcite cements filling in the secondary pores is closely related to the late 12 

dissolution caused by organic acids from thermal evolution of organic matter in the 13 

source rocks. In addition, the transformation of clay minerals may also supplied some 14 

Ca2+, Fe2+ and Mg2+ at the temperature range of 80℃to 140℃.  15 

The δ13CV-PDB values (−0.97‰ ~ +1.97‰) of the small amounts of dolomite 16 

(ankerite) filling in the secondary pores are somewhat less than those of carbonate 17 

rock fragments in the T3x
4 sandstones (Fig. 7A) and more than those of organic 18 

carbon. This suggests that the carbon source of dolomite cement may be the mixture 19 

of organic carbon and carbonate rock fragments. In addition, the relatively high 20 

precipitation temperature (75℃-140℃) (Table 5, Fig. 19B) of dolomite (ankerite) 21 

cements is consistent with the temperature of release of organic acid and CO2 from the 22 

source rock within T3x
3 and T3x

5 (Fig. 2) (Surdam et al,1989; Zeng et al, 2007). 23 

Besides, the polycrystalline dolomite (ankerite) (30µm～80µm) generally occurs as 24 

partial replacements of detrital grains (e.g. carbonate rock fragments) and accompany 25 
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the dissolution of carbonate rock fragments (Fig. 6D). Therefore, the dolomite 1 

(ankerite) cements within the T3x
4 sandstones may have mainly precipitated from the 2 

dissolution of carbonate rock fragments by organic acids during mesodiagenetic stage 3 

(75℃-140℃). 4 

In the T3x
2 sandstones, the relatively positive δ13CV-PDB values (-1.81‰ to 5 

+4.97‰) suggest that these carbonate cements (calcite and dolomite) were mainly 6 

formed under methanogenic conditions (Table 6, Fig. 7B) (Irwin et al., 1977; Wei et 7 

al., 2015). The calcite and dolomite cements precipitated at 70℃-120℃and 80℃-160℃ 8 

respectively (Table 6, Fig. 20A), which were equivalent to the mesodiagenetic stage. 9 

Concurrently, the source rock in the lower submember of T3x
2 and the underlying 10 

Xiaotangzi Formation (T3x
1) exists under methanogenic conditions. Carbonate 11 

cements have mainly developed in the lower submember of the T3x
2, which is 12 

adjacent to the underlying Xiaotangzi Formation, which consists of marine source 13 

rocks (Fig. 2, Liu et al, 2014b; Luo, 2015), which can be explained by the fact that the 14 

organic acid within mudstone intruded into the sandstone. Therefore, carbon sources 15 

of carbonate cements (late diagenetic carbonate cements) in the T3x
2 could have come 16 

from the organic acids that flowed into sandstone from the source rock. The Ca2+, 17 

Fe2+ and Mg2+ may come from late dissolution of feldspar and rock fragments, 18 

transformation and interstitial water of clay minerals and reduction of iron oxides.  19 

5.2.2 Source, temperature and time of authigenic quartz  20 

Quartz cements are usually accompanied by sutured (microstylolitic) contacts of 21 

quartz grains formed by pressure dissolution (Fig. 8A, Fig. 8I), and increasing quartz 22 

cement content with increasing detrital quartz content in the T3x
2 sandstones (Fig. 9). 23 

However, pressure dissolution is rare in the T3x
4 sandstones, due to their low contents 24 

of detrital quartz grains. Therefore, pressure dissolution represents the most important 25 
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silica source for quartz cement in the T3x
2 sandstones (Luo et al., 2015), but not in the 1 

T3x
4 sandstones. 2 

The isolated pore-filling authigenic quartz crystals are generally accompanied by 3 

the dissolution of feldspar in the T3x
2 and T3x

4 sandstones (Fig. 8G-H). Therefore, 4 

feldspar dissolution, which was pervasive and might occur from eodiagenesis to 5 

mesodiagenesis stage (60℃-140℃), may be an important source for the quartz 6 

cements. The 80°C ~120°C is the ideal temperature range for feldspar dissolution 7 

(Surdam et al., 1989).The homogenization temperatures range (90°C and 120°C) of 8 

fluid inclusions in quartz cements of the T3x
4 sandstones (Fig. 10A) also suggest that 9 

the quartz cements may be mainly derived from the feldspar dissolution the T3x
4 10 

sandstones. However, the homogenization temperature range (90°C and 110°C) in the 11 

T3x
2 sandstones are nearly absent (Fig. 9B). Moreover, the higher residual feldspar 12 

content of the T3x
2 sandstones (av. 8.3 vol%) than the T3x

4 sandstones (av.2.1vol%) 13 

(Table 1, Table 2, Table 3, Fig. 3A-B) and the less secondary pores of the T3x
2 14 

sandstones than the T3x
4 (Fig. 17) may also indicate that feldspar dissolution may be 15 

not the most important silica source for the quartz cements in the T3x
2 sandstones. 16 

 The type and content of clay minerals suggest that extensive clay mineral 17 

transformation occurred in the T3x
2 and T3x

4 sandstones (Table 2, Table 3). The nested 18 

illites related to feldspar dissolution (Fig. 11A, B, E, F), non-netsted aggregates 19 

related to the illitization of smectite (Fig. 11C, O), some filamentous illites 20 

transformed from booklet-like pseudohexagonal kaolinite (Fig. 11N) and chlorite rim 21 

(Fig. 11G-K) were the results of clay mineral transformation. Symbiotic relationship 22 

of quartz cement and authigenetic clay minerals indicates that the clay mineral 23 

transformation is the potential source for quartz cements (e. g. illite and chlorite) (Fig. 24 

8E, Fig. 11I). Moreover, the homogenization temperatures range (110℃ to 140℃) of 25 
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quartz cements (Fig. 10A-B) is in favour of the clay minerals transformation (Worden 1 

and Morad, 2003). These indicate that clay mineral transformation within the 2 

sandstone might be one of silica sources for quartz cements in the T3x
2 and T3x

4 3 

sandstones. 4 

Quartz cements with homogenization temperatures between 50℃and 90℃ 5 

comprise 40% of total T3x
2 sandstone samples,but represent just 5% of total T3x

4 6 

sandstone samples (Fig. 10A, B). However, the feldspar dissolution of T3x
4 sandstone 7 

is more pervasive than the T3x
2 sandstones indicate that (Fig. 16, Fig. 17). 8 

Furthermore, some authigenic quartz located in fractures have homogenization 9 

temperatures varying from 50℃ to 60℃ in the T3x
2 sandstones. Therefore, the 10 

external silica source at eodiagenesis stage (50-60℃), which might be related to the 11 

oversaturated fluid derived from mudrocks through fractures,may be one of  12 

important silica sources for quartz cement in sandstones, especially  in the T3x
2 

13 

sandstones (Gluyas and Coleman, 1992; Gluyas et al, 2000; Luo et al.,2015).  14 

In addition, the presence of some quartz cement filling in fractures with 15 

homogenization temperatures ranging from 210℃ to 290℃ suggests that hot fluids 16 

moving up through fractures could represent another possible external source. 17 

However, the homogenization temperatures of the quartz cements filling these pores 18 

rarely reach 200℃ , which may indicate that hydrothermal fluids with high 19 

temperatures and concentrations was not an important silica source for quartz cements 20 

in the T3x
2 and T3x

4 sandstones. 21 

5.2.3 Temperature and time of clay mineral transformation 22 

Clay-mineral assemblages generally transform with increasing temperatures, 23 

producing a series of prograde diagenetic reactions (Worden and Morad, 2003). Clay 24 

mineral transformations in the studied sandstones include kaolinitization and 25 
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illitization of feldspar (Fig. 11F, M), illitization and chlorization of smectite (Fig. 1 

