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Measuring Granger Causality in Quantiles

ABSTRACT

We consider measures of Granger causality in quantiles, which detect and quantify both linear and nonlin-

ear causal effects between random variables. The measures are based on nonparametric quantile regressions

and defined as logarithmic functions of restricted and unrestricted expectations of quantile check loss func-

tions. They can consistently be estimated by replacing the unknown expectations of check loss functions

by their nonparametric kernel estimates. We derive a Bahadur-type representation for the nonparametric

estimator of the measures. We establish the asymptotic distribution of this estimator, which can be used to

build tests for the statistical significance of the measures. Thereafter, we show the validity of a smoothed

local bootstrap that can be used in finite-sample settings to perform statistical tests. A Monte Carlo sim-

ulation study reveals that the bootstrap-based test has a good finite-sample size and power properties for

a variety of data generating processes and different sample sizes. Finally, we provide an empirical appli-

cation to illustrate the usefulness of measuring Granger causality in quantiles. We quantify the degree of

predictability of the quantiles of equity risk premium using the variance risk premium, unemployment rate,

inflation, and the effective federal funds rate. The empirical results show that the variance risk premium and

effective federal funds rate have a strong predictive power for predicting the risk premium when compared

to that of the predictive power of the other two macro variables. In particular, the variance risk premium is

able to predict the center, lower and upper quantiles of the distribution of the risk premium; however, the

effective federal funds rate predicts only the lower and upper quantiles. Nevertheless, unemployment and

inflation rates have no effect on the risk premium.

Keywords: Measures of Granger causality; conditional quantiles; local linear estimator; smoothed local

bootstrap.
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1 Introduction

The concept of causality, introduced by Wiener (1956) and Granger (1969), constitutes a basic notion for

analyzing dynamic relationships between time series. An examination of Wiener-Granger causality reveals

that predictability is the central issue and is of great importance to economists, policymakers, and investors.

Many studies have investigated the building of the tests of Granger non-causality. However, once it has been

established that a “causal relationship”exists, it is usually important to assess its strength. Few studies have

proposed to measure Granger causality in mean between the variables of interest; refer to Geweke (1982,

1984), Dufour and Taamouti (2010), and Song and Taamouti (2018). However, these studies ignore or pay

less attention to the causality that can occur at other levels or aspects of the conditional distribution, such as

conditional quantiles. This study considers the measures of Granger causality in quantiles and, particularly,

proposes model-free measures that can quantify both linear and nonlinear causal effects in quantiles.

Causality tests fail to accomplish the task of quantifying the degree of Granger causality between the

variables of interest because they only provide the evidence on the presence of causality. A large effect may

not, at a given level, be statistically significant. Further, a statistically significant effect may be neither

“large” from an economic or a subject at hand viewpoint nor is it relevant for decision making. In this

study, beyond the acceptance or rejection of the non-causality hypothesis, which state that certain variables

do not help forecast other variables, we wish to assess the magnitude of the forecast improvement, where

the latter is defined in terms of some loss function (expectation of quantile check loss function). Even if the

hypothesis of no improvement cannot be rejected by looking at the available data (for example, because the

sample size or the structure of the process does not allow for high test power), sizeable improvements may

remain consistent with the same data. By contrast, a statistically significant improvement may easily be

produced by a large data set, which may not be relevant from a practical viewpoint.

The topic of measuring Granger causality has not attracted much attention. Further, most of the existing

measures focus on Granger causality in mean; thus, they cannot be used in the presence of causality in quan-

tiles. Geweke (1982, 1984) introduce measures of causality in mean based on vector autoregressive models.

Dufour and Taamouti (2010) extend Geweke’s work to propose measures for short and long run causality

in mean using vector autoregressive moving average models. Gouriéroux et al. (1987) build measures of

causality based on Kullback information criterion and use a parametric approach for the estimation of their

measures. Polasek (1994, 2002) show how causality measures can be computed using Akaike Information

Criterion and a Bayesian approach. Song and Taamouti (2018) propose nonparametric measures of Granger

causality in mean, extending the parametric approach of Geweke (1982, 1984) and Dufour and Taamouti

(2010). Taamouti et al. (2014) propose a nonparametric estimator and test for measures of Granger causality

in distribution. However, the latter measures are not informative enough regarding the level(s) (quantiles)
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of the conditional distribution wherein the causality exists; hence, the importance of providing measures of

Granger causality in quantiles is relevant. There are also a number of papers dealing with Granger causality

in fields different from economics; e.g. communications in complex systems and neuroscience. To study

Granger causality between individual components in complex systems, Marinazzo, Pellicoro, and Stramaglia

(2008) use measures of nonlinear causality based on the theory of reproducing kernel Hilbert spaces. To

examine the causal relations in neural systems, Li, Wei, Billings, and Liao (2012) consider nonlinear time-

varying parametric models to build Granger causality measures that detect temporal causal interactions.

Furthermore, Hu and Liang (2014) suggest a model-free copula-based Granger causality measure to examine

nonlinear and high-order moment causality in neural data.

This study considers measures of Granger causality in quantiles that are able to detect and quantify

both linear and nonlinear causal effects, which can happen at any quantile of the conditional distribution

of the variable of interest. The measures are based on nonparametric quantile regressions and defined as

logarithmic function of restricted and unrestricted expectations of quantile check loss functions. A consistent

estimator of these measures is defined in terms of local polynomial estimators of the expectations of check loss

functions. Further, we derive a Bahadur-type representation for this estimator and establish its asymptotic

distribution, which we use to build tests for statistical significance of measures. Thereafter, we show the

validity of smoothed local bootstrap that we apply to perform statistical tests in finite-sample settings. A

Monte Carlo simulation study reveals that the bootstrap-based test has a good finite-sample size and power

properties for a variety of data generating processes as well as different sample sizes. Moreover, since testing

that the value of measure is equal to zero is equivalent to testing for the non-causality in quantile, we

consider an additional simulation exercise to compare the empirical size and power of our test with those of

the nonparametric test of non-causality in quantile, introduced by Jeong, Härdle and Song (2012).1 For the

finite samples, the simulation results indicate that our test controls the size and has better power compared

to that of Jeong et al.’s (2012) test. We have also suggested a bootstrap bias-corrected estimator for our

causality measure and investigated its finite sample performance using Monte Carlo simulations.

Finally, the empirical importance of measuring causality in quantiles is illustrated. We quantify the degree

of predictability of equity risk premium using the variance risk premium, unemployment rate, inflation, and

the effective federal funds rate. The empirical results show that the variance risk premium and effective

federal funds rate have a strong predictive power for predicting the risk premium compared to that of the

predictive power of the other two macro variables. In particular, the variance risk premium is able to predict

the center, the lower and upper quantiles of the distribution of risk premium; however, the effective federal

funds rate only predicts the lower and upper quantiles. Nevertheless, unemployment rate and inflation have

no effect on the quantiles (distribution) of risk premium.

1For the parametric tests of Granger causality in quantiles; refer to Lee and Yang (2014) and Troster (2018), among others.
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The plan of the study is as follows. Section 2 provides the motivation for considering measures for

Granger causality in quantiles. Section 3 presents the theoretical framework that underlies the definition of

measures of causality in quantiles. In Section 4, we provide an estimator of the measures using nonparametric

quantile regressions and based on local polynomial approach. We establish the Bahadur representation of

this estimator in Section 5.1. In Section 5.2, we derive the asymptotic distribution of the nonparametric

estimator, which can be used to build tests for the statistical significance of the measures; we further study

their properties under some local alternatives. In Section 6, we show the validity of smoothed local bootstrap,

which can offer more accurate approximation to the finite-sample distribution of our test statistic. In Section

7, we extend our results to the case wherein additional control variables are considered. Section 8 presents

a Monte Carlo simulation exercise to investigate the finite-sample properties of the estimates and tests of

causality measures. Section 9 is devoted to an empirical application and the conclusion of the results is given

in Section 10. The key assumptions of the study and the proofs of the theoretical results are presented in

the Technical Appendix, which is available online.

2 Motivation

This study considers measures of Granger causality in quantiles. Most of the existing measures focus on

quantifying Granger causality in mean; refer to Geweke (1982, 1984), Dufour and Taamouti (2010), and Song

and Taamouti (2018). Other measures have been proposed to quantify Granger causality in distribution;

refer to Taamouti et al. (2014). The latter measures of causality in distribution, however, are not informative

enough of the level(s) (quantiles) of distribution wherein the causality exists. Thus, the significance of such

measures is limited in the presence of Granger causality in quantiles. A recent paper by Adrian, Boyarchenko,

and Giannone (2018) illustrates the importance of studying the causality at different levels (quantiles) of the

conditional distribution of GDP growth using economic and financial conditions. Using parametric quantile

regressions, they found that the lower quantiles of GDP growth exhibit strong variation as a function of

financial conditions, whereas the upper quantiles do not change over time. Hereafter, we consider measures

of causality in quantiles based on nonparametric quantile regressions. Such measures can quantify both

linear and nonlinear causality in quantiles. To motivate such measures, consider the following example.

Example 1 Consider the following mean regression model:

Xt = µ+ ζ Xt−1 +
(
γ + δY 2

t−1

)1/2
εt, for some γ, δ ≥ 0, (1)

where εt is normally (elliptically) distributed with mean zero and variance one. Since εt is normally dis-

tributed, Xt is also conditionally normally distributed:

Xt |IXY (t− 1) ∼ N
(
µ+ ζ Xt−1, γ + δY 2

t−1

)
,
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where IXY (t − 1) will be formally defined in Section 3, but it represents the available information at time

(t− 1) that contains both past of X and Y. Consequently, for τ ∈ (0, 1), the τ -th quantile of Xt conditional

on IXY (t− 1) is given by:

Qτ (Xt |IXY (t− 1)) = µ+ ζ Xt−1 +
(
γ + δY 2

t−1

)1/2
Φ−1 (τ) , (2)

where Φ−1 (τ) is the τ -th quantile of N (0, 1). Equation (1) shows that Y does not cause X through its

mean. However, from Equation (2) we observe that Y does cause X through its τ -th quantile. For example,

for τ = 0.10, Y does cause X through its 10-th quantile even if there is no causality through its mean.

This example illustrates the case where the causality in mean does not exist, but it does exist in quantiles.

However, how can we measure the degree of this causality in quantile?

It should also be noted that the functional form of Granger causality in quantiles from Y to X can be

unknown. In other words, the mean regression model can generally be defined as follows:

Xt = m(Xt−1, Yt−1) + σ (Xt−1, Yt−1) εt,

where εt is normally (elliptically) distributed with mean zero and variance one. This implies that the τ -th

quantile of Xt conditional on IXY (t− 1) is given by:

Qτ (Xt |IXY (t− 1)) = m(Xt−1, Yt−1) + σ (Xt−1, Yt−1)Φ
−1 (τ) ,

where the functional forms of m(Xt−1, Yt−1) and σ (Xt−1, Yt−1) are unknown. This illustrates the importance

of developing model-free measures that can quantify the degree of both linear and nonlinear Granger causality

in quantiles, which can be achieved using nonparametric quantile regressions. As pointed out in Cai and Xu

(2008), for many empirical applications, using linear quantile regression model might not be “rich” enough

to capture the underlying relationship between the variables of interest. However, there is an active and

growing literature on nonparametric quantile regressions that can accommodate nonlinear dependencies. In

particular, many smoothing methods (e.g. kernel methods) have been used to estimate the nonparametric

quantile regression for both independent and time series data; see Chaudhuri (1991), Yu and Jones (1998),

Honda (2000), Cai and Xu (2008), Jeong et al. (2012) and references therein.

3 Framework

We consider two variables of interest X and Y . For the simplicity of exposition, we assume that X and Y

are univariate processes; however, in Section 7 we include a third variable W . In other words, in Section 7

we will still focus on the univariate quantiles; we will nevertheless extend the information set to include a

third variable that can play the role of an auxiliary variable.
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We wish to measure the Granger causality in quantiles between X and Y . When it comes to causality

analysis, defining the information sets is crucial. Hereafter, we consider a sequence I of “reference information

sets” I(t− 1) such that:

I = {I(t) : t ∈ Z , t > ω} with t < t′ ⇒ I(t) ⊆ I(t′) for all t > ω , (3)

where I(t) is an information set, ω ∈ Z ∪ {−∞} represents a “starting point”, and Z is the set of integers.

The “starting point” ω is typically equal to a finite initial date (such as ω = −1, 0 or 1) or to −∞; in the

latter case I(t) is defined for all t ∈ Z. The information set I(t) could correspond to a (possibly empty) set,

whose elements represent the information available at any point of time, such as time independent variables

(e.g., the constant in a regression model) and deterministic processes (e.g., deterministic trends).

We denote X(ω, t−1] the information set spanned by Xs for ω < s ≤ t−1, and similarly for Y (ω, t−1].

That is, X(ω, t − 1] and Y (ω, t − 1] represent the information contained in the history of the variables X

and Y , respectively, up to time t− 1. Furthermore, the information sets obtained by “adding” X(ω, t− 1]

to I(t− 1) and Y (ω, t− 1] to IX(t− 1) are defined as

IX(t− 1) = I(t− 1) +X(ω, t− 1] , IXY (t− 1) = IX(t− 1) + Y (ω, t− 1]. (4)

We now remind the reader how Granger non-causality in quantiles can be characterized in terms of

restricted and unrestricted expectations of quantile check loss functions. First of all, to avoid useless rep-

etitions, in the following sections we treat only the causality from Y to X. For any information set Bt−1

[Bt−1 might represents IX(t− 1) or IXY (t− 1)], we denote Qτ (Xt|Bt−1) the best linear/nonlinear quantile

forecast of Xt based on the information set Bt−1. Hereafter, the best forecast of Xt will be defined based on

the quantile check loss function:

ρτ (ε) ≡ (τ − 0.5)ε+ 0.5|ε| = ε(τ − 1(ε < 0)), (5)

where 1(A) is an indicator function of an event A and τ is the quantile of interest. In other words, the best

quantile forecast of Xt based on the information set Bt−1 is

Qτ (Xt|Bt−1) = argminθE[ρτ (Xt − θ) |Bt−1].

Using the above notations the following definition provides a characterization of Granger non-causality

in quantiles from Y to X.

Definition 1 (Characterization of Non-Causality in Quantiles). For τ ∈ (0, 1) , Y does not cause X through

its τ -th quantile given I, iff

E[ρτ (Xt −Qτ (Xt| IX(t− 1))) ] = E[ρτ (Xt −Qτ (Xt| IXY (t− 1))) ], ∀t > ω,

where the sets IX(t− 1) and IXY (t− 1) are defined in (4).
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Using Definition 1, the measures of Granger causality in quantiles that we consider are based on the

following simple idea. For τ ∈ (0, 1) , we state that “Y causes X through its τ -th quantile” if

E[ρτ (Xt −Qτ (Xt| IX(t− 1)))] > E[ρτ (Xt −Qτ (Xt| IXY (t− 1)))]. (6)

Consequently, measuring the difference between the two loss functions on the left and right-hand side of

the inequality (6) is the same as measuring the strength of causality in the τ -th quantile from Y to X.

The causality measures that we use here are suitable functions of the “distance” between the loss functions

on the left and right-hand side of the inequality in (6). These measures are defined using similar measure

functions as in Geweke (1982, 1984) as well as Dufour and Taamouti (2010). Important properties of these

measure functions are that they are non-negative and cancel only when there is no causality. Specifically,

we consider the following causality measures where by convention ln(0/0) = 0 and ln(x/0) = +∞ for x > 0.

Definition 2 (Quantile Causality Measure). For τ ∈ (0, 1) , the function

Cτ (Y → X | I) = ln

[
E[ρτ (Xt −Qτ (Xt| IX(t− 1)))]

E[ρτ (Xt −Qτ (Xt| IXY (t− 1)))]

]
(7)

defines the τ -th quantile causality measure from Y to X, given I.

Cτ (Y → X | I) measures the degree of causal effect from Y to the τ -th quantile of X given the past of

Y . With relation to predictability, it can be viewed as a measure of the amount of information brought by

the past of Y , which can in turn improve the forecast of the τ -th quantile of Xt.

4 Estimation

Let
{
(Xt, Yt) ∈ R× R ≡ R2, t = 0, ..., T

}
be a sample of strictly stationary stochastic process in R2. Denote

Xt−1 = (Xt−1, . . . , Xt−d1)
′ and Y t−1 = (Yt−1, . . . , Yt−d2)

′ for some fixed known integers d1 ≥ 1 and d2 ≥ 1.

We assume that the following nonparametric unconstrained quantile regression hold,

Xt = qτ
(
Zt−1

)
+ εt, for a fixed quantile τ ∈ (0, 1) , (8)

where Zt−1 =
(
X ′

t−1, Y
′
t−1

)′
is a d ≡ d1 + d2 dimensional random vector, qτ

(
Zt−1

)
= Qτ

(
Xt|Zt−1

)
, and

εt = Xt − Qτ
(
Xt|Zt−1

)
. Thus, εt is an error term with its τ -th conditional quantile given Zt−1 equal to

zero, i.e. Pr(εt ≤ 0|Zt−1 = z) = τ for almost all z. To quantify the degree of Granger causality in quantile

from Y to X, we further consider the following nonparametric constrained quantile regression:

Xt = q̄τ
(
Xt−1

)
+ εt, (9)

for q̄τ
(
Xt−1

)
= Qτ

(
Xt|Xt−1

)
, εt = Xt −Qτ

(
Xt|Xt−1

)
, with Pr(εt ≤ 0|Xt−1 = x) = τ for almost all x.
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From Equation (7) and after replacing the unconstrained and constrained conditional quantiles of Xt

by the corresponding regression functions qτ
(
Zt−1

)
and q̄τ

(
Xt−1

)
, respectively, we obtain the following

nonparametric regression-based measures of Granger causality in quantiles from Y to X.

Proposition 1 Under the quantile regressions (8) and (9), for non-negative weighting function w(·) and a

fixed quantile τ, for 0 < τ < 1, the function

Cτ (Y → X | I) = ln

[
E[ρτ (Xt − q̄τ (Xt−1))w

(
Zt−1

)
]

E[ρτ (Xt − qτ (Zt−1))w
(
Zt−1

)
]

]
(10)

is the τ -th quantile causality measure from Y to X, given I.

The inclusion of non-negative weighting function w(·) in the expression of the above measure is to avoid

its highly uncertain estimation especially in regions with sparse or noisy data. In practice, w(·) will typically

take the value that is one in the center of the support of Z and zero near the boundary. The introduction

of the weight w(·) also permits the users to focus their analysis on a given range of interest of the variables.

Furthermore, notice that when qτ (Zt−1) = q̄τ (Xt−1) with probability one (i.e., when there is no causality

from Y to X through its τ -th quantile), the measure Cτ (Y → X | I) becomes equal to zero.

Next, we provide a consistent nonparametric estimator for the above measure by replacing the unknown

expectations of check loss functions by their consistent nonparametric estimates. In particular, we need non-

parametric estimates for the following restricted and unrestricted quantile regression errors: Xt − q̄τ (Xt−1)

and Xt − qτ (Zt−1), respectively. Due to its well-known advantages, we use the local polynomial approach

to construct our nonparametric estimates as discussed in Fan and Gijbels (1996). For simplicity of expo-

sition and to economize space, hereafter, we omit the information sets Zt−1 and Xt−1 in the notations of

subsequent Granger causality measures and their corresponding estimates.

First of all, assume that the constrained [resp. unconstrained] τ -th conditional quantile function q̄τ (x)

[resp. qτ (z)] is differentiable continuously at x = (x1, · · · , xd1)′ [resp. z = (x′, y′)′, with y = (y1, · · · , yd2)′]

up to order p + 1 [resp. q + 1]. Then, the multivariate p-th order local polynomial approximation of the

constrained τ -th conditional quantile function q̄τ (a), for any a close to x, is given by

q̄τ (a) ≈
∑

0≤|r|≤p

1

r!
Dr q̄τ (x)(a− x)r,

where r = (r1, · · · , rd1), |r| =
∑d1

i=1 ri, r! = r1!× · · · rd1 !, and

Dr q̄τ (x) =
∂r q̄τ (x)

∂xr11 · · · ∂xrd1d1

for xr = xr11 × · · ·× x
rd1
d1

and
∑

0≤|r|≤p =
∑p

j=0

j∑

r1=0

· · ·
j∑

rd1=0
︸ ︷︷ ︸

.

r1+···+rd1=j
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Now, let K(u) be a multivariate product density function on Rd1 and h1 ≡ h1T ∈ R+ a bandwidth

parameter converging to zero at appropriate rates specified in Assumption A.9 of Appendix A of the Online

Technical Appendix. Using the sample {(Xt, Yt)}Tt=0, we consider minimizing the following quantity with

respect to βr, 0 ≤ |r| ≤ p, to derive the constrained estimator ̂̄qτ (x) evaluated at the data point x = Xt−1:

min
βr

T∑

s=1,s ̸=t

Kh1(Xs−1 −Xt−1)ρτ

⎛

⎝Xs −
∑

0≤|r|≤p

βr(Xs−1 −Xt−1)
r

⎞

⎠ , (11)

where Kh1(u) = K(u/h1)/h
d1
1 . Let β̂r(Xt−1), for 0 ≤ |r| ≤ p, be the minimizer of the above optimization

problem. The leave-one-out estimator for the τ -th constrained conditional quantile function q̄τ (x) and its

partial derivatives Dr q̄τ (x) evaluated at x = Xt−1 are then given by

q̂−t,τ (Xt−1) = β̂0 and D̂rq−t,τ (Xt−1) = r!β̂r, for 1 ≤ |r| ≤ p.

Similarly, we denote the multivariate q-th order local polynomial leave-one-out estimator of the unconstrained

τ -th conditional quantile function qτ (z) and its derivatives Drqτ (z) evaluated at the data point z = Zt−1 by

q̂−t,τ (Zt−1) and D̂rq−t,τ (Zt−1), for 1 ≤ |r| ≤ q, respectively. Therefore, based on the above local polynomial

leave-one-out estimators q̂−t,τ (Xt−1) and q̂−t,τ (Zt−1), the term

̂Cτ (Y → X) = ln

⎛

⎝
T−1∑T

t=1 ρτ
(
Xt − q̂−t,τ

(
Xt−1

))
w
(
Zt−1

)

T−1
∑T

t=1 ρτ
(
Xt − q̂−t,τ

(
Zt−1

))
w
(
Zt−1

)

⎞

⎠ (12)

is a suitable nonparametric estimator of the causality measure Cτ (Y → X) in (10). As we will show in

the proof of Theorem 2, using leave-one-out estimators helps to reduce the bias in estimating the measure

Cτ (Y → X). The consistency of the estimator in (12) will be established for any continuous weight function

w (·) defined on a compact and non-empty interior support. Finally, the nonparametric estimator of the

measure of Granger causality from X to Y through its τ -th quantile can be obtained following the same

steps. Hereafter, we will omit the subscript “−t” of the leave-one-out estimators q̂−t,τ (Xt−1) and q̂−t,τ (Zt−1)

in the expression (12) to minimize the notation.

5 Asymptotic properties

This section aims to establish the asymptotic properties of nonparametric estimator ̂Cτ (Y → X) defined

in Equation (12). Before proceeding with this, we need to introduce some notations to facilitate the study

of local polynomial estimators. Following Kong et al. (2010), let Ni =
(i+d1−1

d1−1

)
be the number of distinct

d1-tuples r with r = i. Arrange these Ni d1-tuples as a sequence in a lexicographical order, with the highest

priority given to the last position so that (0, . . . , 0, i) is the first element in the sequence and (i, 0, . . . , 0) is

the last element. Let πi denote the 1-to-1 mapping defined by πi(1) = (0, . . . , 0, i), . . . ,πNi = (i, 0, . . . , 0).
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Furthermore, for each i = 1, . . . , p, define a Ni × 1 vector µi(x) with its k-th element given by xπi(k), and

write µ(x) = (1, µ1(x)′, . . . , µp(x)′)′, which is a column vector of length N =
∑p

i=0Ni. Similarly, define

vectors βp(x) and β through the same lexicographical arrangement of Dr q̄τ (x) and βr in Equation (11) for

0 ≤ |r| ≤ p. Thus, Equation (11) can be rewritten as

min
β

T∑

s=1,s ̸=t

Kh1

(
Xs−1 −Xt−1

)
ρτ
(
Xs − µ

(
Xs−1 −Xt−1

)′
β
)
. (13)

Now, let us denote the minimizer of equation (13) by β̂T (Xt−1), and let β̂p(Xt−1) = Wpβ̂T (Xt−1), where

Wp is a diagonal matrix with diagonal entries that are equal to the lexicographical arrangement of r!, for

0 ≤ |r| ≤ p. In addition, let ϕ(u) = τ1(u ≥ 0) + (τ − 1)1(u < 0) be the piecewise constant derivative of the

check loss function ρτ (ε) given in (5). Define G (θ, x) = E
[
ϕ (Xt − θ) |Xt−1 = x

]
and g(x) = ∂G(θ, x)/∂θ.

Then, it holds true that g(x) = −fε|X(0|x), where fε|X(·|x) is the conditional probability density function

of the constrained quantile error εt = Xt − q̄τ (Xt−1) given Xt−1 = x. Let νi =
∫
K(u)ui du and define

νT,i =
∫
K(u)uig(x+h1u)fX(x+h1u) du, where fX(·) is the marginal probability density function of Xt−1.

Finally, for 0 ≤ j, k ≤ p, let Sj,k and ST,j,k(x) be twoNj×Nk matrices with their (l,m) elements, respectively,

[Sj,k]l,m = νπj(l)+πk(m) and [ST,j,k(x)]l,m = νT,πj(l)+πk(m)(x).

Using the above notations, we now define the N ×N matrices Sp and ST,p(x):

Sp =

⎡

⎢⎢⎢⎢⎢⎢⎣

S0,0 S0,1 · · · S0,p

S1,0 S1,1 · · · S1,p

...
...

. . .
...

Sp,0 Sp,1 · · · Sp,p

⎤

⎥⎥⎥⎥⎥⎥⎦
, ST,p(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

ST,0,0(x) ST,0,1(x) · · · ST,0,p(x)

ST,1,0(x) ST,1,1(x) · · · ST,1,p(x)
...

...
. . .

...

ST,p,0(x) ST,p,1(x) · · · ST,p,p(x)

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Further, for |Sp| ≠ 0, define

β∗
T (Xt−1) = − 1

Thd11
WpS

−1
T,p(x)H

−1
T

T∑

s=1,s ̸=t

Kh1(Xs−1−Xt−1)ϕ(Xs−µ(Xs−1−Xt−1)
′W−1

p βp(Xt−1))µ(Xs−1−Xt−1),

whereHT is a diagonal matrix with diagonal entries h|r|1 , for 0 ≤ |r| ≤ p, in the aforementioned lexicographical

order. The quantity β∗
T (Xt−1) is the leading term in the Bahadur representation of β̂p(Xt−1) − βp(Xt−1),

which is the sum of a bias term Es[β∗
T (Xt−1)] (with Es denoting expectation with respect to s) and a

stochastic term β∗
T (Xt−1)−Es[β∗

T (Xt−1)]; for more details, among other studies, refer to Kong et al. (2010),

Guerre and Sabbah (2012), and Noh et al. (2013).

The q-th order local polynomial leave-one-out estimator for the unconstrained conditional quantile func-

tion qτ (Zt−1) using a second bandwidth h2, denoted by q̂τ (Zt−1), can accordingly be defined as above for

̂̄qτ (Xt−1). Therefore, we omit the steps for constructing q̂τ (Zt−1).
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5.1 Bahadur representation

In this subsection, we establish a Bahadur type representation for the nonparametric estimator in Equation

(12). This representation will be used to deduce the consistency of the estimator in (12). To derive the

Bahadur’s representation of ̂Cτ (X → Y ), some regularity assumptions are needed. Therefore, we consider a

set of standard assumptions that have been widely used in the literature on nonparametric estimation and

inference; refer to, for example, Hong (2003), Guerre et al. (2012) and Noh et al. (2013) for independent

and identically distributed (i.i.d.) data, and Kong et al. (2010) for the strongly mixing data. For simplicity

of exposition, we relegate all these assumptions to Appendix A of the Online Technical Appendix. The

following theorem establishes the Bahadur representation for the estimator ̂Cτ (X → Y ) [refer to the proof

of Theorem 1 in Appendix B of the Online Technical Appendix].