11O), conversion of kaolinite into illite and chlorite (Fig 11-N), and replacement of 2 

rock fragments by mesogenetic illite and chlorite (Fig. 11B, E, J). 3 

The illitization of kaolinite is prevalent at temperatures greater than 4 

approximately 70°C, but becomes pervasive at temperatures greater than 5 

approximately 130°C in neutral or alkaline environments (Worden and Morad, 2003). 6 

When the temperature is above 120-140℃, the early kaolinite released by the feldspar 7 

dissolution can translated into illite with the K+ from the K-feldspar dissolution 8 

(Chuhan and Bjørlykke, 2000; Zhang, 2011).  9 

The nested illites and kaolinite are related to feldspar dissolution in the T3x
2 and 10 

T3x
4 sandstones (Fig. 11A, F, M, Fig. 14, Fig. 16). The K-feldspar contents have 11 

negative correlations with contents of illite (in whole rock and clay minerals) but 12 

positive correlations with chlorite in T3x
2 sandstones (Fig. 12, Fig. 21E-F). Almost all 13 

the feldspar had been dissolved in T3x
4 sandstones (Table 3, Fig. 13). The relative 14 

contents of kaolinite decrease with increasing content of illite and chlorite in the clay 15 

minerals of T3x
4 sandstone (Fig. 13, Fig. 22F-J). The K2O contents have positive 16 

correlations with illite contents (in whole rock but not clay minerals) in T3x
2 and T3x

4 
17 

sandstones (Fig. 21J-K, Fig. 22D-E). The illitization of potassium feldspar is widely 18 

observed in the T3x
2 sandstone and T3x

4 sandstone (Fig. 11A, F, M). These indicate 19 

that K-feldspar dissolution coincided with, and provided the necessary K+ and 20 

kaolinite for, the illitization of kaolinite in the T3x
2 and T3x

4 sandstones (Fig. 21E-H, 21 

Fig. 22D-F).  22 

Fig. 10Fig. 10Fig. 9Fig. 10Therefore, the kaolinite formed by feldspar 23 

dissolution have generally transformed into the illite or chlorite (Fig. 11N) at the 24 

mesodiagenetic stage with deep burial (Fig. 12, Fig. 13) (Worden and Morad, 2003, 25 
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Chuhanand Bjørlykke, 2000; Zhang, 2011). However, the pervasive kaolinite on the 1 

top of T3x
4 formed by the dissolution and kaolinitization of feldspar (Fig. 11M), was 2 

preserved in the relatively deep burial depth (3000-4000 m) (Fig. 13, Fig. 14).This 3 

might be related to acidic condition due to top unconformity (Morad et al., 2000; 4 

Worden and Morad, 2003; Mansurbeg et al., 2006; El-ghali et al., 2006; Morad et al., 5 

2012). 6 

Almost all smectite has been transformed to illite or chlorite with the deep burial 7 

and heating of the T3x
2 and T3x

4 sandstones (Fig. 11O) (Table 2, Table 3). The 8 

negative correlation between K-feldspar and illite (Fig. 12) suggests that dissolution 9 

of K-feldspars might provide K+ for illitization of smectite. Thus, some illite 10 

occurring as non-netted aggregates may have formed by the illitization of smectite 11 

and the dissolution of K-feldspars. 12 

The chloritization of smectite is a dissolution–reprecipitation process that 13 

requires a pH-alkaline fluid and a source of aluminium, iron and magnesium, which 14 

may come from the alkaline dissolution of basic volcanic fragments (Chang et al., 15 

1986). The early authigenic chlorite rims, which mostly occurs in the middle and 16 

lower part of T3x
2 sandstones, increase with increasing K-feldspar content and 17 

decreasing illite content (Fig. 21I), indicate that chloritization was related to alkaline 18 

environment but not acidic dissolution of K-feldspar. The T3x
2 sandstones contain 19 

relatively more volcanic fragments than the T3x
4 sandstones and are adjacent to the 20 

Xiaotangzi Formation (equivalent to T3x
1) (Fig. 2), which was deposited in a marine 21 

environment and is characterized by slightly alkaline waters (i.e., seawater pH is 8.3) 22 

(Worden and Morad, 2003). Besides, some chlorite occurs as replacement of volcanic 23 

rock fragment accompanying by the dissolution of rock fragments (Fig. 11J, K).   24 

Therefore, early authigenic chlorite rims of T3x
2 sandstones were mainly formed by 25 
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the chloritization of eogenetic smectite (Fig. 12C) at eogenetic stage. Meanwhile, the 1 

alkaline dissolution of volcanic rock fragment provided the Mg2+ and Fe2+ for 2 

chloritization. 3 

The pore-filling chlorite in the T3x
4 sandstones, increase with decreasing 4 

kaolinite content and increasing illite content (Fig. 22H). These pore-filling chlorites 5 

may be related to the subsequent chloritization of kaolinite at eodiagenesis and early 6 

mesodiagenesis (Fig. 13C, Fig. 22G).The early acidic dissolution of volcanic rock 7 

fragment and feldspar provides the Mg2+ , Fe2+ and kaolinite for chloritization of 8 

kaolinite. 9 

5.3 Mechanism and time of compaction  10 

Compaction is the most important factor controlling the reservoir quality of the 11 

Xujiahe Formation sandstones (Huang et al., 2009; Meng et al., 2013). Although the 12 

burial depths of the T3x
2 and T3x

4 sandstones differ by approximately 1000 m, 13 

differences of degree in mechanical compaction are not so obvious, and even the 14 

mechanical compaction in the T3x
4 sandstones is stronger than that in the deeper 15 

T3x
2 sandstones (Fig. 4). Moreover, the pressure dissolution (chemical compaction), 16 

which generally occur at late mesodiagenesis, is more prevalent in T3x
2 than it is in 17 

T3x
4. This abnormal phenomena can be interpreted by these facts: first, the 18 

abundances of rock fragments (25%–75%, av. 40.8 vol %) are always higher in T3x
4 19 

sandstones than they are (17%–30% ,av. 21.7 vol %) in T3x
2 sandstones (Table 1); 20 

second, the early chlorite rim, which plays an important role in the preservation of 21 

primary pores, is distributed mostly in the T3x
2 sandstones but rarely in T3x

4;third,the 22 

T3x
2 sandstones contain significantly more detrital quartz (63.3–80% ,av. 70 vol%) 23 

than T3x
4 (quartz, 25–70% ,av. 57.1 vol %) (Table 1). These may play an important 24 

role in the fact that the T3x
2 sandstone have more primary pore (av.0.84%) and less 25 
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secondary dissolved pore (av.0.79%) than the T3x
4 sandstone (secondary pore: 1 

av.3.49%, primary pore: av.0.58%) (Fig. 17). 2 

5.4 Digenetic sequence and porosity evolution 3 

Petrographic evidence observed in thin section, scanning electron microscope 4 

(SEM) and cathodoluminescence (CL) analysis can be used to decipher the relative 5 

diagenetic sequence in the study area. Moreover, the formation temperatures of 6 

authigenic minerals, which can be measured from aqueous inclusions or calculated 7 

using oxygen isotopic values can be used to infer a more accurate relative timing of 8 

the different diagenetic reactions. In summary, synthesizing petrographic observations, 9 

homogenization temperatures of fluid inclusions, isotopic analysis and source and 10 

mechanism of diagenesis can reconstruct the diagenetic history of the T3x
2 and T3x

4 11 

tight sandstones, which is illustrated in Fig. 23 and Fig. 24, in which the burial and 12 

thermal histories are based on the results of previous studies (Zhang et al., 2002).  13 

On the basis of the diagenetic sequence and previous studies, which indicate the 14 

timing of tightness of T3x
2 and T3x

4 sandstones (Luo, 2015), the porosity evolution of 15 

the T3x
2 and T3x

4 tight sandstones were reconstructed in Fig. 23 and Fig. 24.  16 

5.5 The characteristics, evolution and controlling factors of diagenetic 17 

(geochemical) system 18 

5.5.1 Mass balance/transfer and evolution of diagenetic (geochemical) system   19 

The K2O content has a weakly positive correlation with absolute and relative 20 

content of illite (in whole rock and clay minerals) in the T3x
2
 sandstones (Fig. 21G-H) 21 

and but obviously positive correlation with absolute content of illite (in whole rock 22 

but not clay minerals) in the T3x
4
 sandstone (Fig. 22D-E). Besides, the K2O content 23 

was nearly stable in the vertical profile of T3x
2
 sandstone but changeable in the 24 

vertical profile of T3x
4
 sandstone (Fig. 12，Fig. 13). The K2O content should be 25 
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controlled by the fixed composition of parent rock but not the authigenetic illite (in 1 

whole rock) in a closed sandstone system without loss and export of K+. Furthermore, 2 

the previous research suggests that the T3x
4
 have exported abundant K+, but the T3x

2 3 

slightly exported K+ (Shen et al., 2010). These suggest that the K-feldsapar 4 

dissolution provided the K+ for subsequent illitization with abundant loss of K+ in the 5 

T3x
4
 and little loss of K+ in T3x

2
 sandstone systems at the early diagenetic stage 6 

(eodiagenesis and early mesodiagenesis) (Fig. 25A, B). 7 

The dissolution of volcanic rock fragment provided the Mg2+ and Fe2+ for 8 

chloritization and dolomite cementation in T3x
2
 and T3x

4 sandstone. The MgO content 9 

has a negative correlation with absolute content of chlorite (in whole rock) but a very 10 

weak negative correlation with relative content of chlorite (in clay minerals) in the 11 

T3x
4
 sandstone, which indicate the dissolution of volcanic rock fragment provided 12 

Mg2+ for authigenetic chlorite with significant loss of Mg2+ in an open system at early 13 

diagenetic system (Fig. 24, Fig. 25A). The MgO content has a weak correlation with 14 

absolute content of chlorite (in whole rock) but a negative correlation with relative 15 

content of chlorite (in clay minerals) in the T3x
2
 sandstones (Fig. 21B-C), which 16 

indicate alkaline dissolution of volcanic rock fragment provided Mg2+ for the early 17 

authigenetic chlorite with little loss of Mg2+ at early diagenetic stage (Fig. 23, Fig. 18 

25B). The content of MgO (in whole rock) increase with the increasing dolomite (in 19 

whole rock) in the T3x
2 and T3x

4 sandstone (Fig. 21A,Fig. 22A),which suggests that 20 

the dissolution of volcanic rock fragment provided all the Mg2+ for the dolomite 21 

cement without significant export of Mg2+ at mesodiagenesis in the T3x
2 and T3x

4
  22 

closed sandstone system (Fig. 25A, B). 23 

 The contents of K2O, MgO, Al2O3 in T3x
4
 sandstone have more obvious vertical 24 

changes than T3x
2 sandstone (Fig. 12, Fig. 13). Moreover, feldspar dissolution and 25 
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related secondary pores in the T3x
4
 sandstone are obviously more pervasive than T3x

2 1 

sandstone (Fig. 15, Fig. 16, Fig.17, Table 2, Table 3). However, the content of quartz 2 

cement in T3x
4
 sandstone (av.0.94%) is obvious less than T3x

2
 sandstone 3 

(av.2.16%)(Table 1).Fig. 15These indicate that the T3x
4
 sandstone has ever 4 

experienced a more open geochemical system than T3x
2 sandstone during the feldspar 5 

dissolution process at the eodiagenesis and early mesodiagenesis (Fig. 25A, B). 6 

Besides, the large amount of factures, enlarged dissolution of the micro-fractures and 7 

some quartz cement filling in fractures indicate that the focused fluid flow on 8 

fractures also represent partially more open systems during burial process in T3x
4
 9 

sandstone and T3x
2 sandstone (Fig. 15F, Fig. 25) (Zhang, 2005; Zeng, 2010; Luo,2015; 10 

Bjørlykke and Jahren, 2012).  11 

5.5.2 Controlling factors on the diagenetic (geochemical) system 12 

The deltaic setting and subsequent uplift and development of an unconformity 13 

controlled the early digenetic history of the sandstones when at shallow burial depth. 14 

Subsequent deep burial depth and tectonism drove the diagenetic alterations in the 15 

tight sandstone diagenesis system, because they accelerated diagenetic alterations by 16 

increasing the formation pressure and paleotemperature and produced abundant 17 

fractures (Fig. 23, Fig. 24). 18 

5.2.3 Impacts on the reservoir quality of diagenetic (geochemical) system 19 

Diagenetic modifications alter the types, amount and distribution of pore spaces, 20 

creating smaller and more disconnected pores (Lai et al., 2018a; Lai et al., 2018b). 21 

The diagenetic reactions, particularly the dissolution, generally result in significant 22 

changes in the sediment composition (e.g. K+, Mg2+ and slica) (Fig. 12,Fig. 13, Fig. 23 

21,Fig. 22) and formation of secondary pores in the open diagenetic (geochemical) 24 

system during near-surface , eodiagenesis and even early mesodiagenesis stage (Fig. 25 
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16, Fig. 17, Fig. 23, Fig. 24, Fig. 25A-B).. Besides, the T3x
4
 sandstone has ever 1 

experienced a more open geochemical system than T3x
2 sandstone at the eodiagenesis 2 

and early mesodiagenesis (Fig. 25A, B). Therefore, the T3x
4
 sandstone produced more 3 

early calcite cements, kaolinite and secondary pores than T3x
2 sandstone in the open 4 

diagenetic system at eodiagenesis and early mesodiagenesis (Fig. 15, Fig.17, Table 1, 5 

Table 2).  6 

When the geotemperature is above 120-140℃that determined by burial depth, 7 

the early kaolinite released by the feldspar dissolution can translated into the illite 8 

with the K+ from the K-feldspar dissolution (R1and R2), which can merge into one 9 

reaction (R3)(Chuhan et al., 2000; Zhang, 2011). The little amount of residual acids at 10 

eodiagenesis stage can trigger the illitization of K-feldspar (R3). Hence, the 11 

illitization of K-feldspar were controlled by the relative ratio of K-feldspar to 12 

kaolinite in closed geochemical system (Chuhan and Bjørlykke, 2000; Huang et al., 13 

2009). The reaction for illitization of K-feldspar (R3) will produce 10.7% secondary 14 

space volume (Huang et al.,2009).  15 

2KAlSi3O8（K-feldspar）+2H++H2O=Al2Si2O5(OH)4（kaolinite）+4SiO2+2K+   (R1) 16 

3Al2Si2O5(OH)4（kaolinite） + 2K+= 2KAl3Si3O10(OH)2（illite）+ 2H+ + 3H2O  (R2) 17 

 18 

KAlSi 3O8（K-feldspar）+ Al2Si2O5(OH)4（kaolinite）= KAl 3Si3O10(OH)2（illite）19 

+2SiO2+ H2O   （R3） 20 

The ratio of kaolinite to K-feldspar in the T3x
4
 sandstone exceeded 1, so almost 21 

all the K-feldspar and part of kaolinite had translated into illite (Table 3). Whereas, 22 

the ratio of kaolinite to K-feldspar in the T3x
2 was less than 1, so almost all the 23 

kaolinite and part of K-feldspar had translated into illite (Table 2) (Chuhan and 24 