Theorem 1 Let d = d1 + d2. Suppose Assumptions A.1-A.9 in Appendix A of the Online Technical

Appendix hold, p > d1/2 − 1, h1 = O(T−κ1) with 1/(2p + 2 + d1) < κ1 < 1/(2d1), q > d/2 − 1, and

h2 = O(T−κ2) with 1/(2p+ 2 + d) < κ2 < 1/(2d). Then, for each given quantile τ ∈ (0, 1), we have

√
T
(

̂Cτ (Y → X)− Cτ (Y → X)
)
= (1 + Cτ (Y → X))

1√
T

T∑

t=1

(et − ut) + op(1),

where

et =
ρτ
(
Xt − q̄τ

(
Xt−1

))
w
(
Zt−1

)
− E

[
ρτ
(
Xt − q̄τ

(
Xt−1

))
w
(
Zt−1

)]

E
[
ρτ
(
Xt − q̄τ

(
Xt−1

))
w
(
Zt−1

)] ,

and

ut =
ρτ
(
Xt − qτ

(
Zt−1

))
w
(
Zt−1

)
− E

[
ρτ
(
Xt − qτ

(
Zt−1

))
w
(
Zt−1

)]

E
[
ρτ
(
Xt − qτ

(
Zt−1

))
w
(
Zt−1

)] .

Note that the conditions p > d1/2−1 and q > d/2−1 are needed to obtain the asymptotic representations

of the empirical analogue of the check loss functions involving ̂̄qτ (·) and q̂τ (·), respectively; refer to Lemmas

3 and 4 in Appendix C of the Online Technical Appendix. They imply that the orders p and q of the local

polynomial approximations of q̄τ (x) and qτ (z) should increase as the dimensions d1 and d of Xt−1 and Zt−1

increase, respectively. One immediate implication of Theorem 1 is that the estimator ̂Cτ (Y → X) in (12)

is consistent. Thus, the following proposition can be straightforwardly deduced from the above Bahadur’s

representation of ̂Cτ (Y → X) , therefore its proof has been omitted.

Proposition 2 Under Assumptions A.1-A.9 in Appendix A of the Online Technical Appendix, for each

given quantile τ ∈ (0, 1), the nonparametric estimator ̂Cτ (Y → X) in (12) converges in probability to the

true Granger causality measure Cτ (Y → X) in (10).

Besides the consistency property, the Bahadur representation implies
√
T
(

̂Cτ (Y → X)− Cτ (Y → X)
)

is asymptotically normal with mean zero and variance σ2
1τ := (1 + Cτ (Y → X))2Στ , where

Στ = lim
T→∞

T−1Var

(
T∑

t=1

(et − ut)

)
= Var (e1 − u1) + 2

∑

t>1

Cov (e1 − u1, et − ut) .
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Specifically, the asymptotic normality of ̂Cτ (Y → X) can be established by applying the central limit

theorem to the strongly mixing process {(et − ut)}Tt=1; refer to, for example, Theorem 2.21 in Fan and

Yao (2003). One direct application of this theorem is the construction of confidence intervals for the

causality measure Cτ (Y → X) once a consistent estimator for σ2
1τ is available. For example, σ̂2

1τ =
(
1 + ̂Cτ (Y → X)

)2
Σ̂τ , where Σ̂τ is the long-run variance estimator (“Newey–West” or HAC estimator)

based on sequence {(êt − ût)}Tt=1 with êt and ût respectively the sample analogues for et and ut in Theorem

1. However, recall that by construction Cτ (Y → X) is non-negative and it is zero if and only if there is no

causality from Y to X through its τ -th quantile. It is immediate to observe that when Cτ (Y → X) = 0,

the asymptotic variance σ2
1τ , given before, degenerates to zero. This means that the asymptotic normality

result, which can be obtained using Theorem 1, is also a degenerate distribution and is meaningless except

the consistency of ̂Cτ (Y → X) to zero. Thus, unlike the cases when the degree of Granger causality in

quantiles is important (i.e. value of the causality measure is non-zero or large), we should herein investigate

the next leading term in the previous Bahadur expansion in order to get a non-degenerated distributional

result. We will study this important case in detail in the next section.

5.2 Inference

The causality measures, which we defined in the previous sections, can be used to test for Granger non-

causality in quantiles between X and Y . If there is no causality from Y to X through its τ -th quantile,

then the restricted and unrestricted expectations of quantile check loss functions will be equal: E[ρτ (Xt −

q̄τ (Xt−1))] = E[ρτ (Xt − qτ (Zt−1))]. Hereafter, we will use this equality to test the null hypothesis of

Granger non-causality in certain quantiles. In other words, for a pre-specified quantile τ, for 0 < τ < 1, we

are interested in testing the null hypothesis

H0 : Cτ (Y → X) = 0 (14)

against the alternative hypothesis

H1 : Cτ (Y → X) > 0. (15)

As we had discussed at the end of the previous subsection, under H0, the Bahadur representation in Theorem

1 tells us nothing about the asymptotic distribution of ̂Cτ (Y → X). Therefore, to test H0 against H1 we

need to derive a non-degenerated distribution of ̂Cτ (Y → X) when Cτ (Y → X) = 0 is true. Using the theory

for U -statistics, the following theorem provides non-degenerate asymptotic normality of the nonparametric

estimator ̂Cτ (Y → X) at a given quantile τ, for 0 < τ < 1 [refer to the proof of Theorem 2 in Appendix B

of the Online Technical Appendix]. Again, here, in this study, we focus only on Granger causality from Y

to X, however, a similar result can be obtained for Granger causality from X to Y .

11



Theorem 2 Let d = d1 + d2. Suppose Assumptions A.1-A.9 in Appendix A of the Online Technical

Appendix hold, p > d1/2− 1 and h1 = O(T−κ1) with 1/(2p+ 2 + d1) < κ1 < 1/(2d1), and q > d/2− 1 and

h2 = O(T−κ2) with 1/(2q + 2 + d) < κ2 < 1/(2d). Then, under the null hypothesis H0 in (14), we have

Thd/22
̂Cτ (Y → X)

d−→ N
(
0,σ2

0τ

)
,

where

σ2
0τ ≡ 2τ2 (1− τ)2

κ (τ)2

∫
K2 (u) du

∫
w2 (z)

f2
ε,Z (0, z)

f2
Z (z) dz,

with κ (τ) = E
[
ρτ
(
Xt − qτ

(
Zt−1

))
w
(
Zt−1

)]
, fε,Z (0, z) the joint density of εt = Xt − qτ

(
Zt−1

)
and Zt−1

evaluated at εt = 0, and fZ (z) the marginal density of Zt−1.

To implement the test in practice, we require a consistent estimator of σ2
0τ . In this study, we suggest to

replace σ2
0τ by the following estimator:

σ̂2
0τ =

2τ2 (1− τ)2

κ̂ (τ)
2

1

T (T − 1)

T∑

t=1

T∑

s=1,s ̸=t

w2(Zt−1)

f̂2
ε̂,Z(0, Zt−1)

1

hd2
K2

(
Zt−1 − Zs−1

h2

)
, (16)

where

f̂ε̂,Z(0, Zt−1) =
1

T − 1

T∑

s=1,s ̸=t

1

hd+1
2

K

(
ε̂s−1

h2

)
K

(
Zt−1 − Zs−1

h2

)
,

is the leave-one-out kernel density estimator for fε,Z(0, Zt−1), and

κ̂ (τ) =
1

T

T∑

t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

is a consistent estimator of κ (τ).2 It is worthwhile to remark that if we choose w(z) = fε,Z(0, z), our

expressions for σ2
0τ and σ̂2

0τ reduce to those for σ2
0 and σ̂2

0 in Jeong et al. (2012, Theorem 3.1(i) and (ii))

apart from the normalizing constant κ2 (τ). We now define the following feasible test statistic:

Γ̂τ :=
Thd/22

̂Cτ (Y → X)

σ̂0τ
. (17)

Under H0, Theorem 2 implies that the test statistic Γ̂τ is asymptotically pivotal and asymptotically dis-

tributed as N (0, 1). This result forms the basis for the following one-sided asymptotic test for H0: for a given

significance level α, we reject the null H0 if Γ̂τ > zα, where zα is the one-sided critical value, i.e. the upper

α-th percentile from the standard normal distribution. The following proposition establishes the consistency

of the above test for the fixed alternative (15). It shows that the test statistic Γ̂τ = Thd/22
̂Cτ (Y → X)/σ̂0τ

diverges to infinity under the alternative hypothesis H1 [refer to the proof of Proposition 3 in Appendix B

of the Online Technical Appendix].

2The proof of the consistency of the estimator σ̂2
0τ for σ2

0τ can be found in the proof of Theorem 2 in Appendix B of the

Online Technical Appendix.
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Proposition 3 Let d = d1 + d2. Suppose Assumptions A.1-A.9 in Appendix A of the Online Technical

Appendix hold, p > d1/2− 1 and h1 = O(T−κ1) with 1/(2p+ 2 + d1) < κ1 < 1/(2d1), and q > d/2− 1 and

h2 = O(T−κ2) with 1/(2q + 2 + d) < κ2 < 1/(2d). Then, under the alternative hypothesis of causality in

(15), we have

Pr
{
Thd/22

̂Cτ (Y → X)/σ̂0τ > BT

}
→ 1,

for any non-stochastic sequence BT = o
(
Thd/22

)
.

We also examine the asymptotic power of the test for detecting local departures, which converge to the

null hypothesis (14) at a suitable rate. Specifically, we consider a sequence of Pitman-type local alternatives

of the following form:

H1 (δT ) : qτ (z) = q̄τ (x) + δT∆T (z) , (18)

where δT might depend on τ and δT → 0 as T → ∞, and ∆T (z) is a non-constant continuous function in z;

this indicates how large the deviation of qτ (z) is from q̄τ (x). Equivalently, ∆T (z) indicates how large the

deviation of the measure Cτ (Y → X) is from zero. Further, we define the following term:

γ = κ (τ)−1 lim
T→∞

E
[
∆2

T (Zt−1)w(Zt−1)fε|Z(0|Zt−1)
]
. (19)

We also assume ∆T (z) is a function that satisfies γ ̸= 0. The following proposition states that our test

has a non-trivial asymptotic local power against the sequence of Pitman local alternatives defined in (18),

which converges to the null at the rate T−1/2h−d/4
2 with d = d1 + d2 [refer to the proof of Proposition 4 in

Appendix B of the Online Technical Appendix].

Proposition 4 Let d = d1 + d2. Suppose Assumptions A.1-A.9 in Appendix A of the Online Technical

Appendix hold, p > d1/2− 1 and h1 = O(T−κ1) with 1/(2p+ 2 + d1) < κ1 < 1/(2d1), and q > d/2− 1 and

h2 = O(T−κ2) with 1/(2q + 2 + d) < κ2 < 1/(2d). Then, under the local alternatives H1 (δT ) in (18) with

δT =
(
Thd/22

)−1/2
, we have

Thd/22
̂Cτ (Y → X)

d−→ N (γ,σ2
0τ ),

where σ2
0τ is defined in Theorem 2 and γ is defined in (19).

Note that our test can detect a class of local alternatives that converge to the null hypothesis at the

same rate as Jeong et al. (2012), which is T−1/2h−d/4
2 . This rate is a typical rate for tests based on kernel

smoothing, see e.g. Härdle and Mammen (1993), Fan and Li (1996) and Zheng (1996) to mention only a few.

On the other hand, Lavergne et al. (2015) propose a kernel-based test that smooths only over the covariates

appearing under the null hypothesis, so that the rate of local alternatives for their test is T−1/2hd1/42 , which is

faster than the rate T−1/2h−(d1+d2)/4
2 . However, none of the aforementioned tests, including Lavergne et al.

(2015)’s, can detect T−1/2-local alternatives. Finally, to obtain tests that can detect T−1/2-local alternatives,
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global-type tests, which avoid nonparametric smoothing estimation under the alternative hypothesis, needs

to be constructed, see e.g. Volgushev et al. (2013) for a stochastic process-based test for the significance of

covariates in multivariate nonparametric quantile regression. Nonetheless, both Volgushev et al. (2013) and

Lavergne et al. (2015) consider significance testing for i.i.d. data.

6 Bootstrap

The result in Theorem 2 is valid only asymptotically. The asymptotic normal distribution might not work

well in the finite samples and our unreported simulations using asymptotic critical values also confirm this

observation. Particularly, for high dimensional random variables the asymptotic test is subject to huge

size distortion because of possible finite-sample bias in the nonparametric estimation due to the curse of

dimensionality. One way to improve the size performance of the asymptotic test is to use the smoothed

local bootstrap introduced in Paparoditis and Politis (2000). One major advantage of smoothed local

bootstrap procedure is that it can preserve the unknown dependence structure in the data; thus, it can

“mimic” adequately the finite-sample distribution of our test statistic. Thus, in this section, we suggest a

bootstrap-based procedure to improve the performance of our test in Theorem 2 in finite samples.

In the sequel, X ∼ fX means that the random variable X is generated from a density function fX . Let

L1, L2 and L3 be three kernels and h∗ be a bandwidth parameter. Hereafter, we discuss the implementation

of the test based on local smoothed bootstrap. It is easy to implement in the following four steps3:

(1) We draw a bootstrapped sample {(X∗
t , Y

∗
t )}Tt=1. To do so, we first draw X∗

t−1 from its nonparametric

(kernel) marginal probability density

X∗
t−1 ∼

1

Th∗d1

T∑

s=1

L1

(
Xs−1 − x

h∗

)
,

then conditional on X∗
t−1, we draw X∗

t and Y ∗
t−1 independently from the following two nonparametric

(kernel) conditional probability densities:

X∗
t ∼ 1

h∗

T∑

s=1

L1

(
Xs−1 −X∗

t−1

h∗

)
L2

(
Xs − x

h∗

)
/

T∑

s=1

L1

(
Xs−1 −X∗

t−1

h∗

)

and

Y ∗
t−1 ∼

1

h∗d2

T∑

s=1

L1

(
Xs−1 −X∗

t−1

h∗

)
L3

(
Y s−1 − y

h∗

)
/

T∑

s=1

L1

(
Xs−1 −X∗

t−1

h∗

)
;

(2) Based on the bootstrapped sample {(X∗
t , Y

∗
t )}Tt=1, we compute the bootstrapped version of the test

statistic: Γ̂∗
τ =

Th
d/2
2

̂C∗
τ (Y→X)
σ̂∗
0τ

;

(3) Repeat the steps (1)-(2) B times so that we get Γ̂∗
j,τ , for j = 1, . . . , B;

3For details about how to generate the bootstrap replicates computationally, see Paparoditis and Politis (2000, Remark 2.1).
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(4) Compute the bootstrapped p-value using p∗ = B−1∑B
j=1 1(Γ̂

∗
j,τ > Γ̂τ ), where Γ̂τ =

Th
d/2
2

̂Cτ (Y→X)
σ̂0τ

is the

test statistic based on the original sample {(Xt, Yt)}Tt=1, and for a given significance level α, we reject the

null hypothesis if p∗ < α.

In the above bootstrap-based procedure, we have taken the same bandwidth h∗ for the nonparametric

kernel estimators of the marginal density of Xt−1 and the conditional densities of Xt and Y t−1 given Xt−1.

However, in principle, one can use different bandwidths without invalidating the local smoothed bootstrap.

The next theorem establishes the asymptotic validity of the smoothed local bootstrap-based procedure [refer

to the proof of Theorem 3 in Appendix B of the Online Technical Appendix].

Theorem 3 Suppose the assumptions in Theorem 2 and Assumption A.10 hold. Then, we have

Γ̂∗
τ :=

Thd/22
̂C∗

τ (Y → X)

σ̂∗
0τ

d−→∗ N (0, 1)

in probability induced by the bootstrap resampling conditional on the original sample {(Xt, Yt)}Tt=1, as T → ∞,

where σ̂∗2
0τ is analogously defined as in Theorem 2.

The result in Theorem 3 provides an asymptotically valid approximation to the limiting null distribution

of Γ̂τ . Regardless of whether the null hypothesis is true or not, the test statistic Γ̂∗
τ will be normally

distributed, but with different mean.

7 Extension: Additional control variables

In this section, we consider an additional control variable W , which can play the role of auxiliary variables

and transmit a possible indirect causality between the variables of interest X and Y. As for the processes

X and Y , let {Wt ∈ R, t = 0, . . . , T} be a sample of strictly stationary stochastic process in R, and denote

W t−1 = (Wt−1, . . . ,Wt−d3)
′, for some fixed known integer d3 ≥ 1. Hereafter, we focus on the estimation of

the measure of Granger causality in quantiles from Y to X in the presence of W. We can, in a similar way,

define an estimator of the measure of Granger causality in quantiles from X to Y , after controlling W .

To simplify the derivation of the main results in the presence of the auxiliary variable W, the following

unconstrained partially linear quantile regression model is considered, i.e. for a fixed quantile τ ∈ (0, 1),

Xt = φ′
τW t−1 + qτ

(
Zt−1

)
+ εt, (20)

where Zt−1 =
(
X ′

t−1, Y
′
t−1

)′
is a d ≡ d1 + d2 dimensional vector that contains the past of X and Y , φτ is

a d3-dimensional vector of unknown parameters, and εt is an error term with its τ -th conditional quantile,

conditional on (W ′
t−1, Z

′
t−1)

′, equal to zero. The quantile regression in (20) is a linear function of the past of

W (i.e. φ′
τW t−1) and a nonlinear function of the past of X and Y (i.e. qτ

(
Zt−1

)
). It is assumed throughout
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that the remainder of this section that φτ and qτ are identified uniquely. For sufficient conditions that

guarantee the identification of the model (20), the readers can refer to Theorem 1 of Lee (2003). Partially

linear quantile regression models are particularly useful because they compromise flexibly between fully

parametric and fully nonparametric models to avoid the loss of precision due to the curse of dimensionality

while making weaker assumptions about the functional form of the regression model.

Similarly, the constrained partially linear quantile regression model is given by

Xt = φτ
′
W t−1 + q̄τ

(
Xt−1

)
+ εt, (21)

where Xt−1 = (Xt−1, . . . , Xt−d1)
′ is a d1-dimensional vector that contains the past of X, φτ is a d3-

dimensional vector of unknown parameters, and εt is an error term with its τ -th conditional quantile,

conditional on (W ′
t−1, X

′
t−1)

′, equal to zero. Note that the linear parts in the constrained and unconstrained

partially linear quantile regressions are similar; thus, the only difference between the two quantile regressions

is in the nonlinear parts that depend on different information sets.

Based on the constrained and unconstrained partially linear quantile regressions in (20) and (21), we

define the following measure of Granger causality from Y to X through its τ -th quantile, for τ ∈ (0, 1), after

controlling for the presence of the auxiliary variable W that might be the source of indirect causality:

CPL
τ (Y → X|W ) = ln

⎛

⎝
E
[
ρτ
(
Xt − φτ

′
W t−1 − q̄τ

(
Xt−1

))
w
(
Zt−1

)]

E
[
ρτ
(
Xt − φ′

τW t−1 − qτ
(
Zt−1

))
w
(
Zt−1

)]

⎞

⎠ , (22)

where the superscript PL stands for “partial linear”, and w(·) is a user-chosen weighting function.

We here follow Lee’s (2003) and Sun’s (2005) approaches for the estimation of φτ , qτ , φτ , and q̄τ . For

more details on the estimation of partially linear quantile regression, the reader can refer to Lee (2003) and

Sun (2005). Using estimates of φτ , qτ , φτ , and q̄τ , the measure of causality in quantile given control variables

W defined in Equation (22) can be consistently estimated using the following estimator:

̂CPL
τ (Y → X|W ) = ln

⎛

⎜⎜⎝

∑T
t=1 ρτ

(
Xt − φ̂τ

′
W t−1 − ̂̄qτ

(
Xt−1

))
w
(
Zt−1

)

∑T
t=1 ρτ

(
Xt − φ̂τ

′
W t−1 − q̂τ

(
Zt−1

))
w
(
Zt−1

)

⎞

⎟⎟⎠ . (23)

The following two theorems, respectively, provide the Bahadur representation and a non-degenerate

asymptotic normal distribution for the nonparametric estimator ̂CPL
τ (Y → X|W ) in (23), under the null

hypothesis H0 : CPL
τ (Y → X|W ) = 0. The proofs are similar to those of Theorems 1 and 2; hence, only

sketched proofs of Theorems 4 and 5 below will be found in Appendix B of the Online Technical Appendix.

Theorem 4 Let d = d1 + d2. Suppose Assumptions A.1-A.10 in Appendix A of the Online Technical

Appendix hold, p > d1/2 − 1, h1 = O(T−κ1) with 1/(2p + 2 + d1) < κ1 < 1/(2d1), q > d/2 − 1, and
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h2 = O(T−κ2) with 1/(2p+ 2 + d) < κ2 < 1/(2d). Then, for a given τ ∈ (0, 1), we have

√
T
(

̂CPL
τ (Y → X|W )− CPL

τ (Y → X|W )
)
=
(
1 + CPL

τ (Y → X|W )
) 1√

T

T∑

t=1

(
ePL
t − uPL

t

)
+ op(1),

where

ePL
t =

ρτ
(
Xt − φτ

′
W t−1 − q̄τ

(
Xt−1

))
w
(
Zt−1

)
− E

[
ρτ
(
Xt − φτ

′
W t−1 − q̄τ

(
Xt−1

))
w
(
Zt−1

)]

E
[
ρτ
(
Xt − φτ

′
W t−1 − q̄τ

(
Xt−1

))
w
(
Zt−1

)] ,

and

uPL
t =

ρτ
(
Xt − φ′

τW t−1 − qτ
(
Zt−1

))
w
(
Zt−1

)
− E

[
ρτ
(
Xt − φ′

τW t−1 − qτ
(
Zt−1

))
w
(
Zt−1

)]

E
[
ρτ
(
Xt − φ′

τW t−1 − qτ
(
Zt−1

))
w
(
Zt−1

)] .

Theorem 5 Let d = d1 + d2. Suppose Assumptions A.1-A.10 in Appendix A of the Online Technical

Appendix hold, p > d1/2 − 1, h1 = O(T−κ1) with 1/(2p + 2 + d1) < κ1 < 1/(2d1), q > d/2 − 1, and

h2 = O(T−κ2) with 1/(2p+2+d) < κ2 < 1/(2d). Then, under the null hypothesis H0 : CPL
τ (Y → X|W ) = 0,

for a given τ ∈ (0, 1), we have

Thd/22
̂CPL

τ (Y → X|W )
d−→ N (0,σPL2

0τ ),

where

σPL2
0τ ≡ 2τ2 (1− τ)2

κPL (τ)2

∫
K2 (u) du

∫
w2 (z)

f2
ε|Z (0|z)

dz,

with κPL (τ) = E
[
ρτ
(
Xt − φ′

τW t−1 − qτ
(
Zt−1

))
w
(
Zt−1

)]
, fε|Z (0|z) is the conditional density of εt :=

Xt − φ′
τW t−1 − qτ

(
Zt−1

)
given Zt−1 = z evaluated at εt = 0.

Note that σPL2
0τ can be estimated consistently by σ̂PL2

0τ similar as (16). Lastly, as in the aforementioned

partially linear quantile regressions, the linear parameter φτ [resp. φτ ] can be estimated consistently at the

parametric
√
T -rate, which is much faster than the convergence rate of the nonparametric part qτ [resp. q̄τ ],

the estimation effect of φ̂τ [resp. φ̂τ ] is asymptotically negligible; hence, it is possible to derive the above

results for the causality measure from Y to X replacing Xt by X̃t = Xt − φ̂′
τW t−1 [resp. Xt − φ̂τ

′
W t−1] as

if φτ [resp. φτ ] were known.

8 Monte Carlo simulations

In this section, we conduct a Monte Carlo simulation study to investigate the performance of the bootstrap-

based test, which we suggested previously for testing the statistical significance of our measures of Granger

causality in quantiles. Our primary interest is to evaluate the empirical size and power of the test in Theorem

3. Further, we will compare with size and power of Jeong et al.’s (2012) nonparametric test for testing the

Granger non-causality in quantile.
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All through this section, we consider two univariate time series processes Xt and Yt. The null hypothesis

of interest corresponds to Granger non-causality in quantile from Y to X, i.e. H0 : Cτ (Y → X) = 0, for a

given quantile τ ∈ (0, 1). In the sequel, ηt and εt are two independent sequences of i.i.d. standard normal

random variables.

8.1 Bootstrap-based Test

Though the asymptotic-based test Γ̂τ in (17), given by Theorem 2, is not time consuming and easy to

implement, the empirical size of the test statistic Γ̂τ in small samples may differ significantly from that of

the significance level. The size distortion is almost unavoidable for small samples, which has been confirmed

in our unreported simulations. However, it is also known that some types of bootstrap such as smoothed

local bootstrap or moving block bootstrap can help eliminate or mitigate the asymptotically negligible higher

order terms, which may have a substantial and adverse effect on the size of Γ̂τ for small sample studies.

Additional benefits of using smoothed local bootstrap test are that it can handle the unknown form of

dependence in the data and - based on simulations - it is not very sensitive to changes in the bandwidth

parameter. Thus, our primary interest is to evaluate the empirical size and power of the bootstrap-based

test in Theorem 3 using the data generating processes (DGPs) presented in Table 1.

Before we discuss the DGPs in Table 1, we should recall the following. Assume that the variable Xt is

a linear/nonlinear function of its own past, IX(t − 1), and the past of Y, IY (t − 1). Formally, consider the

following mean regression equation:

Xt = µ (IX(t− 1), IY (t− 1)) + εt, (24)

where εt is an error term that satisfies E [εt |IX(t− 1), IY (t− 1) ] = 0. The latter assumption implies that

E (Xt |IX(t− 1), IY (t− 1)) = µ (IX(t− 1), IY (t− 1)) .

Now, if we further assume that εt is a N
(
0,σ2

)
, then the τ -th quantile of Xt, conditional on the past

IX(t− 1) ∪ IY (t− 1), will be given by

Qτ (Xt |IX(t− 1), IY (t− 1)) = µ (IX(t− 1), IY (t− 1)) + σΦ−1 (τ) , for τ ∈ (0, 1), (25)

where Φ (·) is the cumulative distribution function of the standard normal N (0, 1) .

Equations (24) and (25) show that under normality assumption of the error term εt, linear/nonlinear

Granger (non-)causality in mean from Y to X is equivalent to linear/nonlinear Granger (non-)causality

in quantiles from Y to X. Consequently, since the error terms in Table 1 are assumed to be normally

distributed, (non-)causality in mean implies (non-)causality in quantiles. Thus, the eight DGPs in Table 1

will be used to evaluate the empirical size and power of the bootstrap-based test in Theorem 3. The last
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Table 1: Data generating processes

DGPs Variables of Interest Direction of Causality

Yt Xt

DGP S1 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + ηt X # Y, Y # X

DGP S2 Yt = 0.5Yt−1 + 0.5Xt−1 + εt Xt = 0.5Xt−1 + ηt X → Y, Y # X

DGP P1 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + 0.5Yt−1 + ηt X # Y, Y → X

DGP P2 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + 0.5Yt−1 + 0.5 sin(−2Yt−1) + ηt X # Y, Y → X

DGP P3 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1 + 0.5Y 2
t−1 + ηt X # Y, Y → X

DGP P4 Yt = 0.5Yt−1 + εt Xt = 0.5Xt−1Yt−1 + ηt X # Y, Y → X

DGP P5 Yt = −0.3Yt−1 + εt Xt = 0.65Xt−1 + 0.2Yt−1 +
√

1 + Y 2
t−1ηt X # Y, Y → X

DGP P6 Yt = −0.3Yt−1 + εt Xt = 0.65Xt−1 +
√
1 + Y 2

t−1ηt X # Y, Y → X

Note: This table summarizes the DGPs, which we consider in the simulation study, to investigate the properties (size

and power) of nonparametric test of causality measures in quantiles. We simulate (Yt, Xt), for t = 1, . . . , T, under

the assumption that (εt, ηt)′ are i.i.d from N (0, I2) with I2 the 2 × 2 identity matrix. The last column of the table

summarizes the directions of causality and non-causality in each DGP. “→” and “#” refer to Granger causality and

non-causality, respectively.
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column of this table summarizes the directions of (non-)causality in quantiles in those DGPs. Since in DGP

S1 and DGP S2 the null hypothesis of Y Granger non-causing X in quantiles is satisfied, they are used

to investigate the size property of our test. In particular, in DGP S1 neither X Granger causes Y nor Y

Granger causes X, while in DGP S2 X Granger causes Y but Y does not Granger cause X. DGP S2 is used

to examine whether the size of our test for Granger causality of Y to X is affected by the Granger causality

of X to Y . On the other hand, in DGP P1 to DGP P6 [the exception is when τ = 0.50; i.e. Φ−1 (τ) = 0,

thus DGP P6 falls under the null], the null hypothesis is not satisfied, and therefore, these six GDPs serve

the purpose of illustrating the power of our test. Further, notice that DGP P2 to DGP P6 are nonlinear

and DGP P6 is taken from Example 1 in our motivating section. All DGPs under consideration are strictly

stationary and ergodic processes.