Bjørlykke, 2000). Consequently, the illitization of K-feldspar (R3) in the T3x
4
 25 

sandstone produced more secondary pores than T3x
2 sandstone in closed geochemical 26 

system during mesodiagenesis (Fig. 25). 27 
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The strong mechanical and chemical compaction (pressure dissolution) of the 1 

T3x
2 and T3x

4 tight sandstone destroyed most of the primary pores and some 2 

secondary pores (Fig. 4, Fig. 25A-B). The early secondary pore formed in open 3 

system may be destroyed by subsequent compaction. However, the associate kaolinite, 4 

which was generally formed by early feldspar dissolution in open system, will 5 

determine the late effective secondary pores by influencing late illitization of 6 

K-feldspar (R3) at mesodiagenesis (Fig. 25). Therefore, the average secondary 7 

thin-section porosity of T3x
4
 sandstone (av.3.49) is obviously higher than T3x

2 8 

sandstone (av.0.79%) (Fig. 4). The average primary porosity of T3x
2 sandstone 9 

(av.1.09%) is higher than the T3x
4
 sandstone(av.0.58%), because grain-coating clay 10 

minerals (chlorite rim and illite coating) of T3x
2 sandstone help to preserve porosity at 11 

depth by retarding compaction in the relatively closed system (Fig.11I,K,Fig. 25)(Luo 12 

et al.,2019). However, the pore space was dominated by secondary dissolution pores 13 

in the T3x
2 sandstone and T3x

4
 sandstone, and both core porosity and permeability of 14 

T3x
4
 sandstone are therefore obviously higher than the T3x

2 sandstone (Fig. 18, Fig. 15 

25). The late diagenesis (late carbonate and quartz cementation) of the T3x
2
 and T3x

4
 16 

sandstone, which were related to the dissolution and precipitation, produce no 17 

significant change of composition and porosity in nearly closed system at the late 18 

diagenetic stage. Therefore, the diagenetic characteristics and evolution of diagenetic 19 

systems can be used to predict about the reservoir quality based on the burial history, 20 

tectonic activities and certain primary sediment composition related to delta facies 21 

and provenance (Fig. 25A-B). 22 

6. Conclusions 23 

This study of the upper Triassic Xujiahe Formation in the Western Sichuan 24 

foreland basin, China, yields important clues about the diagenetic characteristics, size, 25 
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evolution and controlling factors of the diagenestic (geochemical) system and their 1 

impacts on reservoir quality in the tight deltaic sandstone, including the following: 2 

1. Tight deltaic sandstones have undergone a significant and complicated series 3 

of diagenetic modification. 4 

2. The strong compaction and carbonate cementation destroyed almost all the 5 

primary pores. The feldspar dissolution was the most important source of pore space 6 

in the T3x
2 and T3x

4 sandstones. 7 

3. The T3x
4
 sandstone with significant loss of K+, Mg2+ and silica experienced a 8 

more open diagenetic (geochemical) system than the T3x
2 sandstone at near-surface, 9 

eodiagensis and early mesodiagenesis stage.  10 

4. The T3x
4
 sandstone produced more early calcite cements, kaolinite and 11 

secondary pores than T3x
2 sandstone in the open diagenetic system at eodiagenesis 12 

and early mesodiagenesis (Fig. 4, Fig.16, Table 1, Table 2). 13 

5. Both the T3x
2 and T3x

4
 sandstone represent nearly closed diagenetic 14 

(geochemical) system during middle-late mesodiagenesis. The late dissolution and 15 

illitization of K-feldspar, which was controlled by the parent composition (e.g. 16 

K-feldspar) and diagenesis in early open system (e.g. remaining kaolinite, K+, 17 

K-feldspar and acids), was the main pore sources in the closed system.  18 
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                             Table 1. Petrological composition of the T3x
2 and T3x

4 sandstones in the studied area 
 

Stratum Quartz, % Feldspar, % 
Rock fragment, % Carbonate cement, % Quartz 

cement, % Sedimentary rock, % metamorphic rock, %  Volcanic rock, % Total, % Calcite Dolomite 

T3x
4 

25.0-70.0 

  57.1 

0.5–4.0 

  2.1 
29.1 8.4 3.3 

25.0-75.0 

40.8 
4.97 0.95 0.94 

T3x
2 

63.3–80.0  

  70.0 

3.0–13.0 

  8.3 
10.0 10.0 1.7 

17.0-30.0 

21.7 
3.72 2.96 2.16 

 
 

Minimum-Maximum 
     Average 
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Table 2. Mineral contents in the T3x
2 sandstones (XRD) 

Well Strata Depth（m） Whole rock(%) Clay mineral(%) 

Clay Quartz K-feldspar plagioclase Calcite Dolomite Illite I/S C/S S/I Smectite Kaolinite Chlorite 

X11 T3x
2 4755.72  4.8 85.2 0 8.4 0.6 0 85 0 0 0 0 0 15 

X11 T3x
2 4756.84  12.5 70.3 0 13.2 0 0.4 82 0 0 0 0 0 18 

X11 T3x
2 4757.77  8 73.9 0 16.9 0 1.2 74 0 0 0 0 0 26 

X11 T3x
2 4759.93  7.8 77.4 0 12.2 0 1 75 0 0 0 0 0 25 

X11 T3x
2 4762.66  4.4 83.7 0 11.5 0 0.4 67 0 0 0 0 0 33 

X11 T3x
2 4764.82  0.9 90.3 0 8.8 0 0 77 0 0 0 0 0 23 

X11 T3x
2 4766.62  0.01  90.3 0 9.7 0 0 73 0 0 0 0 0 27 

X11 T3x
2 4768.30  3.4 88.4 0 7.5 0 0.7 73 0 0 0 0 0 27 

X10 T3x
2 4847.63  6.4 92.1 0 0 0.4 1.1 67 0 0 0 0 0 33 

X10 T3x
2 4850.16  5.3 68.4 4.5 21.4 0 0.4 70 0 0 0 0 0 30 

X10 T3x
2 4851.34  7.1 80.2 3.4 8.3 0 1 71 0 0 0 0 0 29 

X10 T3x
2 4853.56  9.7 74.2 0 13.4 0 2.7 73 0 0 0 0 0 27 

X10 T3x
2 4855.15  2.3 80.8 3.5 10.4 0 3 73 0 0 0 0 0 27 

X10 T3x
2 4880.24  0.01  96.7 2 1.3 0 0 17 34 0 0 0 0 49 

X10 T3x
2 4924.32  2.7 73.7 8 15.4 0 0.2 24 0 0 0 0 0 76 

X10 T3x
2 4927.08  3.1 69.7 11.8 15.4 0 0 21 0 0 0 0 0 79 

X10 T3x
2 4927.83  2.7 70.1 13.3 13.6 0 0.3 24 0 0 0 0 0 76 

X10 T3x
2 4929.74  5 71.2 10.8 12.8 0 0.2 11 0 0 0 0 0 89 

X10 T3x
2 4930.19  2.3 76.3 14.1 7.2 0 0.1 20 0 0 0 0 0 80 

X10 T3x
2 4932.65  3 75.3 10.3 11.2 0 0.2 27 7 0 0 0 0 66 

X10 T3x
2 4936.12  3.9 75.4 9.3 11.4 0 0 23 0 0 0 0 0 77 

X10 T3x
2 4937.00  1.8 75.9 7.9 14.1 0.1 0.2 21 0 0 0 0 0 79 

X11 T3x
2 5018.02  7.5 68.6 10.1 13.6 0 0.2 26 0 0 0 0 0 74 

X11 T3x
2 5020.30  8.6 72 8.1 11.3 0 0 24 0 0 0 0 0 76 

X11 T3x
2 5021.53  9.6 67.7 6.5 15.5 0.3 0.4 27 0 0 0 0 0 73 

X11 T3x
2 5022.52  5.8 80.6 2.5 10.3 0.4 0.4 25 0 0 0 0 0 75 

X11 T3x
2 5064.68  6.3 78.2 8 7.1 0.1 0.3 36 0 0 0 0 0 64 

X11 T3x
2 5067.14  4.9 75 7.3 11.1 0.1 0 29 0 0 0 0 0 71 

X11 T3x
2 5070.01  4.4 76.1 10.5 8 0.8 0.2 43 0 0 0 0 0 57 

X11 T3x
2 5072.84  2.8 81 5 10.6 0.3 0.3 45 0 0 0 0 0 55 

X11 T3x
2 5075.64  1.3 76.5 6.6 15.3 0.3 0 48 0 0 0 0 0 52 

X11 T3x
2 5078.00  7.8 74.1 4.5 12.3 0.7 0.6 48 0 0 0 0 0 52 

Average 4.9 77.8 5.3 11.3 0.2 0.5 46.8 1.3 0 0 0 0 51.9 
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Table 3. Mineral contents in the T3x
4 sandstones (XRD) 

Well Strata Depth（m） Whole rock (%) Clay mineral (%) 
Clay mineral Quartz K-feldspar plagioclase Calcite Dolomite Illite I/S C/S S/I Smectite Kaolinite Chlorite 

X11 T3x
4 3466.57  4.5 92.3 0 0 3.2 0 55 0 0 0 0 27 18 

X11 T3x
4 3468.31  4.9 94.3 0 0 0.7 0.1 49 0 0 0 0 26 25 

X11 T3x
4 3470.64  11.1 88.2 0 0 0.7 0 41 0 0 0 0 24 35 

X11 T3x
4 3472.00  11.3 88.3 0 0 0 0.4 44 0 0 0 0 17 39 

X11 T3x
4 3474.12  12.4 86.1 0 1 0.2 0.3 41 12 0 0 0 32 15 

X11 T3x
4 3475.67  1.6 96.5 0 0 1.9 0 58 0 0 0 0 0 42 

X11 T3x
4 3476.84  3.4 93.4 0 0.7 2.3 0.2 66 0 0 0 0 0 34 

X11 T3x
4 3478.90  7 91.9 0 0 0.8 0.3 58 0 0 0 0 16 26 

X11 T3x
4 3481.05  6 93.6 0 0 0.3 0.1 18 0 0 0 0 0 82 

X11 T3x
4 3481.66  16.1 83.4 0 0 0.3 0.2 55 0 0 0 0 0 45 

X11 T3x
4 3575.31  0 55.5 0 0 35.3 9.2 54 0 0 0 0 0 46 

X11 T3x
4 3579.55  0 61.6 0 0 26.3 12.1 73 0 0 0 0 0 27 

CX568 T3x
4 3402.10  6.8 89.3 0 0 1.8 2.1 63 0 0 0 0 22 15 

CX568 T3x
4 3403.45  1.5 96.7 0 0 1.3 0.5 39 0 0 0 0 50 11 

CX568 T3x
4 3404.10  7.3 90.6 0 0 1.4 0.7 31 10 0 0 0 39 20 

CX568 T3x
4 3405.03  6.4 90.3 0 0 1.7 1.6 44 0 0 0 0 40 16 

CX568 T3x
4 3406.22  9.7 88.6 0 0 0.9 0.8 22 20 0 0 0 43 15 

CX568 T3x
4 3406.77  7.1 89.6 0 0 2.4 0.9 37 5 0 0 0 39 19 

CX568 T3x
4 3408.59  5.1 92 0 0 2.2 0.7 28 18 0 0 0 35 19 

CX568 T3x
4 3410.71  6.5 92.5 0 0 0.6 0.4 53 0 0 0 0 25 22 

CX568 T3x
4 3412.35  2.2 96.8 0 0 0.5 0.5 51 0 0 0 0 37 12 

CX568 T3x
4 3414.23  5.9 93.1 0 0 0.6 0.4 52 0 0 0 0 36 12 

CX568 T3x
4 3422.85  6.1 90.1 0 0 3.5 0.3 39 0 0 0 0 30 31 

CX568 T3x
4 3424.87  5.1 93.3 0 0 0.8 0.8 53 0 0 0 0 27 20 

CX568 T3x
4 3426.10  7.3 90.8 0 0 1.5 0.4 36 0 0 0 0 16 48 

CX568 T3x
4 3428.36  2 67.5 0 0 19.3 11.2 53 0 0 0 0 0 47 

CX568 T3x
4 3469.00  5 79.7 0 0 11.9 3.4 43 0 0 0 0 32 25 

CX568 T3x
4 3481.10  6.8 43.2 0 0 26.5 23.5 22 0 0 0 0 72 6 

CX568 T3x
4 3546.66  10.2 84.9 0 0 2.8 2.1 26 0 0 0 0 57 17 

CX568 T3x
4 3713.17  7.5 80.5 0 0 9.7 2.3 27 0 0 0 0 58 15 

CX568 T3x
4 3714.05  4.6 83 0 0 10 2.4 31 0 0 0 0 54 15 

CX568 T3x
4 3715.00  3.8 90.7 0 0 4.5 1 17 6 0 0 0 55 22 

CX568 T3x
4 3721.37  0.20  47.5 0 0 40.3 12.2 41 8 0 0 0 30 21 

Average 5.9 84.7 0 0 6.6 2.8 43 2.4 0 0 0 28.5 26.1 
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Table 4 Electron probe characteristics of carbonate cement within the Xujiahe sandstones of Xinchang structural belt 
 

Stratigraphy Type of cement 
Oxide content（%） molar fraction（%） 

Samples 
MgO CaO FeO MgCO3 CaCO3 FeCO3 

The second member Dolomite cement 8.87 29.76 12.60 25.67 62.60 20.86 10 

The second member Calcite cement 0.67 53.26 1.49 1.67 95.73 2.09 5 

The fourth member Calcite cement 0.23 54.00 1.05 0.57 97.74 1.48 25 

 Total  2.44 47.85 3.99 6.98 88.70 6.40 40 
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Table 5. Types and isotopic features of carbonate cements and fragments n the T3x
4 sandstone in Xinchang structural belt , Western Sichuan Basin. 