For the estimation of nonparametric quantile regressions, consequent to the measures of Granger causality

in quantiles, we use the nonparametric estimator defined in (13) with a polynomial order of p = 1 (i.e. local

linear estimator). The weight function w(·) in the estimator of the measure in Equation (12) is set to be

equal to one everywhere, i.e. the trivial weight function, given that the performance here is not depending

heavily on the weight function. Further, to estimate the conditional restricted and unrestricted quantile

regression functions, we take the univariate kernel function K(·) equal to the standard normal density. For

the multivariate case, we use the product kernel.

The bandwidths used to estimate the univariate (restricted) and bivariate (unrestricted) quantile regres-

sions have the forms h1 = cst1T−1/5 and h2 = cst2T−1/6, respectively, where cst1 and cst2 are selected using

the cross-validation technique for quantile estimation, refer to Tong and Yao (2000) and Noh, et al. (2013)

among others. For simplicity, the bandwidth h∗, used to generate the bootstrap samples, is assumed to

take the same values as the above univariate bandwidth h1. How to choose the bandwidths h1 and h2 to

maximize our test’s power is not yet investigated and requires more attention in future studies. Gao and

Gijbels (2008) have proposed to use the Edgeworth expansion of the asymptotic distribution of the test in

order to choose the bandwidth such that the power function of the test is maximized while the size function

is controlled. Furthermore, three sample sizes T = 50, 100 and 200 are considered. For each DGP, we

first generate T + 300 observations and then discard the first 300 observations to minimize the potential

adverse effect of the initial values. We use 500 simulations to compute the empirical size and power. For

each Simulation, we use B = 199 bootstrap replications. Finally, we focus on the nominal size 5% and we

report the results for five different quantiles: τ = 0.10, 0.25, 0.50, 0.75 and 0.90.

Table 2 reports the empirical size and power of the bootstrapped test statistic Γ̂∗
τ in Theorem 3. As

expected, the local bootstrap-based test controls its size for both small and moderate samples in DGP S1

in which non-causality of X and Y holds in both directions. However, the test is conservative in DGP S2

potentially due to the presence of Granger causality of X to Y while testing for the Granger causality of Y to
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Table 2: Empirical size and power of our test

Quantiles DGPs

DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6

T = 50

τ = 0.10 0.036 0.046 0.118 0.130 0.328 0.194 0.132 0.100

τ = 0.25 0.036 0.024 0.118 0.130 0.328 0.194 0.132 0.100

τ = 0.50 0.046 0.040 0.136 0.112 0.242 0.156 0.108 0.044

τ = 0.75 0.048 0.028 0.112 0.122 0.264 0.144 0.128 0.114

τ = 0.90 0.048 0.046 0.112 0.122 0.264 0.144 0.128 0.114

T = 100

τ = 0.10 0.044 0.030 0.334 0.332 0.672 0.416 0.282 0.230

τ = 0.25 0.044 0.028 0.334 0.332 0.672 0.416 0.282 0.230

τ = 0.50 0.052 0.018 0.312 0.358 0.720 0.474 0.230 0.048

τ = 0.75 0.050 0.018 0.282 0.326 0.690 0.472 0.272 0.258

τ = 0.90 0.050 0.018 0.282 0.326 0.690 0.472 0.272 0.258

T = 200

τ = 0.10 0.048 0.008 0.696 0.762 0.974 0.882 0.684 0.422

τ = 0.25 0.048 0.018 0.696 0.762 0.974 0.882 0.684 0.422

τ = 0.50 0.046 0.012 0.732 0.822 0.982 0.890 0.604 0.046

τ = 0.75 0.054 0.022 0.670 0.708 0.980 0.876 0.658 0.454

τ = 0.90 0.054 0.024 0.670 0.708 0.980 0.876 0.658 0.454

Note: This table reports the empirical size and the power of our local bootstrap-based test in Theorem 3 for testing

the Granger non-causality in quantiles from Y to X at α = 5% significance level. Note that when τ = 0.50, DGP P6

falls under the null. The number of simulations is equal to 500 and the number of bootstrap resamples is B = 199.
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X. Concerning the power, Table 2 shows that this test has a reasonable power against various alternatives.

Its power is low for T = 50; however, it rapidly increases as we increase the sample size to T = 100 and 200.

Moreover, for extreme (upper and lower) quantiles the results are almost the same perhaps because very

few observations are used given the sample sizes we considered. In general, given the small and moderate

samples that are under consideration, the performance of local bootstrap-based test is satisfactory for the

quantiles examined.

8.2 Comparison with Jeong et al.’s (2012) test

We saw in Section 5.2 that testing that the causality measure is equal to zero is equivalent to testing for

Granger non-causality in quantile. Thus, the tests in Theorems 2 and 3 can be viewed as tests of Granger

non-causality in quantile. Jeong et al. (2012) have recently proposed a nonparametric test for Granger

causality in quantiles. For β-mixing processes and under the null hypothesis of non-causality in quantile,

the asymptotic distribution of Jeong et al.’s (2012) test statistic is given by a standard normal distribution.

However, Jeong et al. (2012) do not provide a bootstrap-based test as we have done in this study. It is

worth mentioning that for finite samples, one might expect that our bootstrap-based test will perform better

than Jeong et al.’s (2012) asymptotic-based test, which is justified only for the large samples only. In the

following, for the sake of fair comparison, we investigate the performance of our local bootstrap-based test

with Jeong et al.’s (2012) test implemented with the same local bootstrap procedure. But we have to remark

that justifying validity of the local bootstrap procedure for their test statistic is not the main objective of

this paper and thus we leave its formal justification for future study.

In this subsection, we consider an additional simulation exercise to compare the empirical size and power

of our bootstrap-based test in Theorem 3 with those of Jeong et al.’s (2012) nonparametric test. We generate

data according to the following model adapted from DGP P6 in Table 1:

Xt = 0.65Xt−1 +
√

1 + cY 2
t−1ηt, Yt = −0.3Yt−1 + εt,

where c is a non-negative constant, and εt and ηt are independent standard normal random variables. Here,

c = 0 corresponds to the null hypothesis of non-causality from Y to X. Thus, the above DGP under c = 0 is

used to investigate the size property of the two tests. However, the null hypothesis is not satisfied whenever

c > 0, and therefore the above GDP under c > 0 serves to illustrate the power of the tests. It is worthwhile

to notice that, when c > 0, there is no causality in the mean from Y to X, but there is causality in quantiles

from Y to X. To investigate the power of both tests, we take c = 0.3, 0.5, 0.7, 0.9, 1.1, such that the

higher c is the stronger the causality from Y to X is. The empirical size and power of both local bootstrap-

based tests are computed using 500 replications and 199 bootstraps. To demonstrate the small or moderate

sample improvement of bootstrap procedure, results for our asymptotic-based test and Jeong et al.’s (2012)
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asymptotic-based test are also reported, which are based on 1000 replications and one-sided critical values

from standard normal distribution. Furthermore, for the purpose of making fair comparison, for our test,

we use the following univariate bandwidth h1 = T−1/5 and bivariate bandwidths h2 = T−1/6, and for Jeong

et al.’s (2012) test, the same univariate bandwidth h1 = T−1/5 is adopted. Sample sizes T = 50, 100, and

200 are considered to facilitate the comparison of the finite-sample performance of the two tests. Finally, to

save space, results for quantiles τ = 0.25, 0.50, and 0.75 are provided.

Table 3 compares the empirical size and power of our bootstrap and asymptotic-based tests with those

of bootstrap and asymptotic-based tests of Jeong et al.’s (2012) for testing the non-causality in quantiles

from Y to X at α = 5% significance level. From this, we observe that under the null hypothesis [column

c = 0], there is a serious size distortion (oversized) for both our asymptotic-based test and the Jeong et

al.’s (2012) asymptotic-based test (results in parentheses), while, as expected, both bootstrap-based tests

are able to preserve the size well. This result is consistent across different levels of quantiles and sample

sizes under examination. In addition, the power of Jeong et al.’s (2012) bootstrap-based tests is almost

always dominated by the power of our bootstrap-based test, especially for slightly larger c’s and T = 100

and 200. For example, when c = 1.1, τ = 0.75 and T = 200, our bootstrap-based test has a power of 50%,

i.e., five times higher than the power of the bootstrap-based test of Jeong et al.’s (2012). This illustrates the

usefulness of using our local bootstrap-based test for finite sample studies when sample sizes are limited.

8.3 Bootstrap-based Bias Correction

In the previous sections, we have investigated the finite sample properties of the Γ̂τ test in Theorem 2.

Here we provide additional simulation results to examine a bootstrap bias-corrected estimator of measure

of Granger causality in quantile. Our estimator is motivated again from the local smoothed bootstrap

proposed by Paparoditis and Politis (2000), which can conserve the conditional dependence structure in the

data. The procedure is simple. We first use bootstrapped sample to compute the finite sample bias in the

nonparametric estimator of quantile Granger causality measure. We then subtract the bias term to obtain

a bootstrap bias-corrected estimate. The estimate is easy to obtain in the following four steps:

(1) We draw a bootstrapped sample {(X∗
t , Y

∗
t )}Tt=1 using the step (1) described in Section 6;

(2) Based on the bootstrapped sample {(X∗
t , Y

∗
t )}Tt=1, we compute the bootstrapped version of the quantile

Granger causality measure ̂C∗
τ (Y → X);

(3) Repeat the steps (1)-(2) B times so that we get ̂C∗
j,τ (Y → X), for j = 1, . . . , B;

(4) We approximate the bias term Bias = E[ ̂Cτ (Y → X)−Cτ (Y → X)] by the corresponding bootstrapped

bias Bias∗ = E∗[ ̂C∗
τ (Y → X) − ̂Cτ (Y → X)], where E∗ is the expectation based on the bootstrapped

distribution of ̂C∗
τ (Y → X), and ̂Cτ (Y → X) is the estimate of Cτ (Y → X) using the original sample.
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Table 3: Empirical size and power of our test and Jeong et al.’s (2012) test

Quantiles DGPs

c = 0 c = 0.3 c = 0.5 c = 0.7 c = 0.9 c = 1.1

ST JHS ST JHS ST JHS ST JHS ST JHS ST JHS

T = 50

τ = 0.25 0.044 0.037 0.040 0.045 0.110 0.055 0.088 0.049 0.112 0.050 0.116 0.062

(0.075) (0.073) (0.062) (0.085) (0.074) (0.080) (0.080) (0.075) (0.072) 0.080 (0.080) (0.078)

τ = 0.50 0.046 0.051 0.042 0.044 0.060 0.056 0.064 0.047 0.049 0.060 0.058 0.052

(0.052) (0.058) (0.074) (0.072) (0.060) (0.061) (0.058) (0.053) (0.059) (0.056) (0.078) (0.075)

τ = 0.75 0.036 0.041 0.046 0.056 0.076 0.054 0.090 0.064 0.116 0.062 0.114 0.053

(0.066) (0.067) (0.062) (0.073) (0.083) (0.075) (0.076) (0.085) (0.079) (0.073) (0.073) (0.071)

T = 100

τ = 0.25 0.044 0.046 0.058 0.072 0.112 0.059 0.162 0.073 0.222 0.092 0.208 0.075

(0.076) (0.102) (0.082) (0.095) (0.091) (0.100) (0.083) (0.097) (0.103) (0.102) (0.093) (0.105)

τ = 0.50 0.048 0.043 0.057 0.043 0.048 0.056 0.058 0.071 0.062 0.067 0.064 0.077

(0.051) (0.069) (0.068) (0.066) (0.061) (0.078) (0.079) (0.074) (0.076) (0.083) (0.069) (0.076)

τ = 0.75 0.042 0.044 0.082 0.048 0.130 0.054 0.162 0.070 0.188 0.067 0.212 0.071

(0.078) (0.071) (0.075) (0.086) (0.083) (0.093) (0.094) (0.110) (0.087) (0.077) (0.093) (0.091)

T = 200

τ = 0.25 0.048 0.049 0.124 0.070 0.208 0.055 0.346 0.090 0.442 0.090 0.478 0.100

(0.074) (0.092) (0.100) (0.114) (0.112) (0.096) (0.118) (0.129) (0.129) (0.133) (0.137) (0.133)

τ = 0.50 0.046 0.050 0.054 0.059 0.058 0.048 0.052 0.049 0.045 0.050 0.040 0.044

(0.062) (0.068) (0.075) (0.083) (0.079) (0.078) (0.092) (0.097) (0.069) (0.068) (0.072) (0.067)

τ = 0.75 0.034 0.037 0.162 0.066 0.240 0.077 0.308 0.073 0.426 0.109 0.500 0.094

(0.086) (0.088) (0.092) (0.090) (0.107) (0.118) (0.110) (0.137) (0.122) (0.118) (0.137) (0.128)

Note: This table reports and compares the empirical size and power of our local bootstrap-based test [hereafter ST]

with a local bootstrap-based test of Jeong et al.’s (2012) [hereafter JHS] for testing Granger non-causality in quantile

from Y to X at α = 5% significance level. The table also provides the results for the two asymptotic-based tests: see

the values between parentheses. Note that when τ = 0.50, the considered DGPs fall under the null. The number of

simulations is equal to 500 and the number of bootstrap resamples is B = 199.
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This suggests the bias estimate

B̂ias
∗
=

1

B

B∑

j=1

̂C∗
j,τ (Y → X)− ̂Cτ (Y → X).

Hence, a bootstrap bias-corrected estimator of measure of quantile Granger causality from Y to X at the

τ -th quantile is given by

̂C∗
τ,BC(Y → X) = ̂Cτ (Y → X)− B̂ias

∗
. (26)

In practice and especially when the true value of quantile causality measure is zero or close to zero, it

is possible that for some bootstrapped samples the quantity ̂C∗
τ,BC(Y → X) becomes negative. In this case

we follow Dufour and Taamouti (2010) and suggest to impose the following non-negativity truncation:

̂C∗
τ,BC(Y → X) = max

{
̂C∗

τ,BC(Y → X), 0
}
.

Tables 1, 2, and 3 of the Online Technical Appendix report some additional simulation results for the

bootstrap bias-corrected estimates of measures of Granger causality at quantiles τ = 0.25, 0.50 and 0.75,

for sample sizes T = 50, 100, 200 and 400. We consider the DGPs described in Table 1. The same kernel

and bandwidths as in the previous sections are adopted. The bias terms and the average values of the

bootstrap bias-corrected quantile causality measures are computed based on 500 simulations and B = 199

bootstrap replications. From the three tables, we see that when there exist no Ganger causality from Y

to X at the three considered quantiles for DGPs S1 and S2, the bootstrap bias-corrected estimates are

close to zero and not statistically significant according to their standard deviations, while for DGPs P1-P6

these estimates are clearly different from zero and significantly positive judging by the associated standard

deviations. Moreover, we find that the bootstrap bias-corrected estimates decrease as sample size increases

for the considered DGPs, possibly due to the large finite sample bias in the nonparametric estimators.

9 Empirical application

This section aims to apply the causality measures, defined in the previous sections, to quantify and compare

the predictability of quantiles of conditional distribution of stock returns using several economic and financial

variables. The ultimate objective is to find which of these variables- financial or macro variables-help predict

better the quantiles of stock returns.

The issue of predicting the conditional distribution of stock returns using quantile regressions has been

the focus of many recent studies. For example, Chuang, Kuan, and Lin (2009) have investigated the causality

(predictability) between stock return and volume based on parametric quantile regressions. Using a sup-

Wald-type test for testing the Granger non-causality in all quantiles, they found that the causality from

volume to return is usually heterogeneous across quantiles. In particular, the quantile causal effects of volume
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on return exhibit a spectrum of (symmetric) V-shape relations so that the dispersion of return distribution

increases with lagged volume. Cenesizoglu and Timmermann (2007) have also used a parametric quantile

regression framework to look at whether a range of common predictor variables proposed in the finance

and macro literature (e.g. Book to Market Ratio, Dividend Yield, Dividend Price Ratio, Inflation, T-bill,

Stock Variance, Earnings Price Ratio, etc.) are helpful in predicting (Granger causing) specific quantiles

of the stock return distribution. Empirically, they found little evidence to suggest that the center of the

return distribution can be predicted. However, their main findings suggest that the tails of stock returns

can be predicted by means of state variables proposed in the literature. Yang, Tu, and Zeng (2014) have

applied parametric regression models to investigate the Granger causality in mean and quantiles between

stock returns and exchange rate for nine Asian markets. Their empirical results show that there are more bi-

directional causal relations based on the quantile regression than the conventional mean regression. Finally,

Engle and Manganelli (2004) have used nonlinear parametric regressions to model the Value-at-Risk (VaR)

of stock returns, which corresponds to predicting lower quantiles of the distribution of returns.

Thus, most existing works, focus on the predictability of quantiles of stock return distribution based on

the parametric quantile regressions. In this section, we consider nonparametric predictability of quantiles of

stock returns using several economic and financial variables. The nonparametric causality measures, defined

in the previous sections, do not impose any restriction on the model linking the dependent variable (stock

return) to the independent variable (financial/macroeconomic variables).

Our data consist of monthly aggregate S&P 500 index over the period of January 1990 to December 2014

and monthly Variance Risk Premium, Unemployment rate, Inflation, Effective Federal Funds rate, over the

period January 1990 to December 2014. The variance risk premium is defined as the difference between

the ex-ante risk neutral expectation of the future stock return variance and the expectation of stock return

variance. Following Bollerslev et al. (2009) and Zhou (2010), we estimate the variance risk premium by the

difference between the squared-Volatility Index (VIX) and lagged realized variance.

Our empirical analysis is based on the logarithmic return of the S&P 500 index and the macro variables

that we transformed using the first-difference in log. Furthermore, the estimation and inference of measures

of causality in quantiles are performed using the same kernel functions as in Section (8.1). Finally, again

as in Section (8.1), the bandwidths used to estimate the univariate and bivariate quantile regressions have

the forms h1 = cst1T−1/5 and h2 = cst2T−1/6, respectively, where cst1 and cst2 are selected using the

cross-validation technique for quantile estimation.

9.1 Empirical results

Table 4 presents the results of estimating the measures of Granger causality in quantiles from variance

risk premium, unemployment rate, inflation, and effective federal funds rate to S&P 500 stock returns.
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Table 4: Measures of causality (predictability) in quantiles of S&P 500 returns

Direction of Causality Quantiles Estimate of Causality Measure p-value

V RP → RP

τ = 0.25 3.825** 0.012

τ = 0.50 5.178** 0.030

τ = 0.75 3.717** 0.038

UNEMP → RP

τ = 0.25 1.094 0.414

τ = 0.50 1.095 0.484

τ = 0.75 1.084 0.344

INFL → RP

τ = 0.25 0.415 0.654

τ = 0.50 0.386 0.520

τ = 0.75 0.401 0.484

EFF → RP

τ = 0.25 2.241** 0.026

τ = 0.50 2.175 0.106

τ = 0.75 2.125** 0.038

Note: This table reports the results of the estimation and inference for measures of Granger causality (predictability)

in quantiles from variance risk premium (VRP), Unemployment rate (UNEMP), Inflation (INFL), Effective Federal

Funds rate (EFF) to S&P 500 risk premium (RP). “**” means the statistical significance at 5% significance level. The

sample size is calculated from January 1990 to December 2014.

Furthermore, it reports the p-values for testing the statistical significance of the estimates of the measures

using the bootstrap-based procedure introduced in Section 6.

Table 4 shows that the degree of predictability (causality) of quantiles of stock returns using variance

risk premium is much higher compared to that of the other three variables. The degree is even higher at the

median compared to the 0.25-th and 0.75-th quantiles of stock returns. Thus, the variance risk premium

affects more the center of the distribution of stock returns. The estimates of the measures at different

quantiles of stock returns are statistically significant at 5% significance level. Thereafter, the degree of

predictability of quantiles of stock returns, using effective federal funds rate, is also high compared to those

produced by unemployment rate and inflation. The estimates of the measures are statistically significant at

5% significance level for the 0.25-th and 0.75-th quantiles; however, not so for the median, which indicates
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that the effective federal funds rate only affects the left and right tails of the distribution of stock returns,

but not its center. Finally, it seems that the degrees of predictability of quantiles of stock returns using

unemployment rate and inflation are weak and statistically insignificant. Finally, the above results show that

only financial variables help predict quantiles of S&P 500 stock returns. On the contrary, the economic and

statistical significances of the causal effect of macro variables on quantiles of stock returns are not significant.

10 Conclusion

We have considered measures of Granger causality in quantiles that are able to detect and quantify both linear

and nonlinear causal effects between random variables. The measures are based on nonparametric quantile

regressions and defined as logarithmic function of restricted and unrestricted expectations of quantile check

loss functions. They can be easily and consistently estimated by replacing the unknown expectations of check

loss functions by their nonparametric kernel estimates. We derived a Bahadur-type representation for the

nonparametric estimator of the measures. We provided the asymptotic distribution of this estimator, which

can be used to build tests for the statistical significance of the measures. We also examined the properties

of these tests under certain local alternatives. Thereafter, we established the validity of a smoothed local

bootstrap, which one can use in finite-sample settings, to perform statistical tests. A Monte Carlo simulation

study revealed that the bootstrap-based test has a good finite-sample size and power properties for a variety

of data-generating processes and different sample sizes.

Using the above nonparametric test for testing the null hypothesis that the true value of measure is equal

to zero is equivalent to testing for non-causality in quantile. Thus, our test can be viewed as a competitor

of the exiting nonparametric tests of Granger causality in quantile. There is only one nonparametric test

of Granger causality in quantile, which is proposed by Jeong et al. (2012). We considered an additional

simulation exercise to compare the empirical size and power of our test with those of Jeong et al.’s (2012)

test. The simulation results indicate that our test controls the size and has a better power than Jeong et al.’s

(2012) test. We have also suggested a bootstrap bias-corrected estimator for the quantile Granger causality

measure and investigated its finite sample performance using Monte Carlo simulations.

Finally, the empirical importance of measuring Granger causality in quantiles was illustrated. We quan-

tified the degree of predictability of quantiles of equity risk premium using the variance risk premium, unem-

ployment rate, inflation, and the effective federal funds rate. The empirical results showed that the variance

risk premium and effective federal funds rate have strong predictive power for predicting the quantiles of

risk premium, compared to that of the predictive power of the other two macro variables. In particular, the

variance risk premium is able to predict the center, the lower and upper quantiles of the distribution of risk

premium, whereas the effective federal funds rate only predicts the lower and upper quantiles. However, the
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unemployment rate and inflation have no effect on the quantiles of risk premium.
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Measuring Granger Causality in Quantiles: Technical Appendix

February 22, 2020

This document provides the necessary assumptions and the proofs of the theoretical results in the main

text, and some additional simulation results. Appendix A of this document reports a set of standard

assumptions that have been widely used in the literature on nonparametric estimation and inference; see for

example Kong et al. (2010) and Noh et al. (2013) among others. Appendix B contains the detailed proofs

of the theoretical results developed in sections 5, 6 and 7 of the main text. In particular, it contains the

proofs of theorems 1, 2, 3, 4, and 5 and propositions 3 and 4 of the main text. Appendix C provides four

auxiliary lemmas which are useful to prove the results in sections 5-7 of the main text. Finally, Appendix D

contains the tables of some additional simulation results that examine a bootstrap bias-corrected estimator

of measure of Granger causality in quantiles.

Appendix A: Assumptions

First of all, let {(Xt, Yt)} be a jointly stationary process. Since we are interested in time series data, we need

to specify the dependence in the processes of interest. In what follows, we define the mixing dependence

that we consider in this paper. The stationary stochastic process {(Xt, Yt)} is strongly mixing, with γ(k)

its strong mixing coe¢cient, if

γ(k) = sup
A2F0−1,B2F

1
k

|P (AB)− P (A)P (B)|! 0 as k !1,

with Fba = σ
(
{(Xt, Yt)}bt=a

)
, where σ(·) means the smallest sigma algebra. Furthermore, let Vx and Vz be

two open convex sets in Rd1 and Rd1+d2 , respectively. We now consider the following assumptions:

A.1. The processes {(Xt, Yt)} are strongly mixing with mixing coe¢cients γ(k) satisfying

1X

k=1

kα [γ(k)]1−2/ν2 <1,

for some ν2 > 2 and α > max{(p+ d1 + 1)(1− 2/ν2)/d1, (q + d1 + d2 + 1)(1− 2/ν2)/(d1 + d2)}.



A.2. All partial derivatives of q̄τ (x) up to order p + 1 exist and are continuous for all x 2 Vx, and there

exists a constant C1 > 0 such that |Dr q̄τ (x)| ≤ C1, for all x 2 Vx and |r| = p+1. All partial derivatives

of qτ (z) up to order q + 1 exist and are continuous for all z 2 Vz, and there exists a constant C2 > 0

such that |Drqτ (z)| ≤ C2, for all z 2 Vz and |r| = q + 1.

A.3. The marginal density of "t = Xt − qτ (Zt−1) is bounded and satisfies E('("t)|Zt−1) = 0.

A.4. For all e in a neighbourhood of zero, the conditional density f"|Z−1(e|z) of "t = Xt − qτ (Zt−1) given

Zt−1 = z satisfies ∣∣∣f"|Z−1(e|z1)− f"|Z−1(e|z2)
∣∣∣ ≤ Kekz1 − z2k,

where Ke is a positive constant depending on e. Further, the conditional density is positive for e = 0

for all values of z 2 Vz, and its first partial derivative with respect to e, D1f"|Z−1(e|z), is bounded for

all z 2 Vz and e in a neighbourhood of zero.

A.5. The weight function w(z) is continuous, and its support D ⊂ Vz is compact and has non-empty interior.

A.6. The kernel function K(·) has a compact support and
∣∣∣Hj(u)−Hj(v)

∣∣∣ ≤ ku− vk for all j with 0 ≤ j ≤

max{2p+ 1, 2q + 1}, where Hj(u) = ujK(u).

A.7. The probability density function of Zt−1, fZ(z), is positive and bounded with bounded first-order

derivatives on Vz. The joint probability density of (Z0, Z l) satisfies f(Z0,Zl)(u, v; l) ≤ C < 1 for all

l ≥ 1.

A.8. The conditional density fZ−1|X of Zt−1 given Xt exists and is bounded. The conditional density

function f(Z0,Zl)|(X1,Xl+1) of (Z0, Z l) given (X1, Xl + 1) exists and is bounded for all l ≥ 1.

A.9. The bandwidth sequences h1 and h2 satisfy h1 ! 0, Thd1+2(p+1)1 / log T = O(1), h2 ! 0, and

Th
d1+d2+2(q+1)
2 / log T = O(1) as T ! 1. Furthermore, we assume Th2(d1+d2)2 /(log T )3 ! 1, h1 =

o(h2), and h
d1+d2
2 = o(hd11 ).

A.10. The bootstrap bandwidth h∗ satisfies h∗ ! 0 and Th∗ d1+d2+2(q+1)/(log T )λ = O(1), for some λ > 0

as T !1.

The assumptions presented here are frequently seen for nonparametric smoothing in multivariate time

series analysis, see Masry (1996) and Kong et al. (2010). Assumptions A.1-A.2, A.6-A.8 and A.9 are

standard. Assumptions A.4 and A.5 are required to derive the Bahadur representations in Lemmas 3-4 in

Appendix C. Assumption A.10 is assumed to guarantee the consistency of the smoothed local bootstrap.
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Appendix B: Proofs of the main results

This section provides the proofs of the main theoretical results developed in sections 5, 6 and 7 of the main

text.

Proof of Theorem 1: Theorem 1 can be proved by combing the first order Taylor expansion of \Cτ (Y ! X)

around 1 (i.e. using ln y ≈ y−1) and the asymptotic Bahadur representations in Lemmas 3 and 4 of Appendix

C and with the equality â/b̂ = a/b+ b̂−1[(â− a)− (b̂− b)(a/b)]. !

Proof of Theorem 2: Note that for any x, y,

ρτ (x− y)− ρτ (x) = (−y)'(x) + 2(y − x)[1(y > x > 0)− 1(y < x < 0)].