Well Depth（m） Carbonate minerals Types of occurrence δ
13CPDB（‰) δ

18OPDB（‰） 

FG21 3516.74 Calcite cement The primary pore 1.85 -10.06 

CG561 3699.75 Calcite cement The primary pore 0.24 -8.75 

CF563 3744.21 Calcite cement The primary pore 2.46 -5.51 

FG21 3749.58 Calcite cement The primary pore 1.07 -8.24 

FG21 3764.75 Calcite cement The primary pore 1.27 -6.86 

FG21 3772.23 Calcite cement The primary pore 2.15 -6.03 

FG21 3776.7 Calcite cement The primary pore 2.55 -4.75 

CF563 3778.17 Calcite cement The primary pore 2.31 -7.3 

FG21 3778.7 Calcite cement The primary pore 1.53 -6.41 

FG23 3869.14 Calcite cement The primary pore -0.13 -9.92 

XC22 3403.6 Calcite cement The secondary pore -2.85 -18.61 

CX568 3404.1 Calcite cement The secondary pore -1.32 -13.61 

CX568 3406.77 Calcite cement The secondary pore -1.2 -13.61 

XC22 3412.08 Calcite cement The secondary pore -2.99 -17.89 

CX568 3426.1 Calcite cement The secondary pore -0.76 -13.49 

X11 3466.565 Calcite cement The secondary pore -3.47 -15.03 

X11 3470.635 Calcite cement The secondary pore -2.93 -14.44 

X11 3475.67 Calcite cement The secondary pore -3.61 -15.23 

X11 3476.835 Calcite cement The secondary pore -2.31 -13.97 

X11 3478.9 Calcite cement The secondary pore -3.19 -14.59 

X11 3481.05 Calcite cement The secondary pore -2.44 -13.71 

XC26 3481.81 Calcite cement The secondary pore -1.75 -17.4 

XC26 3483.48 Calcite cement The secondary pore 0.1 -10.77 

XC26 3484.37 Calcite cement The secondary pore -0.08 -14.68 

CF563 3511.77 Calcite cement The secondary pore -4.67 -19.71 

CX560 3514.175 Calcite cement The secondary pore -1.46 -14.06 

CX565 3547.62 Calcite cement The secondary pore -3.51 -15.29 

CX565 3548.17 Calcite cement The secondary pore -2.99 -14.58 

CX565 3549.33 Calcite cement The secondary pore -2.75 -14.65 
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CX565 3558.33 Calcite cement The secondary pore -2.97 -14.59 

XC29 3628.47 Calcite cement The secondary pore -3.37 -13.71 

XC29 3629.75 Calcite cement The secondary pore -3.31 -12.87 

CX565 3642.44 Calcite cement The secondary pore -5.43 -16.55 

XC27 3661.82 Calcite cement The secondary pore -4.63 -14.99 

XC27 3661.82 Calcite cement The secondary pore -3.42 -12.64 

CG561 3694 Calcite cement The secondary pore -5.18 -18.93 

CF563 3873.93 Calcite cement The secondary pore 0.75 -15.42 

CG561 4007.19 Calcite cement The secondary pore -1.92 -13.24 

CX568 3469 Calcite  Rock fragment 1.92 -7.1 

CX568 3721.37 carbonate Rock fragment 1.35 -9.74 

FG21 3767.45 carbonate  Rock fragment 1.63 -4.81 

XC27 4018.12 carbonate  Rock fragment 1.85 -7.75 

CX568 3410.71 Dolomite cement The secondary pore -0.97 -13.32 

CX568 3414.23 Dolomite cement The secondary pore -0.81 -12.91 

CF563 3873.93 Dolomite cement The secondary pore 1.97 -10.94 

XC28 3685.68 Domlomite   Rock fragment 1.33 -9.23 

CF563 3744.21 Domlomite   Rock fragment 2.11 -5.64 

FG21 3767.45 Domlomite   Rock fragment 2.01 -5.56 

FG21 3775.6 Domlomite   Rock fragment 1.53 -5.99 

FG21 3775.6 Domlomite   Rock fragment 2.22 -4.87 

FG21 3776.7 Domlomite   Rock fragment 2.13 -5.45 

CX568 3428.36 Domlomite   Rock fragment 1.46 -8.44 

CX568 3481.1 Domlomite   Rock fragment 1.89 -7.8 

CX568 3546.66 Domlomite   Rock fragment 1.72 -7.6 

X11 3579.55 Domlomite   Rock fragment 1.5 -6.78 
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Table 6.Types and isotopic features of carbonate cements and fragments, n the T3x2 sandstone in Xinchang structural belt, Western Sichuan Basin. 

Well Depth（m） Carbonate minerals Types of occurrence δ
13CPDB（‰) δ

18OPDB（‰） Temp(℃) 

XC12 4819.45 Calcite cement The residual primary pore and secondary pore -0.06 -16.65 117.5 

GM2 4992.3 Calcite cement The residual primary pore and secondary pore -1.33 -16.09 113.3 

GM4 5114.97 Calcite cement The residual primary pore and secondary pore 0.05 -12.64 88.2 

XC8 5175.37 Calcite cement The residual primary pore and secondary pore -0.11 -12.47 87.1 

XC7 5287.98 Calcite cement The residual primary pore and secondary pore 0.99 -12.98 90.6 

XC7 5291.33 Calcite cement The residual primary pore and secondary pore 1.15 -13.45 93.9 

X11 4755.72 Calcite cement The residual primary pore and secondary pore 0.05 -12.56 87.7 

CG561 4997.72 Calcite cement The residual primary pore and secondary pore 1.7 -16.36 115.3 

X11 5070.01 Calcite cement The residual primary pore and secondary pore -1.25 -16.64 117.5 

X11 5075.64 Calcite cement The residual primary pore and secondary pore -0.33 -10.88 76.4 

GM2 4711.55 Dolomite cement The secondary pore 0.53 -12 83.9 

XC8 5009.28 Dolomite cement The secondary pore 2.18 -12.17 85.0 

GM2 5118.96 Dolomite cement The secondary pore 3.69 -9.77 69.2 

DY1 5323.87 Dolomite cement The secondary pore 1.86 -15.17 106.4 

X11 4757.765 Dolomite cement The secondary pore 0.42 -9.97 70.5 

X10 4851.34 Dolomite cement The secondary pore -0.38 -12.87 89.8 

X10 4853.56 Dolomite cement The secondary pore 2.5 -12.76 89.1 

X10 4855.15 Dolomite cement The secondary pore 1.68 -13.55 94.6 

GM4 4889.09 Dolomite cement The secondary pore -1.81 -12.77 89.1 

X10 4924.32 Dolomite cement The secondary pore 4.97 -13.83 96.6 

X10 4927.83 Dolomite cement The secondary pore 8.7 -9.56 67.9 

X10 4932.65 Dolomite cement The secondary pore -0.04 -14.36 100.4 

X10 4937 Dolomite cement The secondary pore 2.44 -11.94 83.5 

X11 5022.52 Dolomite cement The secondary pore 1.45 -10.3 72.6 

CX565 5058.73 Dolomite cement The secondary pore 0.4 -13.06 91.2 

X11 5078 Dolomite cement The secondary pore -0.52 -14.47 101.2 

DY1 5427.4 Dolomite cement The secondary pore 2.58 -16.65 117.5 

XC12 4812.34 Domlomite   Rock fragment 6.16 -8.79   

X10 4847.63 Domlomite   Rock fragment 1.25 -3.62   

CX565 5062.08 Domlomite   Rock fragment 1.01 -8.87   
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1 

Figure captions 1 

 2 

Fig. 1. The geographical and structural map showing the location of the study area 3 

which mainly comprises of the Xinchang structural belt. (A) Location map showing 4 

the location of Sichuan basin in China. (B) The tectonic feature of Sichuan basin 5 

indicates that the Western Sichuan basin foreland belong to the Western Sichuan 6 

depression. (C) Structural map of the Western Sichuan foreland basin showing the 7 

location of the Xinchang structural belt. Green wells represent key wells with 8 

hydrocarbon show. 9 
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2 

 1 

Fig. 2. Stratigraphic column of the Western Sichuan depression showing that the 2 

Xujiahe Formation sandstones. Abbreviations: T3x
2 = The second member of the 3 

Xujiahe Formation; T3x
3 = The third member of the Xujiahe Formation; T3x

4 =The 4 

fourth member of the Xujiahe Formation; T3x
5 =The fifth member of the Xujiahe 5 

Formation. T3x
1 = The Xiaotangzi and Maantang Formations, 6 

 7 

 8 
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3 

 1 

Fig. 3. Ternary plots showing grain composition of sandstones from T3x
2 sandstone (A) 2 

and T3x
4 sandstone (B) (refer to sandstone classification standard of Folk et al., 3 