Let bd(x) = b̄qτ (x)− q̄τ (x) and bd(z) = q̂τ (z)−qτ (z). By straightforward calculation, under the null hypothesis

of no causality, we obtain

1

T

TX

t=1

ρτ (Xt − b̄qτ (Xt−1))w(Zt−1)−
1

T

TX

t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

=
1

T

TX

t=1

h(
q̂τ (Zt−1)− qτ (Zt−1)

)
−
(
b̄qτ (Xt−1)− q̄τ (Xt−1)

)i
w(Zt−1)'("t)

+
2

T

TX

t=1

(
Xt − q̂τ (Zt−1)

)n
1(bd(Zt−1) > "1t > 0)− 1(bd(Zt−1) < "t < 0)

o
w(Zt−1)

−
2

T

TX

t=1

(
Xt − b̄qτ (Xt−1)

)n
1(bd(Xt−1) > "t > 0)− 1(

bd(Xt−1) < "t < 0)
o
w(Zt−1)

:=AT +BT + CT .

From the above decomposition, we will show that under the assumed assumptions, the term AT is asymp-

totically normal, and the terms BT and CT are asymptotically negligible.

Now, let us first show the asymptotic negligibility of term BT . Define I(w) = {t : Zt−1 2 D, t = 1, . . . , T}.

Note that Xt − q̂τ
(
Zt−1

)
= −bd

(
Zt−1

)
+ "t. Then,

|BT | ≤
2

T

TX

t=1

w(Zt−1)
∣∣Xt − q̂τ (Zt−1)

∣∣ 1
(
|"t| <

∣∣∣ bd
(
Zt−1

)∣∣∣
)

≤
2

T

TX

t=1

w(Zt−1)
(∣∣∣ bd

(
Zt−1

)∣∣∣+ |"t|
)
1
(
|"t| <

∣∣∣ bd
(
Zt−1

)∣∣∣
)

≤
4

T

TX

t=1

w(Zt−1)
∣∣∣ bd
(
Zt−1

)∣∣∣ 1
(
|"t| <

∣∣∣ bd
(
Zt−1

)∣∣∣
)

≤ 4 max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣max
z2D

w(z)
1

T

TX

t=1

1

(
|"t| < max

s2I(w)

∣∣∣ bd
(
Zs−1

)∣∣∣
)
.

From the Glivenko-Cantelli Theorem for strictly stationary sequences, we have

sup
a2R

∣∣∣∣∣
1

T

TX

t=1

1 (|"t| < a)− Pr (|"| < a)

∣∣∣∣∣ = Op
(
T−1/2

)
,
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It thus follows that

|BT | ≤4 max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣max
z2D

w(z)

{
Pr

(
|"| < max

t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣
)
+Op

(
T−1/2

)}

=4 max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣max
z2D

w(z)

{
F"

(
max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣
)
− F"

(
− max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣
)}

+ 4 max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣max
z2D

w(z) Op

(
T−1/2

)

≤C
(
max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣
)2
+ CT−1/2 max

t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣ ,

where the third step follows from the Taylor expansion of F", bounded marginal density of "t in Assumption

A.3, and bounded weight function w(·) in Assumption A.5. From Kong et al. (2010), we have

max
t2I(w)

∣∣∣ bd
(
Zt−1

)∣∣∣ = Op
(
log T

Thd2

)3/4
,

It follows that BT = Op

((
log T
Thd2

)3/2
+ T−1/2

(
log T
Thd2

)3/4)
= op

((
Th

d/2
2

)−1)
under Assumption A.9.

Similar to the term BT , it can be proved that the term CT = op

((
Th

d1/2
1

)−1)
= op

((
Th

d/2
2

)−1)

under hd2 = o(h
d1
1 ) in Assumption A.9. It follows that it is su¢cient to establish that Th

d/2
2 AT converges in

distribution to a normal random variable with asymptotic variance given by σ̃20τ := κ (τ)
2 σ20τ , for κ (τ) =

E
[
ρτ
(
Xt − qτ

(
Zt−1

))
w
(
Zt−1

)]
.

Using Lemmas 1 and 2 of Appendix C, we have

AT =−
1

T (T − 1)

TX

t=1

TX

s=1,s 6=t

w(Zt−1)e
0
1

H−1
T

hd2
S−1T,q(Zt−1)Kh2(Zs−1 − Zt−1)µ(Zs−1 − Zt−1)'("t)'("s)

+
1

T (T − 1)

TX

t=1

TX

s=1,s 6=t

w(Zt−1)e
0
1

H−1
T

hd11
S−1T,p(Xt−1)Kh1(Xs−1 −Xt−1)µ(Xs−1 −Xt−1)'("t)'("s)

+ op

((
Th

d/2
2

)−1)

:=A1T +A2T + op

((
Th

d/2
2

)−1)
,

where the negligible terms with t = s have been dropped to apply U -statistic theory due to the leave

one observation out in the estimation part. We will show that Thd/22 A1T converges in distribution and

A2T = op

((
Th

d/2
2

)−1)
under our assumptions. First of all, to facilitate our analysis, from the notion of

“equivalent kernel” representation for local polynomial estimator [see Fan and Gijbels, 1996, pp.63-64], we

get

A1T =
1

T (T − 1)

TX

t=1

TX

s=1,s 6=t

w(Zt−1)

f"|Z(0|Zt−1)fZ(Zt−1)
Kh2(Zt−1 − Zs−1)'("t)'("s) + op

((
Th

d/2
2

)−1)

≡ A1T + op
((
Th

d/2
2

)−1)
, say.
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Note that we can rewrite Thd/22 A1T into a standard U -statistic form with a symmetrized kernel depending

on the sample size T , i.e.

Th
d/2
2 A1T =

2

T − 1

X

1≤t<s≤T

UT (χt,χs), (1)

where χt = (Zt−1, "t), UT (χt,χs) = ηT (χt,χs) + ηT (χs,χt), and

ηT (χt,χs) =
w(Zt−1)

2f"|Z(0|Zt−1)fZ(Zt−1)
1

h
d
2
2

K

(
Zt−1 − Zs−1

h2

)
'("t)'("s).

Note that E[UT (χt,χs)] = E[ηT (χt,χs)] = E[UT (χt,χs)|χt] = E[ηT (χt,χs)|χt] = 0 under Assumption

A.3. So the previous U -statistic is a degenerate second order U -statistic. We can apply a central limit

theorem (CLT) for second order degenerate U -statistic with strong mixing processes. Under Assumptions

A.1, A.3, A.6, and A.9, one can verify that the conditions of Theorem A.1 in Gao (2007) are satisfied for

kernel UT (χt,χs) so that a CLT applies to the term Th
d/2
2 A1T . Its asymptotic variance is given by

σ̃20τ = lim
T!1

2EtEs
[
U2T (χt,χs)

]
= lim
T!1

2EtEs
[
ηT (χt,χs)

2 + ηT (χs,χt)
2 + 2ηT (χt,χs)ηT (χs,χt)

]

= 2τ2 (1− τ)2
Z
K2(u) du

Z
w2(z)

f2"|Z(0|z)
dz

:= κ (τ)2 σ20τ ,

where Et denotes the expectation with respect to χt. For example, by straightforward calculation of condi-

tional expectation, we have

lim
T!1

EtEs
[
ηT (χt,χs)

2
]

=
1

4
τ2 (1− τ)2 lim

T!1

Z Z
w2(z1)

f2"|Z(0|z1)f
2
Z(z1)

1

hd2
K2

(
z1 − z2
h2

)
fZ(z1)fZ(z2) dz1 dz2

=
1

4
τ2 (1− τ)2

Z
K2(u) du

Z
w2(z)

f2"|Z(0|z)
dz

by standard use of change of variables and Assumptions A.7 and A.9. The U -statistic representation in (1),

together with the form of asymptotic variance σ̃20τ , implies that Th
d/2
2 A1T = Th

d/2
2 A1T +op(1)

d−! N
(
0, σ̃20τ

)
.

Observing that by using almost the same steps as in proving the asymptotic normality of Thd/22 A1T , we

can prove that Thd1/21 A2T converges in distribution to a normal variable, and therefore Th
d1/2
1 A2T = Op(1).

Thus, Thd/22 AT = Th
d/2
2 A1T +

(
h
d/2
2 /h

d1/2
1

)(
Th

d1/2
1 A2T

)
+ op(1)

d−! N
(
0, σ̃20τ

)
by the assumption hd2 =

o
(
hd11

)
in A.9.

In addition, a consistent estimator for σ̃20τ is given by

b̃σ20τ =2τ2 (1− τ)
2 1

T (T − 1)

TX

t=1

TX

s=1,s 6=t

w2(Zt−1)

bf2",Z(0, Zt−1)
1

hd2
K2

(
Zt−1 − Zs−1

h2

)

=2τ2 (1− τ)2
1

T (T − 1)

TX

t=1

TX

s=1,s 6=t

w2(Zt−1)

f2",Z(0, Zt−1)

1

hd2
K2

(
Zt−1 − Zs−1

h2

)
+ op(1),
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where bf",Z(0, Zt−1) is the leave-one-out kernel density estimator defined in the main text for f",Z(0, Zt−1) ≡

f"|Z(0|Zt−1)fZ(Zt−1). As a consequence, the main term of b̃σ
2

0τ can also be written into a standard U -statistic

form with a symmetrized kernel

HT (Zt−1, Zs−1) = 2τ
2 (1− τ)2

 
w2(Zt−1)

f2",Z(0, Zt−1)
+

w2(Zs−1)

f2",Z(0, Zs−1)

!
1

hd2
K2

(
Zt−1 − Zs−1

h2

)
.

Note that in contrast to (1), b̃σ20τ is a non-degenerate second order U -statistic and by the usual Hoe§ding

decomposition, one can thus show that b̃σ20τ = σ̃20τ + op(1).

Finally, observing that by Taylor expansion of ln y around 1 (i.e. ln y ≈ y− 1) and using the asymptotic

equivalence of [κ (τ) to κ (τ) = E[ρτ (Xt − qτ (Zt−1))w(Zt−1)] stated in Lemma 4 of Appendix C, together

with Slutsky’s theorem, we have

Th
d/2
2

\Cτ (Y ! X) = Th
d/2
2

 
T−1

PT
t=1 ρτ (Xt −

b̄qτ (Xt−1))w(Zt−1)

T−1
PT
t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

− 1

!
+ op(1)

= κ (τ)−1 Th
d/2
2 AT + op(1)

d−! N
(
0,σ20τ

)
,

where σ20τ := σ̃20τ/κ (τ)
2. It is straightforward to show that bσ20τ = b̃σ

2

0τ/
dκ(τ)

2
is a consistent estimator for

σ20τ . Thus, our test statistic bΓτ = Th
d/2
2

\Cτ (Y ! X)/bσ0τ
d−! N (0, 1). This ends the proof of Theorem 2. !

Proof of Proposition 3: This result can be shown by following the same steps as in the proof of Theorem

2. Noting that, under the fixed alternative hypothesis H1 in Equation (15) of the main text, we have

1

T

TX

t=1

ρτ (Xt − b̄qτ (Xt−1))w(Zt−1)−
1

T

TX

t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

=

 
1

T

TX

t=1

ρτ (Xt − q̄τ (Xt−1))w(Zt−1)−
1

T

TX

t=1

ρτ (Xt − qτ (Zt−1))w(Zt−1)

!

+AT +BT + CT

:=DT +AT +BT + CT ,

where the last three terms AT , BT , and CT are as defined before in the proof of Theorem 2. Following

the same arguments as those in Theorem 2, Thd/22 (AT +BT + CT ) = Op(1). As a matter of fact, one can

furthermore prove that all AT , BT and CT are of order op
(
T−1/2

)
, see the proof of lemma 3 in Noh et al.

(2013). On the other hand, under H1 of causality, the weak law of large numbers yields immediately

DT = E
[
ρτ (Xt − q̄τ (Xt−1))w(Zt−1)

]
− E

[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
+ op(1) (2)

= E
[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
 
E
[
ρτ (Xt − q̄τ (Xt−1))w(Zt−1)

]

E
[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

] − 1
!
+ op(1)

= E
[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
Cτ (Y ! X) + op(1)

:= κ (τ)× Cτ (Y ! X) + op(1),
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where the third step follows by a Taylor expansion of ln y around 1.

Therefore, since under H1, Cτ (Y ! X) > 0, or equivalently, Pr
[
qτ (Zt−1) = q̄τ (Xt−1)

]
< 1, we have

Th
d/2
2

\Cτ (Y ! X)

=Th
d/2
2

T−1
PT
t=1 ρτ (Xt −

b̄qτ (Xt−1))w(Zt−1)− T−1
PT
t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

T−1
PT
t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

× [1 + op(1)]

=κ (τ)−1
h
Th

d/2
2 DT + Th

d/2
2 (AT +BT + CT )

i
× [1 + op(1)]

=Th
d/2
2 Cτ (Y ! X)!1.

Alternatively, under H1 of causality, one can simply apply the consistency result in Proposition 2 to

show that \Cτ (Y ! X) converges in probability to Cτ (Y ! X) > 0, and consequently Thd/22
\Cτ (Y ! X) will

diverge to infinity under our assumptions.

On the other hand, following arguments similar to those we have used in the proof of the consistency

of estimator bσ20τ to the asymptotic variance σ20τ in Theorem 2 under the null hypothesis, we can show

that bσ20τ := b̃σ20τ/ bC2τ = Op(1) under the alternative hypothesis of no causality. Proposition 3 follows then

from Th
d/2
2

\Cτ (Y ! X) ! 1 and bσ0τ = Op(1) as T ! 1. Hence, the test bΓτ = Thd/22 \Cτ (Y ! X)/bσ0τ is

diverging to infinity at the rate Thd/22 and is consistent. !

Proof of Proposition 4: First, following similar arguments as in Theorem 2 and Proposition 3, with the

only exception that the term DT defined in (2) now takes a di§erent form. Specifically, we can show that

under the local alternatives given in Equation (18) of the main text,

Th
d/2
2

 
1

T

TX

t=1

ρτ (Xt − b̄qτ (Xt−1))w(Zt−1)−
1

T

TX

t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)−DT

!

:=Th
d/2
2 (AT +BT + CT )

d−! N (0, σ̃20τ ),

with AT , BT , CT , and σ̃20τ given in the proof of Theorem 2.

Second, under the local alternative hypotheses H1(δT ), using the second order Taylor expansion, one can

calculate that

DT = E
[
ρτ (Xt − q̄τ (Xt−1))w(Zt−1)

]
− E

[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
[1 + op(1)]

= E
[
ρτ (Xt − qτ (Zt−1) + δT∆T (Zt−1))w(Zt−1)

]
− E

[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
[1 + op(1)]

= δTE
[
∆T (Zt−1)w(Zt−1)'("t)

]
−
δ2T
2
E
[
∆2T (Zt−1)w(Zt−1)g(Zt−1)

]
[1 + op(1)]

= δ2TE
[
∆2T (Zt−1)w(Zt−1)f"|Z(0|Zt−1)

]
[1 + op(1)],

where g(z) = @E['(Xt − θ)|Zt−1 = z]/@θ = −f"|Z(0|z), and the fourth step follows by law of iterated
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expectations and E['("t)|Zt−1] = 0 in Assumption A.3. Consequently, with δT =
(
Th

d/2
2

)−1/2
, we have

Th
d/2
2

\Cτ (Y ! X) = κ (τ)−1
h
Th

d/2
2 DT + Th

d/2
2 (AT +BT + CT )

i
× [1 + op(1)]

d−! N
(
γ,σ20τ

)

under the local alternatives with

γ = κ (τ)−1 lim
T!1

E
[
∆2T (Zt−1)w(Zt−1)f"|Z(0|Zt−1)

]
.

This concludes the proof of Proposition 4. !

Proof of Theorem 3: The asymptotic validity of our bootstrap procedure can be proved using similar

arguments to those used in the proof of Theorem 2, with the term A1T replaced by its bootstrapped version

A∗1T using the bootstrapped sample {(X
∗
t , Y

∗
t )}Tt=1. Conditionally on {(Xt, Yt)}

T
t=1 and using Theorem 1 of

Hall (1984), we obtain the bootstrap validity result in Theorem 3. !

Proof of Theorem 4: The proof is similar to the proof of Theorem 1 and a sketched proof is provided.

Denote bd1(W t−1) = (
bφτ −φτ )0W t−1 and

bd2(Xt−1) =
b̄qτ (Xt−1)− q̄τ (Xt−1). Note the following expansion

holds,

1

T

TX

t=1

ρτ

(
Xt − bφ

0

τW t−1 − b̄qτ (Xt−1)

)
w(Zt−1)

=
1

T

TX

t=1

ρτ

(
Xt − φ

0
τW t−1 − q̄τ (Xt−1)

)
w(Zt−1)

−
1

T

TX

t=1

(
b̄qτ (Xt−1)− q̄τ (Xt−1)

)
w(Zt−1)'("t)−

1

T

TX

t=1

(bφτ − φτ
)0
W t−1w(Zt−1)'("t)

−
2

T

TX

t=1

(
Xt − bφ

0
W t−1 − b̄qτ (Xt−1)

)n
1(bd1(W t−1) +

bd2(Xt−1) > "t > 0)

−1(bd1(W t−1) +
bd2(Xt−1) < "t < 0)

o
w(Zt−1)

:=
1

T

TX

t=1

ρτ

(
Xt − φ

0
τW t−1 − q̄τ (Xt−1)

)
w(Zt−1) + ET + FT +GT

=
1

T

TX

t=1

ρτ

(
Xt − φ

0
τW t−1 − q̄τ (Xt−1)

)
w(Zt−1) + op(T

−1/2),

where ET = FT = GT = op(T
−1/2) can be proved using the steps in the proof of lemma 3 in Noh et

al. (2013) and by noting that maxt2I(w) |
bd1(W t−1)| = Op(T

−1/2) for bounded support. Moreover, the

asymptotic representation for

1

T

TX

t=1

ρτ

(
Xt − bφ

0
τW t−1 − q̂τ (Zt−1)

)
w(Zt−1) =

1

T

TX

t=1

ρτ
(
Xt − φ0τW t−1 − qτ (Zt−1)

)
w(Zt−1) + op(T

−1/2)
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can be obtained using the same arguments as Lemmas 3 and 4 of Appendix C. The proof then follows by

using the equality that âb̂−1 = ab−1 + b̂−1
h
(â− a)−

(
b̂− b

)
ab−1

i
. !

Proof of Theorem 5: Consider the following decomposition of ρτ (·):

1

T

TX

t=1

ρτ

(
Xt − bφ

0

τW t−1 − b̄qτ (Xt−1)

)
w(Zt−1)−

1

T

TX

t=1

ρτ

(
Xt − bφ

0
τW t−1 − q̂τ (Zt−1)

)
w(Zt−1)

=
1

T

TX

t=1

h(
q̂τ (Zt−1)− qτ (Zt−1)

)
−
(
b̄qτ (Xt−1)− q̄τ (Xt−1)

)i
w(Zt−1)'("t)

+
1

T

TX

t=1

((
bφτ − φτ

)
−
(bφτ − φτ

))0
W t−1w(Zt−1)'("t) + higher order terms

:=HT + IT + higher order terms.

Following the same arguments as in the proof of Theorem 2, it can be shown that Thd/22 HT
d−! N (0, σ̃20τ ) and

Th
d/2
2 IT =

hp
T
(
bφτ − φτ

)
−
p
T
(bφτ − φτ

)i
h
d/2
2 Op(1) = op(1) by root-T consistency properties of linear

coe¢cients estimators bφτ and
bφτ . Therefore,

Th
d/2
2

\CPLτ (Y ! X|W )

=(κPL (τ))−1Th
d/2
2 HT × [1 + op(1)]

d−!N (0,σPL20τ ),

which proves that Thd/22
\CPLτ (Y ! X|W ) converges to a normal distribution under the null of no causality

in the presence of control variables W . !

Appendix C: Proofs of auxiliary results

In this section, we provide four auxiliary lemmas which are useful to prove our main results in Appendix

B. In the first lemma, the uniform Bahadur representation for the estimator of the restricted conditional

quantile function q̄τ (x) based on a p-th order local polynomial approximation using bandwidth h1 is derived.

Please notice that the proofs of the following Lemmas 1-4 can be obtained using similar arguments as in

lemmas 2 and 3 in Noh et al. (2013) [or using results in Kong et al. (2010), see their corollary 1, lemmas 8

and 10, respectively], and they are therefore omitted.

Lemma 1: Let e1 be an N1 × 1 vector with its first element given by 1 and all others 0. Suppose A.1-A.9

in Appendix A hold and h1 = O (T−κ1) with κ1 > 1/ (2p+ 2 + d1). Then, with probability one, we have

b̄qτ (x)− q̄τ (x) = −e01
H−1
T

Thd11
S−1T,p(x)

TX

t=1

Kh1(Xt−1 − x)'("t)µ(Xt−1 − x) +RT ,

where "t = Xt − q̄τ
(
Xt−1

)
is the restricted error and RT = op

((
Thd11

)−1/2)
uniformly in x 2 DX and

DX is the compact support of the weighting function w(·) with respect to the part of X.
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Analogously, the q-th order local polynomial estimator of the unrestricted conditional quantile function

qτ (z) using bandwidth h2, say q̂τ (z), can be defined accordingly as in Section 4 and its uniform Bahadur

representation can be obtained similarly and is stated in the next lemma. Note that Lemma 1 is only a

special case of Lemma 2.

Lemma 2: Denote d = d1 + d2. Let e1 be an N2 × 1 vector with its first element given by 1 and all others

0. Suppose Assumptions A.1-A.9 in Appendix A hold and h2 = O(T−κ2) with κ2 > 1/(2q + 2 + d). Then,

with probability one, we have

q̂τ (z)− qτ (z) = −e01
H−1
T

Thd2
S−1T,q(z)

TX

t=1

Kh2(Zt−1 − z)'("t)µ(Zt−1 − z) +RT ,

where "t = Xt − qτ (Zt−1) is the unrestricted error and RT = op
((
Thd2

)−1/2)
uniformly in z 2 D and D is

the compact support of the weighting function w(·).

On the other hand, to derive the Bahadur representation of \Cτ (Y ! X), we need to investigate the

asymptotic behaviour of T−1
PT
t=1 ρτ (Xt −

b̄qτ (Xt−1))w(Zt−1) [resp. T
−1PT

t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)],

which is stated in the next two lemmas. Again, the proof of Lemma 3 is similar to the one of Lemma 4.

Lemma 3: Suppose Assumptions A.1-A.9 in Appendix A hold, p > d1/2 − 1 and h1 = O(T−κ1) with

1/(2p+ 2 + d1) < κ1 < 1/(2d1). Then,

1

T

TX

t=1

ρτ (Xt − b̄qτ (Xt−1))w(Zt−1)− E[ρτ (Xt − q̄τ (Xt−1))w(Zt−1)]

=
1

T

TX

t=1

ρτ (Xt − q̄τ (Xt−1))w(Zt−1)− E[ρτ (Xt − q̄τ (Xt−1))w(Zt−1)] + op(T
−1/2).

Lemma 4: Let d = d1 + d2. Suppose Assumptions A.1-A.9 in Appendix A hold, q > d/2 − 1 and

h2 = O(T
−κ2) with 1/(2q + 2 + d) < κ2 < 1/(2d). Then, we have

1

T

TX

t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)− E[ρτ (Xt − qτ (Zt−1))w(Zt−1)]

=
1

T

TX

t=1

ρτ (Xt − qτ (Zt−1))w(Zt−1)− E[ρτ (Xt − qτ (Zt−1))w(Zt−1)] + op(T
−1/2).

Appendix D: Additional simulation results
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Table 1: Bootstrap bias-corrected estimation of quantile Granger causality measures at τ = 0.25

Measure DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6

T = 50

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.1122
(0.1152)

0.1094
(0.1112)

0.7501
(0.3056)

0.7635
(0.3169)

1.0212
(0.3718)

0.7162
(0.3283)

0.8587
(0.3792)

0.8246
(0.3589)

T = 100

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0609
(0.0565)

0.0544
(0.0534)

0.6049
(0.1826)

0.6295
(0.1980)

0.8371
(0.2283)

0.6157
(0.2096)

0.6260
(0.2026)

0.6279
(0.2219)

T = 200

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0380
(0.0316)

0.0314
(0.0319)

0.5071
(0.1138)

0.5370
(0.1250)

0.7156
(0.1458)

0.5649
(0.1476)

0.4696
(0.1206)

0.4889
(0.1305)

T = 400

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0230
(0.0180)

0.0180
(0.0184)

0.4050
(0.0670)

0.4303
(0.0729)

0.5851
(0.0861)

0.4762
(0.0984)

0.3129
(0.0673)

0.3282
(0.0755)

Note: This table shows the average values of bootstrap bias-corrected ( \C∗τ ,BC(Y ! X) ) estimates of causality mea-

sures from Y to X (Cτ (Y ! X)). “True” indicates the true value of causality measure, “Bias-Corrected” indicates the

average value of the estimate of causality measure after bootstrap bias correction, and “–” means that the true value

of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction

estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of

causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal

to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes” means that there is causality in

the true GDP. The DGPs in the first row of the table are described in detail in Table 1 of the main text. In parenthesis

is the standard deviation of the estimated value.
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Table 2: Bootstrap bias-corrected estimation of quantile Granger causality measures at τ = 0.50

Measure DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6

T = 50

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.1076
(0.1050)

0.0882
(0.0963)

0.6746
(0.3028)

0.6725
(0.3058)

0.9096
(0.3623)

0.6369
(0.3324)

0.7973
(0.3655)

0.7355
(0.3671)

T = 100

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0584
(0.0578)

0.0510
(0.0536)

0.5335
(0.1632)

0.5453
(0.1658)

0.8045
(0.2457)

0.5695
(0.2080)

0.5597
(0.2038)

0.5352
(0.1827)

T = 200

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0332
(0.0307)

0.0294
(0.0277)

0.4361
(0.0998)

0.4661
(0.1090)

0.7082
(0.1482)

0.5130
(0.1403)

0.4201
(0.1172)

0.3848
(0.1058)

T = 400

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0202
(0.0160)

0.0156
(0.0150)

0.3929
(0.0618)

0.4075
(0.0675)

0.6536
(0.1083)

0.4769
(0.1021)

0.3176
(0.0736)

0.2881
(0.0621)

Note: This table shows the average values of bootstrap bias-corrected ( \C∗τ ,BC(Y ! X) ) estimates of causality mea-

sures from Y to X (Cτ (Y ! X)). “True” indicates the true value of causality measure, “Bias-Corrected” indicates the

average value of the estimate of causality measure after bootstrap bias correction, and “–” means that the true value

of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction

estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of

causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal

to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes” means that there is causality in

the true GDP. The DGPs in the first row of the table are described in detail in Table 1 of the main text. In parenthesis

is the standard deviation of the estimated value.
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Table 3: Bootstrap bias-corrected estimation of quantile Granger causality measures at τ = 0.75

Measure DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6

T = 50

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.1062
(0.1090)

0.0891
(0.0995)

0.6985
(0.2831)

0.7092
(0.3075)

0.9373
(0.3925)

0.6840
(0.3078)

0.7700
(0.3706)

0.7603
(0.3410)

T = 100

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0633
(0.0601)

0.0624
(0.0601)

0.5595
(0.1828)

0.5699
(0.1751)

0.8810
(0.2648)

0.5672
(0.1953)

0.6344
(0.2160)

0.5550
(0.1961)

T = 200

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0396
(0.0311)

0.0339
(0.0312)

0.4582
(0.1068)

0.4899
(0.1166)

0.8340
(0.1857)

0.5217
(0.1415)

0.5183
(0.1322)

0.4274
(0.1192)

T = 400

Y ! X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y ! X) 0.0000 0.0000 – – – – – –

Bias-Corrected \C∗τ ,BC(Y ! X) 0.0239
(0.0194)

0.0164
(0.0165)

0.4045
(0.0674)

0.4253
(0.0709)

0.7746
(0.1179)

0.4768
(0.1010)

0.4275
(0.0851)

0.3286
(0.0718)

Note: This table shows the average values of bootstrap bias-corrected ( \C∗τ ,BC(Y ! X) ) estimates of causality mea-

sures from Y to X (Cτ (Y ! X)). “True” indicates the true value of causality measure, “Bias-Corrected” indicates the

average value of the estimate of causality measure after bootstrap bias correction, and “–” means that the true value

of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction

estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of

causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal

to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes” means that there is causality in

the true GDP. The DGPs in the first row of the table are described in detail in Table 1 of the main text. In parenthesis

is the standard deviation of the estimated value.
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