1980) 4 

 5 
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4 

 1 

Fig. 4. The compaction characteristics in the T3x
2 and T3x

4 sandstones.(A) Optical 2 

photomicrographs of thin section (XPL) showing the deformation of mica (MC) and 3 

plastic rock fragments (PRF), pseudomatrix from mud intraclasts. Well XC27, 4 

3589.91m, T3X4. (B) Optical photomicrographs of thin section (XPL) showing the 5 

deformation of mica (MC).well DY1,4197.63m, T3x
4.(C) Optical photomicrographs 6 

of thin section (XPL) showing the long (LC) and concave–convex contacts(CC) 7 

between quartz–quartz grains. Well XC15, 4950.7m, T3x
2. (D) Optical 8 
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5 

photomicrographs of thin section (XPL) showing the concave–convex (CC) and 1 

sutured contacts (SC) between quartz–quartz grain. wellXC12, 4828.44m, T3x
2.  (E) 2 

SEM image showing the pseudomatrix formed by the deformation of plastic rock 3 

fragments. well DY1,5320.05m, T3x
2.(F) SEM image showing the deformation of 4 

mica (MC).well XC31,3741.77m, T3x
4. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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6 

 1 

Fig. 5. The carbonate cement characteristics in the T3x
2: (A) Optical photomicrograph 2 

(PPL) showing the calcite (Ca) filling in the intergranular pores, QD-detrital quartz, 3 

Well GM2,4722.33m,T3x
2 (B) BSE image showing dolomite (ankerite) cement (An) 4 

filling the intergranular pores, well GM2, 4822.0m, T3x
2. (C) SEM image showing 5 

the euhedral dolomite(ankerite) (An) filling the intragranular dissolved pores, well 6 

X201, 4820.6m, T3x
2.  (D) SEM image showing calcite(Ca) replacing the feldspar 7 

with the dissolution(FD),well GM4,4887.85m, T3x
2.(E) SEM image showing calcite 8 
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7 

replacing the rock fragments companying with the dissolution(RD), GM4,4887.85m, 1 

T3x
2.(F) SEM image showing authigenic dolomite(ankerite) (An) and quartz(QA) 2 

replacing feldspar and filling the dissolved pore of feldspar, which suggest calcite 3 

and quartz cement are related with the feldspar dissolution(FD). well 4 

GM3,4922.21m, T3x
2.  5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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8 

 1 

Fig. 6. The carbonate cement characteristics in the T3x
4 sandstones: (A) Optical 2 

photomicrograph (PPL) showing basal calcite cement (Ca) filling the intergranular 3 

pores, well XC15, 3636.57m, T3x
4. (B) Cathodoluminoscope image showing two 4 

generation of calcite: saffron yellow micro-crystal calcites filling the primary pores 5 

represent the first generation (FG), the orange red calcite cements filling residual 6 

primary pore and secondary pores as partially replacement of some detrital grains, 7 

represent the second generation (SG).well X5, 3673.43m, T3x
4. (C) BSE image 8 
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9 

showing calcite (Ca) filling in the intergranular pores, well XC30,3503.53m, T3x
4. 1 

(D) BSE image showing authigenic euhedral dolomite (ankerite) (An) filling in the 2 

intergranular dissolved pores that formed by dissolution of carbonate rock fragments, 3 

well FG21, 3758.6m, T3x
4.(E) Optical photomicrograph (PPL) showing calcite(Ca) 4 

replacing the feldspar with the dissolution(FD), well X5,3598.59m,T3x
4.(F). 5 

Cathodoluminoscope image responding to the (E) shows the saffron yellow calcite 6 

cements (Ca) replacing the blue feldspar, and the intragranular dissolved pores 7 

caused by the feldspar dissolution (FD). well X5,3598.59m,T3x
4.  8 
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Fig. 7. The δ18O-δ13C diagram of various carbonate cement within the sandstones of 2 

the T3x
4 (A) and T3x

2 (B) of the Xujiahe Formation. 3 
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Fig. 8. The quartz cement characteristics in the T3x
2 and T3x

4 sandstones.(A) The 2 

optical photomicrograph of thin section (PPL) showing quartz 3 

overgrowth(QA),which occur near the pressure dissolution(PD),QD- detrital quartz. 4 

well DY1,5341m, T3x
2 . (B) The optical photomicrograph of thin section (PPL) 5 

showing quartz overgrowth (QA), QD-detrital quartz. well XC25,3775.25m, T3x
4. (C) 6 

SEM image showing quartz overgrowth (QA), QD- detrital quartz. Well 7 

X201,4917m, T3x
2.(D) SEM image showing isolated pore-filling authigenic quartz 8 

crystal (PQA).,well X203,4912.27m, T3x
2.(E) SEM image showing the isolated 9 

authigenic quartz crystals (PQA) and illite(I) filling the intergranular pores,well 10 

CX568,3412.35m, T3x
4. (F) SEM image showing the quartz overgrowth(QA),well 11 

DY1,4196.24m, T3x
4.(G) SEM image showing the authigenic quartz including the 12 

isolated pore-filling quartz crystal(PQA) and quartz overgrowth(QA), both of which 13 

were partly replaced by the illite(I).well GM3,3780.2m T3x
4.(H) SEM image 14 
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showing the isolated pore-filling authigenic quartz (PQA),albite(Alb) and illite(I) 1 

filling in the dissolved pores which were formed by the feldspar dissolution(FD). 2 

Well X201,4917.0m, T3x
2.(I) SEM image showing the quartz overgrowth(QA) occur 3 

together with the pressure dissolution(PD).well GM2,4736m, T3x
2. 4 
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Fig. 9. The average content relationship between the detrital quartz and the authigenic 2 

quartz cements. 3 
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Fig. 10. Frequency histogram of homogenization temperature from inclusions in 2 

authigenic quartz cements in the T3x
4 (A) and T3x

2 (B) (Luo et al., 2015). 3 
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Fig. 11. The clay minerals characteristics in the T3x
2 and T3x

4 sandstones.(A) The 2 

optical photomicrograph of thin section (PPL) showing authigenic illite (I) occurring 3 

as netted aggregates filled in intragranular dissolved pores., which is related with the 4 

feldspar dissolution(FD). well X10,4884.53m, T3x
2.(B) SEM image showing illite(I) 5 

replaced the rock fragments,which is related with rock fragments 6 
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dissolution(RD).well GM2,4714.69m, T3x
2. (C) SEM image showing non-netted 1 

aggregates illite related with the illitization of matix. well GM2,4714.69m, T3x
2. (D) 2 

The optical photomicrograph of thin section (PPL) showing authigenic illite(I) 3 

occurring as grain-coatings. well XC27,3670.64m, T3x
4.(E) SEM image showing the 4 

filamentous(netted aggregates) illite filling in the dissolved pore of rock 5 

fragments.3787.4m. T3x
4. (F) The optical photomicrograph (PPL) showing 6 

authigenic illite occurring as netted aggregates filled in intragranular dissolved pores 7 

of feldspar.well X5,3673.47m, T3x
4.(G) The optical photomicrograph (PPL) showing 8 

the the chlorite rim(Ch) occurring as grain-coating. well CG561,4992.9m, T3x
2.(H) 9 

SEM image showing the chlorite rim(Ch) as the grain-coating.well DY1,5530.86m, 10 

T3x
2. (I)SEM image showing the chlorite rim(Ch) as the grain-coating accompanied 11 

by authigenetic quartz (QA) filling intergranular pores well GM2,5038.9m, T3x
2. (J) 12 

SEM image showing chlorite (Ch) filling in the dissolved pore formed by the rock 13 

volcanic fragments dissolution (RD).well GM2,4994.06m, T3x
2 . (K) SEM image 14 

showing the pore-filling chlorite. well GM4, 3786.11m, T3x
2. (L) SEM image 15 

showing pseudohexagonal kaolinite occurring as vermicular or booklet-like 16 

aggregates. well FG21,3755.49m, T3x
4.(M) The optical photomicrograph (PPL) 17 

showing kaolinite(K) formed by the feldspar dissolution(FD). Well 18 

CX565,3549.53m, T3x
4.(N) SEM image showing booklet-like pseudohexagonal 19 

kaolinite(K) which partly transformed into the filamentous illite(I).well 20 

XC23,3570m, T3x
4.(O) SEM image shows the flaky smectite transforming into 21 

filamentous illite(I) ,(S-I)-mixed layer I/S. well X5,3600.99m, T3x
4. 22 

 23 
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 1 

 2 

Fig. 12. Vertical variation of the content of typical major elements, feldspar and clay 3 

minerals in the T3x
2 sandstones. The content of kaolinite, chlorite and illite represent 4 

relative content in clay minerals. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 

 1 

Fig. 13. Vertical variation of the content of typical major elements, feldspar and clay 2 

minerals in the T3x
4 sandstones. The content of kaolinite, chlorite and illite represent 3 

relative content in clay minerals. 4 
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Fig. 14. The scatter diagram of Ro –depth and kaolinite-depth in the Xujiahe 2 

Formation of well CX565 (Based on Zhang, 2011). (a) The Ro –depth scatter 3 

diagram of the well CX565 show an outlier of the Ro exist in the top of the T3x
4. (a) 4 

and (b) indicate that the depth of outlier of Ro corresponds to the developmental 5 

zone of kaolinite. 6 
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Fig. 15. The dissolution characteristics of feldspar and rock fragments in the T3X2 2 

and T3x
4 sandstones. (A) Optical photomicrographs of thin section(PPL) showing 3 

the feldspar partly dissolved.well GM4,3788.92m, T3x
4.(B) Optical 4 

photomicrographs of thin section(PPL) showing the feldspar completely 5 

dissolved.well xc15,3625.28m, T3x
4.(C) SEM image showing feldspar partly 6 

dissolved. well GM3,4079.48m, T3x
4.(D) SEM image showing the illite (I) 7 

companying the rock fragment dissolution (FD).well GM4,4888.77m, T3x
2.(E) ) 8 
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SEM image showing the illite (I) companying the rock fragment dissolution 1 

(FD).well gm4,4087.11m, T3x
4.(F) Optical photomicrographs of thin section(PPL) 2 

showing the dissolved pore related with the enlarged dissolution of the 3 

micro-fractures.wellXC15,3962.66m, T3x
4. 4 
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Fig. 16. Distribution characteristic of the secondary pores within the Xujiahe 2 

Formation sandstones reservoir of study area (Zhang, 2011). (A) ,(B) ,(C) and (D) 3 

show that most of secondary pores usually occurred in the top of the T3x
4, and some 4 

others in the bottom of the T3x
4 and the middle-upper part of T3x

2. 5 
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Fig. 17. Thin-section porosity of different types of pore in the T3x
2 and T3x

4
 2 

sandstone. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 

 1 

Fig. 18. Core porosity versus depth and core permeability versus depth profiles of the 2 

T3x
2 sandstones (A) and T3x

4 sandstones (B) in the Xinchang structural belt. 3 

Porosity values and permeability values of P10 (10% of reservoir has porosity 4 

greater than this value), P50(median) values were calculated for each 5 

0.2-km(0.124-mi)depth interval from starting depth of 4.2km(T3x
2) and 3.0km(T3x

4) 6 

respectively. 7 
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Fig. 19. Cross plot of δ18OPDB values of the authigenic calcite (A) and dolomite 2 

cements(B) within the T3x
4 sandstones in the Xinchang structural belt in equilibrium 3 

with water δ18O(SMOW) values (-15‰, -10‰, -5‰, 0‰, +5‰, +10‰, +15‰, +20‰) 4 

as a function of precipitation temperature (Friedman and O'Neil, 1977). The contours 5 

(SMOW) represent oxygen isotopic composition of carbonate balanced fluids. The 6 

δ
18O water (SMOW) values of carbonate balanced fluids within the T3x

4 sandstones 7 

originate from the Liu et al., 2014a,b and Shen et al.,2010.The green shapes were 8 

bounded by the authigenic carbonate cements and the δ18O water (SMOW) values of 9 

carbonate balanced fluids. 10 
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Fig. 20. Cross plot of δ18OPDB values of the authigenic calcite (A) and dolomite 2 

cements(B) within the T3x
2 sandstones in the Xinchang structural belt in equilibrium 3 

with water δ18O(SMOW) values (-15‰, -10‰, -5‰, 0‰, +5‰, +10‰, +15‰, +20‰) 4 

as a function of precipitation temperature (Friedman and O'Neil, 1977). The contours 5 

(SMOW) represent oxygen isotopic composition of carbonate balanced fluids. The 6 

δ
18O water (SMOW) values of carbonate balanced fluids within the T3x

2 sandstones 7 

originate from the Liu et al., 2014a,b and Shen et al.,2010. The green shapes were 8 

bounded by the authigenic carbonate cements and the δ18O water (SMOW) values of 9 

carbonate balanced fluids. 10 
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Fig. 21. Scatter diagram between the mineral content and major elements abundances 2 

in the in the T3x
2 sandstones. The mineral content were measured by the XRD (data 3 

from the table 1 and Fig.12).The major elements abundances were measured by the 4 

XRF (data from table 6 and Fig.12). 5 
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Fig. 22. Scatter diagram between the mineral content and major elements abundances 2 

in the in the T3x
4 sandstones. The mineral content were measured by the XRD (data 3 

from the table 2 and Fig.13).The major elements abundances were measured by the 4 

XRF (data from table 7 and Fig.13). 5 
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Fig. 23. Burial, thermal, diagenetic history and evolution of porosity in the T3x
2 2 

sandstone. The paragenetic sequence showing the relative timing and strength of the 3 

diagenesis based on petrographic relationships, diagenetic characters and fluid 4 

inclusion. Burial and thermal history, porosity evolution and the characteristics of 5 

fractures were presented on the basis of previous studies (Zhang,2005; Zeng,2010; 6 

Luo ,2015).  7 
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Fig. 24. Burial, thermal, diagenetic history and evolution of porosity in the T3x
4 

2 

sandstone. The paragenetic sequence showing the relative timing and strength of the 3 

diagenetic alterations relying on petrographic relationships, diagenetic characters 4 

and fluid inclusion. Burial and thermal history, porosity evolution and the 5 

characteristics of fractures were presented on the basis of previous studies 6 

(Zhang,2005; Zeng,2010; Luo ,2015).  7 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 

 1 

Fig. 25. A conceptual model summarizing the diagenetic system of the T3x
4 sandstone 2 

(A) and T3x
2 sandstone (B). This model indicates the origin, diagenetic relationship, 3 
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controlling factors and evolution of diagenetic system. 1 
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1.Tight deltaic sandstones have undergone obvious changes of geochemical composition 

2. Dissolution was main source of pore space in the T3x
2 and T3x4 sandstones 

3. The diagenetic systems were open at near-surface, eodiagenesis and early mesodiagenesis 

4.Diagenetic systems were nearly closed in middle-late mesodiagenesis except for fractures zone. 

5. Open system produced secondary pores and provided kaolinite and K+ for illitization. 

 


